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Abstract
Let T be a tree. The sets of leaves and branch vertices of T are denoted by L(T )

and B(T ), respectively. For two distinct vertices u, v of T , let PT [u, v] denote the
unique path in T connecting u and v. When B(T ) �= ∅, we call the graph ST =⋃

u,v∈B(T ) PT [u, v] the internal subtree of T . In this paper, we give two conditions
for a connected graph to have a spanning tree whose internal subtree has few branch
vertices and leaves. Moreover, the sharpness of our result is also shown.
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1 Introduction

In this paper, we consider only simple graphs, which have neither loops nor multiple
edges. Let G be a graph with vertex set V (G) and edge set E(G). For any vertex
u ∈ V (G), we use NG(u) and degG(u) to denote the set of neighbors of u and the
degree of u in G, respectively. We define G − uv to be the graph obtained from G by
deleting the edge uv ∈ E(G), and G + uv to be the graph obtained from G by adding
an edge uv between two non-adjacent vertices u and v of G.

Let X ⊆ V (G).We denote by |X | the cardinality of X , degG(X) = ∑
x∈X degG(x),

NG(X) = ⋃
x∈X NG(x) and G − X is a subgraph of G which is obtained from G by

deleting the vertices in X together with their incident edges. X is called an independent
set of G if no two vertices of X are adjacent in G. For two vertices u and v of V (G),
the distance between u and v in G denoted by dG(u, v). For an integer m � 2, let
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αm(G) denote the number defined by

αm(G) = max{|S| : S ⊆ V (G), dG(x, y) � m ∀x, y ∈ S, x �= y}.

For two integers m, p � 2, we define

σm
p (G) = min{degG(S) : S ⊆ V (G), |S| = p, dG(x, y) � m∀x, y ∈ S, x �= y}.

For convenience, we define σm
p (G) = +∞ if αm(G) < p. We note that α2(G) is often

written α(G), which is the independence number of G, and σ 2
p(G) is often written

σp(G), which is the minimum degree sum of p independent vertices.
Let T be a tree. Vertices of degree one and vertices of degree at least three in T are

its leaves and branch vertices, respectively. Let L(T ) be the sets of leaves and B(T ) be
the sets of branch vertices of T . The subtree T − L(T ) of T is called the stem of T and
is denoted by Stem(T ). Many researchers have investigated independence number
conditions and degree sum conditions for the existence of spanning trees whose stem
has few leaves or branch vertices. Below, we list two results on this topic.

Theorem 1 (Kano and Yan 2014) Let G be a connected graph and let k � 2 be an
integer. If either α4(G) � k or σk+1(G) � |G| − k − 1, then G has a spanning tree
whose stem has at most k leaves.

Theorem 2 (Yan 2016) Let G be a connected graph and k � 0 be an integer. If one
of the following conditions holds, then G has a spanning tree whose stem has at most
k branch vertices.

(i) α4(G) � k + 2,
(ii) σ 4

k+3(G) � |G| − 2k − 3.

Let T be a tree with B(T ) �= ∅. For two distinct vertices u, v of T , let
PT [u, v] denote the unique path in T connecting u and v. We call the graph
ST = ⋃

u,v∈B(T ) PT [u, v] the internal subtree of T (see Gould and Shull 2020).
We describe the internal subtree differently as follows. For each s ∈ L(T ), let as be
the nearest branch vertex to s. We let vs be the unique vertex in NT (as) ∩ PT [s, as].
The path that connects s to vs is called a leaf-branch path of T incident to s and denoted
by lbPT (s). Then ST = T − ⋃

s∈L(T ) V (lbPT (s)) is also known as the reduced stem
of T and denoted by R_Stem(T ) (see Ha et al. 2021a, b) (see Fig. 1for an example of
T and ST = R_Stem(T )). A leaf of ST is called a peripheral branch vertex of T (see
Maezawa et al. 2019; Saito and Sano 2016). In 2020, Ha et al. gave two conditions on
connected graphs which ensures the existence of a spanning tree with few peripheral
branch vertices. For each real number r , the notation 	r
 stands for the biggest integer
not exceeding r .

Theorem 3 (Ha et al. 2021a) Let G be a connected graph and k ≥ 2 be an integer.
If one of the following conditions holds, then G has a spanning tree with at most k
peripheral branch vertices.

(i) α(G) ≤ 2k + 2,
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Fig. 1 Tree T and ST = R_Stem(T )

(ii) σ 4
k+1(G) ≥

⌊ |G|−k
2

⌋
.

Recently, Ha et al. obtained the following result.

Theorem 4 (Ha et al. 2021b) Let G be a connected graph and k � 2 be an integer. If
the following condition holds, then G has a spanning tree whose reduced stem has at
most k branch vertices:

σ 4
k+3(G) �

⌊ |G| − 2k − 4

2

⌋

+ 1.

Lately, some results guaranteeing spanning trees with a bounded number of branch
vertices and leaves have been obtained.

Theorem 5 (Nikoghosyan 2016; Saito and Sano 2016) Let k ≥ 2 be an integer. If
a connected graph G satisfies degG(x) + degG(y) ≥ |G| − k + 1 for every two
nonadjacent vertices x, y ∈ V (G), then G has a spanning tree T with |L(T )| +
|B(T )| ≤ k + 1.

Theorem 6 (Maezawa et al. 2019) Let k ≥ 2 be an integer. Suppose that a connected
graph G satisfies

max{degG(x), degG(y)} ≥ |G| − k + 1

2

for every two nonadjacent vertices x, y ∈ V (G). Then G has a spanning tree T with
|L(T )| + |B(T )| ≤ k + 1.

In this paper, we give two sufficient conditions for a connected graph to have a
spanning tree whose internal subtree has few branch vertices and leaves.

Theorem 7 Let k ≥ 0 be an integer. Suppose that a connected graph G satisfies one
of the following conditions:
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Fig. 2 Graph G

(i) α4(G) � k + 2,

(ii) σ 4
k+3(G) �

⌊
|G|−2k−4

2

⌋

+ 1.

Then G has a spanning tree whose internal subtree has at most 2k+3 branch vertices
and leaves.

Note that if a tree hasm branch vertices, then the number of leaves is at leastm+2.
Therefore, from the result of Theorem 7 we get Theorem 4.

To the end this section, we construct an example to show that the condition of
Theorem 7 is sharp.

Let k � 0 and m � 1 be two integers. Let H0, H1, . . . , Hk+2 and P0, P1, . . . ,
Pk+2 be 2k + 6 disjoint copies of the complete graph Km of order m. Let
x1, x2, . . . , xk+1, y0, y1, . . . , yk+2 be 2k+4 vertices not contained in H0 ∪H1 ∪· · ·∪
Hk+2∪P0∪P1∪· · ·∪Pk+2. Join yi to all the vertices of Hi∪Pi for every 0 � i � k+2.
Adding two edges x1y0, xk+1yk+2 and join xi to yi for every 1 � i � k + 1. Let G
denote the resulting graph (see Fig. 2).

Then |G| = (2k + 6)m + 2k + 4 and α4(G) = k + 3. In addition, we have

σ 4
k+3(G) =

k+3∑

i=1

degG(si ) = (k + 3)m =
⌊ |G| − 2k − 4

2

⌋

,

where si is any vertex of Pi for every 0 � i � k + 2. But G has no a spanning
tree whose internal subtree has at most 2k + 3 branch vertices and leaves. Thus, the
condition in Theorem 7 is sharp.
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2 Proof of Theorem 7

First of all, let us state the following useful lemma.

Lemma 1 Let T be a tree. Then the number of leaves in T is counted as follow

|L(T )| =
∑

x∈B(T )

(degT (x) − 2) + 2.

Suppose that G has no spanning tree T such that |L(ST )| + |B(ST )| ≤ 2k + 3.
Choose some spanning tree T of G such that:

(T1) |B(ST )| + |L(ST )| is as small as possible.
(T2) |L(T )| is as small as possible, subject to (T1).
(T3) |ST | is as small as possible, subject to (T2).

According toLemma1,we have |L(ST )| ≥ |B(ST )|+2.Combiningwith |B(ST )|+
|L(ST )| ≥ 2k + 4, it follows that |L(ST )| ≥ k + 3 ≥ 3. Thus, |B(ST )| ≥ 1. Put
� = |L(ST )| and L(ST ) = {a1, a2, . . . , a�}. We have � ≥ k + 3.

By the definition of the internal subtree, we have the following proposition.

Proposition 1 For every i ∈ {1, 2, . . . , �}, there exist at least two leaves T which are
connected to ai by paths in T . Namely, T has at least two leaf-branch paths connecting
ai to a leaf of T .

Proposition 2 For each i ∈ {1, 2, . . . , �}, there exist two leaves xi , yi of T such that
lbPT (xi ) and lbPT (yi ) connect xi and yi to ai , respectively, and NG(xi ) ∩ (V (ST ) −
{ai }) = ∅ and NG(yi ) ∩ (V (ST ) − {ai }) = ∅.
Proof Assume that there exists i ∈ {1, 2, . . . , �} for which the claim does not hold.
Then every leaf-branch path PT [z j , vz j ](1 ≤ j ≤ m) of ai , except at most one such
a path, satisfies NG(z j ) ∩ (V (ST ) − {ai }) �= ∅. For each j ∈ {1, 2, . . . ,m}, take a
vertex t j ∈ NG(z j ) ∩ (ST − {ai }). Then

T ′ = T + {z j t j : 1 ≤ j ≤ m} − {aivz j : 1 ≤ j ≤ m}

is a spanning tree of G such that |B(ST ′)| ≤ |B(ST )|, |L(ST ′)| ≤ |L(ST )|, |L(T ′)| =
|L(T )| and |ST ′ | < |ST |, where ai is not a vertex of ST ′ . This gives a conflict with the
conditions (T1) or (T3). Hence, Proposition 2 is proved. ��

For 1 ≤ i ≤ �, let xi and yi be vertices defined as in Proposition 2 and let U =⋃
1≤i≤�{xi , yi }.

Proposition 3 U is an independent set of G.

Proof Suppose that there exist two vertices s, t ∈ U such that st ∈ E(G).Without lost
of generality, we assume that s = xi for some i ∈ {1, 2, . . . , �}. We have axi = ai .
Consider the tree T ′ = T + xi t − aivxi . Then, T

′ satisfies B(ST ′) ⊆ B(ST ). If
degT (ai ) = 3, then L(ST ′) = L(ST )\{ai }, this contradicts the condition (T1). If
degT (ai ) ≥ 4, then L(ST ′) = L(ST ) and L(T ′) = (L(T ) ∪ {vxi })\{xi , t}, which
contradicts the condition (T2). Proposition 3 is proved. ��
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Fig. 3 Distance between si and s j

Proposition 4 For any two distinct i, j ∈ {1, 2, · · · , �}, dG(si , s j ) ≥ 4 for si ∈
{xi , yi }, s j ∈ {x j , y j }.
Proof For u, v ∈ V (G), let PG(u, v) be a shortest path connecting u and v in G. Let
Pi j = PG(si , s j ). We will prove V (Pi j ) ∩ (ST \ {ai , a j }) �= ∅. Indeed, assume that
all vertices of Pi j are contained in (V (G) − ST ) ∪ {ai , a j }.

Let ti be the vertex of lbPT (si )∩Pi j closest to ai , and t j be the vertex of lbPT (s j )∩
Pi j closest to a j . Then Pi j = PG [si , ti ] ∪ PG [ti , t j ] ∪ PG [t j , s j ], where PG [ti , t j ]
passes through only vertices contained in V (G) − V (ST ) (Fig. 3).

For every vertex p ∈ L(T ) such that lbPT (p) ∩ PG [ti , t j ] �= ∅, remove all the
edges apvp of T and add PG [ti , t j ]. Furthermore, if the path PG [ti , t j ] intersects
an lbPT (p) multiple times, then for each cycle (ω) of PG [ti , t j ] + lbPT (p), we
delete an edge of E(ω) ∩ E(lbPT (p)) which associates with V (PG [ti , t j ]). Then the
resulting subgraph T ′ of G includes an unique cycle C which contains two vertices
ai and a j . Because |B(ST )| � 1, there exists a branch vertex u of ST to be contained
in C . Let x ∈ NT (u) ∩ V (C). Denote by T ′′ = T ′ − ux . For every p ∈ L(T )

such that lbPT (p) ∩ PG [ti , t j ] �= ∅, we have that for all vertices of V (PT [p, vp]) \
(V (PT [p, vp]) ∩ Pi j ) not contained in ST ′′ and B(ST ′′) = B(ST ) (if degT (u) ≥ 4) or
B(ST ′′) = B(ST )\{u} (if degT (u) = 3). Then T ′′ is a spanning tree ofG satisfying the
conditions |B(ST ′′)| ≤ |B(ST )| and L(ST ′′) ⊆ ((ST \{ai , a j })∪{x}). This contradicts
the condition (T1). Therefore, Pi j ∩(ST −{ai , a j }) �= ∅. Set z ∈ Pi j ∩(ST −{ai , a j }).
Hence, by combining with Proposition 2, we obtain

dG(si , s j ) = dPi j (si , s j ) = dPi j (si , z) + dPi j (z, s j ) � 2 + 2 = 4.

Proposition 4 has been proven. ��
According to Proposition 4, we have α4(G) ≥ � ≥ k + 3, which implies that G

must satisfy the condition (ii) of Theorem 7.
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Next, we choose T to be a spanning tree of G satisfying

(T4)
∑�

i=1 (|lbPT (xi )| + |lbPT (yi )|) is as large as possible subject to (T1)-(T3).
For p ∈ L(T ) and x ∈ PT [p, vp], let x+ = NT (x) ∩ PT [x, ap] and if x �= p, let

x− = NT (x) ∩ PT [x, p].
Proposition 5 For each p ∈ L(T ) \U, we have NG(U ) ∩ lbPT (p) = ∅.
Proof Suppose that NG(U )∩lbPT (p) �= ∅. There exists t ∈ U and x ∈ lbPT (p) such
that xt ∈ E(G). Put T ′ = T + xt − xx+. If x = vp, then B(ST ′) ⊆ B(ST ), L(ST ′) ⊆
L(ST ) and L(T ′) = L(T )\{t}. It contradicts the condition (T1) or (T2). If x �= vp,
then B(ST ′) = B(ST ), L(ST ′) = (L(ST ) ∪ {p})\{t}, L(T ′) = (L(T ) ∪ {vp})\{t} and
ST ′ = ST . However, the condition (T4) is contradicted (p of T ′ instead of t of T ).
The proof is complete. ��
Proposition 6 For any two distinct i, j ∈ {1, 2, . . . , �}, NG(si ) ∩ lbPT (s j ) = ∅ for
si ∈ {xi , yi } and s j ∈ {x j , y j }.
Proof Suppose the assertion of the claim is false. Then there exists a vertex x ∈
NG(si )∩ lbPT (s j ). Set T ′ = T + xsi . Then T ′ is a subgraph of G including a unique
cycle C, which contains both ai and a j .

Since |B(ST )| � 1, then, there exists a branch vertex u of ST contained in C . Let
z ∈ NT (u) ∩ V (C). Consider the tree T ′′ = T ′ − uz. If degT (u) ≥ 4, then B(S′′

T ) =
B(ST ). If degT (u) = 3 then u /∈ B(ST ′′), so B(ST ′′) = B(ST ) \ {u}. Then T ′′ is a
spanning tree ofG satisfying B(ST ′′) ⊆ B(ST ) and L(ST ′′) ⊆ (L(ST )\{ai , a j })∪{z}).
This contradicts the condition (T1). So Proposition 6 is proved. ��
Proposition 7 For every 1 � i � � and si ∈ {xi , yi }, we have

∑

y∈U
|NG(y) ∩ lbPT (si )| � |lbPT (si )| − 1.

Proof By the same role of xi and yi , we can only consider si = xi . By Proposition 6,
we conclude that

NG(U ) ∩ lbPT (xi ) = NG({xi , yi }) ∩ lbPT (xi ).

��
Claim 7.1 vxi /∈ NG(yi ).

Indeed, assume that vxi yi ∈ E(G). Consider the tree T ′ = T + yivxi − aivxi .
Then, T ′ is a spanning tree of G such that |B(ST ′)| ≤ |B(ST )|, |L(ST ′)| ≤ |L(ST )|
and |L(T ′)| < |L(T )|.This contradicts either the condition (T1) or the condition (T2).
Claim 7.2 If x ∈ NG(yi ) ∩ lbPT (xi ), then x+ /∈ NG(xi ).

Suppose that there exists x ∈ NG(yi ) ∩ lbPT (xi ) such that x+ ∈ NG(xi ). Set
T ′ = T + {xyi , xi x+} − {xx+, aivxi }. Hence T ′ is a spanning tree of G such that
|B(ST ′)| ≤ |B(ST )|, |L(ST ′)| ≤ |L(ST )| and |L(T ′)| < |L(T )|. This contradicts
either the condition (T1) or the condition (T2). Claim 7.2 holds.
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ByClaims 7.1, 7.2 and Propositions 3, 6, we conclude that {vxi }, NG(yi )∩lbPT (xi )
and (NG(xi ) ∩ lbPT (xi ))− = {x− | x ∈ NG(xi ) ∩ lbPT (xi )} are pairwise disjoint
subsets in lbPT (xi ). Then

∑

y∈U
|NG(y) ∩ lbPT (xi )|

= |NG(yi ) ∩ lbPT (xi )| + |NG(xi ) ∩ lbPT (xi )|
= |NG(yi ) ∩ lbPT (xi )| + |(NG(xi ) ∩ lbPT (xi ))

−| � |lbPT (xi )| − 1.

This completes the proof of Proposition 7.
By Propositions 2, 6 and 7, we obtain that

degG(U ) =
�∑

i=1

(
degG(xi ) + degG(yi )

)

�
�∑

i=1

(|lbPT (xi )| − 1) +
�∑

i=1

(|lbPT (yi )| − 1) + 2|{a1, a2, . . . , a�}|

=
�∑

i=1

(|lbPT (xi )| + |lbPT (yi )|)

= |G| − |ST | −
∑

p∈L(T )\U
|lbPT (p)|

� |G| − |ST |.

On the other hand, we have |ST | ≥ |L(ST )| + |B(ST )| ≥ 2k + 4. So degG(U ) ≤
|G| − 2k − 4. It means that

�∑

i=1

degG(xi ) +
�∑

i=1

degG(yi ) � |G| − 2k − 4.

So

min

{
�∑

i=1

degG(xi ),
�∑

i=1

degG(yi )

}

� |G| − 2k − 4

2
.

Thus

min

{
�∑

i=1

degG(xi ),
�∑

i=1

degG(yi )

}

�
⌊ |G| − 2k − 4

2

⌋

.
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Combining the above inequality with Proposition 4 and � ≥ k + 3, we obtain

σ 4
k+3(G) � σ 4

� (G) � min

{
�∑

i=1

degG(xi ),
�∑

i=1

degG(yi )

}

�
⌊ |G| − 2k − 4

2

⌋

.

This contradicts the assumption (ii) of Theorem 7. The proof of Theorem 7 is
completed. ��
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