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Abstract

In this paper, we establish a result of unique continuation for a special two-dimensional
nonlinear system that models the evolution of long water waves with small amplitude
in the presence of surface tension. More precisely, we will show that if (n, ®) =
(n(x,y,t), d(x, y,t)) is a solution of the nonlinear system, in a suitable function
space, and (1, ®) vanishes on an open subset €2 of R? x [-T,T], then (n,®) =0
in the horizontal component of 2. To state such property, we use a Carleman-type
estimate for a differential operator £ related to the system. We prove the Carleman
estimate using a particular version of the well known Treves’ inequality.

Keywords Nonlinear system - Long waves - Carleman estimate - Unique
continuation

Mathematics Subject Classification 35B60 - 35Q35

1 Introduction
The focus of the present work is the following two-dimensional system
(I—LA) 0+ A0~ 2A2D +eV-(nVD) =0,
ey
(I-5A)®, +n—poAn+5|Vel> =0,

that describes the evolution of long water waves with small amplitude in the presence
of surface tension (see Quintero and Montes 2013). Here, € is the amplitude parameter
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(nonlinearity coefficient),  is the long-wave parameter (dispersion coefficient), o is
the inverse of the Bond number (associated with the surface tension) and the functions
n=n(x,y,t)and ® = ®(x, y, t) denote the wave elevation and the potential velocity
on the bottom z = 0, respectively.

As happens in water wave models, there is a Hamiltonian type structure which is
clever to find the appropriate space for special solutions (solitary waves for example)
and also provide relevant information for the study of the Cauchy problem. For the
system (1), the Hamiltonian functional H = H(¢) is defined as

1 2
1(3) =3 [, 07+ no1vnl 4 1V0P + 21008 + envoP)xay
R

and the Hamiltonian type structure is given by

() () =034 )

We see directly that the functional 7 is well defined when 5, V& € H!(R?), for ¢
in some interval. These conditions already characterize the natural space for the study
of solutions of the system (1). Certainly, in Quintero and Montes (2013) showed for
the model (1) the existence of solitary wave solutions which propagate with speed of
wave 0 > 0,

_l x—OIL _\/_ﬁ x—@ti
n(x,y,t)—eu(—\/ﬁ Jﬁ) D(x,y, 1) = . v(—ﬁ Jﬁ) 2

in the energy space H L(R2) x V(R?), where H!(R?) is the usual Sobolev space of
order 1 and the space V(R?) is defined with respect to the norm given by

112y = /Rz (1IVwl? +18wP) dxdy
- /Rz (wi +w? +wl, + 2wl + wﬁy) dxdy.

In Quintero and Montes (2016), it was proved the local well-posedness for the
Cauchy problem associated to the system (1) in the Sobolev type space H*~!(R?) x
V$(R2), s > 2, where H*(R?) is the usual Sobolev space of order s defined as the
completion of the Schwartz class with respect to the norm

2 _ 2\Y ~eng2
lwli g2, —/Rz (1+162) 1@ Pas
and V* (R?) denotes the completion of the Schwartz class with respect to the norm

il 2y = A (1+ |§|2)S 171D ()1%d8,
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where w is the Fourier transform of w defined on R? by

w(E) = _ix‘sw(x)dx;

1
N [R ‘
and in the work (Montes and Quintero 2015), using a general result established by
Grillakis et al. (1987) to analyze the orbital stability of solitary waves for a class of
abstract Hamiltonian systems, Quintero and Montes showed the orbital stability of the
solutions of the form (2). The existence of x-periodic solitary wave solutions for the
system (1) can be seen in Quintero and Montes (2017).

In the present work we will prove a unique continuation result for the system (1).
More precisely, we show that if (n, ) = (n(x, y, 1), (x, y, 1)) is a solution of the
system (1) in a suitable function space,

mon e L2 (=T.T: HE.®), ® € L2 (=T, T: Hif (RY),

@, € L2 (—T, T; H,ZOC(RZ)),

and (n, @) vanishes on an open subset Q2 of R2 x [T, T], then n,®) = 0in
the horizontal component of 2. The horizontal component €2 of an open subset
Q C R? x R is the set defined by

Q ={(x,y.) eR*x [T, T] : 3x1,y) € R%, (x1,y1.1) € 2}

The unique continuation property has been intensively studied for a long time. An
important work on the subject was done by Saut and Scheurer (1987). They showed
a unique continuation result for a general class of dispersive equations including the
well known KdV equation,

U + Uty + Uy =0,

and various generalizations. In a similar way, Shang (2007) showed a unique
continuation result for the symmetric regularized long wave equation,

Upr — Uxx + l (1"2) — uxxtr = 0.
2 xt

In the previous equations, a Carleman estimate is established to prove that if a solution

u vanishes on an open subset 2, then # = 0 in the horizontal component of €2.

By using the inverse scattering transform and some results from the Hardy function
theory, Zhang (1992) established that if u is a solution of the KdV equation, then it
cannot have compact support at two different moments unless it vanishes identically.
In the work (Bourgain 1997), Bourgain introduced a different approach and prove that
if a solution u to the KdV equation has compact support in a nontrivial time interval
I = [t1, 2], then u = 0. His argument is based on an analytic continuation of the
Fourier transform via the Paley—Wiener Theorem and the dispersion relation of the
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linear part of the equation. It also applies to higher order dispersive nonlinear models,
and to higher spatial dimensions; in particular, Panthee (2005) showed that if u is a
smooth solution of the Kadomtsev—Petviashvili (KP) equation,

U + Uy + ulty + 8;114” =0,
such that, for some B > 0,
suppu(t) C [-B, B] x [-B, B] Vt € [11, o],

then u = 0.

More recently, Kenig et al. (2002) proposed a new method and proved that if a
sufficiently smooth solution u to a generalized KdV equation is supported in a half
line at two different instants of time, then # = 0. Moreover, Escauriaza et al. (2007)
established uniqueness properties of solutions of the k-generalized Korteweg—de Vries
equation,

u; + ukux YUy =0, keZ . 3)

They obtained sufficient conditions on the behavior of the difference | — u, of two
solutions u1, us of (3) at two different times #9p = 0 and #; = 1 which guarantee
that u; = u,. This kind of uniqueness results has been deduced under the assumption
that the solutions coincide in a large sub-domain of R at two different times. In a
similar fashion, Bustamante et al. (2011) proved that if u is a smooth solution of the
Zakharov—-Kuznetsov equation,

Up + Uxxx T Uxyy T UUy = 0,
such that, for some B > 0,
supp u(t2), suppu(t;) C [—-B, B] x [-B, B],

then u = 0. Moreover, in Bustamante et al. (2013) it was proved that if the difference
of two sufficiently smooth solutions of the Zakharov—Kuznetsov equation decays as
e—a(x*+y 2)3/4 at two different times, for some @ > 0 large enough, then both solutions
coincide. More unique continuation results can be seen in Carvajal and Panthee (2005),
Carvajal and Panthee (2006), I6rio (2003a,b) and Kenig et al. (2003).

Following from close the works of Saut and Scheurer (1987), we base our analysis
in finding an appropriate Carleman-type estimate for the linear operator £ associated to
the system (1). In order to do this we use a particular version of the well known Treves’
inequality. For the operator £ we also prove that if a solution vanishes in a ball in the
xyt space, which passes through the origin, then it also vanished in a neighborhood of
the origin. The paper is organized as follows. In Sect. 2, using a particular version of
the Treves inequality, we establish a Carleman estimate for a differential operator £
closely related to our problem. In Sect. 3, first we give some useful technical results.
Later, we show the unique continuation result for the system (1).
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2 Carleman Estimate
In this section, we will use the notation D = (dy, dy, 9;). If P = P(&1, &, &) is a

polynomial in three variables, has constant coefficients and degree m, then we consider
the differential operator of order m associated to P,

P(D) =P (3, 0y, 8) = Y auD*,

|| <m

where D* = 9y'9y?0;” and |«| = 1 + a2 + 3. By definition

PP (&), £y, 83) = 3 0200 P(£1. £2.83). B = (B1. Po. B3) € N°.

Using a particular version of the Treves’ inequality, we will establish a Carleman
estimate for the differential operator £ defined as

P13, 3y, 3) + (fi. f2) - V Py(dy, 3y, 3) + f3 A
L= ., @
P3(3y, dy, 3) P4(dx, 0y, ) + (far f5) -V

where f; = f;j(x,y,t), for j = 1,2,3 and the operators P;, j = 1,2,3,4 are
defined by

P(3y. 3y, ) = (I —al)d; + c19; + 29 + c1850x + 2970y,

Pa(dy, dy, &) = —bA%,  P3(dy, dy, 8;) = I — cA,
and

Py(3x, By, 8) = (I —d D)3 + €305 + ¢4d;
+c3030x + 4970y
Theorem 2.1 (Treves’ Inequality) Let P(D) = P (0, dy, ;) be a differential oper-
ator of order m with constant coefficients. Then for all & = (£1,&,&) € R3,

o= (a1, 00,03) € NP and W e C(‘)’O(R3) we have that

22|a\%-20t

' /|P("‘)(D)\lf|2ew(("’~‘"’)’s)dxdydt
ol R3

< C(m,a)/ |P(D)W|2e¥ &yD-8 gxdydt, 5)
R3
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where

Y ((x, ,1),8) = X262 + Y262 + 1263, £2 = e E1,

") <
su if lal<m
] = a1 +a2 + a3, a! =ajleplaz!, Cim,a) = Pir-+al<m o ’ -

0, if |o| > m.

Proof See Theorem 2.4 in Treves (1966). O
Corollary 2.2 Let P(D) = P (ax, dy, 8,) be a differential operator of order m with
constant coefficients. Then forall @ = (o1, a2, a3) € N38§>0,7>0,¥ ¢ C(‘)X’ (R3)

and ¥ (x,y,t) = (x — 2+ (y — 8)2 + 8242 we have that

220 7 la] §203

o!

/ [P (D)W 2>V dxdydt < C(m.a) / |P(D)¥ e’V dxdydt
R3 R3
6)

with
su TEE) i < m
lo| = o1 +o0 + a3, a! =ajlwlas!, Cm,a)=1 Pir-+al<m o ’ ah=m
0, if || >m.
Proof We will use the above theorem with the differential operator
OD)=PD +a)= P(8x + 274, 0y + 216, 8[),
where
>0, a=(214,213,0), z=(x,y,1), &=(8,&,8)=(2tr,V27,V279).

Then, using inequality (5) we have that

22|a|52a

o!

220l la| §2a3
= / |P@ (D + a)‘y|262r(x2+y2+5212)dxdydt
o! R3

f |P(D +a)¥|*e? “Ddxdydt
R3

< C(m, ) [ |P(D + a)W 2> 7 +82) gy gy ay
R3
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forall ¥ e CSO(R3), o = (a1, 02,a3) € N3 and any T > 0. Now, multiply both sides

4182

of the previous inequality by e we obtain

22|0!\ .L.\Ol|82013

' / 12700+ p@ (D L )W 22TV D gy dydr
o! R3

< C(m, a)/ |28 P(D + a)W |22V YD dxdydr.
R3

In particular, we can choose W = We 2780 +Y) where U € Ccs (R3). Observing that
PODY(T) = 2700+ p@ (D 4 g)(Te2T00+Y)y
and also that
P(D)(T) = 23+ p(D 4 a)(Te 2700+

we obtain

220l lerl §203

' /|P(°‘)(D)\IJ|262”/’dxdydtSC(m,a)/ |P(D)WV|?e*™V dxdyds.
. R3 R3

]
Now we present the Carleman estimate for the differential operator L.

Theorem 2.3 Let L the differential operator defined in (4), where cy, ¢z, c3, c4 are
real constants and f1, f2, f3, fa, f5 € LS (R3). Let § > 0 and

loc

By i={(x,y, ) €R> : X242+ <8, Y(x, 1)
= (x =82+ (y— 8> + 8%

Then, there exists C > 0 such that for all ¥ = (¥, ¥3) € C3°(Bs) x C{°(Bs) and
T > 0 with

2 2
”fl ||L°°(B3) + ”f2”L°°(B(g) < l i L 4 1 ||f2||2 <
128242 T8 g \w82 32 ) B =

0| ==

and

2 2
||f4||L°°(B§) + ||f5||L°°(B§) - i
128242 - 16’

we have that
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e | P Vdxdydr + 282 | |V PPV dxdydt
Bs Bs

+ @PE 4+ | WPV dxdydt + (228%d* + b)) | VW Pe?™V dxdydt
Bs Bs

+18? i (I — dA)Y¥,)?e®™V dxdydt < C i LW %XV dxdyd. @)
S S

Proof Let ¥ = (W, W) € C3°(Bs) x Cy°(Bs). Consider the polynomial
Pi(61. &2, &) = & — a(] + E)5 + 1&] + & + 1§38 + s
and
Pi(D) = P1(3y. 9y, ) = (I —al)d; + c19; + 28] + €1dyyx + €20y
the differential operator associated to P;. Then, if « = (1, 0, 1) we have that
P&, 6,8) = PV (&1, 6, 8) = 2081, PV (D)W = —2a0, ¥,

and

C3,a)= sup (r +°‘> —2.
|r+a|<3

Thus, using Theorem 2.1 we see that

128%a* f 10, W1 2™V dxdydt < 32128%a> f 10, W1 %e*™Y dxdydt
Bs Bs

220 7 la] g2z
= T— |Pl(05)(D)‘_I,1|2€2‘[1//dxdydt
! Bs
< | IPI(D)W |**Vdxdydt. 8)
Bs

Now, if @ = (0, 1, 1) we have that

P&, &, 8) = POTV(E, 8, 8) = =208, P (D)W = 240,V

and also

C3,a)= sup (r +°‘> —2.

[r+a|<3

So, using Theorem 2.1 we see that
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1282012/ |3y\111|262””dxdydt < 32r252a2/ |8y1111|262””dxdydt
Bs Bs

22lal plalg202
== " | PO D)W PV dxdydr
05‘ Bs
< | IPI(D)W |*e* Y dxdydt. 9)
Bs

Moreover,
P00, &, 8) =6c1, PEOV(D)W = 601w, C@3,(3,0,0) = 1.

Then, using again the Theorem 2.1 we obtain that

261.3
t3c%/ W1 12e®V dxdydr < < |P1(3’0’0)(D)\Ill|232””dxdydt
Bs Bs

< | |1P(D)W eV dxdydt. (10)
Bs
Now, by defining
Py(£1, &2, 63) = —b(E} + 28283 + &), Po(D) = —bA?,
we have that

PO 6, ) = —24b, P00 (D)W, = —24bW,, C(4, (4,0,0)) = 1

and

28 4
b [ PPV dxdyd < S [ PO (D)0 PP dxdyd
Bs 24 Bs
< | |P(D)W,*e* ™V dxdydt. (11)
Bs

In a similar fashion

P2(3*O’0)(D)l112 = —24b3, V5, P2(0’3’0)(D)‘1’2
= —24b3, ¥y, C(4,(3,0,0)) =C(4,(0,3,0)) = 4.

Hence, we see that
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263
202 | 18, Ws2eX V dxdydt < TS 1P 00 (DY, eV dxdydt
Bs Bs

IA

|Py (D) W1 2e®V dxdydt (12)
Bs

and also that

2643
24

IA

3p? / 10, W, eV dxdydt / 1P (DY, eV dxdydt
Bs Bs

< [ 1P, (D)W > ¥V dxdyd:. (13)
Bs

By considering
Py(Er, 2, 63) = & — d(&] + E)E3 + 03E] + a5 + 3761 + ek,
and
Py(D) = P9y, 9y, ) = (I —dA); + c39; + c4d; + c30yyx + Cadixy
we have that

POV (D) Wy = 6020, POV (D) Wy = —248, 95, POV (D) Wa = —2d0, W,

c@3,3,0,0)=1, C€3,(1,0,1))=C@3,(0,1,1)) =2.
Then, using Theorem 2.1 we obtain that

26

3
T

23 | W2V dxdydr < . / P00 (D) W, Pe? ™ dxdydt
Bs

Bs

< | |P«(D)W,)2*V dxdydt (14)
Bs

and
282d% | |0, Wa eV dxdydr < 2*¢%8% | [P0V (D) Wa2e? ™V dxdydt
Bs Bs

< / |P4(D)Ws2e*™V dxdydt (15)
Bs

and also that
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128242 / 10, W, 2>V dxdydt < 2*¢28? / 1P (D) Wy 2e?V dxdydt
Bs Bs

< | |P«(D)W,2e* ™V dxdyds. (16)
Bs

Finally, we see that
(0,0,1) _ _
Py D)Wy = —dAMW¥,, C@3,(0,0,1) =1.

Then, using Theorem 2.1 we obtain that

82 | Wy — dAW PPV dxdydt < 22282 | 1P (D) Wa2e* ™V dxdydi
Bs Bs

< [ |Ps(D)W,2e* Y dxdydr. (17)
Bs

From (8)—(17), there is C > 0 such that
et |12V dxdydt + 28%a* | |V Pe*V dxdydt + (t3c3
Bs Bs

+ %) |‘112|2e2”/’dxdydt
Bs

+ (282> + ) | VWPV dxdydt + 187 | |(I — dA)YW, 2e* TV dxdydt
Bs Bs
< C/ (IPL(D)W1 > + | Po(D)Ws|* + | P4(D) W2 |*) >V dxdydt. (18)
Bs
Now, we note that

L= —al)d +c1d; + 20} + c1dyyr + 200xy + (A1, 3.0, fo(x,y. D)) -V

implies that
P (D)W = L1¥1 = (fi(x, y. D), fa(x, ¥, 1)) - V.
Then, using inequalities (8)—(9), we have that
2 2ty
/ I(fl(x’ y’t)9 fZ(X, y,l‘))v\llﬂ e dxdydt
Bs
< 2(ILf1l 7oy + 12070 iy)) fB (|axw1|2 + |ayw1|2) 2V dxdydt
8

=2(Il fillfoocsy) + 12l 7005y f VW, [2e*™ dxdydt
Bs
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(”fl” L (By) + ||f2||L°°(B,s))
- 2 282 2

(1 F113 oy + 12113 o
< (0 ey L) (1L0wi +1(f1, f2) - V01 ?) 2V dxdyar,
728242 Bs

(19)

|[PL(D)V; |2e*™V dxdydt
Bs

In a similar way, for
LWy = Py(D)Vs + (falx, y, 1), f5(x,y,1)) - V¥
we obtain, using (14) and (17), that

/B|f3(x,y,t)A\I'zlzez””dxdydtsIllelioo(Ba)/B |AW, 22V dxdydt
8 $

Il 3113
< ﬂ/ (|(1 — AW, 2 + |\112|2) ™V dxdydt
Bs

S
P (L n L) T / | Py(D)Wy[2e*™V dxdyd
d* \t8* 733 ) Jp,
<2 (iﬁL) TA. / (1£a0a+1(fs. £5) - Vol ¥y
d* \ 8% 13c3 >’ J s

(20)

and also, using (15)—(16), we have that

/ |(f4(x1 y’t)9 fS(X, y,l)) 'V“I/2|262‘”//d.xdydt
Bs

< 2(1 fall} oo gy) + 15510 55)) /B VW22 dxdydt
8
(l|f4”L°°(Ba) + ||f5||ioo(35))
128242

_ A0S0y + 15 sy)
= T282d2

/ | P4(D)W,2e*™V dxdydt
Bs

L (1£4waP + (s, f5) - VW2 P) 7V dxdyar,
5 @1)

Next, if we choose t > 0 large enough such that

|1l + 120y 1 1 (1 —+ L) 1A, <
7:364 3lpeo(Bs) = 8’

28242 =% &z

@ Springer



A Unique Continuation Result... Page130f23 32
and
||f4||%00(35) + ”fS”%oo(Ba) - 1
728242 - 16’
then from inequalities (19)—(21) we have that
f (101 £2) - VIR + 1802 + |(fa. f5) - VI ) 7V dxdyds
Bs
1
< —/ (|L‘1\IJ1|2—|—|£4\I/2|2> 2V dxdydi
2 /s,
1
45 [ (101 2) - V0P 15 f5) - V0P 5V v,
Bs
what implies
| (01 £2) - TP 4 18022 (s, 7) - T0) >V dndys
Bs
sf (I£1\IJ1|2+|£zw2|2+|ﬁ3\p1|2+|£4w2|2) e>Vdxdydt
Bs
= | 1LV Vdxdydt,
Bs
where
Lr= f3A—bA?, L3=1—cA,
2 2 2 2 172
£W] = (IL091 2+ [L2%a + L3912 + Lo W)
Therefore
/ (IPL(D)W1* + | Py (D)W | + | P4(D) W, |*) >V dxdydt
Bs
<2 [ (LB +I(f f) - VOP) Y drdydr
Bs
+2/ (I1L2W2* + | AW ) 27V dxdydt
B
+2/ (IL4W2 2 +1(f3, f5) - VI I?) erxdydt§4/ LW 2e*™ dxdydt.
Bs B;s
Hence, from previous inequality and (18) we obtain the estimate (7). O

Remark 2.4 The estimate (7) is invariant under changes of signs on the components

of L.
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Corollary 2.5 Let T > 0. Assume that in addition to the hypotheses of the Theorem
2.3 we have that
mon e L2 (=T, 75 HR.®) . @ e L2 (=T, T; Hjj (),
e 12 (=T, T; HE.®Y)

and the support of n and support of ® are compact containedin Bs. Then, the inequality
(7) holds if we replace ¥ = (W1, V1) by U = (n, D). Indeed,

3¢ |n|2ezf*//dxdydt+r252a2/ \Vn2e*™V dxdydt + (t3c2
Bs Bs

+ 1) | |®)2®Vdxdyd:
Bs

+ (282> + ) | |[VOPeFVdxdydt + 182 | |(I — dA)D|?e*TV dxdydt
Bs Bs

<C / LU ™V dxdydt. (22)
Bs

Proof Let {p¢}c-0 be a regularizing sequence (in three variables) and consider

Ue = (pe * 1, pe * ),

where * denotes the usual convolution. Then we have that U, € Cgo (Bs) x CgO(Bg)
and the inequality (7) holds for U, that is,

et | |pe * nl*e*™Vdxdydt + r282a2/ IV (pe x m)e*V dxdydt
Bs

Bs

+ @32+ 1Y) | |pe x D)2e*V dxdydr
Bs

+ (228%d* + b | |V(pe * D) 2*Vdxdydt
Bs

+ 182 | |(I —dA)(pe x @) > ¥ Vdxdydt < C | |LU?*Vdxdyd:r. (23)
Bs Bs

Now, forn =0, 1 and m = 0, 1, 2 we have that

182 (pe + me™ — 3ne™ Il 125,y = I1(oe * 3fme™ — 3lne™ |l 28y
< Cll3% (pe % n) — 37l 128,y — O,

17 (pe + me™ — 3 e™ |28,y < CIIO} (e 1) — B2l 1203y — O
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and

187" (pe * @)e™ — 37D ™V || 125,y < CIT (pe % ®) — L' DIl 25, —> O,

197" (pe  ®)e™ — 87 @ e™V || 12,y < ClIOY (pe * @) — 07 @125,y — 0. as € — 07,

where C is a positive constant depending only on 7 and §. Similarly we have that
/ (|£U€|262”” - |£U|2e2””) dxdydt — 0, as ¢ — 0,
Bs

which allows us to pass to the limit in (23) to conclude the proof of Corollary 2.5. O

3 Unique Continuation

In this section, we prove the unique continuation result for the system (1). Before to
do the proof, we establish the following results.

Lemma3.1 LetT > Oand fi, f2, f3, f4, f5 € L;’(fc(Rz x (=T, T)). Let U = (n, )
with

nn € L*(—=T,T; H3.(RY), @€ L*(-T,T; Hj.(R?), &, € L*(~T,T; H} (R?)

be a solution of LU = 0in R? x (=T, T) where L is the differential operator defined
in (4). Let

~ U if t>0
U=
0 if t<O.

Suppose that U = 0 in the region {(x,y,t) : x < t, y < t} intercepted with a

neighborhood of (0, (L 0). Then there exists a neighborhood O of (0,0, 0) (in the
space xyt) such that U = 0 in Oy.

Proof By hypotheses there is 0 < § < 1 such that U =0in Rs = R, U Ry, where

Ry ={(x,y,t) :x<t, y<t}NBs, Rr={(x,y,t) :t <0}N Bs,

Bs = {(x,y, 1) : x>+ y* + 12 < §%}.

Next, consider x € C8°(B,;) such that x = 1 in a neighborhood O of (0, 0, 0) and
define

U= (¥, W) = xU.
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Then we have that

Wy, 8,¥ € L*(—T, T; HE,.(R?)),
U, € L*(~T,T; HY (R?), 8V, € L*(—T, T; Hp,.(R?))

and
supp ¥V C Bs.

By using the definition of x, we note that L& = 0 in O. Thus, using the Corollary
2.5, we have for ¥ (x, y, t) = (x — 8)2 + (y— 8)2+8%%andt > 0 large enough that

et || Pe*Vdxdydt + 28%a* | |V Pe*V dxdydt
Bs Bs

+ @3+ Y | |W2eP Vdxdydt + (228%d + b%) | |V Pe*™V dxdydt
Bs Bs

+18% | | = dA)Ws*e¥V dxdydt
Bs

<C | 1LV e*Vdxdydt = c/ LW |2 Y dxdydt. (24)
Bs Bs;\O
Now, using again the definition of x and the fact that U=0in Rs, we see that
suppV C D, supp LY C DN(Bs\O), D={(x,y,1):0<t<x,y<¥d<l1}

It follows that if (x, y, t) # (0,0, 0) and (x, y,t) € D then

Y,y 1) =(x —8)2+ (y—8)> 48 < (1 —8)> + 812
=122+ 8%) — 415 + 8% < 28>

Thus, there exists 0 < € < 282 such that
Yx,y,1) <28°—€, (x,y,1) € DN (Bs\O).

Moreover, since ¥ (0, 0, 0) = 282, we can choose O 1 C O aneighborhood of (0, 0, 0)
such that

Yvx,y,t) > 26% — ¢, (x,y,1) € Oy.

From the above construction and inequality (24), we have that there exists C; > 0
such that
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r3e2’<2‘32*€)/ (l\lql2 + |‘~112|2> dxdydr < 13/ <|q’l|2 + I\Ilez) "V dxdydt
0O

Oy

13/ (|x1:1|2 + |\y2|2> 2™V dxdydt
Bs

IA

IA

C / LW 2e®™V dxdydt
Bs\O

< €272 f |LW > dxdydt.
Bs\O

Therefore

c
/ (|\p]|2 + |\y2|2) dxdydt < =+ LW Pdxdyds.
Oy T Bs\O

Then, passing to the limit as T — +00, we have that ¥ = 0 in O;. Since U=v
in O and O; C O, we see that U = 0 in O;. O

Similarly, we also have the following result.

Lemma3.2 Let T > Oand fi, fa, f3, fa, f5 € LS. (R2 x (=T, T)). Let U = (n, )
with
non € LX(=T,T; H: (R%), ® e L*(—T,T; H} (R?), &, € L>(—T,T; H? (R?))

be a solution of LU = 0in R? x (=T, T) where L is the differential operator defined
in (4). Let

i— 0 if t>0
U if t<O.

Suppose that U =0 inthe region { (x,y,t) : x < —t, y < —t}intercepted with a
neighborhood of (0, 0, 0). Then there exists a neighborhood O of (0,0, 0) (in the
space xyt) such that U = 0 in O,.

Corollary3.3 Let T > 0 and Fy, F», F3, F4, Fs € L2 (R? x (=T, T)). Let U =
(n, @) with

n,ne € L*(=T,T; H: (R?), @ e L*(~T,T; H;}.(R%),
®, € L>(=T, T; H?,.(R?)

be a solution in R®> x (=T, T) of the system
(I —ad)yn —bA*® + (Fi(x, y, 1), F2(x, y, D)) - Vi + F3(x, y, D A® =0,
(I = cA)®; + 1 —dAn+ (Fa(x, y.1), Fs(x, y.1)) - V& = 0.
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Let y be a sphere passing through the origin (0, 0, 0). Suppose that U = 0 in the
interior of y in a neighborhood of (0, 0, 0). Then, there exists a neighborhood of
0, 0,0) where U = 0.

Proof Letus assume that the sphere (a piece of it) y is given by (x, y) = (g1(2), g2(?)).
By using the hypotheses, we have that U = 0O inthe region {(x, y, 1) : x < g((¢), y <
g2(¢)} intercepted with a neighborhood of (0, 0, 0). Then, we can to see that there exists

w1, € R\ {0, 1} such that U = 0 in a neighborhood of (0, 0, 0) intercepted with
the region {(x, y,#) : x < h1(t), y < ha(t)} where

h0) wjt if t>0, j=1,2
jt = 1 . .
—aTjt if t<0, j=1,2.

Now, we consider the following change of variables (x, y,t) — (X, Y, T) with

X =x—hy(t)+|t]
Y =y —hat) + [t
T=t.

Notice that in the new variables, if T > 0 then the function
U=UXY,T)=m0X,Y,T),®X,Y,T))
is a solution of the system

(I —al)nr — bA*® + a((w) — Dy + (w2 — Ddyn + (w2 — Daxxyn
+(@1 — Doyyxn) + (1 —w1 + Fi, 1 —w; + F2) - Vn 4+ F3A® =0,

(I —cAN)Pr +n—dAn+c((@ — DIg® + (02 — DI P + (02 — Daxxy ®
+(w1 — Dayyx®) + (1 — w1 + F4, 1 —wp + Fs5) - VO = 0.

Then, U = 0 in the region {(X,Y,T) : X < T, T < T T > 0} intercepted with a
neighborhood of (0, 0, 0) and U satisfies

LU=0 if T>0,
where
P1(dx, dy, 0r) + (f1, f2) - V Py(9x, 9y, 9r) + f3A
P3(dx, dy, dr) P4(dx, 0y, 97) + (fa. f5) - V
with
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Pi(3x, dy, 0r) = (I — aA)dr + 193 + 285 + c1dyyx + c20xxy,

Py(dx, dy, 0r) = —bA>,  P3(dx, dy, 0r) = I —dA,
and
P4(dx, dy, d7) = (I — cA)dr 4 c305 + 405 + c30yyx + cadxxy,
and also

cr=a(wy—1),co =a(wy —1),c3 =clw) — 1),c4 = c(wp — 1),

fi=l-wi+FL, fa=l—m+F, fi=mRBfi=l-o1+F, fs=1—-w+Fs.
So, using Lemma 3.1 with the previous differential operator £, we obtain that there
exists a neighborhood O of (0, 0, 0) in the space XY T where U = 0.

In asimilar fashion, U = Ointheregion{(X,Y,T) : X < —-T,Y < —-T, T <0}
intercepted with a neighborhood of (0, 0, 0) and U satisfies

LU=0 if T <0,

where

fi=gr =1+ F, fr= g —14+F, fi=F, fa=g —1+F, fs= —1+Fs.
Then, from Lemma 3.2 we have that there exists a neighborhood O; of (0, 0, 0) in the
space XY T where U = 0. Thus, returning to the original variables (x, y, t) we have

the result. O

Now we have the main result on the unique continuation property for the system

(D).
Theorem3.4 Let T > 0 and (n, ®) = (n(x, y,t), ©(x, y, 1)) with

nn € LX(=T,T; H: (R%), ® e L*(—T,T; H} (R*), &, € L>(—~T,T; H} (R%))

be a solution in R? x (=T, T) of the system (1). If (n, ®) = 0 in an open subset Q2 of
R? x (=T, T), then (n, ®) = 0 in the horizontal component of 2.
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Proof By defining the functions
Fi(x,y,t) =€0x®, F(x,y,1t)=€0,®, F3(x,y,t)=1+e€n,
and
Fy(x,y,1) = 50:®, Fs(x,y, 1) = 503,P,
the system (1) takes the form
(I —al)n, —bA?® + (Fi, F>) - Vi + F3A® =0,
(I —cA)®; +n—dAn+ (F4, F5) - V& =0,

with Fi, F, F3, Fy, Fs € LO.(R? x (=T, T)) anda =c = &, b = %, d = po.

loc
Then, we will show the result for the system (25).

Denote by 21 the horizontal component of €2 and let
A={(x,y,t) e Q1 : (n,®) =0 inaneighborhood of (x,y,1)}.

Let O € Q; arbitrary. Choose P € A and let I be a continuous curve contained in
21 joining P to Q, parametrized by a continuous function f : [0, 1] — 2 with
f(0) = Pand f(1) = Q. Since P € A, there exists r > 0 such that

n,®)=0 in B.(P). (26)

Taking 0 < ro < min{r, dist(I", 921)}, where 921 denotes the boundary of 1, we
have that

B,,(P) C A.
Now, if r; < %0 we see that
By (f(s)) C 21, foralls e][0,1]; 27
in fact, if w € By, (f(s)) and w ¢ 2 then
lw— fI <2r <ro<dist(T',0Q2)) = [lw — f(s),

which is a contradiction.
Next, let

A ={x,y,)eA:(nP)=0 in B, (x,y, )N}
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and
S={0<¢<1: f(s) e Ay whenever 0 <s <¢}, {£9p=supS.

We will prove that f(£o) € Aj. If w € B, (f(£o)) and r» = ||lw — f(£p)] then there
exists 0 < § < £g such that || f(€g) — f (g — §)|| < r1 — ra. Therefore

lw—flo =8l < llw— f)Il +Ifo) — flo =l <r1,

and so w € B, (f(£o — 68)). Now, from the definition of £ there exists £5 € § such
that £9 — 6 < £5 < €p, what implies f(£o — §) € A1. Then, using (27) we see that

0, ®)=0 in B, (f(lo—3) NQ =B, (f(l—9)). (28)
Consequently we obtain that (n(w), ®(w)) = 0 and then

(n, ®) =0 in B, (f(fo)). (29)

Hence, we have showed f(£g) € A1.

If £o = 1 then from previous analysis we have that Q = f(1) € A} C A. Thus,
since Q was arbitrarily chosen we obtain that (7, ®) = 01in 21, which proves Theorem
3.4. Then to finish the proof of Theorem 3.4 remains to prove that £y = 1. In fact, let
us suppose that £y < 1 and let

G={ZeQ :|Z-fl)ll=r}.

For w = (x1,y1,#1) € G fixed, we consider the change of variable (x, y,t) —
(X, Y, T) where

X =x—xi,
Y=y-—y,
T=t-—1.

Notice that (0,0,0) €e G* ={Z = (X, Y, T) : |Z—(f(y) —w)| = r1}. Moreover,
from (29) we see that

m(X,Y,T),®(X,Y,T) =0, (X,Y,T)e€ B,(f{)—w).
So that, by using Corollary 3.3, there exists ;s > 0 such that
X, Y, T),®(X,Y,T) =0, (X,Y,T) € B(0,0,0).

Returning to the original variables we have that for each w € G there exists r;;, > 0
such that

(, ®) =0 in B (w).
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Then, using (29) and the compactness of G, we have that there is €; > 0 such that
(, @) =0 in By e (f (). (30)

Now, we note that there exists 0 < 6; < 1 — £¢ such thatif w € B, (f(£o + 61))
then

lw = fE) < lw— fo+ DI+ I1f(lo+381) = flo)ll <r1+ e

Thus, w € By 4¢, (f (€p)) and so B, (f (€o + 1)) C By 4¢, (f (£o)). Therefore, using
(30) we have that (n, ®) = 0in B, (f(£o + 61)). Consequently f(£yp + 81) € Ay,
which contradicts the definition of £y. So, £9 = 1 and the proof of Theorem 3.4 is
complete. O

Acknowledgements A. Montes and R. Cérdoba were supported by University of Cauca under Grant ID
5845; Math Amsud and Minciencias-Colombia under Grant MATHAMSUD 21-MATH-03.

Funding Open Access funding provided by Colombia Consortium.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This articleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Bourgain, J.: On the compactness of the support of solutions of dispersive equations. Int. Math. Res. Not.
5, 437-447 (1997)

Bustamante, E., Isaza, P., Mejia, J.: On the support of solutions to the Zakharov—Kuznetsov. J. Differ. Equ.
251, 2728-2736 (2011)

Bustamante, E., Isaza, P., Mejia, J.: On uniqueness properties fo solutions of the Zakharov—Kuznetsov. J.
Funct. Anal. 264, 2529-2549 (2013)

Carvajal, X., Panthee, M.: Unique continuation property for a higher order nonlinear Schrodinger equation.
J. Math. Anal. Appl. 303, 188-207 (2005)

Carvajal, X., Panthee, M.: On uniqueness of solution for a nonlinear Schrodinger—Airy equation. Nonlinear
Anal. Theory Methods Appl. 64(1), 146—158 (2006)

Escauriaza, L., Kenig, C., Ponce, G., Vega, L.: On uniqueness properties of solutions of the k-generalized
KdV equations. J. Funct. Anal. 244(2), 504-535 (2007)

Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in presence of symmetry. J. Funct.
Anal. 74, 160-197 (1987)

I6rio, R.J., Jr.: Unique continuation principles for the Benjamin—Ono equation. Differ. Integral Equ. 16(11),
1281-1291 (2003)

I6rio, R.J., Jr.: Unique Continuation Principles for Some Equations of Benjamin-Ono Type, Nonlinear
Equations: Methods, Models and Applications, pp. 163—179. Birkhiuser, Basel (2003)

@ Springer


http://creativecommons.org/licenses/by/4.0/

A Unique Continuation Result... Page230f23 32

Kenig, C., Ponce, G., Vega, L.: On the support of solutions to the generalized KdV equation. Ann. Inst. H.
Poincaré Anal. Non. Linéarire 19, 191-208 (2002)

Kenig, C.E., Ponce, G., Vega, L.: On unique continuation for nonlinear Schrodinger equation. Commun.
Pure Appl. Math. 56, 1247-1262 (2003)

Montes, A., Quintero, R.: Orbital stability of solitary waves for a 2D-Boussinesq system. Electron. J. Differ.
Equ. 176, 1-17 (2015)

Panthee, M.: Unique continuation property for the Kadomtsev—Petviashvili (KP-1I) equation. Electron. J.
Differ. Equ. 59, 1-12 (2005)

Quintero, J., Montes, A.: Existence, physical sense and analyticity of solitons for a 2D Boussinesq—Benney-
luke system. Dyn. PDE 10, 313-342 (2013)

Quintero, J., Montes, A.: On the nonlinear scattering and well-posedness for a 2D-Boussinesq—Benney—Luke
type system. J. Differ. Equ. 260, 6057-6083 (2016)

Quintero, J., Montes, A.: Periodic travelling waves and its inter-relation with solutions for the 2D abc-
Boussinesq system. Commun. Math. Anal. 20(1), 27-49 (2017)

Saut, J.C., Scheurer, B.: Unique continuation for some evolution equations. J. Differ. Equ. 66, 118-139
(1987)

Shang, Y.: Unique continuation for the symmetric regularized long wave equation. Math. Methods Appl.
Sci. 30, 375-388 (2007)

Treves, F.: Linear Partial Differential Equations with Constant Coefficients, Gordon and Breach. Gordon
and Breach, London (1966)

Zhang, B.: Unique continuation for the Korteweg—de Vries equation. SIAM J. Anal. 23, 55-71 (1992)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer



	A Unique Continuation Result for a 2D System of Nonlinear Equations for Surface Waves
	Abstract
	1 Introduction
	2 Carleman Estimate
	3 Unique Continuation 
	Acknowledgements
	References




