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Abstract
Let p, q, k and � be positive integers. The (p, q, k, �)-Fibonacci sequence (Fk,�,p,q)

n≥0 is the four-parameter sequence defined by the following recurrence

Fk,�,p,q(n) = k Fk,�,p,q(n − p) + �Fk,�,p,q(n − q),

with appropriate initial conditions. In this paper, we study the geometric, algebraic,
and analytic aspects of the roots of the characteristic polynomial of this sequence,
namely, f (x) = xq − kxq−p − �.

Keywords Generalized Fibonacci sequence · Linear recurrence sequence ·
Characteristic polynomial · Eneström–Kakeya theorem · Descartes’ sign rule ·
Rouché’s theorem.

1 Introduction

The Fibonacci sequence (Fn)n (which is defined by the recurrence Fn = Fn−1+ Fn−2,
with F0 = 0 and F1 = 1) is probably the most known example of a recurrence
sequence.Many generalizations (inmany directions) of this sequence have appeared in
the literature. For example, for integers a and b, theUn(a, b) Lucas sequence is defined
by the recurrence Un(a, b) = aUn−1(a, b) − bUn−2(a, b). Despite being another
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sequence, any term of a Lucas sequence is still a linear combination of the preceding
two ones. In Włoch et al. (2013), Wloch et al. provided another generalization by
considering linear combination of two previous more “distant” terms. In fact, they
defined the (2, k)-Fibonacci numbers (or (2, k)-distance Fibonacci numbers) by the
recurrence relation F2(k, n) = F2(k, n−2)+ F2(k, n−k), for n ≥ k, with F2(k, n) =
1 for n ∈ [0, k − 1].

In this work, we are interested in the following four-parameter recurrence which
was defined in da Silva et al. (2018): let p, q, k and � be positive integers, with q > p,
the linear recurrence Fk,�,p,q := (Fk,�,p,q)n≥1 is defined by

Fk,�,p,q(n) = k Fk,�,p,q(n − p) + �Fk,�,p,q(n − q). (1)

We note that for any multiset σ = {a1, . . . , aq} of integers, there is a unique lin-

ear recurrence sequence, say F (σ )
k,�,p,q(n), which satisfies (1) and with initial values

F (σ )
k,�,p,q(i) = ai , for i ∈ [1, q] (we call F (σ )

k,�,p,q(n) the sequence of (p, q, k, �)-
Fibonacci numbers with initial values in σ ).

This is a q-order recurrence sequence and it generalizes some famous sequences
such as the Fibonacci, Lucas, Pell, Jacobsthal, Padovan, and Narayana sequences.
However, the most notable example (in the sense in which its recurrence is not “com-
plete”) is the sequence of Perrin numbers (Pn)n (OEIS A001608), defined by the
recurrence

Pn = Pn−2 + Pn−3,

with initial conditions P0 = 3, P1 = 0 and P2 = 2. We refer the reader to da Silva
et al. (2018) (and references therein) for more information about these sequences.

In a general vein, a sequence (un)n is an s order homogeneous linear recurrence
sequence if

un+s = cs−1un+s−1 + · · · + c0un,

for some complex numbers c0, . . . , cs−1, with c0 �= 0 (the recurrence is said to be
complete if all these numbers are non-zero). We call the polynomial

xs − cs−1xs−1 − · · · − c1x − c0

the characteristic polynomial of (un)n≥0 and its roots

α1, . . . , αs, numbered such that |α1| ≥ · · · ≥ |αs |,

the roots of (un)n . We say that (un)n has a dominant root if |α1| > |α2|. Also, this
polynomial depends only on the recurrence, for example, the characteristic polynomial
of the Fibonacci and Lucas sequences is the same, namely, x2 − x −1. For this reason,
we suppress the explicit dependence on σ in the notation of F (σ )

k,�,p,q(n).
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A classical result on linear recurrence sequences asserts that (un) has the “non-
recurrent” formula:

un = g1(n)αn
1 + g2(n)αn

2 + · · · + g�(n)αn
� , for all n, (2)

where g j (n) is a polynomial with degree at most m j − 1 (see Shorey and Tijdeman
1986, Theorem C.1). For the Fibonacci sequence, one has the Binet’s formula Fn =
(αn − βn)/

√
5 (where α := (1 + √

5)/2 and β = −1/α).
The study of behavior of the roots of the characteristic polynomial of a recurrence

(which gives information about its asymptotic behavior) has a very long history, and
it became more popular after the seminal works of Baker on effective lower bounds
for linear forms in logarithms. For example, as a consequence of the Baker’s method
(or transcendental method) we have:

Theorem 1 Suppose that (un))n is a sequence of integers of the form

un = aαn + O(|α|nθ ), with θ ∈ (0, 1), (3)

where a and α are non-zero algebraic numbers, with |α| > 1 and such that un −aαn �=
0 for all n. Then there exist only finitely many (effectively computable) perfect powers
belonging to (un).

The proof of this theorem can be found in Theorem 3.10 in Bugeaud’s book
(Bugeaud 2018) (we also refer this book to the reader for an introduction to Baker’s
method together with a large variety of its applications).

We remark that Theorem 1 is applicable to Fibonacci numbers, since, by Binet’s
formula, one has that Fn = αn/

√
5 + O(1) (in fact, we remark that the equation

Fn = y p was solved completely in 2003, by Bugeaud (2006, Theorem 1).
Furthermore, for a linear recurrence (un)n to have the form as in (3), it suffices

that its characteristic polynomial has a dominant root and at least one of the following
conditions is true:

(i) All other roots of (un)n lie inside the unit circle (i.e., α is a Pisot number).
(ii) All roots of (un)n are simple.

In fact, by (2), if α1 is a dominant root and its multiplicity is 1, then the dominant
polynomial g1(n) has degree m1 − 1 = 0. So, g1(n) = g1 is a constant. Since
max j∈[2,�]{|α j |} < |α1|, then we have

un = g1α
n(1 + o(1)),

because |g j (n)/αn
1 | and |α j/α1|n tend to zero as n → ∞ (which correspond to items

(i) and (ii), respectively).
There are some classical works concerning the study of roots of (p, q, k, �)-

Fibonacci sequences. For instance, in 1950, Dickinson (1950) proved that all roots
are simple for the case (p, q, 1, 1) and, in 1963, Raab (1963) showed the same for the
case (1, q, k, �).
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Thus, the aim of this work is to continue this program by working on the general
case (p, q, k, �). For simplicity, we shall denote this polynomial only as f (x) (i.e.,
we shall suppress the explicit dependence on p, q, k and � in the notation). Our first
result is related to the existence of a real dominant root as well as its location:

Theorem 2 Let p, q, k and � be positive integers with q > p ≥ 1 and gcd(p, q) = 1.
Then the polynomial f (x) = xq − kxq−p − � has a dominant root α. Moreover,

k1/p
(
1 + 1

q
log+

(
�

kq/p

))
< α < k1/p

(
1 +

(
�

p(q − p)kq/p

)1/2
)

, (4)

where log+(x) := max{log x, 0}.
Remark 1 In the previous result, the condition gcd(p, q) = 1 is necessary. In fact, if
p = dm and q = dn for some d > 1, then by the change of variable y = xd , we can
write f (x) = 0 as yn − kyn−m − � = 0. Thus, any solution of the previous equation
is a dth power and therefore they have the same absolute value. Thus, there is no a
dominant root in this case. For example, if p = 6, q = 3, k = 2 and � = 3, then
f (x) := x6 − 2x3 − 3 = (x3 − 3)(x3 + 1) and so all the roots of f (x) have absolute
values equal to 3

√
3 and 1 (three roots for each one of these two values). In particular,

f (x) does not have a dominant root.

Remark 2 Note that many growth properties of the dominant root of f (x) follow from
the inequality (4). For instance, one has that

• α tends to 1 as p → ∞ (k and � are held fixed).
• α tends to k1/p as q → ∞ (p, k and � are held fixed).
• α tends to infinity as k → ∞ (� is held fixed).
• α tends to infinity as � → ∞ (q is held fixed).

The next result provides a criterion for the simplicity of the roots of f (x). More
precisely,

Theorem 3 Let p, q, k and � be positive integers with q > p ≥ 1 and gcd(p, q) = 1.
Suppose that one of the following conditions is satisfied:
(i) The number p is odd.
(ii) The number p is even and

�p �= (q − p)q−pkq p p

qq
. (5)

Then the polynomial f (x) = xq − kxq−p − � does not have multiple roots.
Furthermore, the only possible double root is −(k(q − p)/q)1/p.

A consequence of the previous theorem is:

Corollary 4 Let p, q, k and � be positive integers with q > p ≥ 1 and gcd(p, q) = 1.
Then all roots of f (x) = xq − kxq−p − � are simple if one of the following conditions
is satisfied:
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(i) If p and q are odd numbers.
(ii) If either p does not divide � or q does not divide k.
(iii) If �/p and k/q are integers but k/q does not divide �/p.

In particular, all roots of f (x) are simple if either k = 1 or � = 1.

Remark 3 In the statement of Theorem 3, the technical condition in (5) is necessary.
In fact, any polynomial constructed using p, q, k and � which do not satisfy that
condition, will have multiple roots. For example, f (x) = x5 − 15x3 − 162 has a
double root at x = −3.

We finish our study with a characterization of the location (in C) of roots of f (x)

when q tends to infinity, but q − p remains constant, say r (note that, in this case, the
dominant root tends to 1 as q → ∞). By usingMathematica software, we observed
that the set of roots of fq(x) := xq − kxr − � (which we shall denote asR fq ) has an
interesting disposal on the complex plane when q increases. In fact, this agrees with
the following special case of a result due to Erdös and Turán (see Granville 2007, p.
94–95): Suppose that (gq)q is a sequence of polynomials with fixed coefficients and
such that deg(gq) = q. Then, for any ε > 0, one has

lim
q→∞

#{z ∈ ann(0; 1 − ε, 1 + ε)) : gq(z) = 0}
#{z ∈ C : gq(z) = 0} = 1, (6)

where the annulus ann(z0; r1, r2)) is the set {z ∈ C : r1 < |z − z0| < r2}. In other
words, almost all roots of gq(x) tend to the boundary of the unit circle as q → ∞.

Therefore, the same is valid for the family of polynomials ( fq)q . However, we want
to make these quantities explicit by proving that for any ε > 0, one has

#{z ∈ ann(0; 1 − ε, 1 + ε)) : fq(z) = 0} = q − r

for all q sufficiently large. Since fq(x) has exactly q roots (by Corollary 4(ii)), then
the limit in (6) becomes

lim
q→∞

#{z ∈ ann(0; 1 − ε, 1 + ε)) : fq(z) = 0}
#{z ∈ C : fq(z) = 0} = lim

q→∞
q − r

q
= 1.

Moreover, we find a very interesting geometric pattern for the remaining r roots.
We point out that these patterns are illustrated in the next three figures. The first two
ones (Figs. 1 and 2) concern the case k > �:

In these two figures and in their four cases, we have r roots (in red) inside the unit
circle, while the other q − r roots (in blue) accumulate on the boundary of that circle.
Furthermore, the red points seem to be converging to the vertices of a regular r -sided
polygon.

For the case in which k ≤ �, all roots seem to be converging to the boundary of the
unit circle. See Fig. 3.

These interpretations are confirmed in the following result:
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Fig. 1 Roots of xq − 15x5 − 1,
for q = 11, q = 18, q = 43 and
q = 101, respectively

Fig. 2 Roots of xq − 10x8 − 2,
for q = 13, q = 17, q = 31 and
q = 111, respectively

Theorem 5 Let r , k and � be positive integers. For an integer q > max{k, r} with
gcd(q, r) = 1, set fq(x) := xq − kxr − �. We have

(i) If k > �, then

R fq =
{
α

(q)
1 , . . . , α

(q)
q−r

}
∪

{
β

(q)
1 , . . . , β

(q)
r

}

has cardinality q and |α(q)
j | tends to 1, while each β

(q)
j tends to an r-th root of

−�/k as q → ∞.

(ii) If � ≥ k, then

R fq =
{
α

(q)
1 , . . . , α

(q)
q

}

has cardinality q and |α(q)
j | tends to 1 as q → ∞.

123



On the Location of Roots of the Characteristic Polynomial… 1237

Fig. 3 Roots of xq − 2x5 − 100,
for q = 11, q = 16, q = 36 and
q = 113, respectively

Remark 4 In particular, the previous theorem (item (i)) implies that the set {β(q)
1 ,

. . . , β
(q)
q } “tends to” the set {(�/k)1/r exp((2 j + 1)π/r) : j ∈ [0, r − 1]} of the

r th complex roots of −�/k as q → ∞. In particular, the numbers β
(q)
1 , . . . , β

(q)
q

approximate to the vertices of the regular r -sided polygon inscribed in the circle
centered at origin with radius (�/k)1/r ).

2 Auxiliary Results

In this section, we shall present some results which will be essential ingredients in the
proof of our results. For clarity, we record some notations. As usual, [a, b] denotes
the set {a, a + 1, . . . , b}, for integers a < b. Also, B(z0, r) = {z ∈ C : |z − z0| < r}
denotes the open ball of radius r with center at z0, ∂
 is the boundary of the set
 and
B[z0, r ] = B(z0, r) ∪ ∂ B(z0, r). To finish, Rg denotes the set of all complex zeros
of the polynomial g(x).

The first tool is the famous Descartes’ sign rule which gives an upper bound on the
number of positive or negative real roots of a polynomial with real coefficients. For
the sake of completeness, we shall state it as a lemma.

Lemma 6 (Descartes’ sign rule) Let f (x) = an1xn1 + · · · + ank xnk be a polynomial
with nonzero real coefficients and such that n1 > · · · > nk ≥ 0. Set

ν := #{i ∈ [1, k − 1] : ani ani+1 < 0}.

Then, there exists a non-negative integer r such that #R f = ν − 2r (multiple roots
of the same value are counted separately).

As a corollary, we have that for obtaining information on the number of negative
real roots, we must apply the previous rule for f (−x).
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Another useful and essential result is due to Eneström (1920) and Kakeya (1912)
which provides information on the size of the roots of a polynomial depending on the
ordering of its coefficients:

Lemma 7 (Eneström–Kakeya theorem) Let f (x) = a0 + a1x + · · · + an xn be an
n-degree polynomial with real coefficients. If 0 ≤ a0 ≤ a1 ≤ · · · ≤ an, then all zeros
of f (x) lie in B[0, 1].

The following two lemmas are from complex analysis. In what follows, Z( f : 
)

denotes the set of zeros of f (z) belonging to 
 ⊆ C. The first lemma is known
Rouché’s theorem which is very useful to simplify the problem of locating zeros of
holomorphic functions (see Conway 1973, Theorem 3.8). More precisely:

Lemma 8 (Rouché’s theorem) Let g, h : 
 → C be analytic functions in a region 


(open and connected subset of C). If |h(z)| < |g(z)| on the boundary of the closed
ball B[a, r ] ⊆ 
, then

#Z(g : B(a, r)) = #Z(g + h : B(a, r)),

where the zeroes are counted according to multiplicity.

It is particularly known that the Mean Value Theorem does not hold for complex-
valued functions. However, the situation is favorable for polynomial functions, as can
be seen in Çakmak and Tiryaki (2012, Theorem D):

Lemma 9 Let f be a polynomial of degree at most n. Furthermore, let z1 and z2 be
any pair of distinct points in the complex plane. Then, there exists z3 with |z3 − (z1 +
z2)/2| ≤ |z2 − z1| cot(π/n)/2 and such that

f (z2) − f (z1) = f ′(z3)(z2 − z1).

Our last lemma is a theoretical result concerning Möbius transformation:

Lemma 10 (Lemma 4 in Trojovský 2021) Let f : C → C be the Möbius transforma-
tion

f (z) = az + b

cz + d
,

where a, b, c, d are real numbers with ad − bc �= 0. Then f −1(R) ⊆ R, that is, if
f (z) is a real number, then so is z.

Now, we are ready to deal with the proof of the theorems.

3 Proof of Theorem 2

3.1 Proof of the Existence of a Dominant Root

By the Descartes’ sign rule, we have the existence of only one positive real root α of
f (x) (in fact, α > k1/p, by the intermediate value theorem). Note that we also have
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f (x) > 0, for all x > α. Let β be a complex root of f (x) with |β| ≥ α. To prove
that α is the dominant root, we must show that β = α. For that, since f (|β|) ≥ 0,
we have |βq | ≥ |kβq−p| + �. On the other hand, by the triangle inequality, one has
|βq | ≤ |kβq−p| + � and so |βq | = |kβq−p + �|. Thus, �, kβq−p and βq belong to
the same ray. This implies that there exists t0 ∈ R such that βq = � + t0(kβq−p − �).
Since βq = kβq−p + �, we deduce that g(β) = kβq−p/(kβq−p − �) = t0 is a real
number (where g(z) := kzq−p/(kzq−p −�)) and so is βq−p, by Lemma 10. It follows
that βq is also a real number and so is β p = βq/βq−p. Now, since gcd(p, q) = 1,
then mp+qn = 1, for some integers m and n. Thus β = (β p)m(βq)n is a real number.
Now, we shall split the proof according to the parities of p and q.

3.1.1 p ≡ q (mod 2)

Since gcd(p, q) = 1, then p and q are odd numbers. Now, observe that f (−x) =
−xq − kxq−p − � and so, by Descartes’ sign rule, f (x) does not have negative roots.
Therefore, β = α as desired.

3.1.2 p �≡ q (mod 2)

Now, let us define ψ(x) := f (αx). Then, we have (by using αq = kαq−p + �) the
explicit form

ψ(x) = αq−1(xq−1 + · · · + xq−p) + (αq−1 − kαq−p−1)(xq−p−1 + · · · + x + 1).

Since α is a positive real number and clearly αq−1 > αq−1 − kαq−p−1 > 0 (since
α p > k), we can apply Lemma 7 to deduce that Rψ ⊆ B[0, 1]. However, z ∈ R f if
and only if z/α ∈ Rψ . Note that β/α is a root of ψ(x) (since ψ(β/α) = f (β) = 0)
and so |β/α| ≤ 1.On the other hand, by hypothesis, we have |β| ≥ α, which yields that
|β| = α. Remember that we want to prove that β = α. Aiming for a contradiction,
suppose that β �= α. Since |β| = α and β ∈ R, then β = −α. This implies that
f (α) = f (−α) = 0. Thus,

2kαq−p = f (−α) − f (α) = 0,

when p is odd and q is even. Also,

−2� = f (−α) + f (α) = 0,

when p is even and q is odd. In both cases, we arrive at contradictions, such as that
either kαq−p or � is equal to zero. Hence β = α and the proof is complete. �

3.2 Proof of the Estimate (4)

To simplify the notation, we set
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θ := k1/p
(
1 + 1

q
log

(
�

kq/p

))
and γ := k1/p

(
1 +

(
�

p(q − p)kq/p

)1/2
)
.

Since α is the unique positive root of f (x), in order to prove that θ < α < γ , it
suffices to show (by the Intermediate Value Theorem) that f (θ) < 0 and f (γ ) > 0.

Indeed, since f (x) = xq−p(x p − k) − �, then f (k1/p) = −� < 0. Furthermore,

f (θ) = k(q−p)/p
(
1 + 1

q
log

(
�

kq/p

))q−p (
k

(
1 + 1

q
log

(
�

kq/p

))p

− k

)
− �.

We use that (1 + x)n < enx , for all real numbers x and n > 0, to deduce that

f (θ) < kq/pe((q−p)/q) log(�/kq/p) · e(p/q) log(�/kq/p) − �

= kq/pelog(�/kq/p) − �

= 0.

On the other hand,

f (γ ) = k(q−p)/p

(
1 +

(
�

p(q − p)kq/p

)1/2
)q−p

×
(

k

(
1 +

(
�

p(q − p)kq/p

)1/2
)p

− k

)
− �.

By using the Bernoulli inequality (1 + x)n ≥ 1 + nx , for all n ≥ 1 and x ∈ R>−1,
together with a straightforward calculation, we obtain

f (γ ) ≥ k(q−p)/p

(
1 + (q − p)

(
�

p(q − p)kq/p

)1/2
)

× k

(
p�

(q − p)kq/p

)1/2

− �

> kq/p
(

(q − p)�

pkq/p

)1/2 (
p�

(q − p)kq/p

)1/2

− �

= 0.

Thus, inequality (4) holds, which finishes the proof. �

4 Proof of Theorem 3

4.1 The Proof

We must prove that f (x) and f ′(x) do not have common zeroes. Since f ′(x) =
qxq−1 − k(q − p)xq−p−1 and we can suppose that x �= 0 (since f (0) = 1). Then
f ′(γ ) = 0 implies that γ p = k(q − p)/q. Thus γ = (k(q − p)/q)1/p exp(2tπ i/p),
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with t ∈ [0, p − 1]. Now, it suffices to prove that f (γ ) �= 0. Indeed, on the contrary,
we would have

0 = f (γ ) =
(

k

(
1 − 1

r

))r

exp(2trπ i) − k

(
k

(
1 − 1

r

))r−1

exp(2t(r − 1)π i) − �,

where r := q/p > 1. Since exp(2trπ i) = exp(2trπ i − 2tπ i) = exp(2t(r − 1)π i),
we get

� =
(

k

(
1 − 1

r

))r

exp(2r tπ i) − k

(
k

(
1 − 1

r

))r−1

exp(2r tπ i)

and so

� = −kr

r

(
1 − 1

r

)r−1

exp(2r tπ i).

Thus � = −Ck,r exp(2trπ i), where

Ck,r := kr

r

(
1 − 1

r

)r−1

.

First, note that r > 0 (otherwise � = −Ck,r < 0). Now, by comparing the real and
imaginary parts of � = −Ck,r exp(2trπ i), we obtain

{
� = −Ck,r cos(2trπ);
0 = sin(2trπ).

From sin(2trπ) = 0 , we deduce that 2trπ = sπ , for some integer s, which yields
that p divides 2tq. Since gcd(p, q) = 1 and 0 < t < p − 1, then p | 2t and p � t
and so p is even (therefore item (i) is proved). Note that q is odd (since p and q are
coprime) and hence

� = −Ck,r cos(2trπ) = −Ck,r cos

(
2tq

p
π

)
= −Ck,r (−1)2tq/p = −Ck,r (−1)2t/p,

where we used that 2t/p is an integer and q ≡ 1 (mod 2). Furthermore, since p | 2t ,
then either p = 2t or p ≤ (2t)/2 = t ∈ [1, p − 1]. Since the last fact can not
happen, then p = 2t yielding Ck,r = � (and γ = (k(q − p)/q)1/p exp(π i) =
−(k(q − p)/q)1/p). Note that � = Ck,r may be rewritten as

�p = (q − p)q−pkq p p

qq
.

However, this equality is exactly the case which can not happen by item (ii). So,
f (γ ) �= 0. In conclusion, f (x) and f ′(x) do not have common zeroes. This completes
the proof. �
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4.2 The Proof of Corollary 4

By Theorem 5, a possible double root of f (x) must be a real negative number. How-
ever, if p ≡ q ≡ 1 (mod 2), then by Lemma 6, we have f (−x) = (−1)q xq −
(−1)q−pkxq−p − � = xq − kxq−p − � which does not have negative roots. So, item
(i) is proved.

For the other items, suppose that (5) is false. This would imply that

�pqq = (q − p)q−pkq p p. (7)

Thus, qq divides (q− p)q−pkq p p and since gcd(qq , p p) = gcd(qq , (q− p)q−p) = 1,
we obtain that qq divides kq . In particular, q divides k. Similarly, p divides �, since p p

divides �pqq , but it is coprime with qq . This proves item (ii). Moreover, even when
k/q and �/p, we can rewrite (7) as

(
�

p

)p

= (q − p)q−p
(

k

q

)q

.

Therefore, since p < q, one has that (k/q)p | (k/q)q | (�/p)p yielding that k/q
divides �/p. This proves item (iii) and the finishing the proof of the corollary. �

5 Proof of Theorem 5

5.1 Proof of Item (i)

Since q > k, by Corollary 4(i), one has that all the roots of fq(x) are simple and so
#R fq = q. Choose a real number ε such that 0 < ε < 1 − (�/k)1/r (this is possible,
because k > �). Now, we wish to apply Lemma 8 for g(x) := −kxr − �, h(x) := xq ,
a = 0 and r = 1 − ε. Indeed, if |x | = 1 − ε, then

|h(x)| = |xq | = |x |q = (1 − ε)q < |kxr + �| = |g(x)|,

for all q sufficiently large (since (1 − ε)q → 0 as q → ∞ and |kxr + �| > 0 does
not depend on q). Thus, by Lemma 8 and the fact that g(x) + h(x) = fq(x), we infer
that

#Z(−kxr − � : B(0, 1 − ε)) = #Z( fq(x) : B(0, 1 − ε)).

However, 1 − ε > (�/k)1/r which yields #Z(−kxr − � : B(0, 1 − ε)) = r . Thus,
fq(x) has exactly r roots belonging to B(0, 1 − ε). Additionally, |x | < 1 − ε < 1
implies that fq(x) tends to −kxr − � uniformly as q → ∞.

We claim that the roots of fq(x) in B(0, 1−ε) tend to the roots of−kxr −�, which
are the r th roots of −�/k. To prove this, we first note that

| fq(x) − g(x)| < (1 − ε)q , ∀x ∈ B(0, 1 − ε). (8)
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Let ω ∈ Rg . Since f ′
q(x) = qxq−1 − kr xr−1 = xr−1(qxq−r − kr), then R f ′

q
\{0} ⊆

∂ B(0, (kr/q)1/(q−r)). We have that (kr/q)1/(q−r) tends to 1 as q → ∞ and so
(kr/q)1/(q−r) > 1 − ε, for all q ≥ q0. Therefore, by setting γ (q) the root of fq(x)

nearest to ω, then there exists δ > 0 such that

γ (q) ∈ B(ω, δ) ⊆ B(0, 1 − ε) and M := inf
x∈B(ω,δ)

| f ′
q(x)| > 0.

By (8) (for x = ω), we have that | fq(ω)| < (1 − ε)q and by Lemma 9, there exists
θ ∈ {z ∈ C : |z − (ω + γ (q))/2| ≤ |ω − γ (q)| cot(π/q)/2} such that

fq(ω) − fq(γ (q)) = f ′
q(θ)(ω − γ (q)).

By taking the absolute values of both sides of the previous relation together with the
previous inequalities, we deduce that

|ω − γ (q)| <
(1 − ε)q

M
,

for all q ≥ q0. In particular, γ (q) tends to ω as q → ∞. This completes the proof of
the first part.

In the second part (the largest roots), for any ε > 0, we set qε := r + �log(k +
�)/ log(1 + ε)�. Thus, if |x | > 1 + ε, then

| fq(x)| = |xq − kxr − �| ≥ (1 + ε)r ((1 + ε)q−r − k)−� > (1 + ε)q−r −k−� > 0,

for all q ≥ qε . Hence, in particular, the set of roots of fq(x) is contained in B[0, 1+ε].
However, fq(x)has exactly r roots inside B(0, 1−ε)which forces the existence ofq−r

roots (whichwenamed asα(q)
1 , . . . , α

(q)
q−r ) in the closure of annulus ann(0; 1−ε, 1+ε).

Therefore, 1 − ε ≤ |α(q)
i | ≤ 1 + ε (for all i ∈ [1, q − r ]) and since ε can be take

arbitrarily small,wehave that eachα
(q)
i will tend to ∂ B(0, 1) as desired. This completes

the proof. �

5.2 Proof of Item (ii)

This item has a simpler proof. In fact, for any ε > 0, one has that if |x | = 1− ε, then

|xq | = |x |q = (1 − ε)q < |kxr + �|,

for all q sufficiently large, say q ≥ q0. Thus, by Lemma 8, the polynomials fq(x) and
−kxr − � have the same number of zeros in the ball B(0, 1 − ε), i.e.,

#Z(−kxr − � : B(0, 1 − ε)) = #Z( fq(x) : B(0, 1 − ε)).
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However, each root of −kxr − � has absolute value equals to (�/k)1/r ≥ 1 > 1− ε

yielding #Z(−kxr − � : B(0, 1 − ε)) = 0. In particular, by the previous relation,
R fq ∩ B(0, 1 − ε) = ∅. On the other hand, for any ε > 0, as before, one has that

| fq(x)| = |xq − kxr − �| ≥ (1 + ε)r ((1 + ε)q−r − k) − � > (1+ε)q−r −k−� > 0,

holds for all q large enough, say q ≥ q1. Therefore, all roots of fq(x) lie in the
closure of B(0, 1+ε). We then conclude thatR fq is a subset of the closure of annulus
ann(0 : 1 − ε, 1 + ε) (for all q ≥ max{q0, q1}) which gives our desired result, since
ε can be taken arbitrarily small. This finishes the proof. �
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