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Abstract
In this paper, we introduce and analyze several new classes of multi-dimensional
almost automorphic functions which generalize the classical one of Bochner. We
develop the basic theory for the introduced classes, investigating the themes like com-
position principles, convolution invariance and the invariance under the actions of
convolution products. We present several illustrative examples and applications to the
abstract Volterra integro-differential equations and partial differential equations, pro-
viding also a mini appendix about almost automorphic functions on semi-topological
groups.
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1 Introduction and Preliminaries

In 1955, S. Bochner discovered the concept of almost automorphy while he was
studying problems related to differential geometry (Bochner 1955–1956); after that,
it was proved that the almost automorphy is a generalization of the almost periodicity
(see Bochner 1961, 1962; Bochner and Von Neumann 1935 and references therein).
Starting presumably with the papers of Veech (1965, 1967), many authors have deeply
investigated this concept on various classes of (semi-)topological groups.

Suppose that F : R
n → X is continuous. Then it is said that F(·) is almost

automorphic if and only if for every sequence (bk) in R
n there exist a subsequence

(ak) of (bk) and a map G : Rn → X such that

lim
k→∞ F

(
t + ak

) = G(t) and lim
k→∞G

(
t − ak

) = F(t), (1.1)

pointwisely for t ∈ R
n . If this is the case, then the range of F(·) is relatively compact

in X and the limit function G(·) is bounded on R
n but not necessarily continuous on

R
n . Furthermore, if the convergence of limits appearing in (1.1) is uniform on compact

subsets of Rn, resp. the whole space Rn, then it is said that F(·) is compactly almost
automorphic, resp. almost periodic. It can be proved that an almost automorphic func-
tion F(·) is compactly almost automorphic if and only if it is uniformly continuous
(see the doctoral dissertation of Bender (1966) and Sect. 2.1 below). For more details
about almost periodic functions inRn and their generalizations, the reader may consult
Chávez et al. (2020), the forthcoming research monograph by Kostić (2021) and refer-
ences cited therein; for a fairly complete information about almost periodic functions
and almost automorphic functions, the reader may consult the research monographs
(Besicovitch 1954; Diagana 2013; Fink 1974; N’Guérékata 2001; Levitan 1953; Lev-
itan and Zhikov 1982; Pankov 1990; Zaidman 1985).

The strong motivational factor for genesis of this paper, which can be viewed as a
certain continuation of our previous study Chávez et al. (2020) of multi-dimensional
almost periodic functions, presents the fact that almost nothing has been said by
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now about the space almost automorphic solutions to the (abstract) Volterra integro-
differential equations. In support of our investigations of multi-dimensional almost
automorphic type functions, we also want to note that we have not been able to find
any relevant reference in the existing literature which throws light on some striking
peculiarities of almost automorphic functions inRn different from those alreadyknown
for the almost automorphic functions on general topological groups.

The almost automorphic solutions with respect to the time variable for various
classes of the (abstract) Volterra integro-differential equations have been intensively
sought in numerous research studies (see e.g., Cao et al. 2018; Bugajewski and
N’Guérékata 2004; Baroun et al. 2019; Chang and Zheng 2016; Ding et al. 2008
and references quoted therein). Let us recall here that some almost periodic systems
do not necessarily carry almost periodic dynamics (see e.g., Ortega and Tarallo 2006;
Shen and Yi 1998), while such systems may have bounded oscillating solutions which
belong to a broader class of almost automorphic functions (see also the research arti-
cle of Johnson (1981), who proved the existence of a linear almost periodic system of
ordinary differential equations which admits an almost automorphic solution but no
almost periodic solution).

Further on, it is well known that the solutions to nonautonomous evolution dif-
ferential equations satisfy certain integral equations in which the integral kernels are
expressed by means of two-parameter evolution families (U (t, s))t≥s≥0; see Pazy
(1983) for the basic information. In the case of nonautonomous evolution differential
equations with almost automorphic dynamics, the notion of bi-almost automorphy
of the evolution operator (U (t, s))t≥s≥0 is essential in the research studies of the
existence and uniqueness of almost automorphic mild solutions. The notion of a (pos-
itively) bi-almost automorphic function was introduced by Xiao et al. (2009); in this
paper, the authors have obtained some sufficient conditions for the existence of pseudo
almost automorphic mild solutions of the following equations in R :

x ′(t) = A(t)x(t) + f (t, x(t))

x ′(t) = A(t)x(t) + f (t, x(t − h))

x ′(t) = A(t)x(t) + f (t, x (α(t, x(t))) .

Three years later, Chen and Lin employed this notion in their investigation of nonau-
tonomous stochastic evolution equations (Chen and Lin 2013); see also Chávez et al.
(2014a, b) and Diagana (2013, Appendix A.3), where the authors have analyzed the
notion of bi-almost automorphic sequences. More precisely, in Chen and Lin (2013),
the authors have introduced the notion of a square-mean bi-almost automorphic
function for a stochastic process and analyzed the existence of square-mean almost
automorphic solutions of the following non-autonomous linear stochastic evolution
equation:

dx(t) = A(t)x(t)dt + f (t)dt + γ (t) dW (t),

with f , γ being stochastic processes and W being a two-sided standard one-
dimensional Brownian motion. In Chávez et al. (2014a, b), the authors have analyzed
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the notion of discrete bi-almost automorphy and prove several results concerning the
non-autonomous difference equations appearing in the dynamics of the following
hybrid system of differential equations:

x ′(t) = A(t)x(t) + B(t)x([t]) + f (t, x(t), x([t])); (1.2)

here, [t] denotes the integer part of a real number t . We also mention that, in Chávez
et al. (2021), the authors have used the notion of bi-almost automorphy and the notion
of λ-boundedness in their studies of the following nonlinear abstract integral equations
of advanced and delayed type:

y(t) = f
(
t, y(t), y(a0(t))

)+
∫ t

−∞
C1
(
t, s, y(s), y(a1(s))

)
ds

+
∫ +∞

t
C2
(
t, s, y(s), y(a2(s))

)
ds.

Besides the above-mentioned papers, we would like to quote the research studies by
Chang and Zheng (2016), Hu and Jin (2013), Qi and Yuan (2020), Xia (2014), Xia and
Wang (2018) and Xu et al. (2020). Observing the previous works (and references cited
therein), we emphasize that the notion of bi-almost automorphy is crucial in the study
of almost automorphic dynamics for various classes of differential, integro-differential
and difference equations.

Throughout this paper, we assume that n ∈ N, B is a non-empty collection of
subsets of X , R is a non-empty collection of sequences in Rn and RX is a non-empty
collection of sequences in R

n × X; usually, B denotes the collection of all bounded
subsets of X or all compact subsets of X . Henceforth we will always assume that,
for every x ∈ X , there exists B ∈ B such that x ∈ B. Since all the norms in R

n are
equivalent, we equiped R

n with the Euclidean norm denoted by | · |. Then, for each
t0 ∈ R

n , we denote by B(t0, l) the closed ball of Rn with center t0 and radius l > 0
i.e., B(t0, l) := {t ∈ R

n :| t − t0 |≤ l} . The notion of Z-almost automorphy and the
notion of bi-almost automorphy, which have been analyzed in the above-mentioned
papers, are special cases of the notion (R,B)-multi-almost automorphy, which is a
crucial object of our investigations (for example, the notion of bi-almost automorphy
is obtained with the collection R of all sequences in �2 ≡ {(w,w) : w ∈ R}, the
diagonal ofR2). Further on, the notion of (R,B)-multi-almost automorphy is a special
case of the notion of (RX ,B)-multi-almost automorphy, which has been introduced
and analyzed in this paper following the previous investigations of almost automorphic
functions on (semi-)topological groups. In this paper, we aim to develop the basic
theory of (RX ,B)-multi-almost automorphic type functions as well as to provide some
concrete applications to the abstract Volterra integro-differential equations and partial
differential equations such as the classical heat equation and the wave equation (we
also revisit the theory of integrated semigroups, C-regularized semigroups and their
applications here). It is our strong belief that this research study is only the beginning
of serious investigations of space almost automorphic solutions of integro-differential
equations.
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The organization of the present work is as follows. After recalling the basic defini-
tions and results about (RX ,B)-multi-almost periodic type functions and Bohr (B, c)-
almost periodic type functions (Sect. 1.1), we introduce the classes of (compactly)
(R,B)-multi-almost automorphic functions (Definition 2.1), (R,B,WB,R)-multi-
almost automorphic functions and (R,B,PB,R)-multi-almost automorphic functions
(Definition 2.2); here, we assume that for each B ∈ B and (bk) ∈ R we have
WB,(bk ) : B → P(P(Rn)) and PB,(bk ) ∈ P(P(Rn × B)), where P(S) denotes
the power set of S. In Remark 2.3, we single out three most important types of col-
lections R we are working with, the classes of sequences [L1]–[L3]. The introduced
class of (R,B)-multi-almost automorphic functions has certain really new features
because we provide here, for the first time in the existing literature, an example of
an (R,B)-multi-almost automorphic function F : R2 → X (R is the collection of all
sequences in �2 and B denotes the collection of all bounded subsets of X ) in which
the convergence of limits in Eqs. (2.1)–(2.2) below is uniform not on the whole space
(the almost periodic case) and not only on compact subsets ofRn (the compact almost
automorphic case); this example is important for a better understanding of the notion
(R,B,WB,R)-multi-almost automorphy we are working with.

After illustrating this notion with some other examples, we introduce the notions
of (RX,B)-multi-almost automorphy, (RX ,B,WB,RX )-multi-almost automorphy and
(RX ,B,PB,RX )-multi-almost automorphy in Definition 2.4. In Proposition 2.5, we
investigate the relative compactness of range of a two-parameter (RX,B)-multi-almost
automorphic function F : R

n × X → Y . After that, we divide the remainder of
the second section into several separate subsections. The main aim of Sect. 2.1 is
to thoroughly study the compactly (RX ,B)-multi-almost automorphic functions; in
Sect. 2.2, we continue our study by clarifying several new structural characteriza-
tions of (RX,B)-multi-almost automorphic type functions. Section 2.3 investigates
D-asymptotically (RX ,B)-multi-almost automorphic functions; composition theo-
rems for (R,B)-multi-almost automorphic functions are analyzed in Sect. 2.4, while
the invariance of (R,B)-multi-almost automorphic properties under the actions of
convolution products are analyzed in Sect. 2.5.

The third section of paper is reserved for applications of our abstract results to
the various classes of abstract Volterra integro-differential equations. In Sect. 3.1,
we analyze almost automorphic solutions to the abstract semilinear Volterra integral
equations. The applications to the heat equation and the wave equation are given in
Sect. 3.2; the main aim of Sect. 3.3 is to provide certain applications to the ill-posed
abstract Cauchy problems. As mentioned in the abstract, we also provide a small
appendix about almost automorphic functions on semi-topological groups at the end
of paper. Although a rather long, the paper does not cover many important subjects;
for example, we will not consider here the notion of a positively (RX ,B)-multi-almost
automorphy and its generalizations (Xiao et al. 2009).

We use the standard notation throughout the work. We assume henceforth that
(X , ‖ · ‖), (Y , ‖ · ‖Y ) and (Z , ‖ · ‖Z ) are complex Banach spaces. By L(X ,Y ) we
denote the Banach algebra of all bounded linear operators from X into Y with L(X , X)

being denoted L(X). By (e1, e2, . . . , en) we denote the standard basis of Rn; Nn :=
{1, 2, . . . , n}.
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Before switching to Sect. 1.1, we would like to motivate our study of the space
almost automorphic solutions of evolution equations by the following illustrative
example, which is an insignificant modification of the corresponding example given
for the space almost periodicity in Chávez et al. (2020, Example 1.1):

Example Let a closed linear operator A generates a strongly continuous semigroup
(T (t))t≥0 on a Banach space X whose elements are certain complex-valued functions
defined on R

n , and let f : R+ −→ X be a locally integrable function. Under some
reasonable assumptions, the function

u(t, x) = (
T (t)u0

)
(x) +

∫ t

0
[T (t − s) f (s)](x) ds, t ≥ 0, x ∈ R

n

is a unique classical solution of the abstract Cauchy problem

ut (t, x) = Au(t, x) + F(t, x), t ≥ 0, x ∈ R
n; u(0, x) = u0(x),

where F(t, x) := [ f (t)](x), t ≥ 0, x ∈ R
n . In some concrete situations (for example,

this holds for the Gaussian semigroup on R
n; see Sect. 3.2 and Chávez et al. 2020

for more details), there exists a kernel (t, y) 
→ E(t, y), t > 0, y ∈ R
n which is

integrable on any set [0, T ] × R
n (T > 0) and satisfies that

[T (t) f (s)](x) =
∫

Rn
F(s, x − y)E(t, y) dy, t > 0, s ≥ 0, x ∈ R

n .

Let it be the case, and let a positive real number t0 > 0 be fixed. Then the space almost
automorphic behaviour of function x 
→ ut0(x) ≡ ∫ t0

0 [T (t0 − s) f (s)](x) ds, x ∈ R
n

depends on the space almost automorphic behaviour of function F(t, x). Suppose,
for example, that the function F(t, x) is bounded on any region [0, T ] × R

n (T > 0)
as well as that it is R-multi-almost automorphic with respect to the variable x ∈ R

n,

uniformly in the variable t on compact subsets of [0,∞); that is, for every finite real
number T > 0 and for every sequence (bk) ∈ R, there exist a subsequence (bkl ) of (bk)
and a function F∗ : [0, T ] ×R

n → C such that limm→+∞ F(t, x + bkm ) = F∗(t, x)
and liml→+∞ F∗(t, x −bkl ) = F(t, x), pointwisely for every t ∈ [0, T ] and x ∈ R

n .

Then the function ut0(·) is likewise bounded and R-multi-almost automorphic with
respect to the variable x , as easily approved using the dominated convergence theorem.

1.1 (RX,B)-Multi-almost Periodic Type Functions and Bohr (B, c)-Almost Periodic
Type Functions

Recall, we assume henceforth that n ∈ N, B is a non-empty collection of subsets of
X satisfying that, for every x ∈ X , there exists B ∈ B such that x ∈ B, as well as that
R is a non-empty collection of sequences in R

n and RX is a non-empty collection of
sequences in Rn × X .

Suppose that c ∈ C and |c| = 1. In this subsection, we recall the basic facts
about (RX ,B)-multi-almost periodic type functions and Bohr (B, c)-almost periodic
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type functions; see Chávez et al. (2020) and Kostić (2020) for more details about the
subject.

We start by recalling the following definitions:

Definition 1.1 Suppose that F : R
n × X → Y is a continuous function. Then we

say that the function F(·; ·) is (R,B)-multi-almost periodic if and only if for every
B ∈ B and for every sequence (bk = (b1k , b

2
k , . . . , b

n
k )) ∈ R there exist a subsequence

(bkl = (b1kl , b
2
kl
, . . . , bnkl )) of (bk) and a function F∗ : Rn × X → Y such that

lim
l→+∞ F

(
t + (b1kl , . . . , b

n
kl ); x

) = F∗(t; x)

uniformly for all x ∈ B and t ∈ R
n .

Definition 1.2 Suppose that F : Rn × X → Y is a continuous function. Then we say
that:

(i) F(·; ·) is Bohr (B, c)-almost periodic if and only if for every B ∈ B and ε > 0
there exists l > 0 such that for each t0 ∈ I there exists ø ∈ B(t0, l) ∩ I such that

∥
∥F(t + τ ; x) − cF(t; x)∥∥Y ≤ ε, t ∈ I , x ∈ B.

(ii) F(·; ·) is (B, c)-uniformly recurrent if and only if for every B ∈ B there exists a
sequence (øk) in I such that limk→+∞ |øk | = +∞ and

lim
k→+∞ sup

t∈I ;x∈B

∥
∥F(t + τ k; x) − cF(t; x)∥∥Y = 0. (1.3)

If X ∈ B, then it is also said that F(·; ·) is Bohr c-almost periodic (c-uniformly
recurrent); if c = 1, then we also say that F(·; ·) is Bohr B-almost periodic (B-
uniformly recurrent) [Bohr almost periodic (uniformly recurrent)].

Assume now that F : Rn × X → Y is continuous, B is any family of compact
subsets of X and R is the collection of all sequences in Rn . Then we know that F(·; ·)
is Bohr B-almost periodic if and only if F(·; ·) is (R,B)-multi-almost periodic.

The notion introduced in Definition 1.1 is a special case of the notion introduced
in the following definition:

Definition 1.3 Suppose that F : R
n × X → Y is a continuous function. Then we

say that the function F(·; ·) is (RX,B)-multi-almost periodic if and only if for every
B ∈ B and for every sequence ((b; x)k = ((b1k , b

2
k , . . . , b

n
k ); xk)) ∈ RX there exist

a subsequence ((b; x)kl = ((b1kl , b
2
kl
, . . . , bnkl ); xkl )) of ((b; x)k) and a function F∗ :

R
n × X → Y such that

lim
l→+∞ F

(
t + (b1kl , . . . , b

n
kl ); x + xkl

) = F∗(t; x)

uniformly for all x ∈ B and t ∈ R
n .
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In this paper, we investigate almost automorphic analogues of (R,B)-multi-almost
periodic functions and (RX,B)-multi-almost periodic functions. For the sequel, we
also need the following definition from Chávez et al. (2020):

Definition 1.4 Suppose thatD ⊆ R
n and the setD is unbounded. By C0,D,B(Rn × X :

Y )we denote the vector space consisting of all continuous functions Q : Rn ×X → Y
such that, for every B ∈ B,we have limt∈D,|t|→+∞ Q(t; x) = 0, uniformly for x ∈ B.

2 (RX ,B)-Multi-almost Automorphic Type Functions

In this section, we investigate (RX ,B)-multi-almost automorphic functions and
asymptotically (RX ,B)-multi-almost automorphic functions. We start our work with
the following definition, which seems to be new even in the one-dimensional setting:

Definition 2.1 Suppose that F : Rn × X → Y is a continuous function. Then we say
that the function F(·; ·) is (R,B)-multi-almost automorphic if and only if for every
B ∈ B and for every sequence (bk = (b1k , b

2
k , . . . , b

n
k )) ∈ R there exist a subsequence

(bkl = (b1kl , b
2
kl
, . . . , bnkl )) of (bk) and a function F∗ : Rn × X → Y such that

lim
l→+∞ F

(
t + (b1kl , . . . , b

n
kl ); x

) = F∗(t; x) (2.1)

and

lim
l→+∞ F∗(t − (b1kl , . . . , b

n
kl ); x

) = F(t; x), (2.2)

pointwisely for all x ∈ B and t ∈ R
n . If for each x ∈ B the above limits converge

uniformly on compact subsets of Rn , then we say that F(·; ·) is compactly (R,B)-
multi-almost automorphic. By AA(R,B)(R

n × X : Y ) and AA(R,B,c)(R
n × X : Y )

we denote the spaces consisting of all (R,B)-multi-almost automorphic functions and
compactly (R,B)-multi-almost automorphic functions, respectively.

In the case that X = {0} andB = {X}, i.e., if we consider the function F : Rn → Y ,

then we also say that F(·) is (compactly) R-multi-almost automorphic and denote the
corresponding spaces by AAR(Rn : Y ) and AAR,c(R

n : Y ) [in the remainder of paper,
we will tacitly omit the term “B” from the notation in such situations].

The following definition seems to be new in the one-dimensional setting, as well:

Definition 2.2 Suppose that F : Rn × X → Y is a continuous function as well as
that for each B ∈ B and (bk = (b1k , b

2
k , . . . , b

n
k )) ∈ R we have that WB,(bk ) : B →

P(P(Rn)) and PB,(bk ) ∈ P(P(Rn × B)). Then we say that F(·; ·) is:
(i) (R,B,WB,R)-multi-almost automorphic if and only if for every B ∈ B and for

every sequence (bk = (b1k , b
2
k , . . . , b

n
k )) ∈ R there exist a subsequence (bkl =

(b1kl , b
2
kl
, . . . , bnkl )) of (bk) and a function F∗ : Rn × X → Y such that (2.1)–(2.2)

hold pointwisely for all x ∈ B and t ∈ R
n as well as that for each x ∈ B the

convergence in t is uniform for any element of the collection WB,(bk )(x);

123



Multi-dimensional Almost Automorphic Type Functions… 809

(ii) (R,B,PB,R)-multi-almost automorphic if and only if for every B ∈ B and for
every sequence (bk = (b1k , b

2
k , . . . , b

n
k )) ∈ R there exist a subsequence (bkl =

(b1kl , b
2
kl
, . . . , bnkl )) of (bk) and a function F∗ : Rn × X → Y such that (2.1)–(2.2)

hold pointwisely for all x ∈ B and t ∈ R
n as well as that the convergence in

(2.1)–(2.2) is uniform in (t; x) for any set of the collection PB,(bk ).

Beforewego any further,wewould like to present the following illustrative example
of the notion introduced above:

Example (Terras 1972; Milnes 1977) Let us write the set R as the disjoint union of
intervals

⋃∞
k=1 Vk,where Vk := ⋃

m∈Z([0, 1)+sk +2km) and sk := ((−2)k−1−1)/3
for all k ∈ N. After that, we define a continuous function f : R → R

through f (t) := sin(2kπ t) if t ∈ Vk for some k ∈ N. We know that the
function f (·) is almost automorphic as well as that the sequence of translations
( f (· + sk))k∈N does not converge uniformly on the set [0, 1], so that f (·) is not
uniformly continuous and not compactly almost automorphic. If f1(·), . . . , fn−1(·)
are almost automorphic complex-valued functions, then we set F(t1, . . . , tn−1, tn) :=
f1(t1) . . . fn−1(tn−1) f (tn), t = (t1, . . . , tn−1, tn) ∈ R

n . It can be easily shown that
F(·) is an almost automorphic function which is not compactly almost automorphic,
as well as that F(·) cannot be (R,WR)-multi-almost automorphic for any collec-
tion of sequences in R

n which contains the sequence (bk = (0, . . . , 0; sk))k∈N and
for any collection Wbk of subsets of Rn which contains the set S × [0, 1], where
S = (t01 , . . . , t0n ) ∈ R

n−1 and f1(t01 ) . . . fn−1(t0n−1) �= 0.

Remark 2.3 The following special cases are very important (see also Chávez et al.
2020):

L1. Let R := {b : N → R
n ; for all j ∈ N we have b j ∈ �n ≡ {(a, a, a, . . . , a) ∈

R
n : a ∈ R}}. In the case when n = 2 and B is the collection of all bounded

subsets of X , we say that the function F(·; ·) is bi-almost automorphic. Con-
cerning this notion, let us also mention that, Baroun et al. (2019) have proved the
existence and uniqueness of μ-pseudo almost automorphic solutions to a class
of nonautonomous evolution equations with inhomogeneous boundary condi-
tions, using the notion of bi-almost automorphic Green functions; in addition,
the authors have established sufficient weak conditions on the initial data of
the equation insuring the bi-almost automorphy of the associated Green func-
tion. Clearly, with this choice of collection R, we have that the function F(·; ·)
is (R,B)-multi-almost automorphic if and only if, for every B ∈ B and for
every real sequence (bk), there exist a subsequence (ak) of (bk) and a function
F∗ : Rn × X → Y such that

lim
k→+∞

∥
∥∥F

(
t + (ak, . . . , ak); x

)− F∗(t; x)
∥
∥∥
Y

= 0

and

lim
k→+∞

∥∥∥F∗(t − (ak, . . . , ak); x
)− F(t; x)

∥∥∥
Y

= 0,
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pointwisely for all x ∈ B and t ∈ R
n .

L2. R = {b : N → R
n ; for all j ∈ N we have b j ∈ {(a, 0, 0, . . . , 0) ∈ R

n :
a ∈ R}}. Without going into full details, we want only to consider here the
case in which X ∈ B (the choice in which B is a collection of all bounded
or compact subsets of X is a bit complicated but the obtained conclusions are
similar; the difficulty actually lies in the fact that a bounded (compact) set in the
space Rn−1 × X is not necessarily a direct product of a bounded (compact) set
in R

n−1 and a bounded (compact) set in X ). It can be simply approved that the
study of (compact) (R,B)-multi-almost automorphy of function F(·; ·) cannot
be reduced to the study of the corresponding notion for the functionF : R×X →
Y , given by F(t; §) := F((t, t′); x), t ∈ R, § = (t′; x) ∈ X = R

n−1 × X .

Therefore, the notion introduced above cannot be viewed as some special case
of the notion of almost automorphy of function from R × X into Y .

L3. R is a collection of all sequences b(·) inRn . This is the limit case in our analysis
because this assumption clearly implies that any (R,B)-multi-almost automor-
phic function is automatically (R1,B)-multi-almost automorphic for any other
collection R1 of sequences b(·) in Rn .

The notion in which R is not the collection of all sequences in Rn is far from being
comparable with the usual almost automorphy (see e.g., Proposition 4.3 below). In
several important research studies of spatially almost periodic solutions of (abstract)
Volterra integro-differential equations, the Bochner criterion is essentially employed
with the collection R of all sequences inRn; here we would like to emphasize, without
going into full details, that some established results concerning this problematic can
be further extended by allowing that R is an arbitrary collection of sequences (in Rn)
in their formulations:

Example It is well known that the Euler equations in R
n , where n ≥ 2, describe the

motion of perfect incompressible fluids. It is problem to find the unknown functions
u = u(x, t) = (u1(x, t), . . . , un(x, t)) and p = p(x, t) denoting the velocity field
and the pressure of the fluid, respectively, such that

∂u

∂t
+ (u · ∇)u + ∇ p = 0 in Rn × (0, T ),

div u = 0 in Rn × (0, T ),

u(x, 0) = u0(x) in R
n,

(2.3)

where u0 = u0(x) = (u10(x), ..., u
n
0(x)) denotes the given initial velocity field. There

are many results concerning the well-posedness of (2.3) in the case that the initial
velocity field u0(x) belongs to some direct product of (fractional) Sobolev spaces. For
our observation, it is crucial to remind the readers of the research article by Pak and
Park (2004), who investigated the well-posedness of (2.3) in the case that the initial
velocity field u0(x) belongs to the space B1∞,1(R

n)n, where B1∞,1(R
n) denotes the

usual Besov space (see e.g., (Sawada and Takada 2011, Definition 2.1)). The authors
have proved that for any function u0 ∈ B1∞,1(R

n)n such that div u0 = 0 there exists a

finite real number T > 0 such that there exists a solution u ∈ C([0, T ] : B1∞,1(R
n)n)
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of (2.3). Using some known results proved by H. C. Pak, Y. J. Park and the fact
that a function f ∈ B0∞,1(R

n) is almost periodic in R
n if and only if the set of all its

translations is relatively compact in B0∞,1(R
n) (see (Sawada and Takada 2011, Lemma

4.2)), Sawada andTakada have proved in (2011, Theorem1.5), that the assumption that
u0(x) is almost periodic inRn implies that the solution u(·, t) of (2.3) is almost periodic
in R

n for all t ∈ [0, T ]. Let R denote an arbitrary collection of sequences in R
n , and

let u0(·) has the property that for each sequence (bk) in R there exists a subsequence
(bkl ) of (bk) such that the sequence of translations (u0(· + bkl )) is convergent in the
space B0∞,1(R

n)n . Then for each sequence (bk) in R there exists a subsequence (bkl )
of (bk) such that, for every t ∈ [0, T ], the sequence of translations (u(· + bkl , t)) is
convergent in the space B0∞,1(R

n)n; let us only note that the assumptions on function
u0(·) used here can serve one to introduce a new notion of multi-dimensional R-
almost automorphy which is not so simply connected, in general case, with the notion
introduced in Definitions 2.1 and 2.2 (more details will appear somewhere else). See
also the research studies by Giga et al. (2007), Li (2018), Taniuchi et al. (2010), and
the references quoted in Kostić (2021) for further information concerning spatially
almost periodic solutions of (abstract) Volterra integro-differential equations.

Inwhat follows,wewill provide several elaborate examples illustrating the concepts
introduced in Definitions 2.1 and 2.2:

Example Let ϕ : R → C be a (compactly) almost automorphic function, and let
(T (t))t∈R ⊆ L(X ,Y ) be a strongly continuous operator family. Suppose first that
R is the collection of all sequences in �2 as well as that X ∈ B. Define a function
G : R2 × X → Y by

F(t, s; x) := e
∫ t
s ϕ(τ) dτT (t − s)x, (t, s) ∈ R

2, x ∈ X . (2.4)

The function F(·, ·; ·) is (compactly) bi-almost automorphic, which can be simply
shown (see also (Chen and Lin 2013, Example 7.1) and (Xiao et al. 2009, Example
4.1)).

Suppose now that ϕ : R → C is almost periodic as well as that R is the collection
of all sequences in �2 and B denotes the collection of all bounded subsets of X . Let
for each bounded subset B of X and for each sequence (bk = (bk, bk)) in R the
colection PB,(bk ) be constituted of all sets of form {(t, s) ∈ R

2 : |t − s| ≤ L} × B,

where L > 0. Then the function F(·, ·; ·) is (R,B,PB,R)-multi-almost automorphic,
which can be deduced as follows. Let a real number L > 0 and a bounded subset
B of X be fixed, and let (t, s) ∈ R

2 satisfy |t − s| ≤ L. By Bochner’s criterion,
there exist a subsequence (bkl , bkl ) of (bk, bk) and a function ϕ∗ : R → C such that
liml→+∞ ϕ(r + bkl ) = ϕ∗(r), uniformly in r ∈ R. Set

F∗(t, s; x) := e
∫ t
s ϕ∗(τ ) dτT (t − s)x, (t, s) ∈ R

2, x ∈ X .
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Then the function ϕ∗(·) is bounded and there exists a finite real constant cL,B > 0
such that, for every integer l ≥ l0(ε),

∥∥∥∥e
∫ t+bkl
s+bkl

ϕ(τ) dτ
T (t − s)x − e

∫ t
s ϕ∗(τ ) dτT (t − s)x

∥∥∥∥
Y

≤ cL,B

∣∣∣∣e
∫ t+bkl
s+bkl

ϕ(τ) dτ − e
∫ t
s ϕ∗(τ ) dτ

∣∣∣∣ ≤ cL,B

∣∣∣∣e
∫ t
s ϕ(τ+bkl ) dτ − e

∫ t
s ϕ∗(τ ) dτ

∣∣∣∣

≤ cL,Be
L‖ϕ∗‖∞

∣∣∣∣e
∫ t
s [ϕ(τ+bkl )−ϕ∗(τ )] dτ − 1

∣∣∣∣

≤ cL,B

∣
∣∣∣

∫ t

s

[
ϕ(τ + bkl ) − ϕ∗(τ )

]
dτ

∣
∣∣∣e

∣∣∣
∫ t
s [ϕ(τ+bkl )−ϕ∗(τ )] dτ

∣∣∣ ≤ cL,B LεeLε,

which simply implies the required. A large class of relatively simple examples shows
that the function F(·, ·; ·) is not (R,B)-multi-almost periodic in general (let us only
note here that the obtained conclusions can be simply applied to some partial differ-
ential equations in the distributional spaces as well as that it would be very difficult to
aggregate all such applications; put e.g. ϕ ≡ 0 in (2.4)).

We can simply construct the corresponding analogue of this example in the higher
dimensions n > 2; for example, if ϕ j : R → R is (compactly) almost automorphic
or almost periodic and (T (t))t∈R ⊆ L(X ,Y ) is a strongly continuous operator family
(1 ≤ j ≤ n − 1), resp., if ϕ j : R → R is (compactly) almost automorphic or
almost periodic and (T (t))t∈R ⊆ L(X ,Y ) is a strongly continuous operator family
(1 ≤ j ≤ n), then the similar conclusions hold for the function F : Rn × X → X
defined through ((t1, t2, . . . , tn) ∈ R

n, x ∈ X ):

F
(
t1, t2, . . . , tn; x

) :=
n−1∑

j=1

Tj
(
t j+1 − t j

)
e
∫ t j+1
t j

ϕ j (ξ) dξ
x,

with R := {b : N → R
n ; for all j ∈ N we have b j ∈ {(a, a, a, . . . , a) ∈ R

n : a ∈
R}}, resp., for the function

F
(
t1, t2, . . . , t2n; x) :=

n∑

j=1

Tj
(
t2 j − t2 j−1

)
e

∫ t2 j
t2 j−1

ϕ j (ξ) dξ
x,

with R := {b : N → R
n ; for all j ∈ N we have b j ∈ {(a1, a1, a2, a2, . . . , an, an) ∈

R
2n : ai ∈ R}}.

Example Let f j : R → R be a (compactly) almost automorphic function (1 ≤ j ≤ n).
The function F : R2n → R, defined by

(
s1,s2, . . . , sn, t1, t2, . . . , tn

) 
→ F
(
s1, s2, . . . , sn, t1, t2, . . . , tn

)

:=
n∏

j=1

∫ t j

s j
f j (ξ) dξ ,
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is (compactly) R-multi-almost automorphic, where R := {b : N → R
n ×

R
n ; for all j ∈ N we have b j ∈ {(a1, a2, . . . , an, a1, a2, . . . , an) ∈ R

n × R
n : ai ∈

R for 1 ≤ i ≤ n}}.
In Chávez et al. (2020, Example 2.15(i)), we have analyzed case in which the func-
tions t 
→ ∫ t

0 f j (s) ds, t ∈ R are almost periodic (1 ≤ j ≤ n); if we assume
that the functions t 
→ f j (t), t ∈ R are almost periodic (1 ≤ j ≤ n), then we
can simply prove that the function F(·) will be (R,PR)-multi-almost automorphic,
where for each sequence b ∈ R the collection PR consists of all sets of the form
{(s1, s2, . . . , sn, t1, t2, . . . , tn) ∈ R

2n : |si − ti | ≤ Li for all i ∈ Nn} with Li > 0 for
all i ∈ Nn .

Example This example substantially generalizes the previous one. Let R be any col-
lection of sequences in R

n such that each subsequence of a sequence (bk) ∈ R also
belongs to R, and let R′ be any collection of sequences in R

m such that each subse-
quence of a sequence (b′

k) ∈ R′ also belongs to R′. Let fi : Rn → R be a bounded,
(compactly) R-almost automorphic function (1 ≤ i ≤ p), and let g j : R

m → R

be a bounded, (compactly) R′-almost automorphic function (1 ≤ j ≤ q). Define
the functions F : R

n → R
q by F(t) := ∑p

i=1 fi (t)ei and G : R
m → R

q by
G(s) := ∑q

j=1 g j (s)e j . Now, we define the function F
⊗

G : Rn ×R
m → Mp×q(R)

by (t ∈ R
n, s ∈ R

m)

F
⊗

G (t, s) :=

⎛

⎜⎜⎜
⎝

f1(t)g1(s) f1(t)g2(s) · · · f1(t)gq(s)
f2(t)g1(s) f2(t)g2(s) · · · f2(t)gq(s)

...
...

. . .
...

f p(t)g1(s) f p(t)g2(s) · · · f p(t)gq(s)

⎞

⎟⎟⎟
⎠

,

where Mp×q(R) denotes the set of all real matrices of format p× q. Suppose that the
sequences b ∈ R and b′ ∈ R′ are given. Due to our assumption, we get the existence
of a subsequence b0 ∈ R of b, a subsequence b′

0 of b′ and the corresponding limit
functions f ∗

j (·), g∗
k (·) (1 ≤ j ≤ p, 1 ≤ k ≤ q) from the definition of R-multi-almost

automorphy (R′-multi-almost automorphy) of functions f j (·), gk(·) (1 ≤ j ≤ p,
1 ≤ k ≤ q). Set, for every t ∈ R

n and s ∈ R
m,

[
F
⊗

G
]∗

(t, s)

:=

⎛

⎜⎜⎜
⎝

f ∗
1 (t) · g∗

1(s) f ∗
1 (t) · g∗

2(s) · · · f ∗
1 (t) · g∗

q(s)
f ∗
2 (t) · g∗

1(s) f ∗
2 (t) · g∗

2(s) · · · f ∗
2 (t) · g∗

q(s)
...

...
. . .

...

f ∗
p (t) · g∗

1(s) f ∗
p (t) · g∗

2(s) · · · f ∗
p (t) · g∗

q(s)

⎞

⎟⎟⎟
⎠

.

Using this limit function, it is not difficult to prove that F
⊗

G is (compactly) (R×R′)-
almost automorphic, where R × R′ := {(b,b′) : b ∈ R , b′ ∈ R′}. Furthermore, if
for each i ∈ Np we have that fi : Rn → R is a bounded (R,PR)-almost automorphic
function as well as that for each j ∈ Nq we have that g j : Rn → R is a bounded
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(R′,P′
R′)-almost automorphic function, then the function F

⊗
G is (R ×R′,P′′

R×R′)-
almost automorphic function, provided that for each sequence b from R (c from R′)
each set of the collection Pb (Pc) belongs to the collection Pb′ (Pc′ ) for any subsequence
b′ of b (c′ of c) and for each sequence (b; c) belonging to R×R′ the collection P′′

(b;c)
consists of all direct products of sets from the collections Pb and P′

c.

From the point of view of the theory of differential equations with piecewise
constant argument (see e.g., the references quoted in Chávez et al. (2014a, b)),
the continuity of function F(·; ·) in Definition 2.1 is a slightly redundant condi-
tion; we will not go into further details concerning this question here (see e.g.,
(Chávez et al. 2014b, Definition 2.3)). Further on, the notion introduced in Defini-
tion 2.1 is a special case of the notion introduced in the following definition (with
RX := {b : N → R

n × X ; (∃a ∈ R) b(l) = (a(l); 0) for all l ∈ N}); this is an
extremely important notion because, in case that X ∈ B and RX denotes the collection
of all sequences in Rn × X , the notion of (RX,B)-multi-almost automorphy is equiv-
alent with the usual notion of almost automorphy on the topological group R

n × X
(see appendix for more details):

Definition 2.4 Suppose that F : R
n × X → Y is a continuous function. Then we

say that the function F(·; ·) is (RX,B)-multi-almost automorphic if and only if for
every B ∈ B and for every sequence ((b; x)k = ((b1k , b

2
k , . . . , b

n
k ); xk)) ∈ RX there

exist a subsequence ((b; x)kl = ((b1kl , b
2
kl
, . . . , bnkl ); xkl )) of ((b; x)k) and a function

F∗ : Rn × X → Y such that

lim
m→+∞ F

(
t + (b1km , . . . , bnkm ); x + xkm

) = F∗(t; x) (2.5)

and

lim
l→+∞ F∗(t − (b1kl , . . . , b

n
kl ); x − xkl

) = F(t; x), (2.6)

pointwisely for all x ∈ B and t ∈ R
n . We say that the function F(·; ·) is compactly

(RX,B)-multi-almost automorphic if and only if the convergence of limits in (2.5)–
(2.6) is uniform on any compact subset K of Rn × X which is a subset of Rn × B. By
AA(RX,B)(R

n×X : Y ) and AA(RX,B,c)(R
n×X : Y )wedenote the spaces consisting of

all (RX,B)-multi-almost automorphic functions and compactly (RX,B)-multi-almost
automorphic functions, respectively.

Further on, let for each B ∈ B and (b; x) = ((b; x)k = ((b1k , b
2
k , . . . , b

n
k ); xk)k) ∈

RX we have WB,(b;x) : B → P(P(Rn)) and PB,(b;x) ∈ P(P(Rn × B)). Then the
following notion generalizes the corresponding notion from Definition 2.2; we say
that F(·; ·) is:
(i) (RX ,B,WB,RX )-multi-almost automorphic if and only if for every B ∈ B and

for every sequence ((b; x)k = ((b1k , b
2
k , . . . , b

n
k ); xk)k) ∈ RX there exist a sub-

sequence ((b; x)kl ) of ((b; x)k) and a function F∗ : R
n × X → Y such that

(2.5)–(2.6) hold pointwisely for all x ∈ B and t ∈ R
n as well as that for each

x ∈ B the convergence in (2.5)–(2.6) is uniform in t for any set of the collection
WB,(b;x)(x);
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(ii) (RX ,B,PB,RX )-multi-almost automorphic if and only if for every B ∈ B and for
every sequence ((b; x)k = ((b1k , b

2
k , . . . , b

n
k ); xk)) ∈ RX there exist a subsequence

((b; x)kl ) of ((b; x)k) of ((b; x)k) and a function F∗ : Rn×X → Y such that (2.5)–
(2.6) hold pointwisely for all x ∈ B and t ∈ R

n as well as that the convergence in
(2.5)–(2.6) is uniform in (t; x) for any set of the collection PB,(b;x).

It is clear that the assumption X ∈ B implies that a continuous function F :
R
n × X → Y is (compactly) (RX,B)-multi-almost automorphic if and only if the

above requirements hold for any sequence ((b; x)k) ∈ RX and the set B = X .

The following result holds true:

Proposition 2.5 (i) Suppose that F : Rn × X → Y is an (R,B)-multi-almost auto-
morphic function, where R denotes the collection of all sequences in R

n and B
denotes any collection of compact subsets of X . If for every B ∈ B there exists a
finite real constant LB > 0 such that, for every x, y ∈ B and t ∈ R

n, we have

∥
∥F(t; x) − F(t; y)∥∥Y ≤ LB‖x − y‖, (2.7)

then, for every set B ∈ B, we have that the set {F(t, x) : t ∈ R
n, x ∈ B} is

relatively compact in Y .

(ii) Suppose that F : Rn × X → Y is an (RX ,B)-multi-almost automorphic function,
where RX denotes the collection of all sequences in R

n × X and B denotes any
collection of compact subsets of X . Then, for every set B ∈ B, we have that the
set {F(t, x) : t ∈ R

n, x ∈ B} is relatively compact in Y .

Proof To prove (i), it suffices to show that, for every sequence ((tk; xk))k∈N inRn×B,

there exists a subsequence ((tkl ; xkl ))l∈N which converges for topology of Y . Since B
is compact, wemay assumewithout loss of generality that xk → x, k → +∞ for some
element x ∈ B. Applying the definition of (R,B)-multi-almost automorphy, we can
find a subsequence ((tkl ; xkl ))l∈N of ((tk; xk))k∈N such that F(0+ tkl ; x) = F(tkl ; x)
converges to some element y ∈ Y as l → +∞. Then the final conclusion follows
from (2.7) and the decomposition

∥∥∥F
(
tkl ; xkl

)− y
∥∥∥
Y

≤
∥∥∥F

(
tkl ; xkl

)− F(tkl , x)
∥∥∥
Y

+
∥∥∥F(tkl ; x) − y

∥∥∥
Y

≤ LB
∥∥xkl − x

∥∥+
∥∥
∥F(tkl ; x) − y

∥∥
∥
Y
.

The proof of (ii) is similar but, in this part, we do not need any Lipschitz type condition
because there exists a subsequence of sequence ((tkl ; xkl ))l∈N ∈ RX of ((tk; xk))n∈N
obeying the properties in the definition of (RX ,B)-multi-almost automorphy. ��

Before wemove ourselves to Sect. 2.1, wewould like to note that it is very simple to
show that the assumption X ∈ B implies that a continuous function F : Rn × X → Y
is (RX,B)-multi-almost automorphic if and only if for every sequence ((b; x)k) ∈ RX
there exists a subsequence ((b; x)kl ) of ((b; x)k) such that

lim
l→+∞ lim

m→+∞ F
(
t − bkl + bkm ; x − xkl + xkm

) = F(t; x),
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pointwisely for all x ∈ X and t ∈ R
n; in general case (X ∈ B or X /∈ B), the (R,B)-

multi-almost automorphy of a continuous function F : Rn × X → Y is equivalent to
saying that for every B ∈ B and for every sequence (bk) ∈ R there exists a subsequence
(bkl ) of (bk) such that

lim
l→+∞ lim

m→+∞ F
(
t − bkl + bkm ; x) = F(t; x), (2.8)

pointwisely for all x ∈ B and t ∈ R
n .

2.1 Compactly (RX,B)-Multi-almost Automorphic Functions

In this subsection, we analyze compactly (RX ,B)-multi-almost automorphic func-
tions. The following result is crucial:

Theorem 2.6 Suppose that F : Rn ×X → Y is an (RX,B)-multi-almost automorphic
function as well as that, for every B ∈ B and for every sequence ((b; x)k) ∈ RX, there
exist a subsequence ((b; x)kl ) of ((b; x)k) and a function F∗ : Rn × X → Y such
that (2.5)–(2.6) hold pointwisely for all x ∈ B and t ∈ R

n . Let for each B ∈ B and
(b; x) ∈ RX we have PB,(b;x) ∈ P(P(Rn × B)). Suppose also that the following
conditions hold:

(a) if (b; x) ∈ RX, then every subsequence of (b; x) also belongs to RX ;
(b) if B ∈ B, ((b; x)k = ((b1k , b

2
k , . . . , b

n
k ); xk)) ∈ RX and D ∈ PB,((b;x)k ), then

D ∈ PB,((b;x)kl ) for every subsequence ((b; x)kl ) of ((b; x)k).
Then the following holds:

(i) If F(·; ·) is (RX,B, PB,RX )-multi-almost automorphic, then the following state-
ments are equivalent:

(c) for every B ∈ B and ((b; x)k = ((b1k , b
2
k , . . . , b

n
k ); xk)) ∈ RX, the limit func-

tion F∗(·; ·) is uniformly continuous on any set D of the collection PB,((b;x)k );
(d) for every ε > 0, B ∈ B, ((b; x)k = ((b1k , b

2
k , . . . , b

n
k ); xk)) ∈ RX and D ∈

PB,((b;x)k ), there exist a subsequence ((b; x)kl ) of ((b; x)k), an integer l0 ∈ N

and a finite real number δ > 0 such that, for every (t; x), (t′; x ′) ∈ D with
|t − t′| + ‖x − x ′‖ ≤ δ and for every integer l ≥ l0, we have

∥∥∥F
(
t + bkl ; x + xkl

)− F
(
t′ + bkl ; x ′ + xkl

)∥∥∥
Y

≤ ε. (2.9)

Moreover, (c) and (d) hold provided that condition (Q) holds, where:

(Q) For every B ∈ B and (b; x) ∈ RX , we have that every set D of the collection
PB,((b;x)k ) is compact in Rn × X.

(ii) If (Q) holds, then the validity of condition (d) and

(d)s : for every ε > 0, B ∈ B, ((b; x)k = ((b1k , b
2
k , . . . , b

n
k ); xk)) ∈ RX and D ∈

PB,((b;x)k ), there exist a subsequence ((b; x)kl ) of ((b; x)k), integers l0, m0 ∈
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N, and a finite real number δ > 0 such that, for every (t; x), (t′; x ′) ∈ D with
|t − t′| + ‖x − x ′‖ ≤ δ and for every integers l ≥ l0 and m ≥ m0, we have
x − xkl ∈ B and

∥
∥∥F

(
t − bkl + bkm ; x − xkl + xkm

)− F
(
t′ − bkl + bkm ; x ′ − xkl + xkm

)∥∥∥
Y

≤ ε,

implies that the function F(·; ·) is (RX,B, PB,RX )-multi-almost automorphic.

Proof We will firstly prove that (d) implies (c). Let ε > 0, B ∈ B, ((b; x)k =
((b1k , b

2
k , . . . , b

n
k ); xk)) ∈ RX and D ∈ PB,((b;x)k ). Further on, let a subsequence

((b; x)kl = ((b1kl , b
2
kl
, . . . , bnkl ); xkl )) of ((b; x)k) and a function F∗ : Rn × X → Y be

such that (2.5)–(2.6) hold pointwisely for all x ∈ B and t ∈ R
n . Then ((b; x)kl ) is a

sequence which belongs to the collection RX and D ∈ PB,((b;x)kl ) due to conditions (a)
and (b). Since (d) holds, we may assume without loss of generality that there exist an
integer l0 ∈ N and a finite real number δ > 0 such that, for every (t; x), (t′; x ′) ∈ D
with |t−t′|+‖x−x ′‖ ≤ δ and for every integer l ≥ l0,we have (2.9) with the number
ε replaced therein with the number ε/3. Since F(·; ·) is (RX,B, PB,RX )-multi-almost
automorphic, (c) simply follows from the decomposition

∥∥∥F∗(t; x) − F∗(t′; x ′)
∥∥∥
Y

≤
∥
∥∥F∗(t; x) − F

(
t + bkl ; x + xkl

)∥∥∥
Y

+
∥∥∥F

(
t + bkl ; x + xkl

)− F
(
t′ + bkl ; x ′ + xkl

)∥∥∥
Y

+
∥∥
∥F

(
t′ + bkl ; x ′ + xkl

)− F∗(t′; x ′)
∥∥
∥
Y

≤ 2ε/3 +
∥∥∥F

(
t + bkl ; x + xkl

)− F
(
t′ + bkl ; x ′ + xkl

)∥∥∥
Y

≤ ε, l ≥ l0.

The proof of implication (c) ⇒ (d) is similar and follows from the decomposition:

∥
∥∥F

(
t + bkl ; x + xkl

)− F
(
t′ + bkl ; x ′ + xkl

)∥∥∥
Y

≤
∥∥∥F∗(t; x) − F

(
t + bkl ; x + xkl

)∥∥∥
Y

+
∥∥∥F∗(t; x) − F∗(t′; x ′)

∥∥∥
Y

+
∥∥∥F∗(t′; x ′) − F

(
t′ + bkl ; x ′ + xkl

)∥∥∥
Y
.

Assume now that (Q) holds and ε > 0. Then, for every fixed set B ∈ B and for
every sequence (b; x) ∈ RX , we have that every set D of the collection PB,((b;x)k )
is compact. Furthermore, the above argumentation yields that there exists an integer
l0 ∈ N such that, for every (t; x), (t′; x ′) ∈ D, we have

∥∥∥F∗(t; x) − F∗(t′; x ′)
∥∥∥
Y

≤ 2ε/3 +
∥∥∥F

(
t + bkl0

; x + xkl0

)− F
(
t′ + bkl0

; x ′ + xkl0

)∥∥∥
Y
.

Since the function F(·; ·) is uniformly continuous on the compact set D+(bkl0 ; xkl0 ),
the above estimate simply implies (c). In order to show (ii), suppose again that condi-
tion (Q) holds. Let (d) hold, and let ε > 0 be fixed. We need to prove that the function
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F(·; ·) is (RX,B, PB,RX )-multi-almost automorphic. If the set D from the the col-
lection PB,((b;x)k) is fixed, then (d) implies the existence of a subsequence ((b; x)kl )
of ((b; x)k), an integer l0 ∈ N and a finite real number δ1 > 0 such that, for every
(t; x), (t′; x ′) ∈ D with |t − t′| + ‖x − x ′‖ ≤ δ1 and for every integer l ≥ l0,
we have (2.9) with the number ε replaced therein with the number ε/3. Since (c)
holds, there exists a number δ ∈ (0, δ1] such that, for every (t; x), (t′; x ′) ∈ D with
|t − t′| + ‖x − x ′‖ ≤ δ, we have

∥∥∥F∗(t; x) − F∗(t′; x ′)
∥∥∥
Y

≤ ε/3.

Moreover, since D is compact and F(·; ·) is uniformly continuous on D, there exists
a finite net {(ti ; xi )}1≤i≤n in D such that, for every (t; x) ∈ D, we have the existence
of a number i ∈ Nn such that |t − ti | + ‖x − xi‖ ≤ δ and

∥∥∥F
(
ti ; xi

)− F(t; x)
∥∥∥
Y

≤ ε/3.

Then there exists an integer l0 ∈ N such that, for every integer l ≥ l0 and for every
tuple (t; x) ∈ D, we have:

∥∥∥F
(
t + bkl ; x + xkl

)− F∗(t; x)
∥∥∥
Y

≤
∥∥
∥F

(
t + bkl ; x + xkl

)− F
(
ti + bkl ; xi + xkl

)∥∥
∥
Y

+
∥∥∥F

(
ti + bkl ; xi + xkl

)− F∗(ti ; xi
)∥∥∥

Y
+
∥∥∥F∗(ti ; xi

)− F∗(t; x)
∥∥∥
Y

≤ 2ε/3 +
∥∥∥F

(
ti + bkl ; xi + xkl

)− F∗(ti ; xi
)∥∥∥

Y
≤ 2ε/3 + ε/3 = ε,

due to condition (d). Moreover, we have:

∥∥∥F∗(t − bkl ; x − xkl
)− F(t; x)

∥∥∥
Y

≤
∥
∥∥F∗(t − bkl ; x − xkl

)− F∗(ti − bkl ; xi − xkl
)∥∥∥

Y

+
∥∥∥F∗(ti − bkl ; xi − xkl

)− F
(
ti ; xi

)∥∥∥
Y

+
∥∥∥F

(
ti ; xi

)− F(t; x)
∥∥∥
Y

≤
∥∥∥F∗(t − bkl ; x − xkl

)− F∗(ti − bkl ; xi − xkl
)∥∥∥

Y

+
∥
∥∥F∗(ti − bkl ; xi − xkl

)− F
(
ti ; xi

)∥∥∥
Y

+ ε/3

≤
∥∥∥F∗(t − bkl ; x − xkl

)− F∗(ti − bkl ; xi − xkl
)∥∥∥

Y
+ 2ε/3

(
l ≥ l0

)

=
∥∥
∥ lim
m→+∞

[
F
(
t − bkl + bkm ; x − xkl + xkm

)

− F
(
ti − bkl + bkm ; xi − xkl + xkm

)]∥∥
∥
Y

+ 2ε/3 ≤ ε, l ≥ l0, m ≥ m0,
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where we have applied (d)s in the last estimate. ��
Now we would like to state the following important corollary of Theorem 2.6:

Corollary 2.7 Suppose that F : Rn ×X → Y is an (RX,B)-multi-almost automorphic
function, X ∈ B andRX denotes the collection of all sequences inRn×X. Then F(·; ·)
is compactly (RX,B)-multi-almost automorphic if and only if F(·; ·) is uniformly
continuous.

Proof Without loss of generality, we may assume that B = {X} as well as that, for
every sequence (b; x) inRn × X ,we have that PB,(b;x) is the collection of all compact
sets in R

n × X . Let F(·; ·) be uniformly continuous. Then conditions (d) and (d)s
hold, so that the conclusion simply follows from Theorem 2.6. Assume that F(·; ·)
is compactly (RX,B)-multi-almost automorphic and not uniformly continuous. Then
there exist ε > 0 and two sequences (bk; xk) and (b′

k; x ′
k) in R

n × X such that, for
every k ∈ N,we have |bk −b′

k |+‖xk − x ′
k‖ ≤ 1/k and ‖F(bk; xk)− F(b′

k; x ′
k)‖ ≥ ε.

The set D := {(0; 0)} ∪ {(b′
k − bk; x ′

k − xk) : k ∈ N} is compact in R
n × X and

this violets condition (d) from Theorem 2.6 with the number ε > 0, B = X , and the
sequence (bk; xk). ��

Similarly we can prove the following result (see also (Bender 1966, Lemma 5.1,
Theorem 5.1), (Fink 1969, Lemma 1) and (N’Guérékata 2005, Theorem 2.6) for some
particular cases of Theorem 2.6 and Corollary 2.7–2.8, as well as (Bender 1966,
Definition 5.2, Definition 5.3) where the notion of compact almost automorphy has
been defined for the first time):

Corollary 2.8 Suppose that F : Rn × X → Y is an (R,B)-multi-almost automorphic
function, where R denotes the collection of all sequences in R

n and X ∈ B. Then
F(·; ·) is compactly (R,B)-multi-almost automorphic if and only if for every fixed
element x ∈ X we have that the function F(·; x) is uniformly continuous on Rn .

Before proceeding further, we would like to note that the notion of a compact
almost automorphic function F : R × X → X has been introduced by Ait Dads
et al. (Ait Dads et al. 2017, Definition 5) in a slightly artificial way, following the
results obtained in the previous two corollaries. The approach of these authors can
be also used for the introduction of several new types of compactly (RX ,B)-multi-
almost automorphic functionswhichwill not be considered here. For compactly almost
automorphic solutions of evolution equations, we may refer also to Es-Sebbar (2016)
and Es-sebbar et al. (2020).

We close the subsection with the following example (see also (Chávez et al. 2020,
Example 2.22)):

Example Suppose that f : R
n → X and g : R

n → R
n are (compactly) almost

automorphic functions. Define the function

F(t) := f (t − g(t)), t ∈ R
n .

Then the function F(·) is (compactly) almost automorphic, as well. This can be shown
as inAitDads et al. (AitDads et al. 2017,Lemma7),where the corresponding statement
has been analyzed in the one-dimensional setting (see also Abbas et al. 2021).
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2.2 Further Properties of (RX,B)-Multi-almost Automorphic Functions

In this subsection, we further explore the class of (RX ,B)-multi-almost automorphic
functions. First of all, it is clear thatwe have the following: Suppose that F : Rn×X →
Y is a continuous function. If B′ is a certain collection of subsets of X which contains
B, R′

X is a certain collection of sequences inRn × X which contains RX and F(·; ·) is
(compactly) (R′

X ,B′)-multi-almost automorphic, then F(·; ·) is (compactly) (RX ,B)-
multi-almost automorphic. This also holds for any other class of functions introduced
so far.

It is very simple to deduce the following result, which can be also reformulated
for (RX ,B)-multi-almost automorphy by assuming additionally that X ∈ B; see also
(2.8) and Levitan and Zhikov (Levitan and Zhikov 1982, Property 4, p. 3):

Proposition 2.9 Suppose that F : Rn × X → Y is (R,B)-multi-almost automorphic,
resp. (R,B,WB,R)-multi-almost automorphic [(R,B, PB,R)-multi-almost automor-
phic] and φ : Y → Z is continuous, resp. φ : Y → Z is continuous and satisfies that,
for every B ∈ B as well as for every element x ∈ B, for every sequence (bk) ∈ R
and every its subsequence (bkl ), there exists an integer s ∈ N such that the function
φ(·) is uniformly continuous on the closure of the set {F(t + bkm ; x) : m ≥ s, t ∈
WB,(bk )(x)} ∪ {F(t − bkl + bkm ; x) : m, l ≥ s, t ∈ WB,(bk )(x)} [φ : Y → Z is
continuous and satisfies that, for every B ∈ B as well as for every sequence (bk) ∈ R
and every its subsequence (bkl ), there exists an integer s ∈ N such that the func-
tion φ(·) is uniformly continuous on the closure of the set {F(t + bkm ; x) : m ≥
s, (t; x) ∈ PB,(bk )} ∪ {F(t − bkl + bkm ; x) : m, l ≥ s, (t; x) ∈ PB,(bk )}]. Then
φ ◦ F : Rn × X → Z is (R,B)-multi-almost automorphic, resp. (R,B,WB,R)-multi-
almost automorphic [(R,B, PB,R)-multi-almost automorphic].

In Kostić (2019, Lemma 3.9.9), we have clarified the supremum formula for the
one-dimensional almost automorphic functions. This formula can be extended in our
framework as follows:

Proposition 2.10 (The supremum formula) Let F : Rn × X → Y be (R,B)-multi-
almost automorphic. Suppose that there exists a sequence b(·) in R whose any
subsequence is unbounded. Then for any a ≥ 0 we have

sup
t∈Rn ,x∈X

∥∥F(t; x)∥∥Y = sup
t∈Rn ,|t |≥a,x∈X

∥∥F(t; x)∥∥Y . (2.10)

Proof We will include all relevent details of the proof for the sake of completeness.
Let ε > 0, a ≥ 0 and x ∈ X be given. Then (2.10) holds if we prove that

∥∥F(t; x)∥∥Y ≤ ε + sup
t∈Rn ,|t |≥a

∥∥F(t; x)∥∥Y . (2.11)

By assumption, there exists B ∈ B with x ∈ B. Let b(·) be a sequence in R whose
any subsequence is unbounded. Then we have (2.8), and consequently, there exist two
integers l0 ∈ N and m0 ∈ N such that
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∥
∥F(t; x)∥∥Y ≤ ε +

∥
∥∥F

(
t − (

b1kl , . . . , b
n
kl

)+ (
b1km , . . . , bnkm

); x
)∥∥∥

Y
, l ≥ l0, m ≥ m0.

In particular,

∥∥F(t; x)∥∥Y ≤ ε +
∥∥∥F

(
t − (

b1kl0
, . . . , bnkl0

)+ (
b1km , . . . , bnkm

); x
)∥∥∥

Y
, m ≥ m0.

Since the sequence (b1km , . . . , bnkm )m≥m0 is unbounded, (2.11) follows immediately. ��
Arguing similarly as in the proofs of Chávez et al. (2020, Proposition 2.7, Proposi-

tion 2.8) (cf. also the proof of N’Guérékata (2001, Theorem 2.1.10)), we may deduce
the following:

Proposition 2.11 (i) Suppose that for each integer j ∈ N the function Fj (·; ·) is
(RX,B)-multi-almost automorphic and, for every sequence which belongs to RX,

any its subsequence also belongs to RX. If the sequence (Fj (·; ·)) converges
uniformly to a function F(·; ·) on X, then the function F(·; ·) is (RX,B)-multi-
almost automorphic. If, additionally, for each B ∈ B and (b; x) ∈ RX we
have WB,(b;x) : B → P(P(Rn)), PB,(b;x) ∈ P(P(Rn × B)), WB,(b;x)(x) ⊆
WB,(b;x)′(x) and PB,(b;x) ⊆ PB,(b;x)′ for any x ∈ B and any subsequence (b; x)′
of (b; x), and the function Fj (·; ·) is (RX ,B,WB,RX )-multi-almost automorphic,
resp. (RX ,B,PB,RX )-multi-almost automorphic, then the function F(·; ·) is like-
wise (RX ,B,WB,RX )-multi-almost automorphic, resp.
(RX ,B,PB,RX )-multi-almost automorphic.

(ii) Suppose that for each integer j ∈ N the function Fj (·; ·) is (R,B)-multi-almost
automorphic and, for every sequence which belongs to R, any its subsequence
also belongs to R. If for each B ∈ B there exists εB > 0 such that the sequence
(Fj (·; ·)) converges uniformly to a function F(·; ·)on the set B◦∪⋃x∈∂B B(x, εB),

then the function F(·; ·) is (R,B)-multi-almost automorphic. If, additionally, for
each B ∈ B and (bk) ∈ R we have WB,(bk ) : B → P(P(Rn)), PB,(bk ) ∈
P(P(Rn × B)), WB,(b)(x) ⊆ WB,(b)′(x) and PB,(b) ⊆ PB,(b)′ for any x ∈ B
and any subsequence (b)′ of (b), and Fj (·; ·) is (R,B,WB,R)-multi-almost auto-
morphic, resp. (R,B,PB,R)-multi-almost automorphic, then the function F(·; ·) is
likewise (R,B,WB,R)-multi-almost automorphic, resp. (R,B,PB,R)-multi-almost
automorphic.

Concerning the convolution invariance of space consisting of all (RX ,B)-multi-
almost automorphic functions, we would like to state the following result:

Proposition 2.12 Suppose that h ∈ L1(Rn) and F : Rn × X → Y is an (RX ,B)-
multi-almost automorphic function satisfying that for each B ∈ B there exists a
finite real number εB > 0 such that supt∈Rn ,x∈B· ‖F(t, x)‖Y < +∞, where B· ≡
B◦ ∪⋃

x∈∂B B(x, εB). Let condition (CI) holds, where:

(CI) RX = R, which corresponds to the case F : Rn → Y , or X ∈ B and RX is
general.
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Then the function

(h ∗ F)(t; x) :=
∫

Rn
h(σ )F(t − σ ; x) dσ, t ∈ R

n, x ∈ X

is well defined, (RX ,B)-multi-almost automorphic, and for each B ∈ B we have
supt∈Rn ,x∈B· ‖(h ∗ F)(t; x)‖Y < +∞.

Proof It is clear that the function (h ∗ F)(·; ·) is well defined as well as that
supt∈Rn ,x∈B· ‖(h ∗ F)(t; x)‖Y < +∞ for all B ∈ B. The continuity of function
(h ∗ F)(·; ·) at the fixed point (t0; x0) ∈ R

n × X follows from the continuity of
function F(·; ·) at this point, the existence of a set B ∈ B such that x0 ∈ B, the
assumption supt∈Rn ,x∈B· ‖F(t; x)‖Y < +∞ and the dominated convergence theo-
rem. We will prove the remainder provided that the second part of condition (CI)
holds. Let ((b; x)k) ∈ RX be fixed. Then we know that there exist a subsequence
((b; x)kl = ((b1kl , b

2
kl
, . . . , bnkl ); xkl )) of ((b; x)k) and a function F∗ : Rn × X → Y

such that (2.5)–(2.6) hold pointwisely for all x ∈ X and t ∈ R
n . It is not difficult to

prove that the function F∗(·; x) is measurable for every fixed element x ∈ X . Clearly,
the function

(
h ∗ F

)∗
(t; x) :=

∫

Rn
h(σ )F∗(t − σ ; x) dσ, t ∈ R

n, x ∈ B

is well defined. Using the dominated convergence theorem, it can be simply shown
that we have

lim
m→+∞(h ∗ F)

(
t + (b1km , . . . , bnkm ); x + xkm

) = (
h ∗ F

)∗
(t; x)

and

lim
l→+∞

(
h ∗ F

)∗(t − (b1kl , . . . , b
n
kl ); x − xkl

) = (h ∗ F)(t; x),

pointwisely for all x ∈ X and t ∈ R
n . This completes the proof. ��

2.3 D-Asymptotically (RX,B)-Multi-almost Automorphic Functions

This subsection investigates D-asymptotically (RX ,B)-multi-almost automorphic
functions. We start by introducing the following notion:

Definition 2.13 Suppose that the set D ⊆ R
n is unbounded, i = 1, 2 and F :

R
n × X → Y is a continuous function. Then we say that F(·; ·) is D-asymptotically

(compactly) (RX ,B)-multi-almost automorphic if and only if there exist a func-
tion G(·; ·) which is (compactly) (RX ,B)-multi-almost automorphic and a function
Q ∈ C0,D,B(Rn × X : Y ) such that F(t; x) = G(t; x) + Q(t; x) for all t ∈ R

n and
x ∈ X .
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It is said that F(·; ·) is asymptotically (compactly) (RX ,B)-multi-almost automor-
phic if and only if F(·; ·) is R

n-asymptotically (compactly) (RX ,B)-multi-almost
automorphic.

We similarly introduce the classes of D-asymptotically (compactly) (R,B)-multi-
almost automorphic functions and asymptotically (compactly) (R,B)-multi-almost
automorphic functions, as well as the corresponding classes of functions in which
the notion of (R,B)-multi-almost automorphy ((RX ,B)-multi-almost automorphy) is
replaced with some of the notions introduced in Definition 2.2 or Definition 2.4. We
will not consider here the notion in which the space C0,D,B(Rn × X : Y ) is replaced
with some space of weighted ergodic components in Rn, analyzed recently in [47].

The proof of the following proposition can be given as for the usually consid-
ered almost automorphic functions (N’Guérékata 2001); all clarifications also hold if
the notion of (R,B)-multi-almost automorphy ((RX ,B)-multi-almost automorphy) is
replaced with some of the notions introduced in Definition 2.2 or Definition 2.4:

Proposition 2.14 (i) Suppose that τ ∈ R
n, x0 ∈ X and F(·; ·) is (compactly)

(RX ,B)-multi-almost automorphic. Then F(· + τ ; · + x0) is (compactly)
(RX ,Bx0)-multi-almost automorphic, where Bx0 ≡ {−x0 + B : B ∈ B}.
Furthermore, if F(·; ·) is D-asymptotically (compactly) (RX ,B)-multi-almost
automorphic, then F(· + τ ; · + x0) is (D − τ)-asymptotically (compactly)
(RX ,Bx0)-multi-almost automorphic.

(ii) Suppose that c1 ∈ C \ {0}, c2 ∈ C \ {0}, and F(·; ·) is (compactly) (RX ,B)-
multi-almost automorphic. Then F(c1·; c2·) is (compactly)
((Rc1)X ,Bc2)-multi-almost automorphic, where (Rc1)X ≡ {c−1

1 b(·) :
= (c−1

1 b1, · · · , c−1
1 bn) : b ∈ RX } and Bc2 ≡ {c−1

2 B : B ∈ B}. Furthermore,
if F(·; ·) is D-asymptotically (compactly) (RX ,B)-multi-almost automorphic,
then F(c1·; c2·) isD/c1-asymptotically (compactly) ((Rc1)X ,Bc2)-multi-almost
automorphic.

(iii) Suppose that α, β ∈ C and, for every sequence which belongs to RX , we have
that any its subsequence belongs to RX . If F(·; ·) and G(·; ·) are (compactly)
(RX ,B)-multi-almost automorphic, then αF(·; ·)+βG(·; ·) is also (compactly)
(RX ,B)-multi-almost automorphic. The same holds forD-asymptotically (com-
pactly) (RX ,B)-multi-almost automorphic
functions.

(iv) If X ∈ B and F(·; ·) is asymptotically (R,B)-multi-almost automorphic, then
F(·; ·) is bounded in case [L3]; furthermore, if F(·; ·) is asymptotically (RX ,B)-
multi-almost automorphic, then F(·; ·) is bounded in case that RX denotes the
collection of all sequences in Rn × X .

Using Proposition 2.14(iv) and the supremum formula clarified in Proposition
2.10 (see also the estimate (2.11)), we can simply deduce that the decomposition
in Definition 2.13 is unique (the same holds for the class of D-asymptotically (R,B)-
multi-almost automorphic functions, where D contains the complement of a ball
centered at the origin):

Proposition 2.15 Suppose that there exist a function Gi (·; ·) which is (R,B)-multi-
almost automorphic and a function Qi ∈ C0,Rn ,B(Rn × X : Y ) such that F(t; x) =
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Gi (t; x) + Qi (t; x) for all t ∈ R
n and x ∈ X (i = 1, 2). Then we have G1 ≡ G2 and

Q1 ≡ Q2, provided that the collection R satisfies the following two conditions:

D1. There exists a sequence in R whose any subsequence is unbounded.
D2. For every sequencewhich belongs toR,wehave that any its subsequence belongs

to R.

Furthermore, arguing as in the proof of Diagana (2013, Lemma 4.28), we may
deduce the following:

Lemma 2.16 Suppose that there exist an (R,B)-multi-almost automorphic function
G(·; ·) and a function Q ∈ C0,Rn ,B(Rn×X : Y ) such that F(t; x) = G(t; x)+Q(t; x)
for all t ∈ R

n and x ∈ X . Then we have

{
G(t; x) : t ∈ Rn, x ∈ X

} ⊆ {
F(t; x) : t ∈ Rn, x ∈ X

}
,

provided that condition [D1] holds.

Proposition 2.17 Suppose that conditions [D1]–[D2] hold and for each integer j ∈ N

the function Fj (·; ·) is asymptotically (compactly) (R,B)-multi-almost automorphic.
If the sequence (Fj (·; ·)) converges uniformly to a function F(·; ·), then the function
F(·; ·) is asymptotically (compactly) (R,B)-multi-almost automorphic.

Proof Due toProposition2.15,weknow that there exist a uniquelydetermined function
G(·; ·)which is (R,B)-multi-almost automorphic and a uniquely determined function
Q ∈ C0,Rn ,B(Rn × X : Y ) such that F(t; x) = G(t; x) + Q(t; x) for all t ∈ R

n and
x ∈ X . Furthermore, we have

Fj (t; x) − Fm(t; x) = [
G j (t; x) − Gm(t; x)]+ [

Q j (t; x) − Qm(t; x)],

for all t ∈ R
n, x ∈ X and j, m ∈ N. Due to Proposition 2.14(iv), we have that

the function Fj (·; ·) − Fm(·; ·) is asymptotically (R,B)-multi-almost automorphic
as well as that the function G j (·; ·) − Gm(·; ·) is (R,B)-multi-almost automorphic
( j, m ∈ N). Keeping in mind this fact, Lemma 2.16 and the argumentation used in
the proof of Diagana (2013, Theorem 4.29), we get that

3 sup
t∈Rn ,x∈X

∥∥∥Fj (t; x) − Fm(t; x)
∥∥∥
Y

≥ sup
t∈Rn ,x∈X

∥∥∥G j (t; x) − Gm(t; x)
∥∥∥
Y

+ sup
t∈Rn ,x∈X

∥∥∥Q j (t; x) − Qm(t; x)
∥∥∥
Y
,

for any j, m ∈ N. This implies that the sequences (G j (·; ·)) and (Q j (·; ·)) converge
uniformly to the functionsG(·; ·) and Q(·; ·), respectively.Due to Proposition 2.11,we
get that the function G(·; ·) is (R,B)-multi-almost automorphic. The final conclusion
follows from the obvious equality F = G + Q and the fact that C0,Rn ,B(Rn × X : Y )

is a Banach space. ��
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Remark 2.18 The previous proposition is also true in the one-dimensional case, with
D = [0,∞) and R being any collection of sequences in [0,∞) satisfying conditions
[D1]–[D2].

Concerning the partial derivatives of (asymptotically) (RX ,B)-multi-almost auto-
morphic functions, we will state and prove only one partial result (cf. (Chávez et al.
2020, Sect. 2.3) for more details given in the almost periodic case):

Proposition 2.19 (i) Suppose that the function F(·; ·) is (compactly)
(R,B)-multi-almost automorphic, [D2] holds, the partial derivative

∂F(t; x)
∂ti

:= lim
h→0

F(t + hei ; x) − F(t; x)
h

, t ∈ R
n, x ∈ X

exists and it is uniformly continuous on B, i.e.,

(∀B ∈ B) (∀ε > 0) (∃δ > 0) (∀t′, t′′ ∈ R
n) (∀x ∈ B)

(∣∣t′ − t′′
∣∣ < δ ⇒

∥∥∥∥
∂F(t′; x)

∂ti
− ∂F(t′′; x)

∂ti

∥∥∥∥
Y

< ε

)
.

Then the function ∂F(·; ·)/∂ti is (compactly) (R,B)-multi-almost automorphic.
(ii) Suppose that the function F(·; ·) is asymptotically (compactly) (R,B)-multi-

almost automorphic, [D1]–[D2] hold, the partial derivative
∂F(t; x)/∂ti exists for all t ∈ R

n, x ∈ X and it is uniformly continuous on B.

Then the function ∂F(·; ·)/∂ti is asymptotically (compactly) (R,B)-multi-almost
automorphic.

Proof Wewill prove only (i) because (ii) follows similarly, by appealing to Proposition
2.17 instead of Proposition 2.11. The proof immediately follows from the fact that the
sequence (Fj (·; ·) ≡ j[F(·+ j−1ei ; ·)−F(·; ·)]) of (compactly) (R,B)-multi-almost
automorphic functions converges uniformly to the function ∂F(·; ·)/∂ti as j → +∞.

This can be shown as in one-dimensional case, by observing that

Fj (·; ·) − ∂F(·; ·)
∂ti

= j
∫ 1/ j

0

[
∂F(· + sei ; ·)

∂ti
− ∂F(·; ·)

∂ti

]
ds.

��

2.4 Composition Theorems for (R,B)-Multi-almost Automorphic Functions

Suppose that F : Rn × X → Y and G : Rm ×Y → Z are given functions, wherem ∈
N. The main aim of this subsection is to analyze the (R,B)-multi-almost automorphic
properties of the following multi-dimensional Nemytskii operatorW : Rn × X → Z ,

given by

W (t; x) := G
(
t; F(t; x)), t ∈ R

n, x ∈ X .
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We will first state the following generalization of Diagana (2013, Theorem 4.16);
the proof is similar to the proof of the above-mentioned theorem but we will present
all details for the sake of completeness:

Theorem 2.20 Suppose that F : Rn × X → Y is (R,B)-multi-almost automorphic
and G : Rn × X → Y is (R′,B′)-multi-almost automorphic, where R′ is a collection
of all sequences b : N → R

n from R and all their subsequences, as well as

B′ :=
{
B ′ ≡

⋃

t∈Rn

F(t; B) : B ∈ B
}
. (2.12)

If there exists a finite constant L > 0 such that

∥∥G(t; x) − G(t; y)∥∥Z ≤ L‖x − y‖Y , t ∈ R
n, x, y ∈ Y , (2.13)

then the Nemytskii function W (·; ·) is (R,B)-multi-almost automorphic. Furthermore,
let WB,(bk ) : B → P(P(Rn)) and PB,(bk ) ∈ P(P(Rn × B)). Then we have the
following:

(i) Suppose that F(·; ·) is (R,B,WB,R)-multi-almost automorphic, for every B ∈ B,

x ∈ B and (bk) ∈ R, we have that any set of collection WB,(bk )(x) is an element
of the collection WB,(bkl )

(x) for any subsequence (bkl ) of (bk). If the following
condition

(DB) For every B ∈ B, (bk) ∈ R, x ∈ B, D ∈ WB,(bk )(x) as well as for every
subsequence (bkl ) of (bk), we can find a subsequence (bklm ) of (bkl ) and a
function G∗ : Rn × Y → Z such that

lim
m→+∞

∥∥∥G
(
t + (b1klm , · · ·, bnklm ); y)− G∗(t; y)

∥∥∥
Z

= 0, (2.14)

holds uniformly for (t, y) ∈ D × F([D × {x}] + {(bklm ; 0) : m ∈ N}) and

lim
m→+∞

∥∥∥G∗(t − (b1klm , · · ·, bnklm ); y)− G(t; y)
∥∥∥
Z

= 0, (2.15)

holds uniformly for (t; y) ∈ D × F(D × {x}),
holds, then the function W (·; ·) is (R,B,WB,R)-multi-almost automorphic.

(ii) Suppose that F(·; ·) is (R,B,PB,R)-multi-almost automorphic and, for every B ∈
B and (bk) ∈ R, we have that any set of collection PB,(bk ) is an element of the
collection PB,(bkl )

for any subsequence (bkl ) of (bk). If the following condition

(DB1) For every B ∈ B, (bk) ∈ R, D ∈ PB,(bk ) as well as for every sub-
sequence (bkl ) of (bk), we can find a subsequence (bklm ) of (bkl ) and
a function G∗ : R

n × Y → Z such that (2.14) holds uniformly for
(t, y) ∈ D × F(D + {(bklm ; 0) : m ∈ N}) and (2.15) holds uniformly for
(t; y) ∈ D × F(D × {x})
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holds, then the function W (·; ·) is (R,B,PB,R)-multi-almost automorphic.

Proof Let the set B ∈ B and the sequence (bk = (b1k , b
2
k , . . . , b

n
k )) ∈ R be given. By

definition, there exist a subsequence (bkl = (b1kl , b
2
kl
, . . . , bnkl )) of (bk) and a function

F∗ : Rn × X → Y such that (2.1)–(2.2) hold true. Then there exist a subsequence
(bklm = (b1klm , b2klm , . . . , bnklm )) of (bkl ) and a function G∗ : Rn × X → Y such that

(2.14)–(2.15) hold pointwisely for all y ∈ B ′ and t ∈ R
n . Using (2.13) and (2.14), we

get that

∥∥G∗(t; x) − G∗(t; y)∥∥Z ≤ L‖x − y‖Y , t ∈ R
n, x, y ∈ B ′. (2.16)

In order to see that the functionW (·; ·) is (R,B)-multi-almost automorphic, it suffices
to show that
∥∥∥G

(
t + (b1klm , . . . , bnklm ); F(t + (b1klm , . . . , bnklm ); x))− G∗(t; F∗(t; x))

∥∥∥
Z

→ 0,

(2.17)

as m → +∞, and

∥∥∥G∗(t − (b1klm , . . . , bnklm ); F∗(t − (b1klm , . . . , bnklm ); x))− G(t; F(t; x))
∥∥∥
Z

→ 0,

(2.18)

asm → +∞, pointwisely for t ∈ R
n and x ∈ B. The proof of (2.17) goes as follows.

For simplicity, denote øm := (b1klm , . . . , bnklm ) for allm ∈ N. We have (t ∈ R
n, x ∈ B,

m ∈ N):

∥∥∥G
(
t + øm; F(t + øm; x))− G∗(t; F∗(t; x))

∥∥∥
Z

≤
∥∥
∥G

(
t + øm; F(t + øm; x))− G(t + øm; F∗(t; x))

∥∥
∥
Z

+
∥∥∥G(t + øm; F∗(t; x)) − G∗(t; F∗(t; x))

∥∥∥
Z

≤ L
∥∥∥F

(
t + øm; x)− F∗(t; x)

∥∥∥
Y

+
∥∥∥G(t + øm; F∗(t; x)) − G∗(t; F∗(t; x))

∥∥∥
Z
.

Since x ∈ B and F∗(t; x) ∈ B ′ for all t ∈ R
n , (2.17) follows by applying (2.1) and

(2.14). Keeping in mind the estimate (2.16) and the estimate

∥
∥∥G∗(t − τl; F∗(t − τl; x

))− G(t; F(t; x))
∥
∥∥
Z

≤
∥∥∥G∗(t − τl; F∗(t − τl; x

))− G∗(t − τl; F(t; x))
∥∥∥
Z

+
∥∥
∥G∗(t − τl; F(t; x)) − G(t; F(t; x))

∥∥
∥
Z
,

the proof of (2.18) is quite analogous, which completes the proof of the first part of
theorem. The proofs of (i)–(ii) follows from the already shown part and an elementary
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argumentation involving the corresponding definitions and the prescribed conditions.
��

In the one-dimensional case, some composition principles for compactly almost
automorphic functions are stated inDiagana (2013, Lemma4.36, Lemma4.37, Lemma
4.38) and Ait Dads et al. (2017). We will clarify only one, almost immediate, corollary
of Theorem 2.20 for compactly (R,B)-multi-almost automorphic type functions:

Corollary 2.21 Suppose that F : R
n × X → Y is compactly (R,B)-multi-almost

automorphic and G : Rn × X → Y is (R,B,PR,B)-multi-almost automorphic, where
R is a collection of all sequences b : N → R

n, B is the collection of all compact
subsets of X , as well as for every B ∈ B we have that PR,B(B) is the collection of all
compact subsets of Rn × X , and there exists a finite constant L > 0 such that (2.13)
holds. Then the function W (·; ·) is compactly (R,B)-multi-almost automorphic.

A slight modification of the proof of Theorem 2.20 (cf. also the proof of Diagana
(2013, Theorem 4.17)) shows that the following result holds true:

Theorem 2.22 Suppose that F : Rn × X → Y is (R,B)-multi-almost automorphic
and G : Rn × X → Y is (R′,B′)-multi-almost automorphic, where R′ is a collection
of all sequences b : N → R

n from R and all their subsequences, as well as B′ be
given by (2.12). If

(∀B ∈ B) (∀ε > 0) (∃δ > 0)
(
x, y ∈ B ′ and

∥∥x − y
∥∥
Y < δ ⇒ ∥∥G(t; x) − G(t; y)∥∥Z < ε, t ∈ R

n
)
,

then the function W (·; ·) is (R,B)-multi-almost automorphic. Furthermore, let
WB,(bk ) : B → P(P(Rn)) and PB,(bk ) ∈ P(P(Rn × B)). Then we have the fol-
lowing:

(i) The requirements in (i) of Theorem 2.20 imply that the function W (·; ·) is
(R,B,WB,R)-multi-almost automorphic.

(ii) The requirements in (ii) of Theorem 2.20 imply that the function W (·; ·) is
(R,B,PB,R)-multi-almost automorphic.

Now we proceed with the analysis of composition theorems for asymptotically
(R,B)-multi-almost automorphic functions. Our first result corresponds to Theorem
2.20 and Diagana (2013, Theorem 4.34):

Theorem 2.23 Suppose that F0 : Rn × X → Y is (R,B)-multi-almost automorphic,
Q0 ∈ C0,Rn ,B(Rn × X : Y ) and F(t; x) = F0(t; x) + Q0(t; x) for all t ∈ R

n and
x ∈ X . Suppose further that G1 : Rn × X → Y is (R′,B′)-multi-almost automorphic,
whereR′ is a collection of all sequences b : N → R

n fromR and all their subsequences
as well as B′ is defined by (2.12) with the function F(·; ·) replaced therein by the
function F0(·; ·), Q1 ∈ C0,Rn ,B1(R

n × Y : Z), where

B1 :=
{⋃

t∈Rn

F(t; B) : B ∈ B
}
, (2.19)

123



Multi-dimensional Almost Automorphic Type Functions… 829

and G(t; x) = G1(t; x) + Q1(t; x) for all t ∈ R
n and x ∈ X . If there exists a

finite constant L > 0 such that the estimate (2.13) holds with the function G(·; ·)
replaced therein by the function G1(·; ·), then the function W (·; ·) is asymptotically
(R,B)-multi-almost automorphic.

Proof Using the above assumptions and Theorem 2.20, we have that the function
(t; x) 
→ G1(t; F0(t; x)), t ∈ R

n, x ∈ X is (R,B)-multi-almost automorphic. Fur-
thermore, we have the following decomposition

W (t; x) = G1(t; F0(t; x)) +
[
G1(t; F(t; x)) − G1(t; F0(t; x))

]
+ Q1(t; F(t; x)),

for any t ∈ R
n and x ∈ X . Since

∥∥∥G1(t; F(t; x)) − G1(t; F0(t; x))
∥∥∥
Z

≤ L
∥∥Q0(t; x)

∥∥
Y , t ∈ R

n, x ∈ X ,

we have that the function (t; x) 
→ G1(t; F(t; x)) − G1(t; F0(t; x)), t ∈ R
n, x ∈ X

belongs to the space C0,Rn ,B(Rn × X : Z). The same holds for the function (t; x) 
→
Q1(t; F(t; x)), t ∈ R

n, x ∈ X because of our choice of the collection B1 in (2.19).
The proof of the theorem is thereby complete. ��

Similarly we can prove the following result which corresponds to Theorem 2.22
and Diagana (2013, Theorem 4.35):

Theorem 2.24 Suppose that F0 : Rn × X → Y is (R,B)-multi-almost automorphic,
Q0 ∈ C0,Rn ,B(Rn × X : Y ) and F(t; x) = F0(t; x) + Q0(t; x) for all t ∈ R

n and
x ∈ X . Suppose further that G1 : Rn × X → Y is (R′,B′)-multi-almost automorphic,
whereR′ is a collection of all sequences b : N → R

n fromR and all their subsequences
as well as B′ is defined by (2.12) with the function F(·; ·) replaced therein by the
function F0(·; ·), Q1 ∈ C0,Rn ,B1(R

n × Y : Z), where B1 is given through (2.19), and
G(t; x) = G1(t; x) + Q1(t; x) for all t ∈ R

n and x ∈ X . For every B ∈ B, we set
B ′ := ⋃

t∈Rn F0(t; B). If

(∀B ∈ B) (∀ε > 0) (∃δ > 0)
(
x, y ∈ B ′ and

∥∥x − y
∥∥
Y < δ ⇒ ∥∥G1(t; x) − G1(t; y)

∥∥
Z < ε, t ∈ R

n
)
,

then the function W (·; ·) is asymptotically (R,B)-multi-almost automorphic.

The statements of Theorem 2.23 and Theorem 2.24 can be reformulated for
the asymptotical (R,B,WB,(bk ))-multi-almost automorphy and the asymptotical
(R,B,PB,(bk ))-multi-almost automorphy by taking into consideration conditions (i)
and (ii) from the formulation of Theorem 2.20.

2.5 Invariance of (R,B)-Multi-almost Automorpic Properties Under Actions of
Convolution Products

If t = (t1, t2, . . . , tn), then we use the notation It = (−∞, t1] × (−∞, t2] × · · · ×
(−∞, tn]. We impose the following condition:
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(E1) (K (t))t∈(0,∞)n ⊆ L(X ,Y ) is a strongly continuous operator family and∫
(0,∞)n

‖K (t)‖L(X ,Y ) dt < +∞.

The main results of this subsection, Theorem 2.25 and Theorem 2.27, are new even
in the one-dimensional setting. This enables one to provide numerous applications in
the analysis of the existence and uniqueness of time almost automorphic solutions of
the abstract (degenerate) Volterra integro-differential equations (see Kostić 2019 and
the last example of this section):

Theorem 2.25 Let f : Rn → X be a bounded R-multi-almost automorphic function
and (E1) holds. Define

F(t) :=
∫

It
K (t − η) f (η) dη, t ∈ R

n .

Then F(·) is a bounded R-multi-almost automorphic function. Furthermore, if f :
R
n → X is a bounded (R,WR)-multi-almost automorphic function, then F(·) is

likewise a bounded (R,WR)-multi-almost automorphic function provided that, for
every set D ∈ WR and for every compact set C ⊆ [0,∞)n, we have that D−C ⊆ D′
for some set D′ ∈ WR.

Proof First of all, observe that the Lebesgue dominated convergence theorem implies
in view of condition (E1) that F(·) is a continuous function on R

n; it is also clear
that (E1) implies that the function F(·) is bounded on R

n . On the other hand, since
f (·) is R-multi-multi-almost automorphic, given a sequence (bn) ∈ R, there exist a
subsequence (cn) of (bn) and a function f̃ (·) such that limn→∞ f (t+ cn) = f̃ (t) and
limn→∞ f̃ (t− cn) = f (t) pointwisely for all t ∈ R

n . It is clear that the function f̃ (·)
is measurable and bounded. Now, let us define

F∗(t) :=
∫

It
K (t − η) f̃ (η) dη, t ∈ R

n .

Then we have

∥∥F(t + cn) − F∗(t)
∥∥
Y

=
∥∥∥∥

∫

It+cn

K (t + cn − η) f (η) dη −
∫

It
K (t − η) f̃ (η) dη

∥∥∥∥

≤
∫

It
‖K (t − η)‖L(X ,Y ) · ∥∥ f (η + cn) − f̃ (η)

∥∥ dη, t ∈ R
n .

Using condition (E1), the above estimate and the Lebesgue dominated convergence
theorem, we get

lim
n→∞ F(t + cn) = F∗(t), t ∈ R

n .
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Similarly we get

lim
n→∞ F∗(t − cn) = F(t), t ∈ R

n,

which completes the proof of the first part of theorem. Suppose now that f : Rn → X
is a bounded (R,WR)-multi-almost automorphic function, ε > 0 and D ∈ WR. Then
there exists L > 0 such that

‖ f ‖∞
∫

η∈[0,∞)n;|η|≥L
‖K (η)‖L(X ,Y ) dη < ε/4.

Due to our assumption, we have the existence of a set D′ ∈ WR such that D − {t ∈
[0,∞)n : |t| ≤ L} ⊆ D′. Choose after that a natural number n0 ∈ N such that

∥∥ f (t + cn − η) − f̃ (t − η)
∥∥ <

ε

2

(
1 + ∫

η∈[0,∞)n;|η|≤L ‖K (η)‖L(X ,Y ) dη

) .

Arguing as above, we get

∥∥F(t + cn) − F∗(t)
∥∥
Y ≤

∫

(0,∞)n
‖K (η)‖L(X ,Y )

∥∥ f (t + cn − η) − f̃ (t − η)
∥∥ dη

≤ 2‖ f ‖∞
∫

η∈[0,∞)n;|η|≥L
‖K (η)‖L(X ,Y ) dη

+
∫

η∈(0,∞)n;|η|≤L
‖K (η)‖L(X ,Y )

∥∥ f (t + cn − η) − f̃ (t − η)
∥∥ dη

≤ (ε/2) + (ε/2) = ε, t ∈ D.

We can similarly prove that limn→∞ F∗(t − cn) = F(t), uniformly in t ∈ D. ��

Remark 2.26 It is clear that the above requirements hold if WR denotes the collection
of all compact subsets of Rn, so that Theorem 2.25 transfers the well known result of
Henríquez and Lizama (2009, Lemma 3.1) to the multi-dimensional setting. On the
other hand, WR need not be consisted of compact sets; for example, in our previous
analyses, we have analyzed case in which WR is a collection of sets of the form
{(x, y) ∈ R

2 : |x − y| ≤ L}, when L > 0 (n = 2). Then the requirements of
Theorems 2.25 and 2.27 are also satisfied.

Let D be an unbounded subset of Rn; then we set Dt := It ∩ D for all t ∈ R
n .

For the invariance ofD-asymptotical R-multi-almost automorphy under the actions of
multi-dimensional finite convolution products, we impose the following conditions:

(E2) lim|t|→+∞,t∈D

∫

It∩Dc

∥∥K (t − )
∥∥
L(X ,Y )

dη = 0 .
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(E3) there exists r0 > 0 such that, for every r > r0, we have

lim|t|→+∞,t∈D

∫

It∩D∩B(0,r)

∥∥K (t − )
∥∥
L(X ,Y )

dη = 0.

Theorem 2.27 Let conditions (E1)–(E3) be fulfilled, let for every set D ∈ WR and for
every compact set C ⊆ [0,∞)n, we have that D − C ⊆ D′ for some set D′ ∈ WR,

and let f = fa + f0, where fa(·) is a bounded R-multi-almost automorphic function
(bounded (R,WR)-multi-almost automorphic function) and f0(·) ∈ C0,D(Rn : X) ∩
L∞(Rn : X). Define

� f (t) :=
∫

Dt

K (t − η) f (η) dη, t ∈ R
n .

Then � f (·) can be written as a sum of a bounded R-multi-almost automorphic func-
tion (bounded (R,WR)-multi-almost automorphic function) and a bounded function
belonging to the space C0,D(Rn : Y ).

Proof We will only prove the result provided that fa(·) is a bounded R-multi-almost
automorphic function. We have

∫

Dt

K (t − η) f (η) dη =
∫

Dt

K (t − η) ( fa(η) + f0(η)) dη

=
∫

It
K (t − η) fa(η) dη −

∫

It∩Dc

K (t − η) fa(η) dη

+
∫

Dt

K (t − η) f0(η) dη

= �1 fa(t) + �2 f (t), t ∈ R
n,

where

�1 fa(t) :=
∫

It
K (t − η) fa(η) dη, t ∈ R

n,

and

�2 f (t) :=
∫

Dt

K (t − η) f0(η) dη −
∫

It∩Dc

K (t − η) fa(η) dη, t ∈ R
n .

It can be simply shown that these functions are bounded. By Theorem 2.25, we have
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that �1 fa(·) is bounded, R-multi-almost automorphic. Now we will prove the follow-
ing decay at infinity across D:

lim
t∈D;|t|→+∞

�2 f (t) = 0.

Towards this end, observe that the estimate || fa ||∞ < ∞ and condition (E2) together
imply:

lim
t∈D;|t|→+∞

∫

It∩Dc

K (t − η) fa(η) dη = 0.

Therefore, the second integral in the representation of �2 f (·) vanishes at infinity. To
estimate the first integral, fix a real number ε > 0. Since f0 ∈ C0,D(Rn : X), there
exists r > 0 such that for all t ∈ D with |t| > r we have ‖ f0(t)‖ < ε; moreover, due
to condition (E3), we have (for this r and for |t| a large enough):

∫

B(0,r)∩Dt

‖K (t − η)‖L(X ,Y ) dη < ε, t ∈ R
n .

Since
∫

Dt

K (t − η) f0(η) dη =
∫

B(0,r)∩Dt

K (t − η) f0(η )dη +
∫

B(0,r)c∩Dt

K (t − η) f0(η) dη,

the above implies

∥∥∥∥

∫

Dt

K (t − η) f0(η) dη

∥∥∥∥
Y

<

⎛

⎜
⎝|| f0||∞ +

∫

B(0,r)c∩Dt

‖K (t − η)‖L(X ,Y ) dη

⎞

⎟
⎠ ε.

The proof of the theorem is thereby complete. ��
Remark 2.28 In R

2, let us consider the set D formed by the union of lines containing
a fixed point p ∈ R

2. Then we have

∫

Dt

K (t − η) f (η) dη = 0,

for any t ∈ R
2. More generally, if D consists of sets contained in the euclidean spaces

of dimension less than n, after the canonical embedding of this space into Rn we get:

∫

Dt

K (t − η) f (η) dη = 0,
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for any t ∈ R
n . Therefore, in the formulation of previous theorem, it seems very

reasonable to assume that there exists a point t0 ∈ R
n such that int(Dt0) �= ∅.

Remark 2.29 If D = [α1,+∞) × [α2,+∞) × · · · × [αn,+∞), then Dt = [α1, t1] ×
[α2, t2] × · · · × [αn, tn] := [α, t] and, under the hypothesis (E1), (E2) and (E3),
assuming additionally the notation

∫ t

α

:=
∫ t1

α1

. . .

∫ tn

αn

,

we have

� f (t) =
∫ t

α

K (t − η) f (η) dη.

Example Let α, β be positive real numbers and consider the kernel function Ke :
R
2 → R given by Ke(x, y) := exp(−αx) exp(−β y). Suppose that D is the first

quadrant [0,+∞) × [0,+∞) and denote t = (x, y). Consider the integral operator

F(t) =
∫∫

Dt

Ke(x − s, y − r) f (s, r) ds dr

with f (t) = 1 + e−(αx+β y) and R being any collection of sequences. Then

F(t) =
∫∫

Dt

Ke(x − s, y − r)(1 + e−(αs+βr)) ds dr

=
∫∫

Dt

Ke(x − s, y − r) ds dr +
∫∫

Dt

Ke(x − s, y − r)e−(αs+βr) ds dr

=
∫∫

It
Ke(x − s, y − r) ds dr −

∫∫

It∩Dc

Ke(x − s, y − r) ds dr +

+
∫∫

Dt

Ke(x − s, y − r)e−(αs+βr) ds dr

= F1(t) + F2(t),

where

F1(t) :=
∫∫

It
Ke(x − s, y − r) ds dr
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and

F2(t) :=
∫∫

Dt

Ke(x − s, y − r)e−(αs+βr) ds dr −
∫∫

It∩Dc

Ke(x − s, y − r) ds dr .

Wesee that F1(·) isR-multi-almost periodic (note that Ke(·; ·) satisfies condition (E1)).
On the other hand, F2(·) is not R-multi-almost automorphic because for (x0, y) ∈ D,

with fixed x0 ∈ (0,+∞), we have

lim|(x0,y)|→+∞ F2(x0, y) �= 0.

We close this section by providing the following illustrative application of Theorem
2.27:

Example (see also (Kostić 2019, Example 3.10.10)) Suppose that A, B and C are
closed linear operators in X , D(B) ⊆ D(A) ∩ D(C), B−1 ∈ L(X) and conditions
(Favini and Yagi 1998, (6.4)–(6.5)) are satisifed with certain numbers c > 0 and
0 < β ≤ α = 1. In Favini and Yagi (1998, Chapter VI), A. Favini and A. Yagi have
analyzed the following second order differential equation

d

dt

(
Cu′(t)

)+ Bu′(t) + Au(t) = f (t), t > 0; u(0) = u0, Cu′(0) = Cu1

by the usual rewriting into the first order matricial system

d

dt
Mz(t) = Lz(t) + F(t), t > 0; Mz(0) = Mz0,

where

M =
[
I O
O C

]
, L =

[
O I

−A −B

]
, z0 =

[
u0
u1

]
and F(t) =

[
0
f (t)

]
(t > 0).

The multivalued linear operator (L [D(B)]×X − ωM[D(B)]×X )(M[D(B)]×X )−1 sat-
isfies condition (P) used in the monograph (Kostić 2019), with a sufficiently
large number ω > 0, in the pivot space [D(B)] × X . Hence, the opera-
tor (L [D(B)]×X − ωM[D(B)]×X )(M[D(B)]×X )−1 generates a degenerate semigroup
(T (t))t>0 in [D(B)] × X , having an integrable singularity at zero and exponentially
decaying growth rate at infinity, so that Favini and Yagi (1998, Theorem 3.8, Theo-
rem 3.9) are applicable in the analysis of existence and uniqueness of solutions of the
problem

d

dt
Mz(t) = (L − ωM)z(t) + F(t), t > 0; Mz(0) = Mz0. (2.20)
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Let us denote the components of z(t) by u(t) and v(t); then a simple analysis of
problem (2.20) enables us to consider the well-posedness of the following second-
order differential equation:

d

dt

(
Cu′(t)

)+ (2ωC + B)u′(t) + (
A + ωB + ω2C

)
u(t) = f (t), t > 0;

u(0) = u0, C
[
u′(0) + ωu0

] = Cu1. (2.21)

Suppose, for example, thatM[u0 u1]T belongs to the domain of continuity of (T (t))t>0
and f (·) is Hölder continuous with an appropriate Hölder exponent. Then there exists
a unique solution z(t) of (2.20), continuous for t ≥ 0, and

Mz(t) = M

[
u(t)
v(t)

]
= T (t)M

[
u0
u1

]
+
∫ t

0
T (t − s)

[
0
f (s)

]
ds, t ≥ 0;

all this has been seen inKostić (2019, Example 3.10.10). Assume now that there exist a
compactly almost automorphic function f0 : R → X and a function q ∈ C0([0,∞) :
X) such that f (t) = f0(t) + q(t) for all t ≥ 0. Then Theorem 2.27 implies that
a unique solution u(·) of (2.21) satisfies that Mz(·) = [u(·) C(u′(·) + ωu(·))]T
is a sum of a compactly ([D(B)] × X)-valued almost automorphic function and a
function belonging to the space C0([0,∞) : [D(B)] × X), which can be simply
applied in the analysis of the existence and uniqueness of asymptotically compactly
almost automorphic solutions of the dampedPoisson-wave type equations in the spaces
X := H−1(�) or X := L p(�); see also Favini and Yagi (1998, Example 6.1) for
further information.

3 Applications to the Abstract Volterra Integro-differential Equations

In this section, we present some applications of our abstract results in the qualitative
analysis of solutions for various classes of the abstract Volterra integro-differential
equations.

3.1 Applications to the Semilinear Integral Equations

In this subsection, we present some applications of established composition results and
the results about the invariance of (R,B)-multi-almost automorphy under the actions
of multi-dimensional convolution products. We start by stating the following result:

Theorem 3.1 Let F, G : R
n × X → X be two (R,B)-multi-almost automorphic

functions, where B is the collection of all bounded subsets of X , R is any collection of
sequences in Rn satisfying that for each sequence (bk) in R any its subsequence also
belongs to R. Suppose that, for every bounded subset B of X , we have

sup
t∈Rn;x∈B

[
‖F(t; x)‖ + ‖G(t; x)‖

]
< ∞. (3.1)
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If [E1] holds with Y = X, then there exists a unique bounded R-multi-almost auto-
morphic solution of the integral equation

u(t) = F(t; u(t)) +
∫

It
K (t − η)G(η, u(η)) dη, t ∈ R

n, (3.2)

provided that the function G(·; ·) satisfies the estimate (2.13) with some finite real
constant L > 0, the function F(·; ·) satisfies the estimate (2.13) with some finite real
constant LF > 0 and the meaning clear, and

LF + L
∫

(0,∞)n

‖K (η)‖L(X) dη < 1. (3.3)

Proof Due to Proposition 2.11(ii), the vector space X of all bounded R-multi-almost
automorphic functions u : Rn → X endowed with the sup-norm is a Banach space.
Furthermore, Theorem 2.20 in combination with the estimate (3.1) implies that, for
every function u : Rn → X which belongs toX , the functions t 
→ F(t; u(t)), t ∈ R

n

and t 
→ G(t; u(t)), t ∈ R
n are bounded R-multi-almost automorphic. Applying after

that Theorem 2.25, we get that the integral operator

t 
→ (�u)(t) := F(t; u(t)) +
∫

It
K (t − η)G(η, u(η)) dη, t ∈ R

n,

is well defined and maps the space X into itself. The final conclusion simply follows
from the Banach contraction principle and a simple calculation involving the estimate
(3.3). ��

Without any substantial difficulties, we can similarly consider the existence and
uniqueness of bounded compactly R-multi-almost automorphic solutions of the inte-
gral equation (3.2), provided that the functions F(·; ·) and G(·; ·) satisfy conditions
sufficient for applying Corollary 2.21. Furthermore, we can similarly consider the
existence and uniqueness of bounded (R,WR)-multi-almost automorphic solutions of
the equation (and its semilinear analogues)

u(t) = f (t) +
∫

It
K (t − η)u(η) dη, t ∈ R

n,

where f (·) is bounded (R,WR)-multi-almost automorphic, (E1) holds and, for every
set D ∈ WR and for every compact set C ⊆ [0,∞)n , we have that D − C ⊆ D′ for
some set D′ ∈ WR; cf. also the formulation of Theorem 2.25.

It is worth noting that the equation (3.2) can be used for modeling of some two-
dimensional nonlinear Volterra integral equations of convolution type of the second
kind with infinite delay; see Aziz et al. (2014) for some examples in the absence
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of delay and Courant and Hilbert (1989, Chapter 10) for some other results in this
direction. In actual fact, we can consider the well-posedness of equation

u(x, y) = g(x, y) +
∫ x

−∞

∫ y

−∞
K (x, y, s, t, u(s, t)) ds dt, (x, y) ∈ R

2,

provided that K (x, y, s, t, u(s, t)) has the form:

K (x, y, s, t, u(s, t)) = k(s − x, t − y)h(s, t, u(s, t));

our results about the invariance of D-asymptotical (R,B)-multi-almost automorphy
can be applied in the qualitative analysis of solutions to the following two-dimensional
nonlinear Volterra integral equation (t = (x, y)):

f (t) = g(t; f (t)) +
∫ x

0

∫ y

0
K (t − η)h(η, f (η)) dη,

as well.
We close this subsection by observing that, in the fourth part of Chávez et al. (2020,

Section 3), we have considered the existence and uniqueness of Bohr almost periodic
solution of the following Hammerstein integral equation of convolution type on R

n

(cf. (Corduneanu 1991, Section 4.3, pp. 170-180) for more details on the subject):

y(t) = g(t) +
∫

Rn
k(t − s)F(s, y(s)) ds, t ∈ R

n . (3.4)

Keeping in mind the deduced composition principles and the results about the con-
volution invariance of (R,B)-multi-almost automorphy, we can easily transfer the
established results to the multi-dimensional almost automorphic functions. For exam-
ple, assume that g : Rn → X is (compactly) almost automorphic, R is the collection
of all sequences in R

n, B is the collection of all compact subsets of X , F(·; ·) is
(R,B,PR,B)-multi-almost automorphic, where for each B ∈ B we have that PR,B(B)

is the collection of all compact subsets of Rn × X , and there exists a finite constant
L > 0 such that (2.13) holds with the function G(·; ·) replaced therein with the func-
tion F(·; ·). If k ∈ L1(Rn) and L‖k‖L1(Rn) < 1, then (3.4) has a unique (compactly)
almost automorphic solution (see Proposition 2.12 and Corollary 2.21).

3.2 Spatially Almost Automorphic Solutions of the Multidimensional Heat
Equation and theMultidimensionalWave Equation

In this subsection, we will first study the initial value problem for the homogeneous
heat equation with nonlocal diffusion

ut − �u = 0 in [0,+∞) × R
n,

u(0, x) = F(x) in R
n × {0}. (3.5)
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Suppose for simplicity that X = BUC(Rn : C), the Banach space of bounded uni-
formly continuous functions onRn equipped with the sup-norm. Then it is well known
that the Gaussian semigroup

(G(t)F)(x) := (
4π t

)−(n/2)
∫

Rn
F(x − y)e− |y|2

4t dy, t > 0, F ∈ X , x ∈ R
n,

can be extended to a bounded analytic C0-semigroup of angle π/2, generated by
the Laplacian �x as well as that the unique solution of (3.5) is given by (t, x) 
→
(G(t)F)(x), t ≥ 0, x ∈ R

n . Suppose now that a number t0 > 0 is fixed. Then
Proposition 2.12 shows that the function R

n � x 
→ u(x, t0) ≡ (G(t0)F)(x) ∈ C is
bounded, R-multi-almost automorphic provided that R is any non-empty collection
of sequences in R

n and the function F(·) is bounded, R-multi-almost automorphic.
We can similarly apply Proposition 2.12 to the Poisson semigroup in Rn ; see Chávez
et al. (2020) for more details.

In the remainder of this subsection, we shall revisit the classical theory of partial
differential equations of second order and provide some new applications in the qual-
itative analysis of solutions of the wave equations in R

3 (the obtain conclusions are
new even for spatially almost periodic solutions):

utt (t, x) = d2�xu(t, x), x ∈ R
3, t > 0; u(0, x) = g(x), ut (0, x) = h(x),

(3.6)

where d > 0, g ∈ C3(R3 : R) and h ∈ C2(R3 : R).By the famous Kirchhoff formula
(see e.g., (Salsa 2008, Theorem 5.4, pp. 277-278) for the notion used and more details
about the spherical means; we will use the same notion and notation), the function

u(t, x) := ∂

∂t

[
1

4πd2t

∫

∂Bdt (x)
g(σ ) dσ

]
+ 1

4πd2t

∫

∂Bdt (x)
h(œ) dσ

= 1

4π

∫

∂B1(0)
g(x + dtω) dω + dt

4π

∫

∂B1(0)
∇g(x + dtω) · ω dω

+ t

4π

∫

∂B1(0)
h(x + dtω) dω, t ≥ 0, x ∈ R

3, (3.7)

is a unique solution of problem (3.6) which belongs to the class C2([0,∞) × R
3).

Fix now a number t0 > 0. Then the function x 
→ u(t0, x), x ∈ R
3 is Bohr c-almost

periodic (c-uniformly recurrent) provided that the functions g(·), ∇g(·) and h(·) are c-
almost periodic (c-uniformly recurrent),where c ∈ C\{0}.Similarly, let us assume that
the functions g(·), ∇g(·) and h(·) are bounded R-multi-almost automorphic, where
R is any collection of sequences in R

3 such that, for every sequence (bk) ∈ R, any
subsequence (bkl ) of (bk) also belongs toR (the last condition is superfluous in the case
that g ≡ 0). If we replace the functions g(·) and ∇g(·) in (3.7) with the corresponding
limit functions g∗(·) and ∇g∗(·) for the sequence (bk) from the definition of R-multi-
almost automorphy, then the use of dominated convergence theorem shows that the
function x 
→ u(t0, x), x ∈ R

3 is likewise bounded R-multi-almost automorphic;
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furthermore, the same statement holds for the notion of bounded (R,PR)-multi-almost
automorphy provided that the following holds:

(i) For every sequence (bk) ∈ R and for every subsequence (bkl ) of (bk), we have
P(bk ) ⊆ P(bkl )

;
(ii) For every sequence (bk) ∈ R, for every set D ∈ P(bk ) and for every compact set

C ⊆ R
3, we have the existence of a set D′ ∈ P(bk ) such that D + C ⊆ D′.

We can similarly provide some applications in the qualitative analysis of solutions
of the wave equations in R2 :

utt (t, x) = d2�xu(t, x), x ∈ R
2, t > 0; u(0, x) = g(x), ut (0, x) = h(x),

(3.8)

where d > 0, g ∈ C3(R2 : R) and h ∈ C2(R2 : R). By the Poisson formula (see e.g.,
(Salsa 2008, Theorem 5.5, pp. 280–281)), we have that the function

u(t, x) := ∂

∂t

[
1

2πd

∫

∂Bdt (x)

g(œ)
√
d2t2 − |x − y|2 dσ

]

+ 1

2πd

∫

∂Bdt (x)

h(σ )
√
d2t2 − |x − y|2 dσ

= d
∫

B1(0)

g(x + dtσ)
√
1 − |σ |2

dσ + d2t
∫

B1(0)

∇g(x + dtσ) · σ
√
1 − |σ |2

dσ

+ dt
∫

B1(0)

h(x + dtσ)
√
1 − |σ |2

dσ, t ≥ 0, x ∈ R
2,

is a unique solution of problem (3.8) which belongs to the class C2([0,∞) × R
3).

Then we can argue as in the three-dimensional case.
Concerning the one-dimensional case, it should be recalled that the unique regular

solution of wave equation

utt (t, x) = d2�xu(t, x), x ∈ R, t > 0; u(0, x) = g(x), ut (0, x) = h(x),

where d > 0, g ∈ C2(R : R) and h ∈ C1(R : R), is given by the d’Alembert formula

u(x, t) = 1

2

[
g(x − at) + g(x + at)

]+ 1

2a

∫ x+at

x−at
h(s) ds, x ∈ R, t > 0.

In Chávez et al. (2020, Example 1.2), we have assumed that the functions g(·) and
h[1](·) ≡ ∫ ·

0 g(s) ds are almost periodic; then the solution u(x, t) can be extended
to the whole real line in time variable and it is almost periodic in (x, t) ∈ R

2.

Arguing similarly, we may conclude the assumptions that the functions g(·) and
h[1](·) ≡ ∫ ·

0 h(s) ds are almost automorphic imply that the solution u(x, t) is almost
automorphic in (x, t) ∈ R

2. Details can be left to the interested readers.
Consider now the inhomogeneous wave equation

utt (t, x) − d2�xu(t, x) = f (t, x), x ∈ R, t > 0;
u(0, x) = g(x), ut (0, x) = h(x), (3.9)
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where d > 0, f (t, x) is continuously differentiable in the variable t ∈ R and contin-
uous in the variable x ∈ R, g ∈ C2(R : R) and h ∈ C1(R : R). Using the d’Alembert
formula and the Duhamel principle (we will not consider the higher dimensions here
for simplicity), the unique solution of (3.9) is given by

u(x, t) = 1

2

[
g(x − at) + g(x + at)

]+ 1

2a

∫ x+at

x−at
h(s) ds

+ 1

2d

∫ t

0

[∫ x+d(t−s)

x−d(t−s)
f (r , s) dr

]
ds

:= uh(x, t) + 1

2d

∫ t

0

[∫ x+d(t−s)

x−d(t−s)
f (r , s) dr

]
ds, x ∈ R, t > 0.

If we assume that the functions g(·) and h[1](·) ≡ ∫ ·
0 h(s) ds are almost automorphic,

then we get from the above that the solution uh(x, t) is almost automorphic in (x, t) ∈
R
2. It is clear that the function

(x, t) 
→ u p(x, t) ≡ 1

2d

∫ t

0

[∫ x+d(t−s)

x−d(t−s)
f (r , s) dr

]
ds

can be defined for all (x, t) ∈ R
2. Suppose now that L > 0 and the function f (·, ·) has

the property that lim|x |→+∞ f (x, t) = 0, uniformly in t ∈ [0, L]. Set D := {(x, t) ∈
R
2 : t ∈ [0, L]}. Then u p ∈ C0,D(R2 : R) since

u p(x, t) = 1

2d

∫ t

0

[∫ x+ds

x−ds
f (r , t − s) dr

]
ds, x ∈ R, t ∈ R

and there exists a sufficiently large real number x0 > 0 such that, for every x ∈ R

with |x | ≥ x0, for every t ∈ [0, L] and for every s ∈ [0, t], we have | f (r , t − s)| ≤ ε

for all r ∈ [x − dL, x + dL] and therefore

∣∣u p(x, t)
∣∣ ≤ ε · L2, (x, t) ∈ D, |x | ≥ x0.

Hence, the solution u(x, t) obtained by a combination of the d’Alembert formula and
the Duhamel principle will be D-asymptotically R-multi-almost automorphic with R
being the collection of all sequences in R

2.

3.3 Applications to the Abstract Ill-posed Cauchy Problems

In this subsection, we will revisit once more the theory of integrated solution operator
families, C-regularized solution operator families and their applications to the ill-
posed abstract Cauchy problems. For more details about the notion used, we refer the
reader to the monographs by Arendt et al. (2001) and Kostić (2011, 2015) by the third
named author.
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Without going into full details, which is almost impossible to be done, we will only
present two illustrative examples which strongly justify the introduction of function
spaces analyzed in this paper (similar conclusions hold for the corresponding classes
of multi-dimensional almost periodic type functions). In order to achieve our aims, we
mainly apply Proposition 2.12 concerning the convolution invariance of introduced
function spaces (the use of symbol D is clear from the context).

1. Suppose that k ∈ N, aα ∈ C, 0 ≤ |α| ≤ k, aα �= 0 for some α with |α| = k,
P(x) = ∑

|α|≤k aαi |α|xα , x ∈ R
n , P(·) is an elliptic polynomial, i.e., there exist

C > 0 and L > 0 such that |P(x)| ≥ C |x |k , |x | ≥ L , ω := supx∈Rn �(P(x)) < ∞,
and X is one of the spaces L p(Rn) (1 ≤ p ≤ ∞), C0(R

n), Cb(R
n) [the space of

bounded continuous functions f : Rn → C equipped with the sup-norm], BUC(Rn)
[the space of bounded uniformly continuous functions f : Rn → C equipped with
the sup-norm]. Define

P(D) :=
∑

|α|≤k

aα f (α) and D(P(D)) := {
f ∈ E : P(D) f ∈ E distributionally

}
,

nX := n|(1/2) − (1/p)|, if X = L p(Rn) for some p ∈ (1,∞) and nX > n/2,
otherwise. Then we know that the operator P(D) generates an exponentially bounded
r -times integrated semigroup (Sr (t))t≥0 in X for any r > nX as well as that the
operator P(D) generates an exponentially bounded nX -times integrated semigroup
(SnX (t))t≥0 in L p(Rn) provided p ∈ (1,∞); see e.g., (Kostić 2011, Example 2.8.6)
and references quoted therein. We will consider the general case r > n/2 and the
spaces Cb(R

n), BUC(Rn) below; in the setting of L p-spaces, certain applications
can be given for the multi-dimensional Weyl almost periodic functions and the multi-
dimensional Weyl almost automorphic solutions (see Kostić 2021 for more details).
It is well known that for each t ≥ 0 there exists a function ft ∈ L1(Rn) such that

[
Sr (t) f

]
(x) := (

ft ∗ f
)
(x), x ∈ R

n, f ∈ X .

Let us fix a number t0 ≥ 0, and let us assume that the function X � f is R-multi-almost
automorphic, where R is any non-empty collection of sequences in R

n . Applying
Proposition 2.12, we get that the function x 
→ [Sr (t0) f ](x), x ∈ R

n is R-multi-
almost automorphic and belongs to X . In terms of the corresponding abstract first-order
Cauchy problem, this means that there exists a unique X -valued continuous function
t 
→ u(t), t ≥ 0 such that

∫ t
0 u(s) ds ∈ D(P(D)) for every t ≥ 0 and

u(t) = P(D)

∫ t

0
u(s) ds − tr

�(r + 1)
f , t ≥ 0;

furthermore, the solution t 
→ u(t), t ≥ 0 of this abstract Cauchy problem has
the property that its orbit consists solely of R-multi-almost automorphic functions.
Suppose now that the collection R additionally satisfies that for each sequence b ∈ R
any its subsequence also belongs to R and consider, for simplicity, case in which
r ∈ N. If we assume that f ∈ D(P(D)r ) and all functions

f , P(D) f , . . . , P(D)r f
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are R-multi-almost automorphic, then it is well known that the function

u(t) := Sr (t)P(D)r f + tr−1

(r − 1)! P(D)r−1 f + · · · + t P(D) f + f , t ≥ 0 (3.10)

is a unique continuous X -valued function which satisfies that
∫ t
0 u(s) ds ∈ D(P(D))

for every t ≥ 0 and

u(t) = P(D)

∫ t

0
u(s) ds − f , t ≥ 0;

due to the representation formula (3.10) and our assumptions, the solution t 
→ u(t),
t ≥ 0 of this abstract Cauchy problem has the property that its orbit consists solely of
R-multi-almost automorphic functions; see Kostić (2015, Subsection 2.9.7) for more
details regarding the existence and growth of mild solutions of operators generating
fractionally integrated C-semigroups and fractionally integrated C-cosine functions
in locally convex spaces.

2. Suppose now that X is Cb(R
n) or BUC(Rn), m ∈ N, aα ∈ C for 0 ≤ |α| ≤ k

and aα �= 0 for some α with |α| = k. Consider the operator P(D) with its maximal
distributional domain and its associated polynomial P(x) defined as above. Set

ht,β(x) := (
1 + |x |2)−β/2

∞∑

j=0

t2 j P(x) j

(2 j)! , x ∈ R
n, t ≥ 0, β ≥ 0,

�(ω) := {λ2 : �λ > ω}, if ω > 0 and �(ω) := C \ (−∞, ω2], if ω ≤ 0. Assume
r ∈ [0, k], ω ∈ R and condition (Kostić 2015, (W); Example 2.2.14) holds. Then, for
every β > (k − r

2 )
n
4 , P(D) generates an exponentially bounded Cβ(0)-regularized

cosine function (Cβ(t))t≥0 in X satisfying

Cβ(t) f = F−1ht,β ∗ f , t ≥ 0, f ∈ X ,

where F−1 denotes the inverse Fourier transform in R
n . Since F−1ht,β ∈ L1(Rn)

for every t ≥ 0, we can repeat verbatim the arguments from the first application. For
example, suppose that the function X � f is R-multi-almost automorphic. Then the
function t 
→ Cβ(t) f , t ≥ 0 is a unique continuous X -valued function which satisfies
that

∫ t
0 (t − s)u(s) ds ∈ D(P(D)) for every t ≥ 0 and

u(t) = P(D)

∫ t

0
(t − s)u(s) ds − Cβ(0) f , t ≥ 0;

as above, for each fixed number t ≥ 0 we have that u(t) is a spatially R-multi-almost
automorphic function which belongs to X . See also Kostić (2015, Section 2.5), where
we have analyzed the generation of fractional resolvent families by (non-)coercive
differential operators; the obtained results can be applied with the obvious choice of
operators A j ≡ −i∂/∂x j (1 ≤ j ≤ n).
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Before proceeding to the final section of paper, let us note that Ding et al. (2008)
investigated that the asymptotically almost automorphic solutions of the following
integro-differential equation (with nonlocal initial data), which models the heat con-
duction in materials with memory:

u′(t) = Au(t) +
∫ t

0
B(t − s)u(s) ds + f (t, u(t)), t ≥ 0, (3.11)

u(0) = u0 + g(u); (3.12)

here, u0 ∈ X , A and (B(t))t≥0 are linear, closed and densely defined operators on X .
Some results about the existence and uniqueness of the asymptotically almost automor-
phic solutions to the integro-differential equation (3.11)–(3.12) have been established
in Chávez et al. (2021), as well. It could be of some importance to reconsider the
statement of Ding et al. (2008, Theorem 2.7), given in the one-dimensional setting,
for asymptotically R-almost automorphic type functions, where R denotes a certain
collection of sequences in R which has the property that, for every sequence (bk) ∈ R,

any subsequence (bkl ) of (bk) also belongs to R. It seems that this can be done with
some obvious modifications, not only in the case of consideration (Ding et al. 2008,
Theorem 2.7), but also in the case of consideration of many other structural results
obtained so far regarding the time almost automorphic solutions of the abstract PDEs
(see Kostić 2019 and references cited therein); details can be left to the interested
readers.
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4 Appendix: Almost Automorphic Functions on Semi-topological
Groups

The first systematic study of almost automorphic functions on topological groups was
conducted by Veech (1965, 1967) (see also the papers by Reich (1970) and Terras
(1972)). Following Milnes (1977), who considered only the scalar-valued case, we
say that a continuous function f : G → Y , where G is a (semi-)topological group, is
almost automorphic if and only if for any sequence (n′

i ) inG there exists a subsequence
(ni ) of (n′

i ) such that the joint limit limi, j f (nin
−1
j t) = f (t) exists for all t ∈ G. It is

clear thatRn×X is a semi-topological group aswell as that the notionof (RX,B)-multi-
almost automorphy can be extended in this rather general framework. For more details
about almost periodic functions on topological groups, see the research monograph
by Levitan (1953) and the reference list given in the forthcoming monograph (Kostić
2021).

In this section, we will briefly explain the main ideas and results about almost auto-
morphic functions on semi-topological groups established by Milnes (1977); we will
also remind the readers of some known results about almost automorphic functions on

123



Multi-dimensional Almost Automorphic Type Functions… 845

topological groups obtained by other authors (there is a vast literature about topolog-
ical groups and their generalizations; we will only refer the reader to the recent book
(Morris 2019) edited by S. A. Morris and references cited therein).

Let G be a topological space which is also a multiplicative group. Then we say that
G is a semi-topological space if and only if the mappings s 
→ st and s 
→ ts from G
into G are continuous for all t ∈ G; furthermore, G is called a topological group if,
in addition to the above, we have that the mapping (s, t) 
→ st−1 from G × G into G
is continuous. By J we denote the topology on G and by Cb(G : Y ) we denote the
space of all bounded continuous functions f : G → Y equipped with the sup-norm
‖ · ‖∞. We say that:

(i) a subset D of a semi-topological groupG is left relatively dense if and only if there
exists a finite set of elements {si : 1 ≤ i ≤ N } in G such that G ⊆ ⋃N

i=1(si D);
(ii) a topological group G is totally bounded if and only if for every non-empty neigh-

bourhood V inG we have the existence of a finite set of elements {si : 1 ≤ i ≤ N }
in G such that G ⊆ ⋃N

i=1(si V ).

For any s ∈ G, the left (right) translate fs ( f s) of f is defined through fs(·) := f (s·)
( fs(·) := f (·s)). A subspace C of Cb(G : Y ) is called translation invariant if and only
if fs and f s belong to C for every f ∈ C . If f : G → Y and g : G → Y are given
functions and (αi )i∈I , resp. (ni )i∈N, is a net in G, resp. a sequence in G, then we write
Tα f = g if and only if the net of left translations fαi , resp. fni , converges pointwise on
G. The right uniformly continuous subspace RUCb(G : Y ) of Cb(G : Y ) is defined
as the set of all functions f ∈ Cb(G : Y ) such that ‖ f αi − f s‖ tends to zero whenever
(αi )i∈I is a net in G converging to s ∈ G; the left continuous subspace LUCb(G : Y )

of Cb(G : Y ) is defined similarly.

Definition 4.1 Let G be a semi-topological group. Then we say that a continuous
function f : G → Y is left almost automorphic if and only if every net α′ ⊆ G has a
subnet α ⊆ G such that Tα f = g and Tα−1g = f , where α−1 = (α−1

i ); the notion
of right almost automorphy is introduced similarly, with the analogous conditions
involving right translates. By L AA(G : Y ) and RAA(G : Y ) we denote the family of
all left almost automorphic functions onG and the right almost automorphic functions
on G, respectively.

A function f ∈ Cb(G : Y ) is called almost periodic if and only if the set of all left
translations { fs : s ∈ G} is relatively compact in Cb(G : Y ). Any almost periodic
function f ∈ Cb(G : Y ) is left almost automorphic and satisfies that the convergence
in Tα f = g is uniform on G, along with the convergence in Tα−1g = f . We know
that L AA(G : Y ) and RAA(G : Y ) are translation invariant spaces as well as that the
limit Tα f = g need not be continuous on G.

Suppose, for the time being, that Y = C. Then we know that, if G is a Hausdorff
topological group that is complete in a left invariant metric or locally compact and f ∈
Cb(G : C), then we can always find a net (αi )i∈I such that Tα f = g is discontinuous
on G if and only if f /∈ RUCb(G : C). In what follows, it will be said that the Bohr
topologyBon a semi-topological groupG is that topologywhich has the property that a
subbase of B-neighbourhoods of a point s ∈ G forms the sets {t ∈ G : | f (t)− f (s)| <

ε}, where f : G → C is almost periodic and ε > 0; a function f : G → C is said
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to be Bohr continuous if and only if the function f (·) is continuous for the Bohr
topology. Due to Milnes (1977, Theorem 8), a necessary and sufficient condition for
a topological group G to be totally bounded is that every continuous complex-valued
function on G is Bohr continuous.

For the scalar-valued functions, Milnes (1977, Theorem 13) states that for any
continuous function f : G → C, where G is a semi-topological group, the following
conditions are mutually equivalent:

1. (2.) f (·) is left (right) almost automorphic.
3. f (·) is Bohr continuous.
4. For every ε > 0 and for every finite set N ⊆ G, there exists a left relatively dense

subset D ⊆ G � D−1D ⊆ {s ∈ G : supr ,t∈N | f (rst) − f (r t)| < ε}.
5. (6.) For every ε > 0 and t ∈ G, there exists a left relatively dense subset D ⊆ G �

D−1D ⊆ {s ∈ G : supr ,t∈N | f (ts) − f (t)| < ε} (D ⊆ G � D−1D ⊆ {s ∈ G :
supr ,t∈N | f (st) − f (t)| < ε}).

7. For every net α ⊆ G, there exists a subnet α ⊆ G such that the joint limit
limi, j f (sαiα

−1
j t) = f (st) for all s, t ∈ G.

8. (9.) For every net α ⊆ G, there exists a subnet α ⊆ G such that the joint limit
limi, j f (αiα

−1
j t) = f (t) for all t ∈ G (limi, j f (tαiα

−1
j ) = f (t) for all t ∈ G).

10. For every sequence n′ ⊆ G, there exists a subnet n ⊆ G such that the joint limit
limi, j f (snin

−1
j t) = f (st) for all s, t ∈ G

11. (12.) For every sequence n′ ⊆ G, there exists a subnet n ⊆ G such that the joint limit
limi, j f (nin

−1
j t) = f (t) for all t ∈ G (limi, j f (tni n

−1
j ) = f (t) for all t ∈ G).

Although it would be very unpleasant to clarify the validity or non-validity of
above conditions for the vector-valued functions f : G → Y , especially for those
Banach spaces Y which are not separable (see e.g., the proof of (Milnes 1977, Theorem
10)), we would like to note that some equivalence relations clarified above hold for
the vector-valued functions f : G → Y on topological groups G. For example, B.
Basit has proved, in Basit (1974, Theorem 1.2), that a bounded continuous function
f : G → Y is almost automorphic if and only if f (·) is Levitan almost periodic (see
(Basit 1974, Definition 1.1)), which immediately implies the equivalence of [1. (2.)]
and [8. (9.)] in this framework. Keeping this in mind, it seems reasonable to further
explore the following notion (more details will appear somewhere else; see also the
research study of Weyl multi-dimensional almost automorphic functions carried out
in Kostić (2021), where this approach has been essentially followed):

Definition 4.2 Suppose that F : Rn × X → Y is a continuous function as well as that
for each B ∈ B and (bk = (b1k , b

2
k , . . . , b

n
k )) ∈ R we have WB,(bk ) : B → P(P(Rn))

and PB,(bk ) ∈ P(P(Rn × B)). Then we say that F(·; ·) is:
(i) jointly (R,B)-multi-almost automorphic if and only if for every B ∈ B and for

every sequence (bk = (b1k , b
2
k , . . . , b

n
k )) ∈ R there exists a subsequence (bkl =

(b1kl , b
2
kl
, . . . , bnkl )) of (bk) such that

lim
(l,m)→+∞ F

(
t − (

b1kl , . . . , b
n
kl

)+ (
b1km , . . . , bnkm

); x
)

= F(t; x), (4.1)
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pointwisely for all x ∈ B and t ∈ R
n;

(ii) jointly (R,B,WB,R)-multi-almost automorphic if and only if for every B ∈ B
and for every sequence (bk = (b1k , b

2
k , . . . , b

n
k )) ∈ R there exists a subsequence

(bkl = (b1kl , b
2
kl
, . . . , bnkl )) of (bk) such that (4.1) holds pointwisely for all x ∈ B

and t ∈ R
n as well as that for each x ∈ B the convergence in (4.1) is uniform in t

for any set of the collection WB,(bk )(x);
(iii) jointly (R,B,PB,R)-multi-almost automorphic if and only if for every B ∈ B

and for every sequence (bk = (b1k , b
2
k , . . . , b

n
k )) ∈ R there exists a subsequence

(bkl = (b1kl , b
2
kl
, . . . , bnkl )) of (bk) such that (4.1) holds pointwisely for all x ∈ B

and t ∈ R
n as well as that the convergence in (4.1) is uniform in (t; x) for any set

of the collection PB,(bk ).

Arguing as above, it can be simply verified that any (R,B)-multi-almost periodic
function F : Rn × X → Y is jointly (R,B,PB,R)-multi-almost automorphic with
PB,R = {Rn × B}. We also have the following:

Proposition 4.3 Suppose that F : Rn → Y is a c-uniformly recurrent function (see
Definition 1.2-(ii)), where the sequence (øk) satisfies limk→+∞ |øk | = +∞ and (1.3).
Let R denote the collection consisting of the sequence (τ k) and all its subsequences.
Then the function F(·) is jointly (R,PR)-multi-almost automorphic with PR being the
singleton {Rn}.
Proof Let (τ ′

k) be any subsequence of (τ k). Then we have (1.3) with the sequence
(øk) replaced with the sequence (τ ′

k) therein; therefore, we also have

lim
k→+∞ sup

t∈Rn

∥∥F(t − τ ′
k; x) − c−1F(t; x)∥∥Y = 0. (4.2)

The final conclusion simply follows from the above estimates, the corresponding
definition of joint (R,PR)-multi-almost automorphy and the decomposition:

sup
t∈Rn

∥
∥F

(
t − ø′

l + τ ′
m ; x)− F(t; x)∥∥Y

≤ sup
t∈Rn

∥∥F
(
t − τ ′

l + τ ′
m ; x)− cF

(
t − τ ′

l ; x
)∥∥

Y + sup
t∈Rn

∥∥cF
(
t − τ ′

l ; x
)− F(t; x)∥∥Y

= sup
t∈Rn

∥∥F
(
t − τ ′

l + τ ′
m ; x)− cF

(
t − τ ′

l ; x
)∥∥

Y + |c| sup
t∈Rn

∥∥F
(
t − τ ′

l ; x
)− c−1F(t; x)∥∥Y .

��
Furthermore, we can similarly introduce and analyze the notions of joint (RX ,B)-

multi-almost automorphy, joint (RX ,B,WB,RX )-multi-almost automorphy and joint
(RX ,B,PB,RX )-multi-almost automorphy (see Definition 4.2).

The results on approximations of almost automorphic functions, proved by Veech
(1965, 1967) on topological groups, continue to hold on semi-topological groups
without any essential changes. For example, by Milnes (1977, Theorem 18), we know
that a continuous function f : G → Y is almost automorphic if and only if there
exists a uniformly bounded sequence ( fk) of almost periodic functions fk : G → C

(k ∈ N) such that, for every s ∈ G and ε > 0, we have the existence of a Bohr
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neighbourhood V of s and an integer k0 ∈ N such that, for very integer k ≥ k0, we
have | fk(t) − f (t)| < ε for all t ∈ V . See also Veech (1965, Subsection 6.2) for
some elementary facts regarding analytic almost automorphic functions defined on
the additive group of integers Z.

The complete characterization of those semi-topological groups for which the
equality AP(G : C) = AA(G : C) holds is given in Milnes (1977, Theorem 23).
In Milnes (1977, Theorem 25), P. Milnes has shown that, if G is arbitrary semi-
topological group and f : G → Y is almost automorphic, then f (·) is almost periodic
if and only if Tα f ∈ AA(G : C) whenever it exists, extending thus a result of W.
A. Veech known on topological groups before that. It is also worth noting that Terras
(1972) has constructed an almost automorphic function f : Z → R for which the limit
limN→+∞ 1

2N+1

∑N
i=−N f (i) does not exist. It is well known that this example can be

transferred to the continuous setting as well as that there exists an almost automorphic
function f : R → R such that the limit

M( f ) := lim
t→+∞

1

2t

∫ t

−t
f (s) ds

does not exist.
Concerning the notionof almost automorphy and the notionof almost periodicity for

functions definedon (semi-)topological groups, it should be noted that somedefinitions
for introducing these notions do not require a priori the continuity or measurability of
function f : G → Y under consideration; see the research articles by Davies (1967)
and Veech (1969) for some results obtained in this direction.

Concerning differences of almost periodic and almost automorphic functions
defined on topological groups, with values in general locally convex spaces, we refer
the reader to the research articles by Basit and Emam (1983) and Dimitrova and Dim-
itrov (2003). Mention should be made of paper by Péraire (1993), as well.

We close the paper with the observation that the Stepanovmulti-dimensional almost
automorphic type functions and their applications have recently been considered in
Kostić et al. (2021).
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