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Abstract
Solutions of the sandwich equation φ∂[ f ]ψ∂ = 0, where φ∂ stands for the Dirac
operator with respect to a structural set φ, are referred to as (φ,ψ)-inframonogenic
functions and capture the standard inframonogenic ones as special case. We derive a
new integral representation formula for such functions as well as for multidimensional
Ahlfors–Beurling transforms closely connected to the use of two different orthogonal
basis in R

m . Moreover, we also establish sufficient conditions for the solvability of a
jump problem for the system φ∂[ f ]ψ∂ = 0 in domains with fractal boundary.

Keywords Clifford analysis · Structural sets · Inframonogenic functions ·
�-Operator

Mathematics Subject Classification 30G35

1 Introduction

Inframonogenic functions are the solutions of the the second order partial differential
equation ∂[ f ]∂ = 0, where

∂ = e1
∂

∂x1
+ e2

∂

∂x2
+ · · · + em

∂

∂xm

stands for the orthogonal Dirac operator in R
m constructed with the generators

{e1, e2, . . . , em} of the real Clifford algebra R0,m .
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Such functions were originally introduced inMalonek et al. (2010), where a Fischer
decomposition for homogeneous polynomials in terms of inframonogenic polynomials
was derived. In Malonek et al. (2011) the same authors proved a Cauchy-Kowalevski
extension theorem for these functions. More recently in García et al. (2017, 2018,
2020) it became clear that inframonogenic functions have interesting connections and
applications in some topics of linear elasticity theory and there are serious reasons
why such functions should be of interest to mathematicians, engineers, and physicists.

On the other hand, as the results in Blaya et al. (2015b, 2016, 2017), Delanghe
et al. (2001), Gürlebeck (1998), Gürlebeck et al. (1999), Gürlebeck andNguyen (2015,
2014), Krausshar andMalonek (2001), Nguyen (2015) have demonstrated, significant
progress in Clifford analysis has been achieved when instead of the standard basis
{e1, e2, . . . , em}, one considers an arbitrary orthonormal basisψ := {ψ1, ψ2, ..., ψm}
and the corresponding Dirac operator

ψ∂ := ψ1 ∂

∂x1
+ ψ2 ∂

∂x2
+ · · · + ψm ∂

∂xm
.

This leads to the notion of ψ-hyperholomorphic functions, as the R0,m-valued solu-
tions of the equation ψ∂[u] = 0.

The application of ψ-hyperholomorphic functions is natural in establishing a new
representation for the general solution of the Lamé–Navier system in linear elasticity
theory, a fact that has already been noticed in previous studies, Gürlebeck and Nguyen
(2014, 2015) for instance.

In connection with all this there arise reasonable motivations to study the gener-
alized sandwich equation φ∂[ f ]ψ∂ = 0, obtained by the use of two orthogonal bases
φ, ψ . The solutions of this equation are an extension of the inframonogenic functions
and will be referred here to as (φ,ψ)-inframonogenic functions. Our aim is to obtain
a Borel–Pompeiu formula, yielding a Cauchy integral representation for such func-
tions. We also explore some interesting relations between our work and a generalized
�-operator (Ahlfors–Beurling transform) introduced in Blaya et al. (2016). We end
with an application of a generalized Teodorescu operator in solving some boundary
value problem for (φ,ψ)-inframonogenic functions in fractal domains.

2 Preliminaries

LetR0,m be the 2m-dimensional real Clifford algebra constructed over the orthonormal
basis {e1, ..., em} of the Euclidean space Rm (m > 2). The multiplication in R0,m is
determined by relations e j ek + eke j = −2δ jk and a general element of R0,m is of the
form a = ∑

A aAeA, aA ∈ R, where for A = { j1, ..., jk} ⊂ {1, ...,m}, j1 < ... < jk ,
eA = e j1 · · · e jk . For the empty set ∅, we put e∅ = 1, the latter being the identity
element.

Notice that any a ∈ R0,m may also be written as a = ∑m
k=0[a]k where [a]k is the

projection of a on R
(k)
0,m . Here R

(k)
0,m denotes the subspace of k-vectores defined by
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R
(k)
0,m =

⎧
⎨

⎩
a ∈ R0,m : a =

∑

|A|=k

aAeA, aA ∈ R

⎫
⎬

⎭
.

The conjugation inR0,m is defined as the anti-involutiona �→ a forwhich ei = −ei .
A norm ‖.‖ on R0,m is defined by ‖a‖2 = Sc[aa] for a ∈ R0,m . We remark that for
x ∈ R

m we have ‖x‖ = |x |, the usual Euclidean norm.
We will consider functions defined on subsets of Rm and taking values in R0,m .

Those functions might be written as f = ∑
A fAeA, where f A areR-valued functions.

The notions of continuity, differentiability and integrability of aR0,m-valued function
have the usual component-wise meaning. In particular, the spaces of all k-times con-
tinuous differentiable, k-times ν-Hölder continuously differentiable and p-integrable
functions are denoted by Ck(E), Ck,ν(E) and L p(E) respectively, where E is a given
subset of Rm .

The so-called Dirac operator ∂ is defined to be

∂ := e1
∂

∂x1
+ e2

∂

∂x2
+ · · · + em

∂

∂xm
.

An R0,m-valued function f , defined and differentiable in an open region � of Rm , is
called left monogenic (right monogenic) if ∂[ f ] = 0 ([ f ]∂ = 0) in � (see Brackx
et al. 1982; Güerlebeck et al. 2008).

More generally, for fixed orthonormal base ψ := {ψ1, ψ2, . . . , ψm} in Rm (struc-
tural set) we introduce the so-called ψ-hyperholomorphic functions (left or right
respectively), which belong to ker[ψ∂(·)] or ker[(·)ψ∂], where

ψ∂ := ψ1 ∂

∂x1
+ ψ2 ∂

∂x2
+ · · · + ψm ∂

∂xm
.

As has been alreadymentioned in the introduction, we are rather interested in a second
order partial differential equation involving two different orthogonal bases at once. So
we define for an open set � ⊂ R

m , the following subclass of R0,m-valued functions:

Iφ,ψ(�) = {u ∈ C2(�) : φ∂[u]ψ∂ = 0}.

Observe that for φ = ψ = {e1, e2, . . . , em}, the class Iφ,ψ(�) becomes the space
of inframonogenic functions I(�), introduced in Malonek et al. (2010, 2011). The
above is reason enough for referring the elements of Iφ,ψ to as (φ,ψ)-inframonogenic
functions.

It is easy to see that such functions violate the maximum principle. Indeed, for
φ = ψ or φ = −ψ in R3 consider the function given by

g(x) = (ax21 + bx22 + cx23 − 1)ψ1,
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where a, b, c ∈ R+\{0}, a − b − c = 0. Clearly, g vanishes on the boundary of the
ellipsoid

E = {(x1, x2, x3) ∈ R
3 : ax21 + bx22 + cx23 < 1}.

On the other hand, a direct calculation gives ψ∂[g]ψ∂ = 0 in E with g being non
identically zero there.

Now let us ask the question: can we find two different structural sets φ,ψ (with
φ �= ±ψ ) for which the (φ,ψ)-inframonogenic functions satisfy the maximum
principle? This question has a negative answer based in the following reasoning,
which for the sake of simplicity, will be confined exclusively to R

3.
Let us consider the function given by

g1(x) := (2x21 + x22 + x23 − 1)(φ1ψ2 + φ2ψ1 + φ3ψ3ψ2ψ1 + φ1φ2φ3ψ3).

Obviously g1 does vanish on the boundary of the ellipsoid

E1 := {(x1, x2, x3) ∈ R
3 : 2x21 + x22 + x23 < 1}.

Moreover, we have

φ∂[g1]ψ∂ = 4φ1φ1ψ2ψ1 + 2φ2φ1ψ2ψ2 + 2φ3φ1ψ2ψ3

+ 4φ1φ2ψ1ψ1 + 2φ2φ2ψ1ψ2 + 2φ3φ2ψ1ψ3

+ 4φ1φ3ψ3ψ2ψ1ψ1 + 2φ2φ3ψ3ψ2ψ1ψ2 + 2φ3φ3ψ3ψ2ψ1ψ3

+ 4φ1φ1φ2φ3ψ3ψ1 + 2φ2φ1φ2φ3ψ3ψ2 + 2φ3φ1φ2φ3ψ3ψ3

= 4ψ1ψ2 + 2φ1φ2 + 2φ3φ1ψ2ψ3

− 4φ1φ2 − 2ψ1ψ2 + 2φ3φ2ψ1ψ3

− 4φ3φ1ψ2ψ3 + 2φ3φ2ψ1ψ3 − 2ψ1ψ2

− 4φ3φ2ψ1ψ3 + 2φ3φ1ψ2ψ3 + 2φ1φ2 = 0.

Therefore, g1 is a (φ,ψ)-inframonogenicR0,3-valued polynomialwith vanishing trace
on ∂E1.

Similarly the functions

g2(x) = (x21 + x22 + 2x23 − 1)(φ1ψ3 + φ3ψ1 + φ2ψ3ψ2ψ1 + φ1φ2φ3ψ2)

and

g3(x) = (x21 + 2x22 + x23 − 1)(φ2ψ3 + φ3ψ2 + φ1ψ3ψ2ψ1 + φ1φ2φ3ψ1)

are (φ,ψ)-inframonogenic polynomials with vanishing traces on the boundaries of
the ellipsoids

E2 = {(x1, x2, x3) ∈ R
3 : x21 + x22 + 2x23 < 1}
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On (φ, ψ)-Inframonogenic... 609

and

E3 = {(x1, x2, x3) ∈ R
3 : x21 + 2x22 + x23 < 1},

respectively.
At least one of the polynomials g1, g2, g3 must not be identically zero as otherwise

the system

φ1ψ2 + φ2ψ1 + φ3ψ3ψ2ψ1 + φ1φ2φ3ψ3 = 0 (1)

φ1ψ3 + φ3ψ1 + φ2ψ3ψ2ψ1 + φ1φ2φ3ψ2 = 0 (2)

φ2ψ3 + φ3ψ2 + φ1ψ3ψ2ψ1 + φ1φ2φ3ψ1 = 0 (3)

is satisfied, implying φ to be ψ or −ψ , which leads to a contradiction.
To see that this implication has been properly made we proceed as follows.
Multiplying from the left (1) by φ3, (2) by φ2 and (3) by φ1, we obtain

−φ1φ3ψ2 − φ2φ3ψ1 − ψ3ψ2ψ1 − φ1φ2ψ3 = 0 (4)

−φ1φ2ψ3 + φ2φ3ψ1 − ψ3ψ2ψ1 + φ1φ3ψ2 = 0 (5)

φ1φ2ψ3 + φ1φ3ψ2 − ψ3ψ2ψ1 − φ2φ3ψ1 = 0, (6)

which after the elementary operations “(5)–(4)” and “(6)–(4)” leads to

φ1φ3ψ2 + φ2φ3ψ1 = 0 (7)

φ1φ2ψ3 + φ1φ3ψ2 = 0. (8)

Again, multiplying from the left (7) by φ3 and (8) by −φ1, one obtains

φ1ψ2 + φ2ψ1 = 0 (9)

φ2ψ3 + φ3ψ2 = 0. (10)

By expanding ψ in terms of the basis φ, we have ψ1 = k11φ1 + k12φ2 + k13φ3,
ψ2 = k21φ1 +k22φ2 +k23φ3 yψ3 = k31φ1 +k32φ2 +k33φ3. Then (9) can be written
in the form

−k21 − k12 + (k22 − k11)φ
1φ2 + k23φ

1φ3 + k13φ
2φ3 = 0,

from which we get the equalities

ψ1 = k11φ
1 + k12φ

2, ψ2 = −k12φ
1 + k11φ

2.

Similarly, (10) may be rewritten as

−k31φ
1φ2 − k32 + (k33 − k11)φ

2φ3 + k12φ
1φ3 = 0,
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610 D. A. Santiesteban et al.

from which we conclude that k31 = 0, k32 = 0, k12 = 0, k33 − k11 = 0 and hence
that ψ = k11φ. The normality of both structural sets leads to ψ = φ or ψ = −φ, as
claimed.

Summarizing the above examples we can conclude that there does not exist a
maximum principle for (φ,ψ)-inframonogenic functions, and this happens for any
structural sets φ and ψ .

Remark 1 The following fine property of inframonogenic functions was revealed in
García et al. (2017): a function f = ∑m

k=0[ f ]k belongs to I(�) if and only if [ f ]k ∈
I(�) for k = 0, 1, . . . ,m. In exactly the same way it is obvious that this property is
satisfied by (φ, φ)-inframonogenic functions, i.e.,

( f ∈ Iφ,φ(�)) ⇐⇒ ([ f ]k ∈ Iφ,φ(�), k = 0,m).

The situation with two distinct structural sets is, however, totally different. The fol-
lowing simple example illustrates this phenomenon.

Let be φ = {e1, e3, e2} and ψ = {
√
2
2 (e1 + e3),

√
2
2 (e1 − e3), e2} two structural sets

and the function given by

f (x) = 1

2
x21 + 1

2
x22 + x2x3e1 −

√
2

2
x23e2 + x1x3e3 +

√
2

2
x23e1e2e3.

On the one hand we have

φ∂[ f ]ψ∂ =
√
2

2
e1(e1 + e3) +

√
2

2
e3(e1 − e3) + √

2e2(−e2 + e1e2e3)e2 + e1e3e2

+
√
2

2
e2e3(e1 + e3) + e3e1e2 +

√
2

2
e2e1(e1 − e3)

= −
√
2

2
+

√
2

2
e1e3 +

√
2

2
e3e1 +

√
2

2
+ √

2e2 − √
2e1e2e3 − e1e2e3

+
√
2

2
e1e2e3 −

√
2

2
e2 + e1e2e3 −

√
2

2
e2 +

√
2

2
e1e2e3

= 0.

but on the other

φ∂[ f ]0ψ∂ = φ∂

[
1

2
x21 + 1

2
x22

]
ψ∂ = −

√
2

2
+

√
2

2
e1e3 +

√
2

2
e3e1 +

√
2

2
= 0

φ∂[ f ]1ψ∂ = φ∂

[

x2x3e1 −
√
2

2
x23e2 + x1x3e3

]

ψ∂

= √
2e2 − e1e2e3 +

√
2

2
e1e2e3 −

√
2

2
e2 + e1e2e3 −

√
2

2
e2 +

√
2

2
e1e2e3

= √
2e1e2e3 �= 0
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φ∂[ f ]2ψ∂ = 0

φ∂[ f ]3ψ∂ = φ∂

[√
2

2
x23e1e2e3

]

ψ∂ = −√
2e1e2e3 �= 0.

It is worth to point out that ψ∂ factorizes the Laplace operator in R
m in the sense

that ψ∂
2 = −	m . The fundamental solution of ψ∂ is thus given by

Kψ(x) := ψ∂[E1(x)],

where

E1(x) = 1

(m − 2)σm |x |m−2 , x �= 0,

is the fundamental solution of the Laplacian 	m and σm stands for the surface area of
the unit sphere in Rm . Thus, the function

Kψ(x) = − xψ

σm |x |m ,

where xψ = ∑m
i=1 xiψ

i if x = ∑m
i=1 xi ei , called Cauchy kernel, satisfies in R

m\{0}
the equation ψ∂[Kψ(x)] = [Kψ(x)]ψ∂ = 0.

In the sequel, when speaking of a domain �, it will always be assumed to be open
and simply connected set of Rm with sufficiently smooth boundary �. In Sect. 5 we
will consider domainswith boundary satisfying conditions of amore general character.
If necessary, we shall use the temporary notation �+ = �, �− = R

m\ (� ∪ �).
The Cauchy kernel generates the following two important integral operators:

(T l
ψg)(x) = −

∫

�

Kψ(y − x)g(y)dV (y) (11)

and

(Clφ,ψg)(x) =
∫

�

Kφ(y − x)nψ(y)g(y)dS(y), x /∈ �. (12)

When φ = ψ , Clφ,ψ reduces to the usual Cauchy type integral

(Clψg)(x) =
∫

�

Kψ(y − x)nψ(y)g(y)dS(y), x /∈ �.

The Stokes theorem, conveniently used, leads after some calculations to a formula
connecting the integrals Clφ,ψ , T l

ψ and a multidimensional Ahlfors-Beurling transform

given by �l
φ,ψ := φ∂[T l

ψ ]. More precisely,
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612 D. A. Santiesteban et al.

Theorem 1 (Blaya et al. (2016) Generalized Borel–Pompeiu formula) Let f ∈
C1(�,R0,m). Then

(Clφ,ψ f )(x) + (T l
φ

ψ∂[ f ])(x) = �l
φ,ψ [ f ](x), x /∈ �. (13)

Of course, we have the right version of formula (13) given by

(Crφ,ψ f )(x) + (T r
φ [ f ]ψ∂)(x) = �r

φ,ψ [ f ](x), x /∈ �, (14)

where T r
ψg (resp. Crφ,ψg) is obtained from (11) (resp. from (12)) by interchanging the

Cauchy kernel with g(y) and �r
φ,ψ := [T r

ψ ]φ∂ .
For further use and more in the direction of this paper, let us introduce the new

integral operators

(C0φ,ψg)(x) =
∫

�

Kφ(y − x)nφ(y)g(y)(y
ψ

− xψ)dS(y),

(C1φ,ψg)(x) =
m∑

i=1

φi
[∫

�

E1(y − x)nφ(y)g(y)dS(y)

]

ψ i ,

(T 0
φ,ψg)(x) = −

∫

�

Kφ(y − x)g(y)(y
ψ

− xψ)dV (y),

(T 1
φ,ψg)(x) = −

m∑

i=1

φi
[∫

�

E1(y − x)g(y)dV (y)

]

ψ i ,

each one of them connecting the two arbitrary structural sets φ and ψ in its own
particular way.

For the sake of brevity, we still introduce two more operators:

Ci,rφ,ψg = 1

2
(C0φ,ψg + C1φ,ψg),

T i,r
φ,ψg = 1

2
(T 0

φ,ψg + T 1
φ,ψg).

The first of them can be thought as a sort of (φ,ψ)-inframonogenic Cauchy transform
while the second represents a generalized Teodorescu operator. Note the following
formulas which will be used in the sequel

[

Ci,rφ,ψg

]
ψ∂ = Clφg,

[

T i,r
φ,ψg

]
ψ∂ = T l

φg. (15)

That this is so, is easily checked directly. Indeed,

∫

�
Kφ(y − x)nφ(y)g(y)(y

ψ
− xψ)dS(y) =

∫

�
(y

φ
− xφ)nφ(y)g(y)Kψ(y − x)dS(y).
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On (φ, ψ)-Inframonogenic... 613

Then,

[C0φ,ψg(x)]ψ∂x =
[∫

�

(y
φ

− xφ)nφ(y)g(y)Kψ(y − x)dS(y)

]
ψ∂x

= −
∫

�

[xφnφ(y)g(y)Kψ(y − x)]ψ∂xdS(y)

= −
m∑

i=1

φi
∫

�

nφ(y)g(y)Kψ(y − x)dS(y)ψ i .

On the other hand, we have

C1φ,ψg(x)t
ψ∂x =

⎡

⎣
m∑

i=1

φi
∫

�

E1(y − x)nφ(y)g(y)dS(y)ψ i

⎤

⎦ ψ∂x

=
m∑

i=1

∫

�

[φi E1(y − x)nφ(y)g(y)ψ i ]ψ∂xdS(y)

= 2
∫

�

Kφ(y − x)nφ(y)g(y)dS(y)

+
m∑

i=1

φi
[∫

�

nφ(y)g(y)Kψ(y − x)dS(y)

]

ψ i

and hence

[

Ci,rφ,ψg(x)

]
ψ∂x = 1

2
([C0φg(x)]ψ∂x + [C1φ,ψg(x)]ψ∂x ) = (Clφg)(x).

The second identity in (15) may be proved in a quite analogous way.

3 Cauchy Formula for (�,Ã)-Inframonogenic Functions

In this section we will prove a new Borel–Pompeiu formula involving the sandwich
operator φ∂(.)ψ∂ . The Cauchy representation for (φ,ψ)-inframonogenic functions is
thus derived as a simple corollary.

We begin with an auxiliary lemma, in which the differentiability of f is tacitly
assumed to legitimate the single or iterative action of the Dirac operators.

Lemma 1 The following formulas hold

(1) Kφ(y − x)φi = −φi Kφ(y − x) + 2[Kφ(y − x)φi ]0, i = 1, . . . ,m,

(2) φ∂ y[([ f (y)]ψ∂ y)(yψ
−xψ)] = (φ∂ y[ f (y)]ψ∂ y)(yψ

−xψ)+∑m
i=1 φi ([ f (y)]ψ∂ y)ψ

i .
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614 D. A. Santiesteban et al.

Proof The proof of (1) is a matter of direct calculation. To prove (2) we proceed as
follows:

φ∂ y [([ f (y)]ψ∂ y)(yψ
− xψ)] =

m∑

i=1

φi ∂

∂ yi
[([ f (y)]ψ∂ y)(yψ

− xψ)]

=
m∑

i=1

φi

⎧
⎨

⎩

∂[ f (y)]ψ∂ y

∂ yi
(y

ψ
− xψ) + ([ f (y)]ψ∂ y)

∂(y
ψ

− xψ)

∂ yi

⎫
⎬

⎭

= (φ∂ y [ f (y)]ψ∂ y)(yψ
− xψ) +

m∑

i=1

φi ([ f (y)]ψ∂ y)ψ
i .

Theorem 2 Let f ∈ C2(� ∪ �). Then we have in �

f (x) = (Crψ f )(x) + (Ci,rφ,ψ [ f ]ψ∂)(x) + (T i,r
φ,ψ

φ∂[ f ]ψ∂)(x). (16)

Proof The harder part of the proof was already done when we realized what the
appropriate structure of the integrals involved in formula (16) should be. For the rest
of the proof we use the same type of calculations used in (García et al. (2017), Theorem
3.1).

Removing from � a sufficiently small open ball Bε(x) gives the domain �ε :=
�\Bε(x) with boundary ∂�ε := � ∪ (−∂Bε(x)).

Now let

I ε =
∫

�ε

Kφ(y − x)φ∂ y[([ f (y)]ψ∂ y)(yψ
− xψ)]dV (y),

J ε =
∫

�ε

m∑

i=1

Kφ(y − x)φi ([ f (y)]ψ∂ y)ψ
i dV (y).

After applying the Stokes formula and having in mind the φ-hyperholomorphicity of
Kφ we have

I ε =
∫

∂�ε

Kφ(y − x)nφ(y)([ f (y)]ψ∂ y)(yψ
− xψ)dS(y). (17)

With the help of Lemma 1-(1) we obtain

J ε =
∫

�ε

m∑

i=1

{−φi Kφ(y − x)([ f (y)]ψ∂ y)ψ
i + 2[Kφ(y − x)φi ]0([ f (y)]ψ∂ y)ψ

i }dV (y)

= −
m∑

i=1

φi
[∫

�ε

Kφ(y − x)([ f (y)]ψ∂ y)dV (y)

]

ψ i − 2
∫

�ε

([ f (y)]ψ∂ y)Kψ(y − x)dV (y).
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On (φ, ψ)-Inframonogenic... 615

On the other hand, we have

∫

�ε

E1(y − x)(φ∂ y[ f (y)]ψ∂ y)dV (y) +
∫

�ε

Kφ(y − x)([ f (y)]ψ∂ y)dV (y)

=
∫

∂�ε

E1(y − x)nφ(y)([ f (y)]ψ∂ y)dS(y),

where again use has been made of the Stokes formula.
Consequently,

J ε =
m∑

i=1

φi
[∫

�ε

E1(y − x)(φ∂ y[ f (y)]ψ∂ y)dV (y)

]

ψ i

−
m∑

i=1

φi
[∫

∂�ε

E1(y − x)nφ(y)([ f (y)]ψ∂ y)dS(y)

]

ψ i

− 2
∫

�ε

([ f (y)]ψ∂ y)Kψ(y − x)dV (y). (18)

By the Lemma 1-(2) one has

I ε − J ε =
∫

�ε

Kφ(y − x)(φ∂ y[ f (y)]ψ∂ y)(yψ
− xψ)dV (y).

Hence, by (17) and (18) we obtain

∫

�ε

Kφ(y − x)(φ∂ y[ f (y)]ψ∂ y)(yψ
− xψ)dV (y)

=
∫

∂�ε

Kφ(y − x)nφ(y)([ f (y)]ψ∂ y)(yψ
− xψ)dS(y)

+
m∑

i=1

φi
[∫

∂�ε

E1(y − x)nφ(y)([ f (y)]ψ∂ y)dS(y)

]

ψ i

−
m∑

i=1

φi
[∫

�ε

[E1(y − x)](φ∂ y[ f (y)]ψ∂ y)dV (y)

]

ψ i

+ 2
∫

�ε

([ f (y)]ψ∂ y)Kψ(y − x)dV (y).

At this stage, the same analysis as in (García et al. (2017), Theorem 3.1) leads to (16),
after letting ε tend to 0. 
�
Remark 2 Looking at the above proof it is easy to check that the Borel-Pompeiu
formula (16) will remain valid if the condition f ∈ C2(� ∪ �) is replaced by the
weaker assumption
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f ∈ C2(�) ∩ C1(� ∪ �),

∫

�

|φ∂[ f (y)]ψ∂|dy < +∞.

As we mentioned before, the above theorem yields a Cauchy representation formula
for (φ,ψ)-inframonogenic functions.

Corollary 1 Let f ∈ C2(�) ∩ C1(� ∪ �) be (φ,ψ)-inframonogenic in �. Then it
follows that

f (x) = (Crψ f )(x) + (Ci,rφ,ψ [ f ]ψ∂)(x), x ∈ �. (19)

Remark 3 For φ = ψ being the standard orthonormal basis, this formula becomes the
Cauchy integral formula for inframonogenic functions which was proved in (García
et al. (2017), Theorem 3.2).

Remark 4 A left analogue of the formula (16) arises if one uses the corresponding
operators

Ci,lφ,ψg(x) := 1

2

[ ∫

�

(y
φ

− xφ)g(y)nψ(y)Kψ(y − x)dS(y)

+
m∑

i=1

φi [
∫

�

g(y)nψ(y)E1(y − x)dS(y)]ψ i
]

and

T i,l
φ,ψg(x) := −1

2

[ ∫

�

(y
φ

− xφ)g(y)Kψ(y − x)dV (y)

+
m∑

i=1

φi [
∫

�

g(y)E1(y − x)dV (y)]ψ i
]

.

Indeed,

f (x) = (Clφ f )(x) + (Ci,lφ,ψ
φ∂[ f ])(x) + (T i,l

φ,ψ
φ∂[ f ]ψ∂)(x). (20)

4 5-Operators and Inframonogenicity

The complex �-operator (Ahlfos–Beurling transform)

��[h(z)] = − 1

π

∫

�

h(ε)

(ε − z)2
dε1dε2

plays an essential role in Complex Analysis and is particularly useful in the theory
of quasiconformal mappings in the plane. This strongly singular operator behaves
isometrically on L2(�) and in the sense of distribution one has

��[∂zh(z)] = ∂zh.
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The operator�r
φ,ψ may be seen as a multidimensional generalization of�� andmany

of its mapping and invertibility properties were described in Blaya et al. (2016).
In our context this operator has the important property that it maps Iφ,ψ(�) into

Iφ,φ(�), a remarkable fact if one takes into account Remark 1. This conclusion follows
directly from

φ∂[�r
φ,ψ [ f ]]φ∂ = φ∂[[T r

ψ f ]φ∂]φ∂ = φ∂[T r
ψ f ]ψ∂ψ∂ = φ∂[ f ]ψ∂, (21)

where use has been made of the identity [T r
ψ f ]ψ∂ = f .

Similarly, we obtain

φ∂[�l
φ,ψ [ f ]]φ∂ = φ∂[φ∂[T l

ψ f ]]φ∂ = ψ∂ψ∂[T l
ψ f ]φ∂ = ψ∂[ f ]φ∂, (22)

which one can think of as a left version of (21).
Formula (22) means that �l

φ,ψ does this time map Iψ,φ(�) into Iφ,φ(�), and we
note the subtle change in the positions of φ and ψ .

A generalized Borel–Pompeiu formula for�r
φ,ψ [ f ] and�l

φ,ψ [ f ]may be obtained
in a similar manner as in the proof of Theorem 2.

Theorem 3 Let f ∈ C2(� ∪ �). Then it holds that

�r
φ,ψ [ f ](x) = (Crφ,ψ f )(x) + (Ci,rφ,φ[ f ]ψ∂)(x) + (T i,r

φ,φ
φ∂[ f ]ψ∂)(x), (23)

�l
φ,ψ [ f ](x) = (Clφ,ψ f )(x) + (Ci,lφ,φ

ψ∂[ f ])(x) + (T i,l
φ,φ

ψ∂[ f ]φ∂)(x). (24)

Remark 5 For φ = ψ being the standard orthonormal basis, each one of the above
formulas reduces to the Borel-Pompeiu formula derived in (García et al. (2017), The-
orem 3.1). There is an essential difference between formulas (13) and (24). Indeed,
if f is (ψ, φ)-inframonogenic, then (24) yields a representation of �l

φ,ψ [ f ] in terms
of surface integral operators. On the other hand, a similar integral representation is
derived from (13) only if one requires that f satisfies themuchmore restrictive assump-
tion of ψ-hyperholomorphicity. The same difference between (14) and (23) arises in
analogous manner.

We note that formula (16) for ψ = φ and identity (21) yields

�r
φ,ψ [ f ](x) = (Crφ�r

φ,ψ [ f ])(x) + (Ci,rφ,φ[ f ]ψ∂)(x) + (T i,r
φ,φ

φ∂[ f ]ψ∂)(x).

As an easy consequence of these observations and formula (23) we have the following
interesting relations, which have already been derived in Blaya et al. (2016) by a
different method.

Proposition 1 Let f ∈ C2(� ∪ �). Then it follows that

Crφ,ψ f = Crφ�r
φ,ψ [ f ].
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Similarly,

Clφ,ψ f = Clφ�l
φ,ψ [ f ].

5 Jump Problem in Fractal Domains

This section is devoted to a jump problem for (φ,ψ)-inframonogenic functions in
which the smoothness assumption on � is replaced by another one, of much more
general character. The previously introducedTeodorescu type operatorT i,r

φ,ψ will prove
extremely useful for such general investigations.

The Cauchy formula (19) says that if a solution of the Dirichlet problem

{
φ∂[F]ψ∂ = 0 in �

F = f on �,
(25)

exists in the class C2(�) ∩ C1(�), then it can be represented by

F(x) = (Crψ f )(x) + (Ci,rφ,ψ [ f ]ψ∂)(x). (26)

However, because of the absence of a maximum principle for (φ,ψ)-inframonogenic
functions, the usual uniqueness proof in the case of the Dirichlet problem (25) loses
its validity and other solutions in the class C2(�) ∩ C(�) may exist.

In addition to the Dirichlet problem there arises the following jump problem for
(φ,ψ)-inframonogenic functions:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ∂[F]ψ∂ = 0, x ∈ �+ ∪ �−,

F+(x) − F−(x) = f (x), x ∈ �,

[[F]ψ∂]+(x) − [[F]ψ∂]−(x) = f1(x), x ∈ �,

F(∞) = ([F]ψ∂)(∞) = 0,

(27)

where f , f1 are assumed in C0,ν(�).
It follows directly from (15) and the Plemelj-Sokhotski formula that the function

F(x) = (Crψ f )(x) + (Ci,rφ,ψ f1)(x) (28)

is a solution of (27). The uniqueness of such a solution is ensured by a combination
of Painleve and Liouville theorems in Clifford analysis (Brackx et al. 1982).

When one omits the smoothness conditions on �, the function (28) does not rep-
resent in general a solution of (27) or, which is even more inconvenient, it loses its
usual sense. The natural question arises whether it is possible to construct a solution
of (27), analogous to (28), where this time � is assumed to be a domain with fractal
boundary �. Fractals are not only relevant from a mathematical point of view, but also
have important applications in engineering and are widely used in modern telecom-
munication systems (Bellido et al. 2017; Karim et al. 2010; Tumakov et al. 2020). It
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is for these reasons that it is not unreasonable to consider the above problem under
such a general geometric conditions.

In the case of fractal domains, the merely Hölder continuity of the boundary traces
f , f1 does not, in general, offer the possibility of constructing the solution of (27).
The method we will mainly sketch below has its roots in the seminal work of (Kats
1983), (see also Blaya et al. 2015a).

Firstly, we define an appropriate way of measuring the fractality of �. In this
direction we prefer the concept of d-summable boundary, introduced by Harrison and
Norton in (1992). We say that � is d-summable for some m − 1 < d < m, if the
improper integral

∫ 1

0
N�(τ) τ d−1 dτ

converges, where N�(τ) stands for the minimal number of balls of radius τ needed to
cover�. The relationship between the above notion and fractality is clarified by check-
ing that any d-summable boundary � has fractal dimension Dim(�) ≤ d. Conversely,
whenever Dim(�) < d, then � is d-summable.

Secondly, we assume that f belongs (component-wisely) to the so-called higher
order Lipschitz class Lip(1+ν, �) introduced byWhitney (1934) andmore extensively
studied in Stein (1970).Roughly speaking, thismeans that there exist a jet { f , f j, |j| =
1} such that the field of polynomials (in the usual multi-index notation)

f (y) +
∑

|j|=1

f j(y)(x − y)j, y ∈ �

is the field of Taylor polynomials of a C1,ν-function in R
m . A classical theorem of

Whitney (1934) shows that such a function f may be extended to a C1,α-smooth
function f̃ in Rm , satisfying moreover that

|∂ jx f̃ (x)| ≤ c dist(x, �)ν−1, |j| = 2, x ∈ R
m\�.

Finally, if � is d-summable and f is assumed to be in Lip(1 + ν, �) with ν > d
m ,

then it follows from (Blaya et al. 2015a, Lemma 4.1) that φ∂[ f̃ ]ψ∂ belongs to L p(�)

with p = m−d
1−ν

> m. Consequently, the functions T i,r
φ,ψ [φ∂[ f ]ψ∂] and T l

φ [φ∂[ f̃ ]ψ∂] are
continuous in the whole space Rm (see (Blaya et al. 2015a, Lemma 4.2)).

Summarizing, we are led to the following

Theorem 4 Let f ∈ Lip(1 + ν, �)and let � be d-summable with ν >
d

m
. Then the

jump problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ∂[F]ψ∂ = 0, x ∈ �+ ∪ �−,

F+(x) − F−(x) = f (x), x ∈ �,

[[F]ψ∂]+(x) − [[F]ψ∂]−(x) = ([ f̃ ]ψ∂)(x), x ∈ �,

F(∞) = ([F]ψ∂)(∞) = 0

(29)
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has a solution given by

F(x) = f̃ (x)χ�(x) − T i,r
φ,ψ [φ∂[ f̃ ]ψ∂](x), (30)

where χ� stands for the characteristic function of �.

Proof That F satisfies φ∂[F]ψ∂ = 0 may be verified directly on the basis of the
formulas

[

T i,r
φ,ψ

φ∂[ f̃ ]ψ∂

]
ψ∂ = T l

φ [φ∂[ f̃ ]ψ∂], φ∂[T l
φ [φ∂[ f̃ ]ψ∂]] =

{
φ∂[ f̃ ]ψ∂ in �+
0 in �−.

The next thing we have to do is to prove that F given by (30) satisfies the jump
conditions in (29), which is simply deduced from the previously mentioned continuity
of T i,r

φ,ψ [φ∂[ f̃ ]ψ∂] and T l
φ [φ∂[ f̃ ]ψ∂]. On the other hand, it is a matter of routine to check

the vanishing conditions F(∞) = ([F]ψ∂)(∞) = 0. 
�
Finally, it should be mentioned that completely different situation arises when we

consider the question of uniqueness of (29) in the fractal setting for the reason that the
Painleve theorem does not hold in such high level of generality.

References

Blaya, R.A., Ávila, R.Á, Reyes, J. B.: Boundary value problems with higher order Lipschitz boundary data
for polymonogenic functions in fractal domains. Appl. Math. Comput. 269, 802–808 (2015)

Blaya, R.A., Reyes, J.B., Guzmán, A., Kähler, U.: On the �-operator in clifford analysis. J. Math. Anal.
Appl. 434(2), 1138–1159 (2016)

Blaya, R. Abreu., Reyes, J. Bory., Guzmán, A., Kähler, U.: On the φ- Hiperderivative of theψ-Cauchy-Type
Integral in Clifford Analysis. Comput. Methods Funct. Theory, no.17, 101-119, 2017

Blaya, R. Abreu., Reyes, J. Bory., Guzmán, A., Kähler, U.: On some structural sets and a quaternionic
(ϕ, ψ)−hyperholomorphic function theory. Math. Nachr. 288(13), 1451–1475 (2015)

Brackx, F., Delanghe, R., Sommen, F.: Clifford analysis. Research Notes in Mathematics, 76, Pitman
(Advanced Publishing Program), Boston, 1982

Bellido, E.P., Bernasconi, G.D., Rossouw, D., Butet, J., Martin, O.J.F., Botton, G.A.: Self-Similarity of
Plasmon Edge Modes on Koch Fractal Antennas. ACS Nano 11, 11240–11249 (2017)

Delanghe, R., Krausshar, R.S., Malonek, H.R.: Differentiability of functions with values in some real
associative algebras: approaches to an old problem. Bull. Soc. R. Sci. Liege 70(4–6), 231–249 (2001)

García, A.M., García, T.M., Blaya, R.A., Reyes, J.B.: A Cauchy integral formula for inframonogenic
functions in Clifford analysis. Adv. Appl. Clifford Algebra 27(2), 1147–1159 (2017)

García, A M., García, T.M., Blaya, R.A., Reyes, J.B.: Decomposition of inframonogenic functions with
applications in elasticity theory. Math. Methods Appl. Sci. 43, 1915–1924 (2020)

García, A.M., García, T.M., Blaya, R.A., Reyes, J.B.: Inframonogenic functions and their applications in
three dimensional elasticity theory. Math. Methods Appl. Sci. 41(10), 3622–3631 (2018)

Gürlebeck, K.: On some classes of�-operators, in Dirac operators in analysis, (eds. J. Ryan andD. Struppa),
Pitman Research Notes in Mathematics, No. 394 (1998)

Güerlebeck, K., Habetha, K., Sprössig, W.: Holomorphic Functions in the Plane and n-Dimensional Space.
Birkhäuser Verlag, Basel (2008)

Gürlebeck, K., Kähler, U., Shapiro,M.: On the�-operator in hyperholomorphic function theory. Adv. Appl.
Clifford Algebra 9(1), 23–40 (1999)

Gürlebeck, K., Nguyen, H.M.: ψ-Hyperholomorphic functions and an application to elasticity problems.
AIP Conf. Proc. 1648(1), 440005 (2015)

123



On (φ, ψ)-Inframonogenic... 621

Gürlebeck, K., Nguyen, H.M.: On ψ-hyperholomorphic Functions and a Decomposition of Harmonics.
Hyper complex analysis: new perspectives and applications. Trends Math. pp. 181–189 (2014)

Harrison, J., Norton, A.: The Gauss–Green theorem for fractal boundaries. Duke Math. J. 67(3), 575–588
(1992)

Karim, M., Rahim, M., Majid, H., Ayop, O., Abu, M., Zubir, F.: Log prediodic fractal Koch antenna for
UHF band applications. Progress Electromagn. Res. PIER 100, 201–218 (2010)

Kats, B.: The Riemann problem on a closed Jordan curve. Sov. Math. (Iz VUZ) 27, 83–98 (1983)
Krausshar, R.S., Malonek, H.R.: A characterization of conformal mappings in R

4 by a formal differentia-
bility condition. Bull. Soc. R. Sci. Liege 70(1), 35–49 (2001)

Malonek, H., Peña-Peña, D., Sommen, F.: Fischer decomposition by inframonogenic functions. CUBO A
Math. J. 12(02), 189–197 (2010)

Malonek, H., Peña-Peña, D., Sommen, F.: A Cauchy–Kowalevski theorem for inframonogenic functions.
Math. J. Okayama Univ. 53, 167–172 (2011)

Nguyen, H. M.: ψ-Hyperholomorphic Function Theory in R
3: Geometric Mapping Properties and

Applications. (Habilitation Thesis), Fakultat Bauingenieurwesen der Bauhaus-Universitat. Weimar.
e-pub.uni-weimar.de (2015)

Stein, E. M.: Singular Integrals and Diferentiability Properties of Functions. Princeton Math. Ser. 30,
Princeton Univ. Press, Princeton, NJ (1970)

Tumakov,D.,Chikrin,D.,Kokunin, P.:Miniaturization of aKoch-type fractal antenna forWi-Fi applications.
Fractal Fract. 4, 25 (2020). https://doi.org/10.3390/fractalfract4020025

Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc.
36(1), 63–89 (1934)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.3390/fractalfract4020025

	On (φ,ψ)-Inframonogenic Functions in Clifford Analysis
	Abstract
	1 Introduction
	2 Preliminaries
	3 Cauchy Formula for (φ,ψ)-Inframonogenic Functions
	4 Π-Operators and Inframonogenicity
	5 Jump Problem in Fractal Domains
	References




