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Abstract
We study the existence of a solution to the mixed boundary value problem for
Helmholtz and Poisson type equations in a bounded Lipschitz domain � ⊂ R

N and
in R

N\� for N ≥ 3. The boundary ∂� of � is the decomposition of �1, �2 ⊂ ∂�

such that ∂� = � = �1 ∪ �2 = �1 ∪ �2 and �1 ∩ �2 = ∅. We have shown that
if the Neumann data f2 ∈ H− 1

2 (�2) and the Dirichlet data f1 ∈ H
1
2 (�1) then the

Helmholtz problem with mixed boundary data admits a unique solution. We have also
shown the existence of a weak solution to a mixed boundary value problem governed
by the Poisson equation with a measure data and the Dirichlet, Neumann data belongs

to f1 ∈ H
1
2 (�1), f2 ∈ H− 1

2 (�2), respectively.

Keywords Mixed boundary value problem · Sobolev space · Newton potential ·
Boundary integral operator · Layer potentials · Radon measure

Mathematics Subject Classification 35J25 · 31B10 · 35J20

1 Introduction

The Poisson problem with mixed Dirichlet–Neumann boundary conditions deals with
conductivity, heat transfer,metallurgicalmelting,wavephenomena, elasticity and elec-
trostatics in mathematical physics and engineering. The detailed applications can be
found in Dauge (1992), Fabrikant (1991), Jochmann (1999), Lagnese (1983), Maz’ya
and Rossmann (2006), Rempel and Schulze (1989), Simanca (1988), Sneddon (1966),
Wendland et al. (1979) and the references therein.A commonproblemof interest found
in the literature is the following mixed boundary value (MBVP).
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Lu = h in �,

u = f on �1,

Mu = g on �2,

(1.1)

where, � is a bounded Lipschitz domain in R
N for N ≥ 3. The boundary of �, which

will be denoted by �, is the disjoint union of �1 and �2 which are subsets of � such
that �1 ∪ �2 = �1 ∪ �2 = � and �1 ∩ �2 = ∅. Further, L is a second order elliptic
operator, M is a general first order oblique differential operator on �2.
Lieberman (1986, 1989) considered the problem (1.1) and proved the existence and
Hölder continuity of classical solutions with smooth data. The techniques used in the
corresponding Dirichlet problem (�2 = ∅) and oblique derivative problem (� = �2)
of (1.1) are helpful to show the existence of solutions to the mixed boundary value
problem. It is worth to mention the work due to Azzam and Kreyszig (1982), as
they have provided the regularity result for MBVP in a plane domain with corners,
where the Dirichlet data belongs to C2,α(�\{0}) and the remaining boundary data is
in C1,α(�\{0}). The work due to Sykes and Brown (2001) deals with the boundary
regularity of problem (1.1) with Dirichlet and Neumann boundary conditions where
L is the Laplacian operator, h = 0 in �, g ∈ L p(�2), f ∈ W 1,p(�1) for 1 < p ≤ 2
and the angle between �1, �2 should be strictly less than π in the interface. Sykes and
Brown (2001) drewmotivation from Brown (1994), who considered the two boundary
data as f ∈ H1(�1) and g ∈ L2(�2).

Not much of literature is found for MBVP involving a measure data, although
Liang and Rodrigues (1996) considered a problem involving measure data both on
the domain and on the boundary �2. Some work has been done by Gallouët and Sire
(2011), where the nonlinearity lies on the boundary with measure supported on the
domain � and on the boundary �2. The MBVP in Gallouët and Sire (2011) posessess
a weak solution u in W 1,q(�), for all 1 < q < N

N−1 and the trace of u on � lies in

W 1− 1
q ,q

(�), for all 1 ≤ q < N
N−1 .

In this article we have considered the following two mixed boundary value prob-
lems. The first problem (P1) is

−�u − λ2u = h in �,

u = f1 on �1,

∂u

∂ n̂
= f2 on �2

(1.2)

and

−�u − λ2u = 0 in R
N\�̄,

u = f1 on �1,

∂u

∂ n̂
= f2 on �2,

(1.3)

where u satisfies the following conditions at infinity, i.e. |x | → ∞.
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For λ = 0

u(x) = O(|x |2−N ). (1.4)

For λ �= 0 (Sommerfeld’s radiation condition)

u(x) = O(|x | 1−N
2 ),

∂u(x)

∂|x | − iλu(x) = o(|x | 1−N
2 ).

(1.5)

The second problem (P2) is

−�u = μ in �,

u = f1 on �1,

∂u

∂ n̂
= f2 on �2

(1.6)

and

−�u = 0 in R
N\�̄,

u = f1 on �1,

∂u

∂ n̂
= f2 on �2,

(1.7)

where u satisfies

|u(x)| + |x ||∇u(x)| = O(|x |2−N ), as |x | → ∞. (1.8)

Throughout the article ∂u
∂ n̂ will represent the normal derivative with respect to the

outward unit normal n̂ to the boundary, f1 ∈ H
1
2 (�1), f2 ∈ H− 1

2 (�2) are boundary
data, h ∈ ˜H−1(�), μ will denote a bounded Radon measure, λ ∈ C with Im(λ) ≥ 0
and λ2 will be different from the eigenvalues of the Laplacian (−�). We will, at
some places, refer problem (1.2), (1.6) as interior problems (IP1), (IP2) respectively
and (1.3), (1.7) as exterior problems (EP1), (EP2) respectively. This work is motivated
from thework of Chang andChoe (2008) and Ernst (1987)where the authors have used
the method of layer potentials to show the uniqueness of solution to the homogeneous
mixed boundary value problem in both interior and exterior domains. Chang and Choe
(2008) has shown that for h = 0 and λ = 0 the solution u belongs to H1(�) for the
interior problem and belongs to H1

loc(R
N\�̄) for the exterior problem. This u also

satisfies the following inequality.

‖u‖H1/2(�1)
+

∥

∥

∥

∥

∂u

∂ n̂

∥

∥

∥

∥

H−1/2(�2)

≤ C
{‖ f1‖H1/2(�1)

+ ‖ f2‖H−1/2(�2)

}

where C is independent of f1, f2 and h.
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The novelty of our work is the consideration of two nonhomogenous mixed boundary
value problems and a Radon measure μ as a nonhomogeneous term in (P2), for which
the solution space becomes weaker than the Sobolev space H1(�). We have shown
the existence of a unique solution to the problem (P1) by boundary layer method in
Sect. 3 using the representation formula of solution and the invertibility of boundary
layer operators of Helmholtz equation given in Sects. 2.1 and 2.2, respectively. Due
to insufficient given boundary data, we have also found out the cauchy data, i.e. u|�
and ∂u

∂ n̂

∣

∣

�
for the problem (P1). On applying this method, we get unique solutions to

the approximating problems to (P2) and then guarantee the existence of solution to
the problem (P2). The Helmholtz operator (−� − λ2) is not a coercive operator, so
we discuss the problem (P2) with the Laplace operator (−�). Since the continuous
embeddings in Lebesgue spaces andMarcinkiewicz spaces fail in unbounded domains,
we have not considered measures in the problem (1.7) and in the boundary conditions.

2 Preliminary Definitions and Properties of Boundary Layer
Potentials

Wewill denote several constants byC which can only depend on�, N and independent
of the indices of the sequences. The value of C can be different from line to line and
sometimes, on the same line.
For 1 ≤ p ≤ ∞ and a nonnegative integer k, the Sobolev space Wk,p(�) Evans
(2010) is defined as

Wk,p(�) = {u ∈ L p(�) : Dγ u ∈ L p(�), for |γ | ≤ k}

and the norm on vectors in Wk,p(�) is defined as

‖u‖Wk,p(�) =
∑

|γ |≤k

∥

∥Dγ u
∥

∥

L p(�)

where � is a domain in R
N . We denote Wk,p

loc (�) to be the local Sobolev space such
that for any compact K ⊂ �, u ∈ Wk,p(K ). For 0 < α < 1, we define the Sobolev
space Wα,p(�) as

Wα,p(�) = {u ∈ L p(�) : ‖u‖p
Wα,p(�) = ‖u‖p

L p(�)

+
∫

�

∫

�

|u(x) − u(y)|p
|x − y|n+pα

dydx < ∞}.

Let � be a bounded Lipschitz domain in R
N , N ≥ 3. We now introduce the following

Sobolev spaces. For p = 2, s ∈ R and 0 ≤ α ≤ 1,

1. Hs(RN ) = {u : ∫

RN (1 + |ξ |2)s/2û(ξ)ei2πξ.xdξ ∈ L2(RN )}, û is the Fourier
transform of u. This space is a separable Hilbert space.

2. Hs(�) = {u|� : u ∈ Hs(RN )}
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3. ˜Hs(�) = Closure of C∞
0 (�) in Hs(RN ). For further details on these Sobolev

spaces one may refer to Hsiao and Wendland (2008) Chapter 4.

4. Hα(�) =
{

{g|� : g ∈ H
1
2+α(�)}, (0 < α ≤ 1)

L2(�) (α = 0),
5. Hα(�i ) = {g|�i : g ∈ Hα(�)},
6. ˜Hα(�i ) = {g|�i : g ∈ Hα(�), supp(g) ⊂ �i }, i = 1, 2.

Let H−α(�) is the dual space of Hα(�), i.e. H−α(�) = (Hα(�))∗. Equivalently, for
i = 1, 2, H−α(�i ) = ( ˜Hα(�i ))

∗ and ˜H−α(�i ) = (Hα(�i ))
∗.

We denote 〈·, ·〉� as the duality pairing between Hα(�) and H−α(�) given by
〈 f , g〉� = ∫

�
f (z)g(z)dsz for any f ∈ Hα(�) and g ∈ H−α(�). Similarly, 〈·, ·〉�i is

the duality pairing between Hα(�i ) and ˜H−α(�i ) (or H−α(�i ) and ˜Hα(�i )), i = 1, 2.
Since ˜Hα(�i ), i = 1, 2, is a reflexive space, the operator

J : ˜Hα(�i ) → ( ˜Hα(�i ))
∗∗ = (H−α(�i ))

∗

is a bijection. Hence, for any f ′ ∈ (H−α(�i ))
∗ there exists a unique f ∈ ˜Hα(�i ) such

that J ( f ) = f ′. For g ∈ H−α(�i ) we define 〈〈·, ·〉〉 by the duality pairing between
H−α(�i ) and (H−α(�i ))

∗ such that

〈〈 f ′, g〉〉 = 〈g, f 〉�i .

Definition 2.1 An open set � ⊂ R
N is said to be a Lipschitz domain if for each

P ∈ ∂� there exist a rectangular coordinate system, (x, z) such that x ∈ R
N−1, z ∈ R,

a neighborhood U (P) = U ⊂ R
N and a function ϕ : R

N−1 → R such that

1. |ϕ(x) − ϕ(y)| ≤ C |x − y|, ∀ x, y ∈ R
N−1,

2. U ∩ � = {(x, z) : z > ϕ(x)} ∩U .

Definition 2.2 The Marcinkiewicz space denoted as Mr (�) (or weak Lr (�) space),
for every 0 < r < ∞, consists of all measurable functions g : � → R such that

m ({x ∈ � : |g(x)| > b}) ≤ C

br
, b > 0,C < ∞,

where m is the Lebesgue measure. In fact in the case of bounded domain �, for any
fixed r̄ > 0 we observe Mr (�) ⊂ Mr̄ (�) for r ≥ r̄ . Furthermore, the embeddings

Lr (�) ↪→ Mr (�) ↪→ Lr−ε(�), (2.1)

is continuous for every 1 < r < ∞ and 0 < ε < r − 1.

Definition 2.3 (Fredholm operator) Let X and Y are two Banach spaces and A is a
bounded linear operator from X to Y . Then A is said to be a Fredholm operator if its
kernel (ker(A)) and cokernel (coker(A)) = Y/Range(A) are finite dimensional.
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Remark 2.4 1. The “Fredholmness” of an operator A ensures that Range(A) is closed.
2. The index of a Fredholm operator A is given by ind(A)=dim(ker(A))-

dim(coker(A)).

The following two theorems are borrowed from Driver (2003) which show the rela-
tionship between a Fredholm operator and a compact operator.

Theorem 2.5 For a bounded linear operator A : X → Y , the following two statements
are equivalent.

1. A is a Fredholm operator.
2. A is an invertible modulo compact operators, i.e. there exist compact operators

C1,C2 and an operator B such that AB = I + C1 and BA = I + C2.

Theorem 2.6 If A is a Fredholm opertor then ind(A) = 0 iff A = A1 + A2, where A1
is an invertible operator and A2 is a compact operator.

Definition 2.7 The space of all finite Radon measures on � ⊂ R
N , is denoted as

M(�). For μ ∈ M(�) we define

‖μ‖M(�) =
∫

�

d|μ|,

which is called the ‘Total variation’ norm.

We now define the weak solution of the first problem (P1).

Definition 2.8 Let X and Y are two test function spaces defined as X = {ϕ ∈ C1(�̄) :
ϕ|�1 = 0} and Y = {ζ ∈ C1

c (R
N\(�)) : ζ |�1 = 0 and satisfies (1.4) and (1.5)}. A

function u ∈ W 1,1(�) is a weak solution to the problem (1.2) if it satisfies

∫

�

∇u · ∇ϕ −
∫

�

λ2uϕ =
∫

�

hϕ +
∫

�2

f2ϕ, ∀ϕ ∈ X .

Similarly a function u ∈ W 1,1
loc (RN\�̄) is said to be a weak solution of (1.3) if

∫

RN \�̄
∇u · ∇ζ −

∫

RN \�̄
λ2uζ = −

∫

�2

f2ζ, ∀ζ ∈ Y .

Remark 2.9 Hereafter, a subsequence of a sequence will be denoted by the same nota-
tion as that of the sequence. Further a solution will always refer to a weak solution.

We further we denote� as the fundamental solution of Helmholtz equation for N ≥ 3
which satisfies −�� − λ2� = δ, where δ is the Dirac distribution and � is

�(x, y) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
(N−2)wN

1
|x−y|N−2 , for λ = 0

eiλ|x−y|
4π |x−y| , for λ �= 0, N = 3

i
4

(

λ
2π(|x−y|)

) N−2
2

H (1)
N−2
2

(λ|x − y|), for λ �= 0, N ≥ 3
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for every x, y ∈ R
N , x �= y. HerewN is the measure of the unit sphere inR

N and H (1)
m

denotes the Hankel function of the first kind of order m. We next define, boundary
layer potentials (single layer and double layer) to solve the homogeneous Helmholtz
equation in R

N . Let g1 ∈ Hα(�), g2 ∈ H−α(�) for some 0 ≤ α ≤ 1, then the single
layer potential is given by,

v1(x) = Sλg2(x)

=
∫

�

g2(y)�(x − y)dy, ∀ x ∈ R
N\� (2.2)

and the double layer potential is by

v2(x) = Kλg1(x)

=
∫

�

g1(y)
∂

∂ n̂ y
�(x − y)dy, ∀ x ∈ R

N\� (2.3)

where n̂ y denotes the unit outward normal to the boundary �. We can see that for
x ∈ R

N\� the above two kernels are C∞ functions on �.
If P ∈ �, then X(P) denotes a cone with vertex at P such that one component is

in � which is denoted by Xi (P) and the other is in R
N\�̄ denoted by Xe(P).

Definition 2.10 Let P ∈ �, then we define

Sλg2(P) =
∫

�

g2(y)�(P − y)dy

and

Kλg1(P) =
∫

�

g1(y)
∂

∂ n̂ y
�(P − y)dy.

According to the Lemma 3.8 of Costabel and Stephan (1985) the boundary values of
the two potentials in (2.2) and (2.3) are given by

vi1(P) = lim
Xi (P),x→P

Sλg2(x)

= Sλg2(P),

(2.4)

ve1(P) = lim
Xe(P),x→P

Sλg2(x)

= Sλg2(P)
(2.5)

and

vi2(P) = lim
Xi (P),x→P

Kλg1(x)

=
(

−1

2
I + Kλ

)

g1(P), (2.6)
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ve2(P) = lim
Xe(P),x→P

Kλg1(x)

=
(

1

2
I + Kλ

)

g1(P). (2.7)

In case of inhomogeneous Helmholtz equation −�u − λ2u = h in �, where h ∈
˜H−1(�), the Newton potential (or Volume potential) appears in the form,

Nλh(x) =
∫

�

�(x − y)h(y)dy, x ∈ R
N .

It is well known that the Newton potential Nλ : ˜H−1(�) → H1(�) is a continuous
map by McLean and McLean (2000); Steinbach (2007). From Nečas (2011) we know

the Dirichlet trace operator, γD : H1(�) → H
1
2 (�) and the Neumann trace operator,

γN : H1(�) → H− 1
2 (�), are continuous operators. The Dirichlet trace operator of

Nλ denoted as γDNλ is given by

γDNλ(h(P)) = lim
x→P

Nλh(x), ∀P ∈ �.

Thus

‖γDNλ(h)‖
H

1
2 (�)

≤ C ‖Nλ(h)‖H1(�)

≤ C ‖h‖
˜H−1(�) .

The Neumann trace of Nλ is denoted as γNNλ and hence it satisfies

‖γNNλ(h)‖
H− 1

2 (�)
≤ C ‖h‖

˜H−1(�) .

Let us fix α = 1
2 . Consider the single layer potential v1(x) = Sλg2(x), for g2 ∈

H− 1
2 (�). Then v1 solves the Helmholtz equation in R

N\�. Thus v1 ∈ H1(�) for
(IP1), v1 ∈ H1

loc(R
N\�̄) for (EP1) and satisfies (1.4)–(1.5) at infinity. We now define

the ouward normal derivative of v1, i.e.
∂v1
∂ n̂ that belongs to H− 1

2 (�). Let us choose

h1, h2 ∈ H
1
2 (�). We will denote h∗

1, h∗
2 to be the extensions of h1, h2 respectively

such that

∥

∥h∗
1

∥

∥

H1(�)
≤ C ‖h1‖

H
1
2 (�)

,
∥

∥h∗
2

∥

∥

H1(RN \�̄)
≤ C ‖h2‖

H
1
2 (�)

(2.8)

for some constant C > 0 which does not depend on h1 and h2 by Jonsson and Wallin
(1978). Define
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〈

∂v1

∂ n̂
, h1

〉

�

=
∫

�

∇v1 · ∇h∗
1 −

∫

�

λ2v1h
∗
1,

〈

∂v1

∂ n̂
, h2

〉

�

= −
∫

RN \�̄
∇v1 · ∇h∗

2 +
∫

RN \�̄
λ2v1h

∗
2.

(2.9)

We have from Costabel and Stephan (1985) that for every P ∈ �,

∂vi1(P)

∂ n̂
= lim

Xi (P),x→P

∂v1(x)

∂ n̂

=
(

1

2
I + K ∗

λ

)

g2(P)

(2.10)

and

∂ve1(P)

∂ n̂
= lim

Xe(P),x→P

∂v1(x)

∂ n̂

=
(

− 1

2
I + K ∗

λ

)

g2(P)

(2.11)

where K ∗
λ is the adjoint operator of Kλ defined as

K ∗
λg1(P) =

∫

�

∂

∂ n̂ P
�(P − y)g1(y)dy.

Similarly, in case of double layer potential v2(x) = Kλg1(x) for g1 ∈ H
1
2 (�), ∂v2

∂ n̂ ∈
H− 1

2 (�) which satisfies (2.8) and (2.9). Let us define an operator Dλ : H
1
2 (�) →

H− 1
2 (�) as in Costabel and Stephan (1985) such that for every P ∈ �,

Dλg1(P) = ∂

∂ n̂ P
Kλg1(P) (2.12)

and

lim
Xi (P),x→P

∂

∂ n̂x
Kλg1(x) = lim

Xe(P),x→P

∂

∂ n̂x
Kλg1(x)

= Dλg1(P). (2.13)

Lemma 2.11 The operators

1. Sλ : H− 1
2 (�) → H

1
2 (�),

2.
( ± 1

2 I + Kλ

) : H 1
2 (�) → H

1
2 (�),

3.
( ± 1

2 I + K ∗
λ

) : H− 1
2 (�) → H− 1

2 (�),

4. Dλ : H 1
2 (�) → H− 1

2 (�)

are continuous by Costabel and Stephan (1985).
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2.1 Derivation of Representation Formulae

Let� be a bounded Lipschitz domain inR
N and�1∪�2 = �1∪�2 = �,�1∩�2 = ∅.

For g1 ∈ ˜H
1
2 (�i ), i = 1, 2, we denote the zero extension function g̃1 of g1 by

g̃1 =
{

g1 in �i

0 in �\�i , i = 1, 2.

Clearly, g̃1 ∈ H
1
2 (�). Similarly, for g2 ∈ ˜H− 1

2 (�i ), i = 1, 2, we extend g2 to a

function g̃2 ∈ H− 1
2 (�). We now introduce the following operators.

Si j : ˜H− 1
2 (�i ) → H

1
2 (� j ), Si j g2 = Sλg̃2|� j for g2 ∈ ˜H− 1

2 (�i ),

Ki j : ˜H
1
2 (�i ) → H

1
2 (� j ), Ki j g1 = Kλg̃1|� j for g1 ∈ ˜H

1
2 (�i ),

K ∗
i j : ˜H− 1

2 (�i ) → H− 1
2 (� j ), K ∗

i j g2 = K ∗
λ g̃2|� j for g2 ∈ ˜H− 1

2 (�i ),

Di j : ˜H
1
2 (�i ) → H− 1

2 (� j ), Di j g1 = Dλg̃1|� j for g1 ∈ ˜H
1
2 (�i ).

Let us consider u ∈ H1(�) be a solution to the Helmholtz equation −�u − λ2u = h
in � and u ∈ H1

loc(R
N\�̄) satisfies −�u −λ2u = 0 in R

N\�̄ along with (1.4)-(1.5).
On using Lemma 3.1 of Costabel and Stephan (1985), we obtain the Green’s second
identity

∫

�

u�v − v�u =
∫

�

u
∂v

∂ n̂
− v

∂u

∂ n̂
.

Whenwe replace v with�, the fundamental solution of Helmholtz equation, we obtain
the following.

∫

�

u(y)��(x, y) − �u(y)�(x, y) =
∫

�

u(y)
∂�(x, y)

∂ n̂
− �(x, y)

∂u(y)

∂ n̂

u(x) =
∫

�

�(x, y)h(y) −
∫

�

u(y)
∂�(x, y)

∂ n̂

− �(x, y)
∂u(y)

∂ n̂
. (2.14)

Let Br = {z ∈ R
N : |z| = r} and Dr = {x ∈ R

N\�̄ : |x | < r}. On applying the
Green’s second identity in the domain Dr we get

u(x) = −
∫

Dr

u(y)��(x, y) − �u(y)�(x, y)

= −
∫

Br
u(y)

∂�(x, y)

∂ n̂
− �(x, y)

∂u(y)

∂ n̂
+

∫

�

u(y)
∂�(x, y)

∂ n̂
− �(x, y)

∂u(y)

∂ n̂
.

(2.15)
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On passing the limit r → ∞ and by using (1.4)–(1.5) we see that

∫

Br
u(y)

∂�(x, y)

∂ n̂
− �(x, y)

∂u(y)

∂ n̂
→ 0.

Let us denote the Cauchy data as (φ,ψ) ∈ H
1
2 (�) × H− 1

2 (�), where u|� = φ and
∂u
∂ n̂

∣

∣

�
= ψ . On combining (2.14) and (2.15), we can express u as

u(x) =
{

Nλh(x) − Kλφ(x) + Sλψ(x), if x ∈ �

Kλφ(x) − Sλψ(x), if x ∈ R
N\�̄.

(2.16)

Consider (P1), with the boundary data u|�1 = f1 ∈ H
1
2 (�1) and ∂u

∂ n̂ |�2 = f2 ∈
H− 1

2 (�2). For simplicity, we restrict ourselves to the interior mixed boundary value
problem (1.2). Obviously the corresponding results for the exterior problem (1.3) are
obtained by only slight modifications. Furthermore, we say f̊1, f̊2 are the extensions
of f1 and f2 respectively, which satisfy

∥

∥

∥ f̊1
∥

∥

∥

H
1
2 (�)

≤ C ‖ f1‖
H

1
2 (�1)

(2.17)

and

∥

∥

∥ f̊2
∥

∥

∥

H− 1
2 (�)

≤ C ‖ f2‖
H− 1

2 (�2)
. (2.18)

The above extension is possible since we know ∂�1 = ∂�2 and � is Lipschitz [3].
Let us define φ = f̊1 + g̃1 and ψ = f̊2 + g̃2, where g̃1 and g̃2 are arbitrary functions

in H
1
2 (�) and H− 1

2 (�), respectively. Here g̃1 is the zero extension of g1 ∈ ˜H
1
2 (�2)

and g̃2 is the zero extension of g2 ∈ ˜H− 1
2 (�1). The representation (2.16) is used to

express the solutions of problem (1.2) as

u(x) = Nλh(x) − Kλ( f̊1 + g̃1)(x) + Sλ( f̊2 + g̃2)(x). (2.19)

On restricting the Eq. (2.19) to � we get,

f̊1 + g̃1 = γDNλh −
(

−1

2
I + Kλ

)

( f̊1 + g̃1) − Sλ( f̊2 + g̃2).
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On �1 we have the following,

f1 = γDNλh|�1 −
(

−1

2
I + Kλ

)

( f̊1 + g̃1)
∣

∣

∣

�1
+ Sλ( f̊2 + g̃2)

∣

∣

�1

= γDNλh|�1 − K21g1 −
(

−1

2
I + Kλ

)

f̊1
∣

∣

∣

�1
+ S11g2 + Sλ f̊2

∣

∣

�1

K21g1 − S11g2 = − f1 + γDNλh|�1 −
(

−1

2
I + Kλ

)

f̊1
∣

∣

∣

�1
+ Sλ f̊2

∣

∣

�1

= F∗( f1, f2, h) (say). (2.20)

Taking the Neumann trace of (2.19) we have

f̊2 + g̃2 = γNNλh − Dλ( f̊1 + g̃1) +
(

1

2
I + K ∗

λ

)

( f̊2 + g̃2).

Similarly on �2,

f2 = γNNλh|�2 − Dλ( f̊1 + g̃1)
∣

∣

�2
+

(

1

2
I + K ∗

λ

)

( f̊2 + g̃2)
∣

∣

∣

�2

= γNNλh|�2 − D22g1 − D f̊1
∣

∣

�2
+ K ∗

12g2 +
(

1

2
I + K ∗

λ

)

f̊2
∣

∣

∣

�2

D22g1 − K ∗
12g2 = − f2 + γNNλh|�2 − Dλ f̊1

∣

∣

�2
+

(

1

2
I + K ∗

λ

)

f̊2
∣

∣

∣

�2

= G∗( f1, f2, h) (say). (2.21)

Clearly F∗ ∈ H
1
2 (�1) and G∗ ∈ H− 1

2 (�2). Combining Eqs. (2.20) and (2.21) we get

(

K21 −S11
D22 −K ∗

12

)(

g1
g2

)

=
(

F∗
G∗

)

.

We now define a matrix operator A as

A =
(

K21 −S11
D22 −K ∗

12

)

where, A : ˜H
1
2 (�2) × ˜H− 1

2 (�1) → H
1
2 (�1) × H− 1

2 (�2).

2.2 Invertibility of Layer Potentials

For the homogeneous Helmholtz equation with λ = 0, the two boundary layer opera-

tors S0 : H− 1
2 (�) → H

1
2 (�) and

( − 1
2 I + K0

) : H 1
2 (�) → H

1
2 (�) are bijective by

Chang and Choe (2008).
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Proposition 2.12 This Proposition is fromTorres andWelland (1993)which concludes
that for Im(λ) > 0

1. Sλ : L2(�) → H1(�) is invertible.
2.

( ± 1
2 I + Kλ

) : L2(�) → L2(�) is invertible.
3.

( ± 1
2 I + K ∗

λ

) : L2(�) → L2(�) is invertible.

Theorem 2.13 Let Im(λ) > 0. Then Dλ : H1(�) → L2(�) is an invertible operator.

Proof Let us consider a g ∈ L2(�). From the above Proposition 2.12,
( 1
2 I + K ∗

λ

)

is bijective from L2(�) to itself. Hence, there exists a g′ ∈ L2(�) such that ( 12 I +
K ∗

λ)g′ = g.

Let v(x) = Sλ

(− 1
2 I + K ∗

λ

)−1
g′(x). Then v satisfies the homogenous Helmholtz

equation in R
N\�̄. Using the properties (2.5), (2.11) and the decay conditions at

infinity (1.4)–(1.5) in the exterior domain we have the following representation for v.

v(x) = Kλ f (x) − Sλg
′(x)

where, f = Sλ(− 1
2 I + K ∗

λ)−1g′ ∈ H1(�). Taking the Neumann trace of v we get

g′ = Dλ f −
(

−1

2
I + K ∗

λ

)

g′

which implies

Dλ f =
(

1

2
I + K ∗

λ

)

g′. (2.22)

Hence, for any g ∈ L2(�), there exists f ∈ H1(�) such that Dλ f = ( 1
2 I + K ∗

λ

)

g′ =
g.
Claim: Dλ is injective.
Suppose there exists f ∈ H1(�) such that Dλ f = 0 on �. We write v(x) = Kλ f (x),
for all x in R

N\�. Hence, v ∈ H1(�) is a solution of −�v − λ2v = 0 in � and
v ∈ H1

loc(R
N\�̄) satisfies −�v − λ2v = 0 in R

N\�̄ along with (1.4)–(1.5). From
the Eqs. (2.6)–(2.7) we get

vi − ve =
(

−1

2
I + Kλ

)

f −
(

1

2
I + Kλ

)

f

= − f

and from Torres and Welland (1993) we have

Dλ f (P) = lim
Xi (P),x→P

∂

∂ n̂
v(x)

= lim
Xe(P),x→P

∂

∂ n̂
v(x).

(2.23)
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Thus,

0 = 〈Dλ f ,− f 〉�
=

〈

Dλ f , v
i
〉

�
−

〈

Dλ f , v
e
〉

�

=
∫

RN
|∇v|2 −

∫

RN
λ2|v|2 (2.24)

where the last term in (2.24) is due to the fact that v is a solution to the homogeneous
Helmholtz equation. As per our assumption λ2 is not an eigenvalue of (−�). Hence,
using the conditions (1.4)–(1.5) we have v = 0 a.e. in R

N . Since v is continuous
across the boundary, we have − f = vi − ve = 0. This implies f = 0 on �. So, Dλ

is injective. ��

Remark 2.14 The operators Sλ and Dλ are self-adjoint operators, i.e. Sλ = S∗
λ , Dλ =

D∗
λ [refer Lemma 3.9(a) of Costabel and Stephan (1985)], where S∗

λ , D
∗
λ are the adjoint

operators of Sλ, Dλ respectively. Hence, using Proposition 2.12, Theorem 2.13 we
obtain S∗

λ : H−1(�) → L2(�) and D∗
λ : L2(�) → H−1(�) are invertible operators.

Using the properties of real interpolation from Appendix B (Theorem B.2) of McLean
and McLean (2000) on Sλ, Dλ we have

1. Sλ : H− 1
2 (�) → H

1
2 (�),

2. Dλ : H 1
2 (�) → H− 1

2 (�)

are invertible operators.

3 Existence and Uniqueness Results of (P1)

Theorem 3.1 Let �1 ⊂ �, then S11 : ˜H− 1
2 (�1) → H

1
2 (�1) is a bijective operator.

Proof We break the proof into three steps.
Step 1. The operator S11 is injective.
Assume that there exists g2 ∈ ˜H− 1

2 (�1) such that S11g2 = 0 on �1. We write v1(x) =
Sλg̃2(x), for all x ∈ R

N\�, where g̃2 ∈ H− 1
2 (�) is the zero extension of g2. Hence,

from the Eqs. (2.4)–(2.5) we have vi1 = ve1 ∈ H
1
2 (�) and from (2.10),

∂vi1
∂ n̂ − ∂ve1

∂ n̂ = g̃2.

On replacing h1, h2 with vi1, v
e
1, respectively in the Eq. (2.9) we have

0 = 〈g2, S11g2〉�1

= 〈g̃2, Sλg̃2〉�
=

〈∂vi1

∂ n̂
, vi1

〉

�
−

〈∂ve1

∂ n̂
, ve1

〉

�

=
∫

RN
|∇v1|2 −

∫

RN
λ2|v1|2. (3.1)
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Thus, on using the conditions (1.4)–(1.5) we conclude that v1 = 0 a.e. in R
N . By the

continuity of v1 on �, we have g̃2 = ∂vi1
∂ n̂ − ∂ve1

∂ n̂ = 0. This implies g2 = 0 in �1 and
hence S11 is injective.
Step 2. S11 is bounded below.

Suppose there exists a sequence (gn2 ) ∈ ˜H− 1
2 (�1) such that S11gn2 → f , for some

f ∈ H
1
2 (�1).

Case 1. Assume that (gn2 ) is a bounded sequence in ˜H− 1
2 (�1). Therefore, there exists

a subsequence (gn2 ) and g2 ∈ ˜H− 1
2 (�1) such that (gn2 ) converges weakly to g2, i.e.

gn2
w
⇀g2 in ˜H− 1

2 (�1). Let l ∈ ˜H− 1
2 (�1). Then we have

〈l, f 〉�1 = 〈l, lim
n→∞ S11g

n
2 〉�1

= lim
n→∞〈l, S11gn2 〉�1

= lim
n→∞〈〈S∗

11l, g
n
2 〉〉

= 〈〈S∗
11l, g2〉〉

= 〈l, S11g2〉�1 .

Since every reflexive space has a unique predual, hence S11g2 = f . Therefore, S11
has a closed range.

Case 2. Assume that (gn2 ) is an unbounded sequence in ˜H− 1
2 (�1). Let us denote

Gn = gn2
∥

∥gn2
∥

∥

˜H− 1
2 (�1)

.

Hence, ‖Gn‖
˜H− 1

2 (�1)
= 1. Therefore, there exists a subsequence (Gn) and G ∈

˜H− 1
2 (�1) such that Gn w

⇀G in ˜H− 1
2 (�1). Since S11gn2 → f and

∥

∥gn2
∥

∥

˜H− 1
2 (�1)

→ ∞,

we have S11Gn → 0 in H
1
2 (�1). From Case 1 it easily follows that S11G = 0, which

further implies G = 0 by the injectivity of S11. Using the invertibility of Sλ (refer
Remark 2.14) we obtain

1 = ∥

∥Gn
∥

∥

˜H− 1
2 (�1)

≤ ∥

∥˜Gn
∥

∥

H− 1
2 (�)

≤ C
∥

∥Sλ(˜Gn)
∥

∥

H
1
2 (�)

(for C > 0). (3.2)

We know that S11Gn = Sλ(˜Gn)|�1 and S12G
n = Sλ(˜Gn)|�2 . For x �= y,�(x− y) is a

C∞ function. This implies S12Gn → 0 in H
1
2 (�2), since Gn w

⇀0 in ˜H− 1
2 (�1). Hence,

Sλ(˜Gn) → 0 in H
1
2 (�), which is a contradiction to (3.2). Therefore, we conclude that

S11 has closed range. Thus, S11 is bounded below since S11 is injective and its range
is closed.
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Step 3. S11 has dense range.
Assume that S∗

11g2 = 0 for some g2 ∈ ˜H− 1
2 (�1). Hence, for any l ∈ ˜H− 1

2 (�1),

0 = 〈〈S∗
11g2, l〉〉

= 〈g2, S11l〉�1 .

Choose l = g2. Then by proceeding on similar lines as in step 1 we get g2 = 0. Since

Kernel(S∗
11) = Range(S11)⊥ = Range(S11)

⊥
, the injectivity of S∗

11 implies S11 has
dense range.

Combining the results from the above three steps we conclude that the operator

S11 : ˜H− 1
2 (�1) → H

1
2 (�1) is bijective. ��

Theorem 3.2 Let�2 ⊂ �, then the operator D22 : ˜H
1
2 (�2) → H− 1

2 (�2) is invertible.

Proof Similar to the steps in Theorem 3.1, we will show that D22 is injective and

bounded below with a dense range. Assume that there exists g1 ∈ ˜H
1
2 (�2) such that

D22g1 = 0 on �2. We now express v2(x) = Kλg̃1(x), for all x ∈ R
N\�. From the

Eqs. (2.6) and (2.7) we get

vi2 − ve2 =
(

−1

2
I + Kλ

)

g̃1 −
(

1

2
I + Kλ

)

g̃1

= −g̃1.

Thus,

0 = 〈D22g1,−g1〉�2

= 〈Dλg̃1,−g̃1〉�
=

〈

Dλg̃1, v
i
2

〉

�
−

〈

Dλg̃1, v
e
2

〉

�
(from the Eq. (2.13))

=
∫

RN
|∇v2|2 −

∫

RN
λ2|v2|2. (3.3)

Hence, using the conditions (1.4)–(1.5) we have v2 = 0 a.e. in R
N , since λ2 is not an

eigenvalue of (−�). By the continuity ofv2 in x ∈ R
N\�2 wehavevi2−ve2 = −g̃1 = 0.

This implies g1 = 0 in �2. So, D22 is injective.
On using arguments from Theorem 3.1, we can show that D22 has a closed range and

hence it is bounded below. We suppose that D∗
22g

′
1 = 0 for some g1 ∈ ˜H

1
2 (�2). Then

for f ∈ ˜H
1
2 (�2),

0 = 〈−D∗
22g

′
1, f 〉�2

= 〈〈−g′
1, D22 f 〉〉

= 〈−g1, D22 f 〉�2 .

Taking f = g1, then from (3.3) we obtain g1 = 0 in �2. Hence, D∗
22 is injective which

implies D22 has dense range. Therefore, D22 is an invertible operator. ��
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Theorem 3.3 The matrix operator A : ˜H
1
2 (�2) × ˜H− 1

2 (�1) → H
1
2 (�1) × H− 1

2 (�2)

is invertible.

Proof For any g1 ∈ ˜H
1
2 (�2) and P ∈ �1, the operator K21 : ˜H

1
2 (�2) → H

1
2 (�1) is

defined as

K21g1(P) = Kλg̃1(P)

=
∫

�

∂

∂ n̂ y
�(P, y)g̃1(y)dy

=
∫

�2

∂

∂ n̂ y
�(P, y)g1(y)dy. (3.4)

We can see that the kernel ∂�(P,y)
∂ n̂ y

in (3.4) is a C∞ function. Let (gn1 ) be a bounded

sequence in ˜H
1
2 (�2), then there exists a subsequence (gn1 ) and g1 in ˜H

1
2 (�2) such that

(gn1 ) converges weakly to g1. Hence,

lim
n→∞ K21g

n
1 (P) = lim

n→∞

∫

�2

∂

∂ n̂ y
�(P, y)gn1 (y)dy

=
∫

�2

∂

∂ n̂ y
�(P, y)g1(y)dy

= K21g1(P).

Thus, K21 is a compact operator. Similarly we can show that the operator K ∗
12 is also

compact.
We have

A =
(

K21 −S11
D22 −K ∗

12

)

=
(

K21 0
0 −K ∗

12

)

+
(

0 −S11
D22 0

)

= A1 + A2

where A1 =
(

K21 0
0 −K ∗

12

)

and A2 =
(

0 −S11
D22 0

)

. The matrix A2 is invertible,

since S11 and D22 are invertible operators by Theorems 3.1 and Theorem 3.2 respec-
tively. As the operators Dλ and Sλ are also continuous byCostabel and Stephan (1985),
the inverse of A2, i.e. A

−1
2 is also bounded. We know the operators K21 and K ∗

12 are
compact operators and hence A1 is also a compact operator.

Thus, we can write A−1
2 A = A−1

2 A1 + I = C1 + I and AA−1
2 = A1A

−1
2 + I =

C2 + I where C1,C2 are compact operators. Using Theorem 2.5, it is equivalent to
say that A is a Fredholm operator. This implies ind(A) = 0 (by Theorem 2.6). Now
to show A is bijective it is sufficient to show A is injective, i.e. dim ker(A) = 0.
Claim: A is injective.
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Let us assume that there exist some g1 ∈ ˜H
1
2 (�2) and g2 ∈ ˜H− 1

2 (�1) such that
A(g1, g2) = 0. Now for x ∈ R

N\�, we write

v(x) =
{

Sλg̃2(x) − Kλg̃1(x), if x ∈ �

−Sλg̃2(x) + Kλg̃1(x), if x ∈ R
N\�̄

Then v satisfies the following problems

−�v − λ2v = 0 in �,

v = 0 on �1,

∂v

∂ n̂
= 0 on �2,

v ∈ H1(�)

(3.5)

and

−�v − λ2v = 0 in R
N\�̄,

v = 0 on �1,

∂v

∂ n̂
= 0 on �2,

v ∈ H1
loc(R

N\�̄).

(3.6)

This implies v|� ∈ H
1
2 (�), ∂v

∂ n̂ ∈ H− 1
2 (�) and

0 =
〈∂v

∂ n̂
, v

〉

=
∫

�

|∇v|2 −
∫

�

λ2|v|2

and

0 =
〈∂v

∂ n̂
, v

〉

= −
∫

RN \�̄
|∇v|2 +

∫

RN \�̄
λ2|v|2.

Thus, v = 0 a.e. in R
N , since λ2 is not an eigenvalue of (−�) and v satisfies the

radiation conditions at infinity. On �1, v = 0 and hence vi − ve = ±g̃1 = 0 and
∂vi

∂ n̂ − ∂ve

∂ n̂ = ±g̃2 = 0. Thus, g1 = 0 and g2 = 0. ��
Theorem 3.4 The mixed boundary value problem (1.2) with Im(λ) > 0 possesses a
unique solution u which is represented as

u(x) = Nλh(x) − Kλ( f̊1 + g̃1)(x) + Sλ( f̊2 + g̃2)(x)
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for unique g1 ∈ ˜H
1
2 (�2) and g2 ∈ ˜H− 1

2 (�1). This solution u also satisfies (1.4)–(1.5)
and

‖u‖
H

1
2 (�)

+
∥

∥

∥

∥

∂u

∂ n̂

∥

∥

∥

∥

H− 1
2 (�)

≤ C{‖ f1‖
H

1
2 (�1)

+ ‖ f2‖
H− 1

2 (�2)
+ ‖h‖

˜H−1(�)}. (3.7)

Proof The solvability and uniqueness of problem (1.2) depend on the invertibility of
the operator A. Due to Theorem 3.3 we know that A is invertible. Hence, there exists

a unique pair (g1, g2) ∈ ˜H
1
2 (�2) × ˜H− 1

2 (�1) such that

A(g1, g2) = (F∗,G∗),

where, F∗ ∈ H
1
2 (�1) and G∗ ∈ H− 1

2 (�2) as defined in Eqs. (2.20) and (2.21). Then
we can represent

u(x) = Nλh(x) − Kλφ(x) + Sλψ(x),

where, φ = f̊1 + g̃1 andψ = f̊2 + g̃2 are the Cauchy data for the problem (1.2). Since

(

K21 −S11
D22 −K ∗

12

)(

g1
g2

)

=
(

F∗
G∗

)

, (3.8)

so we can write

g1 = D−1
22 (K ∗

12g2 + G∗). (3.9)

Substituting the value of g1 in the Eq. (3.8) we get

(S11 − K21D
−1
22 K ∗

12)g2 = K21D
−1
22 G

∗ − F∗. (3.10)

We will now show that the operator H := S11 − K21D
−1
22 K ∗

12 : ˜H− 1
2 (�1) → H

1
2 (�1)

is invertible. We can then represent g1, g2 as follows.

g1 = D−1
22 G

∗ + D−1
22 K ∗

12H
−1(K21D

−1
22 G

∗ − F∗)

and

g2 = H−1(K21D
−1
22 G

∗ − F∗).

Claim: H = S11 − K21D
−1
22 K ∗

12 is invertible.
We know K21 and K ∗

12 are compact operators. So K21D
−1
22 K ∗

12 is also compact. Using
Theorem 2.6 we get ind(H) = 0, since S11 is bijective. Thus we only need to show
that H is injective.

123



562 A. Panda, D. Choudhuri

Suppose H(g2) = 0, for some g2 ∈ ˜H− 1
2 (�1). We express w(x) = Sλg̃2(x) −

Kλ
˜D−1
22 K ∗

12g2(x). We observe that on �1,

w = (S11 − K21D
−1
22 K ∗

12)g2
= H(g2)

= 0

and on �2,

∂w

∂ n̂
= K ∗

12g2 − D22{D−1
22 K ∗

12}g2
= 0.

Therefore,w satisfies (3.5) and (3.6). Following the proof of Theorem 3.3we conclude
that g2 = 0. So H is injective hence invertible.
Furthermore,

‖u‖
H

1
2 (�)

=
∥

∥

∥ f̊1 + g̃1
∥

∥

∥

H
1
2 (�)

≤
∥

∥

∥ f̊1
∥

∥

∥

H
1
2 (�)

+ ‖g̃1‖
H

1
2 (�)

≤ C

{

‖ f1‖
H

1
2 (�1)

+ ∥

∥K ∗
12g2 + G∗∥

∥

H− 1
2 (�2)

}

(by (2.17) and (3.9))

≤ C

{

‖ f1‖
H

1
2 (�1)

+ ∥

∥G∗∥

∥

H− 1
2 (�2)

+ ‖g2‖
H− 1

2 (�1)

}

≤ C

{

‖ f1‖
H

1
2 (�1)

+ ∥

∥G∗∥

∥

H− 1
2 (�2)

+
∥

∥

∥K21D
−1
22 G∗ − F∗∥

∥

∥

H
1
2 (�1)

}

(by (3.10))

≤ C

{

‖ f1‖
H

1
2 (�1)

+ ‖ f2‖
H− 1

2 (�2)
+ ‖h‖

˜H−1(�) 1

}

. (by (2.20) and (2.21))

(3.11)

Similarly

∥

∥

∥

∥

∂u

∂ n̂

∥

∥

∥

∥

H− 1
2 (�)

≤ C

{

‖ f1‖
H

1
2 (�1)

+ ‖ f2‖
H− 1

2 (�2)
+ ‖h‖

˜H−1(�)

}

. (3.12)

On combining inequalities (3.11) and (3.12) we get

‖u‖
H

1
2 (�)

+
∥

∥

∥

∥

∂u

∂ n̂

∥

∥

∥

∥

H− 1
2 (�)

≤ C{‖ f1‖
H

1
2 (�1)

+ ‖ f2‖
H− 1

2 (�2)
+ ‖h‖

˜H−1(�)}.

��
Proceeding similarly for the exterior problem (1.3) of (P1), the following Theorem
can be established.
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Theorem 3.5 For Im(λ) > 0, problem (P1) with given boundary data f1 ∈ H
1
2 (�1)

and f2 ∈ H− 1
2 (�2) has a unique solution u which is represented as

u(x) =
{

Nλh(x) − Kλ( f̊1 + g̃1)(x) + Sλ( f̊2 + g̃2)(x), if x ∈ �

Kλ( f̊1 + g̃1)(x) − Sλ( f̊2 + g̃2)(x), if x ∈ R
N\�̄

for unique g1 ∈ ˜H
1
2 (�2) and g2 ∈ ˜H− 1

2 (�1). The solution u belongs to H1(�) for
(IP1) and belongs to H1

loc(R
N\�̄) for (EP1) satisfying the conditions (1.4)–(1.5) at

infinity. Furthermore, u satisfies (3.7).

4 Existence Results of (P2)

Problem (P2) is a mixed boundary value problem of Poisson equation where μ ∈
M(�̄) is a bounded Radon measure supported on � and the boundary data are f1 ∈
H

1
2 (�1) and f2 ∈ H− 1

2 (�2).

Definition 4.1 We say a function u ∈ W 1,1(�) is a weak solution to the problem (1.6)
if

∫

�

∇u · ∇ϕ =
∫

�

ϕdμ +
∫

�2

f2ϕ, ∀ϕ ∈ X

where, X = {ϕ ∈ C1(�̄) : ϕ|�1 = 0} is the test function space. Similarly a function
u ∈ W 1,1

loc (RN\�̄) is said to be a weak solution of (1.7) if

∫

RN \�̄
∇u · ∇ϕ = −

∫

�2

f2ϕ, ∀ϕ ∈ Z

where, Z = {ζ ∈ C1
c (R

N\�) : ζ |�1 = 0 and satisfies (1.8)}.
We will now approximate μ ∈ M(�̄) by a smooth sequence (μn) ⊂ L∞(�), in the
weak* topology, i.e.

∫

�

g dμn →
∫

�

g dμ, ∀g ∈ C(�̄). (4.1)

In order to show the existence of solutions to (P2), we consider the ‘approximating’
problems to (1.6)–(1.7) which are as follows.

−�un = μn in �,

un = f1 on �1,

∂un
∂ n̂

= f2 on �2

(4.2)
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and

−�un = 0 in R
N\�̄,

un = f1 on �1,

∂un
∂ n̂

= f2 on �2.

(4.3)

These ‘approximating’ problems are special cases of (P1) with λ = 0. The weak
formulation to (4.2) is

∫

�

∇un · ∇ϕ =
∫

�

ϕμn +
∫

�2

f2ϕ, ∀ϕ ∈ X . (4.4)

Theorem 4.2 The problems (4.2) and (4.3) admit a unique solution un which is rep-
resented as

un(x) =
{

N0μn(x) − K0( f̊1 + g̃1n )(x) + S0( f̊2 + g̃2n )(x), if x ∈ �

K0( f̊1 + g̃1n )(x) − S0( f̊2 + g̃2n )(x), if x ∈ R
N\�̄ (4.5)

for a unique pair (g1n , g2n ) ∈ ˜H
1
2 (�2)× ˜H− 1

2 (�1). The solution un belongs to H1(�)

for the problem (4.2) and belongs to H1
loc(R

N\�̄) for the problem (4.3) satisfying the
radiation condition (1.8) at infinity.

Proof The invertibility of the operators S11 and D22 follows from Theorem 3.1 and
Theorem 3.2 of Chang and Choe (2008), respectively. Further, following the proof of
Theorem 3.3, Theorem 3.4 one can see that the matrix operator A is invertible and the
problems (4.2)–(4.3) have a unique solution denoted as un . The solution un can be
represented as in (4.5) by Theorem 3.5 and satisfies the condition (1.8) at infinity. ��
Now to show that problem in (1.6), involving measure, possesses a solution u we need
to pass the limit n → ∞ in the weak formulation (4.4).

Lemma 4.3 Let us suppose that un is a solution of problem (4.2) with f1 ∈
H

1
2 (�1) and f2 ∈ H− 1

2 (�2). Then the sequence (un) is bounded in W 1,q(�) for
all q < N

N−1 .

Proof From the continuous embedding (2.1) we have

L
N

N−1 (�) ↪→ M
N

N−1 (�) ↪→ L
N

N−1−ε(�). (4.6)

If we can show that (un) is bounded in M
N

N−1 (�), then this will also imply (un) to be

bounded in L
N

N−1−ε(�). More precisely, we can say (un) to be bounded in Lq(�), for
every q < N

N−1 .

Claim. The sequences (un) and (∇un) are bounded in M
N

N−1 (�).
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Let us fix a constant a > 0. The truncation function of un is defined as

Ta(un) = max {−a,min{a, un}} .

From Theorem 4.2, we have ∂un
∂ n̂

∣

∣

∣

�
= f̊2 + g̃2n , for a unique g2n ∈ ˜H− 1

2 (�1). For a

change, let us test (4.2) with functions from H1(�). Thus for v ∈ H1(�) we have

∫

�

∇un .∇υ =
∫

�

μnυ +
∫

�

(

f̊2 + g̃2n
)

υ.

Note that the integrals are all finite. Thus in particular, choose υ = Ta(un), to get

∫

�

|∇Ta(un)|2 ≤
∫

�

∇un .∇(Ta(un))

=
∫

�

Ta(un)μn +
∫

�

( f̊2 + g̃2n )Ta(un)

≤ a
∫

�

μn + a
∫

�

( f̊2 + g̃2n )

≤ Ca. (4.7)

Consider

{|∇un| ≥ k} = {|∇un| ≥ k, un < a} ∪ {|∇un| ≥ k, un ≥ a}
⊂ {|∇un| ≥ k, un < a} ∪ {un ≥ a}
= B1 ∪ B2 ⊂ �

where B1 = {|∇un| ≥ k, un < a} and B2 = {un ≥ a}. Hence, due to the subadditivity
property of the Lebesgue measure ‘m’ we have

m ({|∇un| ≥ k}) ≤ m(B1) + m(B2). (4.8)

Using the Sobolev inequality, we have

(∫

�

|Ta(un)|2∗
) 2

2∗ ≤ 1

λ1

∫

�

|∇Ta(un)|2

≤ Ca (4.9)

where λ1 is the first eigenvalue of (−�) with Dirichlet boundary condition. Now we
restrict the above inequality (4.9) on B2 to get

a2m ({un ≥ a}) 2
2∗ ≤ Ca, (Since Ta(un) = a in B2).
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Thus,

m ({un ≥ a}) ≤ C

a
N

N−2

, ∀a ≥ 1.

Hence, (un) is bounded in M
N

N−2 (�) and also bounded in M
N

N−1 (�). Similarly on
restricting (4.7) on B1, we have

m ({|∇un| ≥ k, un < a}) ≤ 1

k2

∫

�

|∇Ta(un)|2

≤ Ca

k2
, ∀a > 1.

Now the inequality (4.8) becomes

m ({|∇un| ≥ k}) ≤ m({B1}) + m(B2)

≤ Ca

k2
+ C

a
N

N−2

, ∀a > 1.

On choosing a = k
N−2
N−1 we get

m ({|∇un| ≥ k}) ≤ C

k
N

N−1

, ∀k ≥ 1.

So (∇un) is bounded in M
N

N−1 (�). Hence, we conclude that (un) is bounded in
W 1,q(�) for every q < N

N−1 . ��

Theorem 4.4 There exists a weak solution u of (1.6) in W 1,q(�), for all q < N
N−1 .

Proof According to Lemma 4.3, (un) is bounded in W 1,q(�) which is a reflexive
space. This implies that there exists a function u ∈ W 1,q(�) such that un converges

weakly to u, i.e. un
w
⇀u in W 1,q(�), for all q < N

N−1 .
Thus for ϕ ∈ X ,

lim
n→+∞

∫

�

∇un .∇ϕ =
∫

�

∇u.∇ϕ.

The sequence (μn) converges to μ in the weak* topology in the sense given in (4.1).
On passing the limit n → ∞ in the weak formulation (4.4) involving μn we obtain

∫

�

∇u.∇ϕ =
∫

�

ϕdμ +
∫

�2

f2ϕ, ∀ϕ ∈ X .

Hence, a weak solution of (1.6) in W 1,q(�) for every q < N
N−1 is guaranteed. ��
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Now with the consideration of Theorems 4.2 and 4.4 we state our main result which
is as follows.

Theorem 4.5 There exists a weak solution u of (P2) with μ ∈ M(�̄), with support is

in �, as a nonhomogeneous term, f1 ∈ H
1
2 (�1) and f2 ∈ H− 1

2 (�2). The solution u
belongs to W 1,q(�), for every q < N

N−1 , for (IP2) and belongs to H1
loc(R

N\�̄) for
(EP2) satisfying Eq. (1.8) at infinity.
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