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Abstract
In dictionary learning, a matrix comprised of signals Y is factorized into the product
of two matrices: a matrix of prototypical atoms D, and a sparse matrix containing
coefficients for atoms in D, called X . This process has applications in signal process-
ing, image recognition, and a number of other fields. Many procedures for solving the
dictionary learning problem follow the alternating minimization paradigm; that is, by
alternating between solving for D and X , until the procedure converges to a solution.
Our findings indicate that the costly step of alternating minimization can be avoided in
some cases, by modifying an initialization procedure that was proposed in 2014. We
provide theoretical justification and empirical evidence showing that atom recovery
and reasonable data reconstruction is possible under these new assumptions.

Keywords Signal processing · Dictionary learning

1 Introduction andMotivation

Dictionary learning is an approach to characterize a large collection of data (commonly
referred to as signals) by sparse linear combinations of a small set of prototypical sig-
nals.We can think of these prototypical signals as the representatives for the larger data
set. This small set of representatives is known as the dictionary. Modeling signals with
such sparse decompositions is very effective in many signal processing applications.
For example, dictionary learning has been applied to perform face recognition (Zhang
and Li 2010), image restoration and inpainting [even when the image is heavily cor-
rupted (Mairal et al. (2008)) or data is limited or incomplete (Naumova and Schnass
(2017))], and modeling ofdata with hierarchical structure, such as images and text
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(Jenatton et al. 2010). Other examples, including medical imaging, can be found in
the survey (Tosic and Frossard 2011).

Rather than using predefined bases, such aswavelets, that do not depend on the data,
the goal of dictionary learning is to learn the dictionary from the sample data. Initially
introduced by Olshausen and Field for modeling the spatial receptive fields of simple
cells in the visual cortex, the idea of learning the dictionary from data instead of using
predefined bases has been shown to substantially improve signal reconstruction (Field
and Olshausen 1996). We begin with a motivating example to illustrate the need of
learning a dictionary from the data.

Example 1 Can a paralyzed man regain the motion of his hand? Ian Burkhart is a
quadriplegicmanwho has become the first person to be implantedwith technology that
sends signals from the brain to muscles. This technological breakthrough is allowing
him to regain some movement in his right arm and wrist. In 2014, scientists at Ohio
State’s Neurological Institute implanted a microchip into the 24-year-old Ian’s motor
cortex (see Bouton et al. 2016). Its goal is to bypass his damaged spinal cord so that
with the help of a signal decoder and electrode-packed sleeve, he can control his
right arm with his thoughts. The researchers need to decipher which brain signal is
responsible for finger movement. In this process, they use wavelet decomposition, a
technique equivalent to dictionary learning with a fixed basis. As more neural signals
are acquired, an adaptive basis like one that dictionary learning provides will likely
be more effective in this pursuit.

Dictionary learning. This last example in computational neuroscience illustrates the
need of a powerful tool to characterize the collection of signals by sparse linear combi-
nations of prototypical signals. Formally, consider n signals y1, y2, . . . , yn , each inRd ,
where Y ∈ R

d×n is the matrix of signals (also “samples”). Additionally, assume that
there exists D ∈ R

d×r , which is a dictionary of r prototypical signals, and X ∈ R
r×n ,

which is a sparse matrix of coefficients. In the parlance of dictionary learning, the
columns of the dictionary D are the atoms a1, a2, . . . , ar . It is assumed that each
signal is approximately equal to a linear combination of s atoms. For example, for
yi , there exist atoms ai1 , ai2 , . . . , ais and coefficients ci j , j = 1, 2, . . . , s, such that
yi = ci1ai1 + ci2ai2 + · · · + cis ais . That is, formally, we assume that Y = DX . Dic-
tionary learning attempts to recover a dictionary ̂D and matrix ̂X such that Y ≈ ̂D̂X .
Throughout the remainder of the paper, we will drop the hats shown on ̂D and ̂X (any
reference to the true dictionary and true sparse matrix will be clear by context). We say
that a vector x is s-sparse if the vector has at most s non-zero entries, and we denote
this by ‖x‖0 ≤ s. Learning a dictionary from the signals is equivalent to the following
optimization problem:

min
D,X

n
∑

i=1

||yi − Dxi ||22 such that ||xi ||0 ≤ s, i = 1, . . . , n,

where xi is the i th column of the matrix X . In our formulation of the problem, both
D and X are unknown.
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Fast Overcomplete Dictionary Construction with Probabilistic Guarantees 721

If an oracle can supply us with the dictionary D, then finding a sparse representation
of some signal y ∈ R

d amounts to solving the optimization problem

(P1) min
x

‖x‖1, such that y = Dx .

This problem is commonly known as Basis Pursuit, or compressed sensing. The foun-
dational papers by Donoho, Candes, Romberg, and Tao (Donoho 2006; Candes et al.
2006a, b) have firmly established that minimizing the l1-norm of the vector x will
ensure that the solution vector x is sparse. For the problem (P1), orthogonal matching
pursuit (Cai andWang 2011; Davenport andWakin 2010; Cohen et al. 2017) is an effi-
cient method to solve for the unknown sparse vector x . Other algorithms that are more
sophisticated from the optimization viewpoint can also be used. (See, e.g. Blumensath
and Davies 2009; Foucart 2012; Daubechies et al. 2010.)

Define the coherence of the dictionary D by

μ0 = max
j �=k

{∣

∣〈a j , ak〉
∣

∣ : 1 ≤ j ≤ r , 1 ≤ k ≤ r
}

.

Suppose each column of the dictionary D ∈ R
d×r is normalized to have length one. If

the coherenceμ0 satisfies (2s−1)μ0 < 1, then every s-sparse vector x ∈ R
r is exactly

recovered from the vector y = Dx by solving the l1-norm minimization problem.
For the purpose of recovering dictionary atoms, we assume that our dictionary has
small coherence. For example, the union of two orthogonal basis with small mutual
coherence, such as spikes and sinusoids, belongs to this scenario. (See Donoho and
Elad 2003 for a discussion and other examples).

However, in our problem, the challenge is that given the data matrix Y , both the
dictionary D and the coefficients matrix X are unknown.A number of algorithms
attempt to solve the dictionary learning problem. Most algorithms can be described
as alternating minimization procedures. These algorithms begin by initializing the
dictionary to a randommatrix, and then alternating between solving for the dictionary
D and the sparse matrix X . That means at each iteration, there are two steps. First, the
matrix D is held fixed, while the best sparse matrix X is determined. Next, using the
matrix X just computed, the dictionary D is updated. Themethod of optimal directions
(MOD) (Engan et al. 1999) solves for the dictionary at each iteration, by the method
of least squares, and computes the sparse matrix by a sparse coding algorithm such
as orthogonal matching pursuit (OMP) (Cai and Wang 2011; Tropp 2004). A more
sophisticated approach is the K-SVD algorithm (Aharon et al. 2006). This widely used
algorithm replaces the least squares step of MOD by a more granular operation which
decomposes error in the dictionary on a per-column basis.

The technique of alternatingminimization involves computationally intensive oper-
ations on large matrices that can take hours or days to converge. A creative idea is
introduced at the Conference on Learning Theory (COLT, 2014) in Spain (Agarwal
et al. 2014, 2016; Arora et al. 2014). Agarwal, et al. present a fast algorithm for ini-
tializing the dictionary D using a clustering procedure based on SVD to extract initial
atoms (Agarwal et al. 2014). This step recovers the dictionary with bounded error, and
is followed by an alternating minimization procedure. The authors state that this is the
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first known exact recovery algorithm for the overcomplete (r > d) dictionary case.
Importantly, they also empirically verify that under a common data generating process
for Y , the initialization step is not sufficient for obtaining a good approximation of the
true dictionary D.

This raises a natural question: Is there a data generating process under which it is
possible to recover the dictionary atoms through only an initialization step? If so, then
we can avoid the computationally expensive task of alternating minimization. We will
show that under certain model assumptions, the answer is yes.

1.1 Main Contributions

We perform theoretical and experimental analysis of learning the prototypical atoms
of a large collection of signals. This paper makes three main contributions:

(1) We prove that the atoms in the dictionary can be nearly recovered, provided that
there are enough signals in the sample. This is the qualitative version of our main
theorem. See Theorem1 for the precise statement. As a rule of thumb, O(r2 log r)
signals would be sufficient.

(2) We provide empirical evidence for a data generating process and conditions under
which a modified initialization algorithm similar to that of Agarwal et al. (2014)
nearly recovers the atoms of the true dictionary D. This discovery is important
because it can obviate the requirement of performing a subsequent alternating
minimization step that ensures exact recovery. Removing this procedure can
reduce the computational cost of dictionary learning significantly.

(3) The K-SVD algorithm is a widely used algorithm and is a useful benchmark.
There is one principal difference between the K-SVD method and the algorithm
under consideration in this article. Note that while the K-SVD method can find
a dictionary D that nearly recovers the data Y , the optimization algorithm does
not attempt to recover the true dictionary that generates the data. In contrast, we
propose an algorithm that can nearly recover all the atoms in the true dictionary.

1.2 Model Assumptions

There is a trade-off between model assumptions and sample complexity. If a model is
sufficiently general to encompass a wide range of scenarios, then the price to pay is
that a large number of signals is required to learn the true dictionary from the sample
data. Conversely, for a more specialized model, a smaller number of sample signals
would suffice. We make the following model assumptions throughout the article. The
data-generating process described in Sect. 3 can be thought of as a special case of the
general model.

(M1) Each sample signal y ∈ R
d is generated as y = Dx , where D is the true

dictionary and the coefficient vector x is s-sparse, i.e. at most s entries in the
vector x are non-zero. All the signals are placed in the signal matrix Y , so
that Y = DX , where the coefficient matrix X has r rows and each column is
s-sparse. We assume that r ≥ d.
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Fast Overcomplete Dictionary Construction with Probabilistic Guarantees 723

(M2) Each column of the dictionary D is normalized to have length one, i.e. each
atom satisfies ‖a j‖2 = 1, for 1 ≤ j ≤ r . Assume the coherence μ0 of D
satisfies (2s − 1)μ0 < 1.

(M3) The non-zero entries of each columnof X are pairwise independent, conditioned
on the support. The columns of X are pairwise independent.

(M4) The entries in each column vector xk has the following properties: (i) each entry
xk( j) is drawn from the set [−β,−α] ∪ [α, β], where α, β > 0, for 1 ≤ j ≤ r
and 1 ≤ k ≤ n, (ii) E[xk( j)] = 0.

(M5) For the successful recovery of the dictionary D from the sample signals Y ,
the signals must be sufficiently sparse. We impose the following condition:
s ≤ O(r1/3).

(M6) The support of each column vector in X is chosen uniformly and independently
from subsets of size s.

1.3 RelatedWork

Our work is motivated by the clustering approach to dictionary initialization by Agar-
wal et al. (2014). Independently and concurrently, Arora et al. (2014) introduce a
slightly different clustering procedure, under different model assumptions. A sophisti-
cated approach that avoids alternatingminimization by the use of tensor decomposition
is introduced by Barak et al. (2015). There is a trade-off between sparsity of the
signals and sample complexity in all these works, including ours. Either the sig-
nals need to be very sparse, i.e. sparser than s ≤ O(r1/2), or the number of signals
required is at least O(rc), with c ≥ 3. Methods that achieve equality in the sparsity
bound above generally require technical assumptions that can be difficult to check.
In contrast, we have avoided weaker assumptions that are more general, but offer
less intuitive appeal. Our own requirement that s ≤ O(r1/3) sacrifices generality for
clarity, but remains computationally simple to check and comparable with existing
requirements.

Our requirement that n ≥ O(r2 log r) may seem conservative. However, in numer-
ical experiments, when we pick a specific data generating process, a specific true
dictionary with some specific values of r , then we find that number of samples needed
is far less than r2log(r). In groundbreaking work, Spielman et al. (2012) are the first
ones who give an algorithm that can provably recover a dictionary that is a basis, with
high probability. They prove that the number of samples needed are n = O(r log r).
As noted by the authors, their analysis does not extend to an overcomplete dictio-
nary. See also the discussion in Gribonval et al. (2015); Gribonval and Schnass (2010)
and Schnass (2014) regarding the number of samples needed to identify a dictio-
nary.

Remark 1 will explain why we cannot expect to recover the dictionary atoms with
less than O(r log r) samples.
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2 Initializing Dictionaries for Fast Optimization

The core insight of the initialization algorithm InitDictionaryLearn of Agarwal et
al. is that the atoms extracted from the data should be limited to those that represent
clusters of signals. The algorithm tests pairs of signals to find those pairs that share
an atom, then finds signals that are correlated with the pair, which forms a cluster of
signals. If the cluster is “good” (a decision determined by Agarwal’s UniqueInter-
section algorithm), then InitDictionaryLearn extracts an atom in a process similar
to PCA, using information from every entry of the signals in the cluster. We modify
the algorithms InitDictionaryLearn and UniqueIntersection presented in Agar-
wal et al. (2014), and name our modifications P1 and P2, respectively. The algorithm
P1 is outlined in Algorithm 2, and P2 is outlined in Algorithm 1. Our modifications
follow.

We evaluate the algorithm on the result of a data generating process wherein the
original dictionary D is a low coherence dictionary, and the elements of the columns
of the true sparse matrix X are integers which have restrictions on their magnitude and
distribution across entries of each xi . A description of this data generating process is
in Sect. 3.

We formulate a new correlation threshold τ specifically for our data generating
process based on the assumption that the columns of our sparse matrix take on certain
values in the worst case. Our correlation threshold’s calculation implies additional
restrictions for the data generating process. A description is given in Sect. 5.

We also formulate a different threshold ε1 for use in P2 for the average correla-
tion between signals in a cluster detected by P1. This threshold is used to filter out
clusters that don’t contain atoms sharing the same signal, and its formulation is based
on intuition given by probabilistic estimations under some assumptions described in
Sect. 4.

Algorithm 1 Verifying candidate atom cluster S contains a true atom. Note: p0 and
p1 refer to the first and second entries of the tuple p.
1: procedure P2
2: Input cluster of signals S, number of atoms r , sparsity s, correlation threshold τ .

3: Initialize P ← exclusive consecutive pairs in S, c ← 0, M ← |P|, ε1 ← 1 − 19s3
r .

4: for p ∈ P do
5: i, j ← p0, p1
6: if |〈yi , y j 〉| > τ then
7: c ← c + 1
8: end if
9: end for
10: return c/M ≥ ε1
11: end procedure
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Algorithm 2 Clustering signals in A for extracting r true atoms, assuming each signal
is represented by an s-sparse sum of the atoms. The EIGTOP function returns the top
eigenvector of a matrix. “|〈·〉|” is the unsigned inner product.
1: procedure P1
2: Input signals Y , number of atoms r , sparsity s, correlation threshold τ ,
3: minimum separation between recovered atoms in norm difference εA ,
4: and coherence of true dictionary μ.
5: Initialize A ← ∅, L ← ∅.
6: while |A| ≤ r do
7: Randomly pick a pair of signals
8: (yp , yq ) from 2Y \ L .
9: L ← L ∪ {(p, q)}.
10: if |〈yp, yq 〉| > τ then
11: S ← the set of all signals z such that |〈yp, yz〉| > τ and |〈yz , yq 〉| > τ

12: if |S| mod 2 is 0 then
13: zmin ← signal in S with smallest average inner product with p and q
14: S ← S \ {zmin}
15: end if
16: if |S| ≥ 2 and
17: P2(S, r , s, τ ) then
18: B ← ∑|S|

i=1 zi z
T
i .

19: u ← EIGTOP(B).
20: if mina∈A|a − u| > εA then
21: A ← A ∪ {u}.
22: end if
23: end if
24: end if
25: end while
26: return A.
27: end procedure

3 Data Generating Process

Agarwal et al. (2014) test a data generating process where entries of D are drawn from
N (0, 1), the support of each column vector in X is chosen uniformly and indepen-
dently from subsets of size s, and the non-zero values of each X column vector are
chosen uniformly and independently from [−2,−1] ∪ [1, 2]. Although these features
of their process are not necessary for their theoretical work, we construct a similar
data generating process in order to match this existing literature.

Our data generating process is a choice of a true dictionary D and s-sparsematrix X .
The signals generated are defined by Y = DX . This process is inspired by problems in
classical signal processing–recovery of signals created by low coherence dictionaries.
Consequently, a low coherencematrix is chosen as the dictionary. This is our first main
modification of the data generating process of Agarwal et al. (2014). Like Agarwal et
al., we consider the case where the signal matrix Y ∈ R

d×n has d < n. Our second
main modification is as follows: we choose three integers α, β, and γ , with γ positive.
Like Agarwal et. al., we choose the locations of the non-zero entries uniformly and
independently from the subsets of size s. We set one non-zero entry of each column to
be β, and the rest are drawn uniformly independently from {−α} ∪ {α}. This implies
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that the non-zero entries of each column are in the set {−α, α, β}. We further insist that
nomore than γ of theβ-valued elements exist in the same entry of any subset of column
vectors of X . This condition ensures that β-valued elements are not clustered together
in dimension. Additionally, the use of γ makes the performance of our experiments
more easily verifiable, and only slightly differs from assumptions (M3) and (M6).
Finally, this data generating process implies that any procedure clustering these vectors
by the correlation function demands an additional condition; that

β2 − 2αβ > 2α2(s − 2).

This condition is derived in Sect. 5.
Our restriction to integer-valued elements, restriction on the relative sizes and

dimensional distributions of the elements, and use of a low coherence dictionary are
the major differences between our data generating process and that of Agarwal et al.
We accept these restrictions because of their relationship to realistic problems, e.g.
where a signal may have one predominant atom that has been corrupted by “noise”
from other atoms, and where each atom is distinct (i.e. D has low coherence). How-
ever, this is only one realization of our general data generating process described by
assumptions (M1) to (M6), and our general process offers flexibility to encompass
other assumptions as well.

Several extensions to our data generatingprocess canbemade fromrelaxing existing
assumptions as well. It is not complicated to remove the γ parameter entirely. As each
column of X, β is chosen uniformly and independently from subsets of size s, γ can
instead be calculated by examining the placement of each β, instead of being assumed.
In this formulation of the data generating process, γ becomes a random variable that
we do not control, and which is distributed according to a multinomial distribution
with mean n/d and variance (nd − n)/d2. With this extension, our data generating
process more closely matches that of Agarwal et al. Notably, in all of our experiments
where γ is fixed, we let γ equal n/d as well.

Our data generating process can also be extended to allow the selection of values
other than those in the set {α, β} for the non-zero entries ofX. It is simplest to relax the
condition on α. As long as the threshold condition derived in Sect. 5 is not violated,
α can be replaced with an interval of values smaller than α and greater than zero.
Consequently, we can select values from β ∪ [ε, α], where ε > 0. The extension
of β from an integer to an interval is not trivial, and would complicate our analysis.
The spiked signal model considered in this work is simplified by having one large
coefficient corresponding to one atom. We suspect that it is possible to extend β to
an interval of values larger than β, but such an extension would require additional
analysis, and we leave this to future work.

4 Probabilistic Bounds

In P1, our goal is to find clusters of signals thatmay share the same atom; that is, signals
yp and yq “share an atom” if Xmp and Xmq are both non-zero for some row m of X .
These potential clusters are constructed by selecting pairs of signals (yp, yq) that have
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large inner product (lines 10–11), and then finding other signals that have large inner
product with each signal in the pair (lines 14–16). Once we identify correlated clusters
of signals in P1, we extract an atom through the process in lines 25–29 (Agarwal et al.
2014).

Under our proposed data process and correlation threshold, lines 10–16 select clus-
ters with signals that all share the same atom with coefficient β. However, under other
data processes, there is no assurance that this will happen. Consequently, this process
may select “bad” clusters which contain signals that might not (a) share a single unique
atom and (b) have non-negligible contributions from other atoms (in our data process,
this implies that the coefficient on these atoms is greater than α).

To gain insight into the probability that each cluster identified by P1 is “good”,
we analyze the probability that any pair of signals in a cluster shares the same unique
atom, but not any other atoms. We introduce the following scenario and events to
formalize this problem: pick two signals from the data, yp and yq , and consider two
arbitrary signals yi and y j . Define the following events:

– SU (yp, yq): The sums that represent yp and yq share exactly one unique atom.
– SU (yi , y j ): The sums that represent yi and y j share exactly one unique atom.
– E1: yi shares exactly one atom with yp, and yi shares exactly one atom with yq .
Also, y j shares exactly one atom with yp, and y j shares exactly one atom with
yq .

– F1: yi shares at least one atom with yp, and yi shares at least one atom with yq .
Also, y j shares at least one atom with yp, and y j shares at least one atom with yq .

SU (yp, yq) corresponds to picking the initial pair of correlated signals, because if
|〈yp, yq〉| > τ , then yp and yq share at least one atom.

To make the analysis tractable, we assume that this shared atom is the only atom yp
and yq share, even though P2 may select pairs that share more than one unique atom.
Additionally, we know that if, for some signal yz , |〈yp, yz〉| > τ and |〈yq , yz〉| > τ ,
then yz shares at least one atom with each of yp and yq . F1 defines this event for
some pair of signals (yi , y j ). We are interested in the following probability: given
that SU (yp, yq) and F1 have occurred, what is the probability that the events E1 and
SU (yi , y j ) will occur? We are interested in analyzing

P[SU (yi , y j ) ∩ E1|F1 ∩ SU (yp, yq)], (1)

In other words, if we have a pair (yp, yq) which share a unique atom, and another
candidate pair (yi , y j ), each of which shares at least one atom with yp and yq , what
is the probability that (yi , y j ) share the same unique atom with each other (this is
SU (yi , y j )) that they uniquely share with yp and yq (this is E1)?

Knowing a lower bound on (1) allows us to select only those clusters in which
enough candidate pairs of signals from the cluster are correlated with each other to,
on average, share a unique atom. In P2, we again estimate correlation by checking to
see if two signals have inner product with a magnitude greater than τ . We count all
signals that pass this criterion, and use this count as an empirical estimator of (1). If
this empirical estimation of (1) is above the lower bound on (1) required for the signals
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to share a unique atom, P2 returns TRUE, and we continue on to the rest of P1 (that
is, lines 25–29 which extract an atom).

It is notable that this procedure does not depend on the data process we establish
above, and that τ may be calculated differently for a separate data process without
affecting the above calculations.

5 Correlation Threshold

We would not like to extract atoms from a cluster formed by P1 if the signals do not
all share an atom. We calculate a correlation threshold in order to detect and reject
clusters of signals fitting this description. We derive the correlation threshold based
on the worst-case inner product of two vectors which do not share the same atom.

If two vectors inY do not share the same atom, theβ-valued element is not contained
in the same entry. Consequently, we know that the inner product will be at most

τ = 2αβ + α2(s − 2)

in magnitude, as each β-valued entry may, by chance, be multiplied by a signal with
α in the same entry with the same sign, leaving s − 2 potential α-valued entries with
the same sign. In these calculations, we ignore the elements of D, as each element in
D is bounded in magnitude by 1, and therefore the product of any of these elements
will not affect this upper bound on the inner product between two vectors in Y that do
not share atoms with coefficient β.

Importantly, we must make sure that this threshold does not bar clusters comprised
entirely of signals that share the same atom from being selected. In this case, without
loss of generality, the worst-case result is that the β-valued entry is positive, and
that the α-valued entries are all of opposite sign; therefore these entries decrease the
magnitude of the inner product of two signals which share an atom. Thus we gain the
restriction that

β2 − α2(s − 2) > τ1 ⇔ β2 − 2αβ > 2α2(s − 2).

6 Proof of theMain Theorem

The presentation of our theorem and its proof would be cleaner if we adopt the follow-
ing convention.We say that an event E occurswith an overwhelmingly high probability
if P(E) ≥ 1 − O(1/r2), i.e. it occurs, except with probability at most O(1/r2). Fix
a constant δ ≤ 0.02. We say that a dictionary atom a j is nearly recovered if our dic-
tionary initialization procedure yields a vector â j such that ‖̂a j − εa j‖ ≤ δ, where
ε = 1 or -1 to account for the sign ambiguity. In the following work, the letters c1 and
k1 denote small constants and we do not keep track of their precise values.

Assume the model assumptions (M1) to (M6). Our theoretical guarantee for the
successful recovery of the true dictionary can be stated as:

123



Fast Overcomplete Dictionary Construction with Probabilistic Guarantees 729

Theorem 1 By using the dictionary initialization procedure described in Sect.2 (Algo-
rithm 1 and 2), under our model assumptions, the atoms in the true dictionary can be
nearly recovered, with an overwhelmingly high probability, provided that the number
of samples n ≥ O(r2 log r).

Remark 1 Our requirement that n ≥ O(r2 log r) may seem conservative. Let us
explain whywe cannot expect to recover the dictionary atomswith less than O(r log r)
samples.

Consider the following generalization to the coupon collector problem. There are
n urns and coupons are placed at random in these urns. Each coupon may be placed in
any of the urns with the same probability. The coupons are placed into the urns, one
at a time, and the choices of the urns for the different coupons are independent. We
continue this process until there are at least m coupons in each urn. Let Tm(n) be the
expected number of coupons that are needed. Newman and Shepp (1960) show that if
we fix the value of m, then as the value of n gets large, Tm(n) grows asymptotically
as O(n log n + (m − 1) log(log n)). If we want each atom to be shared by at least
5 signals, then by assumption (M6) and the reasoning of the generalized coupon-
collector problem, we expect that we need at least r log r + 4 log(log r) samples.

Plan of the Proof Before giving the proof of the theorem, let us give an outline of the
plan.

The relation Y = DX can be captured by a bipartite graph Bdata , consisting of
Red and Blue vertices. Each signal is a vertex in the set of Red vertices. Each atom in
the dictionary is a vertex in the set of Blue vertices. An edge connects a Red vertex
yk to a Blue vertex a j if and only if the signal yk has a non-zero coefficient for the
atom a j . For example, if y2 = 3a6 + 4a7 + 5a8, then the red vertex y2 is connected
to the blue vertices a6, a7, a8. If two signals y1 and y2 share an atom a6 in common,
then this Blue vertex a6 is a common neighbour of these two Red vertices. In this way,
we see that the edges in the bipartite graph Bdata encodes the sparsity pattern of the
coefficient matrix X . We write NB(yk) = {au} if an atom au is a neighbour of vertex
yk , i.e. if there is an edge connecting yk to au . Consider a particular atom. The set of
all signals that share this atom as a common neighbour forms a cluster for that atom.
The plan is to show that we can recover the atom if there are enough signals in the
cluster.

Definition 1 Fix a pair of atoms yp and yq such that the intersection of each signal’s
set of atoms contains only one unique atom. That is, let NB(yp)∩ NB(yq) = {az}, for
some atom az at the zth column index of D. Then for each candidate signal y in the
signal matrix Y , define the following sets:

SA = {y : |〈y, yp〉| > τ } SB = {y : |〈y, yq〉| > τ }

Define SAB = SA ∩ SB .
Then G is the collection of good signals for that atom, defined by

G = {y ∈ SAB : NB(y) ∩ NB(yp) = {az} and NB(y) ∩ NB(yq) = {az}}.
H = {y ∈ SAB : y /∈ G}.
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730 E. Au-Yeung, G. Zanotti

The intuition of our proof is as follows. Recall that for a cluster of atoms SAB
identified by Algorithm 2, we let B = ∑

yk∈SAB yk yTk . Then by the above definitions,

B = ∑

yk∈G yk yTk + ∑

yk∈H yk yTk . Our goal is to recover the atom az from yk , while
avoiding the noise added by bk . Therefore, in the matrix B, we wish to show that
the uncorrelated noise from the bk vectors essentially cancel out, leaving the atom
that has coefficient β (denoted as az) to be extracted through the EIGTOP procedure.
Concretely, let us define v1 = EIGTOP(B). Then we wish to show that ||v1−εaz ||2 ≤
δ.

Remark 2 The intuition described above provides a useful roadmap for the proof.
Turning this intuition into a proof requires some care. One may initially suspect that
for a given matrix A1, if A2 is a small perturbation of A1 (i.e. A2 is just A1 with a small
amount of noise added), then the corresponding top eigenvectors of the two matrices
will be close to each other. We include the following example to illustrate what can
go wrong.

Example 2 Consider two 3 × 3 diagonal matrices, A1 = diag(1 + ε, 1, 1), and A2 =
diag(1, 1 + ε, 1). Then A2 is a small perturbation of A1. Indeed, ‖A1 − A2‖ ≤ 2ε.
However, the top eigenvector for A1 and A2 are e1 and e2, respectively. Here, e1 and e2
are the first 2 columns of the 3× 3 identity matrix. These eigenvectors are orthogonal
to each other.

This example serves as a cautionary tale. Thus the proof entails some careful analysis.
For a fixed matrix, we cannot conclude the top eigenvector of the matrix will be
changed by a small amount, when the matrix is subject to a small perturbation. What
we want is an analogous statement about a large random matrix undergoing a small
random perturbation.

We will use the following result on random matrices (Vershynin 2012). Hidden in
the background is a deep result on the convexity of operator algebras (see, e.g. Hansen
and Pedersen 2003).

Theorem 2 Let A be an N by n matrix whose rows Ai are independent random vectors
in R

n with the common second moment matrix � = E[Ai ⊗ Ai ]. Suppose ‖Ai‖2 ≤√
K almost surely for all i . Then, for each t > 0, with probability at least 1 −

n exp(−ct2),

∥

∥

∥

∥

1

N
A∗A − �

∥

∥

∥

∥

≤ max(‖�‖1/2δ, δ2), where δ = t

√

K

N
.

Here, c > 0 is an absolute constant. In particular,

‖A‖ ≤ ‖�‖1/2√N + t
√
K .

Definition 2 For each vector in yk ∈ G, we define bk = yk − xk(z)az , where by xk(z)
we denote the zth entry of the vector at the kth column of the matrix X . A special role
will be played by the d × |G| matrix of all vectors in G.
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To prepare for the proof of Theorem 1, we proceed with a series of intermediate steps.
We begin by bounding the norms of bk and yk with a small observation.

Remark 3 Denote the mutual coherence of the matrix D by μ0. If μ0 ≤ 1
2s−1 , then

||bk ||2 ≤ 2 · β
√
s and ||yk ||2 ≤ β

√
2s.

Proof From the definition of the inner product,

||yk ||22 = 〈yk, yk〉 =
〈

∑

a j∈NB (yk)

xk( j)a j ,
∑

al∈NB (yk )

xk(l)al ,

〉

=
∑

a j ,al∈NB (yk )

xk( j)xk(l)〈a j , al〉

≤
∑

a j ,al∈NB (yk)

|〈a j , al〉| · |xk( j)xk(l)|

=
∑

a j∈NB (yk )

xk( j)
2||a j ||22 +

∑

a j �=al∈NB (yk)

|xk(l)xk( j)| · |〈a j , al〉|

≤ β2s + β2s2μ0 ≤ 3s

2
β2.

Because ||bk ||2 ≤ ||yk ||2 + |xk(z)| · ||az ||2, it follows that ||bk ||2 ≤ ||yk ||2 + β. ��
Our next task is to control the size of ‖∑

bk∈G bkbTk ‖.
Proposition 1 If ‖DT ‖op ≤ σ1, then

∥

∥

∥E[bibTi ]
∥

∥

∥ ≤ β2σ 2
1
s

r
.

Proof From Remark 3, ||bi ||2 ≤ 2β
√
s. Fix some h ∈ R

d with ||h||2 = 1. Note that

hT E[bibTi ]h = E[hT bibTi h] = E[(hT bi )2].

Now let v = DT h, and note that v ∈ R
r , where r is the number of atoms. Define the

vector x̂i to be equal to xi , but with x̂i (z) = 0. Then

E[(hT bi )2] = E[(vT x̂i )2] ≤ E

⎡

⎣

r
∑

j=1

v( j)2 x̂i ( j)
2

⎤

⎦ = E

⎡

⎣

r
∑

j �=k

v( j)v(k)x̂i ( j)x̂i (k)

⎤

⎦

≤
r

∑

j=1

v( j)2E[x̂i ( j)2] +
r

∑

j �=k

|v( j)v(k)| · |E[x̂i ( j)x̂i (k)]|

≤
r

∑

j=1

v( j)2β2 s

r
.
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The last inequality is valid because for each entry in x̂i , only s/r of them are nonzero,
and all are less than β in absolute value. Note that in the second to last inequality, the
summation over j �= k is zero because the random variables x̂i are independent. Thus

hT E[bibTi ]h ≤ β2 s

r
||v||22,

where

||v||2 = ||DT h||2 ≤ ||DT ||op||h||2 = ||DT ||op ≤ σ 2
1

and the conclusion follows. ��
Given Proposition 1, we have that ||E[bibTi ]|| ≤ β2(s/r)σ 2

1 . This essentially
bounds the contribution of the noisy parts of each signal to the matrix supplied to
the EIGTOP procedure. Now, we return our attention to the matrix B.

Definition 3 We define the matrices

B1 :=
∑

yk∈G
yk y

T
k and B2 :=

∑

yk∈H
yk y

T
k

so that B = B1 + B2. Note that B1 is the d × |G| matrix of all vectors in G.

The next proposition directly follows fromTheorem 2 by paraphrasing the theorem.

Proposition 2 Let B3 be a matrix of size d × |G| defined by

B3 :=
∑

bi∈G
bib

T
i

and suppose each vector bi satisfies

||bi ||22 ≤ (2β
√
s)2 := u.

Let c1 be some positive constant, and define t := c1 · √|G|. Define

||�|| := ||E[bibTi ]|| ≤ σ 2
1 β2 s

r
.

Then the matrix B3 satisfies

||B3||op ≤ ||�||1/2√|G| + t
√
u

with probability at least 1 − d · exp(−ct2), where c > 0 is an absolute constant.

We have the following immediate consequence:
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Proposition 3 With probability at least 1 − d · exp (−cc21|G|),
∥

∥

∥

∥

∥

∥

∑

bk∈G
bkb

T
k

∥

∥

∥

∥

∥

∥

op

≤ 2β2s|G|
(

σ 2
1

r
+ 4c21

)

.

Proof By applying Proposition2, we see that

||B3||op ≤ σ1

√

s

r
β
√|G| + 2β

√
s · c1

√|G| ≤ β
√
s
√|G|

(

σ1√
r

+ 2c1

)

withprobability at least 1−d·exp (−cc21|G|). From the inequality (a+b)2 ≤ 2(a2+b2)
for any a and b, we have

||B3B
T
3 ||op ≤ ||B3||2op ≤

[

β
√
s
√|G|

(

σ1√
r

+ 2c1

)]2

≤ 2β2s|G|
(

σ 2
1

r
+ 4c21

)

.

��
Recall that yk = xk(z)az + bk . Expanding B1, we see that

B1 =
∑

yk∈G
xk(z)

2aza
T
z +

∑

yk∈G
xk(z)(azb

T
k + bka

T
z ) +

∑

yk∈G
bkb

T
k .

To analyze how each of the last two matrices in the sum above contribute to B1,
and how B2 contributes to B, we bound the relevant operator norms.

Proposition 4 The followingbounds existwith probability at least1−d·exp (−cc21|G|),
where c > 0 is an absolute constant.

∥

∥

∥

∥

∥

∥

∑

yk∈G
xk(z)

2azb
T
k

∥

∥

∥

∥

∥

∥

op

≤ β2|G|s
(

σ1√
rs

+ 2c1√
s

)

, (2)

∥

∥

∥

∥

∥

∥

∑

yk∈G
bkb

T
k

∥

∥

∥

∥

∥

∥

op

≤ 2β2|G|s
(

σ 2
1

r
+ 4c21

)

, (3)

‖B2‖op ≤ 2|H |β2s (4)

Proof We start by bounding Eq. (2). As there are
√|G| xk(z) vectors in the first norm,

and for each, |xk(z)| ≤ β, from the definition of the operator norm, we see that

∥

∥

∥

∥

∥

∥

∑

yk∈G
xk(z)

2azb
T
k

∥

∥

∥

∥

∥

∥

op

≤ ||az ||2||B3||op · β
√|G|.
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Then by Proposition 2, and because ||az ||2 = 1,

||az ||2||B3||op · β
√|G| ≤

(

β
√
s
√|G|

√

σ 2
1 /r + 2c1

)

β
√|G|(1)

= β2|G|s
(

σ1√
rs

+ 2c1√
s

)

.

For Eq. (3), this follows directly from Proposition 3,

∥

∥

∥

∥

∥

∥

∑

yk∈G
bkb

T
k

∥

∥

∥

∥

∥

∥

op

= ||B3B
T
3 ||op ≤ 2β2|G|s

(

σ 2
1

r
+ 4c21

)

.

For Eq. (4), because each of the s entries of xk is less than or equal to β, we see that
by Remark 3,

||B2||op =
∥

∥

∥

∥

∥

∥

∑

yk∈H
yk y

T
k

∥

∥

∥

∥

∥

∥

op

≤ |H | · ||yk ||22 ≤ |H |2sβ2.

��
Now that we have bounded the matrices supplying “noise” to B, we can prove that

az is close to the top eigenvector of B, thus showing that our clustering algorithm
extracts the desired atom.

Proposition 5 Let v1 be the first eigenvector of the matrix B. Define the variance

V = 1

|G|
∑

yk∈G
xk(z)

2.

Then, with probability at least 1 − d · exp (−cc21|G|), we have

||v1 − εaz ||22 ≤ 4β2sk1
α2 ,

where ε ∈ {−1, 1} and k1 is a small constant.

Proof Let cosθ = 〈v1, εaz〉. To bound the difference between the atom and the top
eigenvector of the matrix, we begin with

||v1 − εaz ||22 = 〈v1 − εaz, v1 − εaz〉 = ||v1||22 + ||az ||22 − 2〈v1, εaz〉.

By hypothesis, both vectors are normalized to length one, so

||v1 − εaz ||22 = 2 − 2 cos θ. (5)
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Next, we seek an upper bound and a lower bound on the size of the matrix B. The
operator norm of B coincides with the largest eigenvalue of B, since B is self-adjoint,
which means that ‖B1‖op = ||vT1 Bv1||2. For an upper bound, we compute

∥

∥

∥vT1 Bv1

∥

∥

∥

2
=

∥

∥

∥vT1 (B1 + B2)v1

∥

∥

∥

2

≤ cos2 θ · V|G| + 2

∥

∥

∥

∥

∥

∥

∑

yk∈G
xk(z)azb

T
k

∥

∥

∥

∥

∥

∥

op

+ 2

∥

∥

∥

∥

∥

∥

∑

yk∈G
bkb

T
k

∥

∥

∥

∥

∥

∥

op

+ ||B2||op

≤ cos2 θ · V|G| + 2

[

β2|G|s
(

σ1√
rs

+ 2c1√
s

)]

+ 2β2|G|s
(

σ 2
1

r
+ 4c21

)

+
(

2sβ2|H |
)

≤ β2 · |G|
(

Vcos2θ

β2 + k1s

)

.

To obtain a lower bound, we essentially replace the triangle inequality with the
reverse triangle inequality in the above calculation.

We have ||B|| ≥ ||B1|| − ||B2||. Next, we compute

||B||op ≥ V|G| · ||az||22 − 2

∥

∥

∥

∥

∥

∥

∑

yk∈G
xk(z)azb

T
k

∥

∥

∥

∥

∥

∥

op

− 2

∥

∥

∥

∥

∥

∥

∑

yk∈G
bkb

T
k

∥

∥

∥

∥

∥

∥

op

− ||B2||

≥ V|G| − 2

[

β2 · |G| · s
(

σ1√
rs

+ 2c1√
s

)]

− 2β2 · |G| · s
(

σ 2
1

r
+ 4c21

)

−
(

|H | · 2sβ2
)

≥ β2|G|
(

V

β2 − k1s

)

.

We now have the sandwich inequalities,

β2 · |G|
[

V

β2 − k1s

]

≤ ||vT1 Bv1||2 ≤ β2 · |G|
[

Vcos2θ

β2 + k1s

]

,

and so,

V

β2 ≤ V

β2 cos
2θ + 2k1s,

which is equivalent to the lower bound,

cos2θ ≥ 1 − 2β2

V
sk1. (6)
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Recall that the variance V is given by

V = 1

|G|
∑

yk∈G
xk(z)

2

and for each term in the summation, xk(z) ≥ α by our model assumption. Therefore,

−1

V
≥ −1

α2 . (7)

Comparing Eqs. (6) and (7), we conclude that

cos2θ ≥ 1 − 2
β2

α2 sk1. (8)

From Eq. (5), and for 0 ≤ cos θ ≤ 1, we have ‖v1 − εaz‖22 ≤ 2(1 − cos2 θ). Finally,
combining this with Eq. (8), we arrive at the desirable conclusion,

||v1 − εaz ||22 ≤ 2

(

2
β2

α2 sk1

)

with probability 1 − d · exp(−cc21|G|).
This completes the proof. ��

We have established that each dictionary atom can be recovered with overwhelm-
ingly high probability, provided that the size of the set G is sufficiently large. The next
task is to prove that with high probability, G contains at least 3ns

8r signals. We will use
the following classical inequality for a sum of random variables.

Lemma 1 (Hoeffding inequality) Let X1, X2, . . . , Xn be independent random vari-
ables. Assume that each X j is bounded, i.e. a j ≤ X j ≤ b j for 1 ≤ j ≤ n. Then, for
the sum of these variables S = X1 + · · · Xn, we have

P (S − E(S) ≤ −t) ≤ exp

(

− 2t2
∑n

j=1(b j − a j )2

)

which is valid for all t > 0. E(S) is the expected value of S. In particular, for the
choice of t = E(S)/2, and when a j = a and b j = b for each j , we have

P

(

S ≤ E(S)

2

)

≤ exp

(

− [E(S)]2
2n(b − a)2

)

.

Proposition 6 Fix a pair of signals yp and yq such that they share exactly one atom
in common. That is, NB(yp) ∩ NB(yq) = {az}, for some atom az from one column of
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matrix D. With the same definition of G, the “good” set of signals for that particular
atom, we have that

P

(

|G| ≥ 3ns

8r

)

≥ 1 − exp

(

−9ns2

32r2

)

. (9)

Proof Let y be any signal from the matrix Y . Let E be the event that y belongs to set
G. If y belongs to G, then y must share exactly one atom in common with both yp
and yq . More precisely, NB(y) ∩ NB(yp) = {az} and NB(y) ∩ NB(yq)| = {az}.
Since |NB(yp) ∩ NB(yq)| = 1, we know that |NB(yp) ∪ NB(yq)| = 2s − 1.
For the event E to occur, we must pick the atom az and for the remaining atoms, we
must choose from those outside the union of NB(yp) and NB(yq). From (r −(2s−1))
elements, we can pick any s − 1 for y. We have by assumption (M6) that

P(E) =
( s

r

)

(r−2s+1
s−1

)

(r−1
s−1

) . (10)

Next, we calculate

(r−2s+1
s−1

)

(r−1
s−1

) = (r − 2s + 1)!
(r − 3s + 2)! · (r − s)!

(r − 1)!

= (r − 3s + 3)(r − 3s + 4) . . . (r − 2s)(r − 2s + 1)

(r − s + 1)(r − s + 2) . . . (r − 2)(r − 1)

=
(

1 − 2s − 2

r − s + 1

) (

1 − 2s − 2

r − s + 2

)

. . .

(

1 − 2s − 2

r − 2

) (

1 − 2s − 2

r − 1

)

>

(

1 − 2(s − 1)

r − (s − 1)

)s−1

≥ exp

(

− 2(s − 1)2

r − (s − 1)

)

.

The last inequality is obtained by truncating the Taylor expansion of e−x .
Therefore, from Eq. (10), we can conclude that

P(E) ≥ 3s

4r
. (11)

For each signal yk , where 1 ≤ k ≤ n, define the random variable Ik where

Ik = 1; if NB(yk) ∩ NB(yp) = {az} and NB(yk) ∩ NB(yp) = {az},
Ik = 0; otherwise.
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Let Sn = I1 + I2 + · · · + In be their sum. By Eq. (11) and Lemma1,

P

(

Sn <
3ns

8r

)

≤ exp

(

−9ns2

32r2

)

.

If yk belongs to the set G, it must be true that |〈yk, yp〉| > τ and |〈yk, yp〉| > τ , for
some threshold value τ . We proceed to verify that if |NB(yk) ∩ NB(yp)| = 1, then
there is a threshold value τ such that |〈yk, yp〉| > τ .

∣

∣〈yk, yp〉
∣

∣ =
∣

∣

∣

∣

∣

∣

∑

i

∑

j

xi (k)x j (p)〈ai , a j 〉
∣

∣

∣

∣

∣

∣

≥ |xz(k)xz(p)| · ‖az‖22 −
∑ ∑

i �= j

∣

∣xi (k)x j (p)〈ai , a j 〉
∣

∣

≥ α2 − s2β2μ.

Similarly, if |NB(yk) ∩ NB(yq)| = 1, then |〈yk, yq〉| > α2 − s2β2μ.
Therefore, we can conclude that |G| = Sn and the inequality (9) is valid. ��
Proposition 6 rests on the assumption that we have identified a pair of signals which

share exactly one atom in common. In practice, Algorithm 2 fulfills this assumption
with high probability. We can now complete the proof of Theorem 1. The conclusion
of Theorem 1 follows immediately from the next theorem. The two theorems are
equivalent to each other.

Theorem 3 With overwhelmingly high probability, we can nearly recover all the atoms
in the dictionary. More precisely, under the general model assumptions, when there
are n signals in the sample, all the atoms in the dictionary can be nearly recovered,
with probability at least

1 − r exp

(

−ns2

2r2

)

.

Proof Fix an index u ∈ {1, 2, . . . , r} and let au be a dictionary atom. Let Q be the set
of all signals that share the atom, Q = {y : aw ∈ NB(y)}. Then, for each signal yk ,
where 1 ≤ k ≤ n, by assumption (M6), we have

P (yk ∈ Q) =
(r−1
s−1

)

(r
s

) = s

r
.

For each k = 1, 2, . . . , n, define the random variable Ik by Ik = 1, if yk ∈ Q, and
otherwise, Ik = 0. In other words, Ik is the indicator variable for whether yk ∈ Q. By
definition, |Q| = I1 + I2 + · · · + In and E(I j ) = s

r for each j . By Lemma1, we have

P
(

|Q| ≤ ns

2r

)

≤ exp

(

−ns2

2r2

)

. (12)
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We have established that for a given atom in the dictionary, there is an overwhelmingly
high probability that there is a sufficiently large cluster of signals that share that atom
in common. Given a cluster of signals for that particular atom, we can recover that
atom with an overwhelmingly high probability, by Propositions 5 and 6.

It remains to establish a union bound in order to prove that we can recover all the
atoms in the dictionary with high probability. From Eq. (12),

P
(

∃ u ∈ {1, 2, . . . , r} such that |{y : au ∈ NB(y)}| ≤ ns

2r

)

≤ r exp

(

−ns2

2r2

)

.

which implies that

P
(

∀ u ∈ {1, 2, . . . , r}, |{y : au ∈ NB(y)}| ≥ ns

2r

)

≥ 1 − r exp

(

−ns2

2r2

)

.

��
Finally, to see that this theorem is equivalent to Theorem 1, note that as soon as

n = O(r2 log(r)), the probability becomes at least 1 − O(1/r2).

7 Numerical Experiments

We conduct experiments with our data process to show that under some conditions, our
modified clustering + eigenvector-based atom extraction procedure can fully recover
the atoms of the original dictionary and reasonably reconstruct the original signal
matrix Y without an alternating minimization step. To reconstruct the data, after the
recovered dictionary Dpred is created by P1,weuse themethod of orthogonalmatching
pursuit (OMP) to form a recovered sparse matrix Xpred . We use OMP because it is
a fast and an easily comparable baseline used widely in the literature. We perform 2
sets of experiments; when the true dictionary D is an orthogonal basis and when D is
overcomplete.

7.1 Square Dictionaries

We set the following parameters of our model: n = 2048, d = 256, s = 3, β = 10,
α = {1, 3}, γ = 8, and r = 256. To be clear, this means that the dictionary has 256
atoms, the collection of data has 2048 signals, and each signal in R256 is 3-sparse. We
remind the reader that a signal is 3-sparse means that it is a linear combination of at
most 3 atoms, and setting the value of β to 10means the largest of the three coefficients
is 10. The original dictionary D for the data generating process is a Discrete Cosine
Transform (DCT)matrix.We use the DCT dictionary because it is a standard choice in
the literature. We choose n, d, s based on similar values used in the literature (Aharon
et al. 2006), and we choose α, β, γ , and r to illustrate the reconstruction of signals.
We implement each experiment in MATLAB on a computer with a Core i7-4650U
processor and 8GB of RAM.
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We use two metrics to judge the efficacy of our algorithm. The first is the minimum
recovery . It is the minimum inner product that any of the recovered atoms make with
a true dictionary atom, without taking the sign of the recovered atom into account. ν
is calculated as:

ν = min
â∈Dpred

max
a∈D

∣

∣

∣

∣

(

||̂a − εa||2 − 1

)∣

∣

∣

∣

,

where Dpred is the recovered dictionary, D is the true dictionary, || · ||2 is the vector L2

norm, and ε ∈ {−1, 1}. This metric is multiplied by 100 and reported as a percentage.
Our second metric is the relative error of the reconstruction of Y , defined as

relative reconstruction error = ||Dpred Xpred − Y ||2
||Y ||2 .

where || · ||2 indicates the spectral norm of a matrix (2-norm, or largest singular value),
and Dpred and Xpred are, respectively, the dictionary recovered by P1, and the sparse
matrix recovered by OMP against Dpred .

For the α = 1 case, our correlation threshold is τ1 = 2(1)(10) + (1)(1) = 21.
We run our procedure P1 to construct the dictionary, and follow it with OMP to
reconstruct X . We perform this experiment five times and average the metrics below.
Our algorithm scans through all possible clusters of signals and stops when it has
extracted 256 atoms. It therefore has the significant benefit of determining the number
of atoms in the dictionary without a priori knowledge. Each of these 256 atoms is well
recovered, as ν = 99.91%. Similarly, we reconstruct the data as well, with a relative
reconstruction error of 8.19%.

For the α = 3 case, our correlation threshold is τ1 = 2(3)(10) + (1)(9) = 69. We
use the same experimental setup as in the α = 1 case. We perform this experiment
five times. In all five runs, P1 stops after recovering all 256 atoms, again illustrating
the automatic atom number determination that this approach enjoys. We also again
recover all atoms, with ν = 99.31%. To be clear, the dictionary has 256 atoms, the
collection of data has 2048 signals, and each signal in R

256 is 3-sparse. In the α = 3
case, our relative reconstruction error is 21.64%. While this is larger than the α = 1
case, we suspected that, due to the near-perfect atom recovery rate, the error must
mostly be due to the sparse coding process governed by OMP. Indeed this is the case:
we found that although X pred recovers almost every β-valued entry, it occasionally
has flipped signs. Because in this work wemainly focus on the dictionary construction
method, we do not attempt to improve this error rate; however, it is possible that it
may be improved through the use of a sparse coding method more sophisticated than
OMP.

7.2 Overcomplete Dictionaries

For our next set of experiments, we consider the scenario when the true dictionary D is
overcomplete, i.e. when the number of columns are far greater than the number of rows.
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Table 1 Parameters and
minimum recovery (ν) for
overcomplete dictionary
recovery experiments in
Sect. 7.2

d r β α s γ n ν (%)

300 600 10 2 4 4 2400 98.99

300 600 10 2 5 4 2400 98.77

300 600 10 2 4 5 3000 99.06

300 600 10 2 5 5 3000 98.66

300 600 10 2 4 6 3600 99.39

300 600 10 2 5 6 3600 99.14

300 600 16 4 5 4 2400 98.14

In applications, the number of dictionary atoms usually far exceeds the dimension of
each atom. We continue to assume that the dictionary has small coherence.

We start by constructing a dictionary D ∈ R
300×600 by a procedure similar to the

one suggested in Bandeira et al. (2017). The construction proceeds by first creating a
DCT matrix of size 600 × 600, and then selecting 300 rows from it. We set β = 10,
α = 2, s ∈ {4, 5}, and γ ∈ {4, 5, 6}. Note that the setting of s is the tightest possible
for our requirement that r ≥ 19s3 from the definition of ε1 in Algorithm 1. We
also perform one experiment with β = 16 and α = 4. Recall that s is the sparsity
parameter of our data generating process, and γ is the true cluster size parameter.
For all experiments, εA = 0.3 and μ = 0. We calculate τ1 according to Sect. 5. The
sparse matrix X is calculated according to our data generating process, and r , the true
number of atoms, is set to 600k, so that the sparse matrix X ∈ R

600×600k and the
signal matrix Y ∈ R

300×600k . For this experiment, the coherence of our dictionary is
orders of magnitude larger than that of a square DCTmatrix, so we expect a somewhat
smaller ν than in the section above. Results are reported in Table 1. We see that ν is
indeed smaller, but onlymarginally. Almost all atoms are recoveredwell. The recovery
rate is robust to the realistic range of γ and s.

7.3 Comparison with Existing AlgorithmicWork

Our algorithm is similar in form to the initialization algorithm InitDictionaryLearn
of Agarwal et al. However, our analysis under the condition of the “spiked” signal
model (wherein a signal is primarily constructed from one atom, with noise from
others) results in an algorithm with significantly improved ability to recover atoms.
Consequently, our work is the first that we are aware of in which a dictionary initial-
ization algorithm is capable of recovering all atoms with high probability. Existing
work has applied initialization algorithms with limited success. In Agarwal et al.
(2014), a comparison between the initialization algorithm and initialization followed
by alternatingminimization is undertaken, and the resulting recovery error incurred by
initialization is 0.56 (which corresponds to ν = 44% in our ownmetric). The recovery
error incurred after five full rounds of alternating minimization after initialization is
near zero. The authors conclude that their initialization algorithm is not sufficient to
obtain an estimate of the dictionary up to reasonable accuracy. As our experimental
results show, Algorithm1 does not encounter the same challenge.
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7.4 Computational Requirements

The computational complexity of Algorithm1 is similar to that of InitDic-
tionaryLearn. As a randomized algorithm over pairs of signals, the chief com-
putational burden in both algorithms arises from testing the potentially large number
of pairs to find “good” clusters. As such, the worst-case complexity of our algorithm
is dominated by O(n2), but runs much faster in practice, as the problem is embar-
rassingly parallel, and our implementation takes advantage of this fact. Given the
simplicity of exploiting the parallelism, we assume that Agarwal et al. take similar
advantage. Although an analysis of the computational complexity of the initialization
algorithm is not provided in Agarwal et al. (2014), the similar form of our algorithms
implies that the dominating term is the same.

Themajor difference between our algorithm’s computational complexity and that of
Agarwal et al. lies in the work performed to solve the full dictionary learning problem.
While our method is comprised of initialization followed by OMP or another sparse
vector recovery procedure, Agarwal et al. require initialization followed by alternating
minimization. Alternating minimization itself requires both a sparse vector recovery
step and a least squares step. As the least squares step essentially relies on computing
the pseudoinverse of X, the AltMinDict algorithm of Agarwal et al. requires an
additional O(n2.3) or greater operation per iteration. Our computational savings in
our dictionary learning solution are provided by our algorithm’s ability to complete
full atom recovery during initialization, rather than throughout both initialization and
the following procedure.

8 Conclusion

Our work shows that it is indeed possible to perform dictionary learning using only
a “clustering and atom extraction” initialization algorithm paired with a sparse cod-
ing algorithm, and theoretically guarantees its efficacy under our model assumptions.
This allows us to bypass the requirement of running an alternatingminimization proce-
dure, and may indicate that other data generating processes enjoy this same empirical
performance. We leave the construction of new data generating processes and their
theoretical and empirical analysis to future research.
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