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Abstract
We introduce pointwise measure expansivity for bi-measurable maps. We show
through examples that this notion is weaker than measure expansivity. In spite of
this fact, we show that many results for measure expansive systems hold true for
pointwise systems as well. Then, we study the concept of mixing, specification and
chaos at a point in the phase space of a continuous map. We show that mixing at
a shadowable point is not sufficient for it to be a specification point, but mixing of
the map force a shadowable point to be a specification point. We prove that periodic
specification points are Devaney chaotic point. Finally, we show that existence of two
distinct specification points is sufficient for a map to have positive Bowen entropy.

Keywords Expansivity · Specification · Devaney chaos · Bowen Entropy

Mathematics Subject Classification 54H20 · 37C50 · 37B40

1 Introduction

One of the extensively studied topological dynamical notions for homeomorphisms is
widely known as expansivity which was introduced (Utz 1950) by Utz in the middle
of the twentieth century. This notion says that we can choose a fixed δ > 0 such
that for each x ∈ X , the orbit of any point get separated from the orbit of x by
the constant δ. In Reddy (1970), constructed homeomorphisms which does not fulfil
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this requirement but satisfy weaker condition. He called such homeomorphisms as
pointwise expansive homeomorphisms. In particular, for given x ∈ X , he allowed to
choose different δx > 0 by which other orbits get separated from the orbit of x . He
observed that many results which are true for expansive homeomorphisms are also
true for pointwise expansive homeomorphisms.

In recent years, Morales has extended (Morales 2011) the notion of expansivity
for homeomorphisms to Borel measures. He has called a Borel measure expansive if
we can choose a fixed δ > 0 such that for each x ∈ X , the orbit of all points except
possibly a set of measure zero get separated from the orbit of x by the constant δ. If
this condition is satisfied by any non-atomic Borel measure on the phase space of a
homeomorphism, then it is called a measure expansive homeomorphism. In this paper,
we introduce pointwise expansivity for Borel measures by allowing different δx > 0
for given x ∈ X such that the orbit of all points except possibly a set of measure
zero get separated from the orbit of x by the constant δx . Further, if this condition is
satisfied by any non-atomic Borel measure on the phase space of a bi-measurable map,
then the map is called pointwise measure expansive. Although we have been able to
realize by examples that this notion is weaker than measure expansivity, many results
of measure expansive systems hold true for pointwise systems as well.

It is always fascinating to find easier way to understand interesting behaviours
of a dynamical system. For example, positive entropy of a system indicates chaotic
behaviour, but it is one of the most difficult job to find entropy of a system. Therefore,
mathematicians started working to understand whether presence of some dynamical
notion in the system implies positive entropy. In Aoki (1989), it was proved that every
homeomorphism on a compact metric space possessing specification property has
positive topological entropy. In Arai and Chinen (2007), authors have shown that P-
chaotic map on a continuum has positive entropy. In Moothathu (2011), Moothathu
has proved that continuous self-map on a compact metric space possessing shadowing
property having either a non-minimal recurrent point or a sensitiveminimal subsystem,
has positive topological entropy.

In spite of the development of such significant literature on global behaviour of
a dynamical system, mathematicians started working to find those local behaviours
which provides information about the global behaviour. In Ye and Zhang (2007),
authors have introduced the concept of entropy points and proved that existence of such
a point implies positive entropy. Very recently, Kawaguchi has introduced (Kawaguchi
2017a) a weaker version of shadowable points (Morales 2016) called e-shadowable
points and in a subsequent paper (Kawaguchi 2017b) has shown that existence of
certain kind of e-shadowable points implies positive entropy. In a preprint (Arbieto and
Rego 2018), Arbieto and Rego have shown that continuous map on a compact metric
space having non-periodic shadowable, positive uniformly countable expansive, non-
wandering point whose every neighborhood is uncountable has positive topological
entropy. Here, we show that existence of two distinct specification points implies
positive Bowen entropy. Besides that we have shown that every shadowable point of
a topologically mixing continuous map is a specification point and that every periodic
specification point of a continuous surjective map is a Devaney chaotic point.

The notion of specification is one of the most important and extensively studied
variant of shadowing. In shadowing one traces an approximate orbit but specification
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guarantees simultaneous tracing of finite number of finite pieces of orbits by one peri-
odic orbit. Such kind of tracing by a periodic orbit helped Bowen to study (Bowen
1971) the distribution of periodic points in the phase space of a system with specifi-
cation property. The periodicity of the tracing point made this notion to be popularly
known as periodic specification property among many other variants (Kwietniak and
Oprocha 2012; Sigmund 1974).

This paper is presented as follows. In Sect. 2, the essential preliminaries are supplied
to make the paper self-contained. In Sect. 3, we have done a qualitative study of
pointwise measure expansive systems and have constructed examples of such systems
which are not measure expansive. In particular, we show that the set of points with
converging semiorbits under a pointwise measure expansive homeomorphism on a
separablemetric space hasmeasure zerowith respect to any non-atomicBorelmeasure
and every uniform equivalence of a separable metric space is aperiodic with respect
to any pointwise expansive measure. We also show that the set of points positively
asymptotic to a point and negatively asymptotic to another point under a pointwise
measure expansive homeomorphism of a separablemetric space hasmeasure zerowith
respect to any non-atomic Borel measure. We further show that the set of heteroclinic
points of a pointwise measure expansive uniform equivalence of a separable metric
space has measure zero with respect to any non-atomic Borel measure, using the fact
that the set of periodic points of such system is atmost countable.We then show that the
number of stable classes of ameasurablemap admitting positively pointwise expansive
outer regular measure is uncountable. We further show that a bi-measurable map
with canonical coordinates admitting strictly positive positively pointwise expansive
measure has no point which is a sink. In Sect. 4, we study periodic specification,
topological mixing and Devaney chaos at a point. We prove that every shadowable
point of a topologically mixing continuous map is a point with specification and that
every periodic specification point of a continuous surjective map is a Devaney chaotic
point. Further, we show that every uniformly continuous surjective map having two
distinct specification points has positive Bowen entropy.

2 Preliminaries

Throughout the paper, X denotes any metric space (unless otherwise stated). A point
x ∈ X is called an atom for a measure μ if μ({x}) > 0. A measure μ on X is said
to be non-atomic if it has no atom. We call X non-atomic if there exists a non-atomic
Borel measure on it. A Borel measure is called strictly positive if every open set has
positive measure.

A bi-measurable map f on X is called expansive (Utz 1950) if there is δ > 0
such that for any pair of distinct points x, y ∈ X , we have d( f n(x), f n(y)) > δ

for some n ∈ Z. In other words, �δ(x) = {x} for all x ∈ X , where �δ(x) = {y ∈
X | d( f n(x), f n(y)) ≤ δ for all n ∈ Z}. A bi-measurable map f on X is measure-
expansive (Morales 2011) if for any non-atomic Borel measure μ on X , we have
μ(�δ(x)) = 0 for all x ∈ X . A bi-measurable map f on X is called pointwise
expansive (Reddy 1970) if for each x ∈ X there is δx > 0 (depending on x) such that
�δx (x) = {x}.
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A subset A ⊂ X is said to be f -invariant if f −1(A) = A and f is said to be
μ-invariant ifμ( f −1(A)) = μ(A) for every measurable subset A ⊂ X . A non-atomic
Borel measure μ is said to be pointwise expansive for a bi-measurable map f through
a subset H of Z, if for each x ∈ X there is δx > 0 such that μ(�H

δx
(x)) = 0, where

�H

δx
(x) = {y ∈ X : d( f n(x), f n(y)) ≤ δx for all n ∈ H}.
Let f : X → X be a bi-measurable map and letμ be a Borel measure on X . A finite

open cover� = {A1, A2, . . . , An} of a topological space X is said to be aμ-generator
at x for f if for any bi-sequence {Un}n∈Z of members of � satisfying x ∈ f −n(Un)

for all n ∈ Z, μ(∩n∈Z f −n(Un)) = 0. We say that f has pointwise μ-generator if for
each x ∈ X there exists a μ-generator at x for f .

The ω-limit set of a point x ∈ X under a measurable map f is given by ω( f , x) =
{y ∈ X | limk→∞d( f nk (x), y) = 0 for some strictly increasing sequence (nk)}.

Theα-limit set of a point x ∈ X under a bi-measurablemap f is given byα( f , x) =
{y ∈ X | limk→∞d( f nk (x), y) = 0 for some strictly decreasing sequence (nk)}.

We say that a point x ∈ X has converging semiorbits under a bi-measurable map
f if both α( f , x) and ω( f , x) consist of single point. The set of such points under f
is denoted by A( f ).

A map f is said to be aperiodic with respect to a measureμ ifμ(B) = 0, whenever
B ⊂ X is such that there is n ∈ N

+ satisfying f n(x) = x for all x ∈ B.
A point y ∈ X is said to be positively asymptotic to x ∈ X under a measurable

map f if for every ε > 0 there is a positive integer N such that d( f n(x), f n(y)) < ε

for all n ≥ N . The point y ∈ X is said to be negatively asymptotic to x ∈ X under
a bi-measurable map f if for every ε > 0 there is a positive integer M such that
d( f n(x), f n(y)) < ε for all n ≤ −M . The set of points positively asymptotic to p
and negatively asymptotic to q under a bi-measurable map f is denoted by A f (p, q).
The point y ∈ X is said to be doubly asymptotic to p ∈ X under a bi-measurable map
f if y is both positively and negatively asymptotic to p.
The stable set of a point x ∈ X under a measurable map f is given by W s(x) =

{y ∈ X | for all ε > 0, there is n ∈ N such that d( f i (x), f i (y)) ≤ ε for all i ≥ n}.
For δ > 0, the local stable set of a point x ∈ X under a measurable map f is given

by W s(x, δ) = {y ∈ X | d( f i (x), f i (y)) ≤ δ for all i ≥ 0}.
The unstable set of a point x ∈ X under a bi-measurable map f is given by

W u(x) = {y ∈ X | for all ε > 0, there is n ∈ N such that d( f i (x), f i (y)) ≤ ε for all
i ≤ −n}.

For δ > 0, the local unstable set of a point x under a bi-measurable map is given
by W u(x, δ) = {y ∈ X | d( f i (x), f i (y)) ≤ δ for all i ≤ 0}.

A point x is said to be heteroclinic for a bi-measurable map f if x ∈ W s(O(p)) ∩
W u(O(q)). A point x is called a sink for a bi-measurable map f if W u(x, δ) = {x}
for some δ > 0. The map f is said to have canonical coordinates if for every ε > 0
there is δ > 0 such that d(x, y) < δ implies W s(x, ε) ∩ W u(y, ε) 	= φ.

For a continuous map f on a metric space (X , d), recall the following topological
dynamical notions.

(i) f is sensitive if there exists δ > 0 such that for every point x ∈ X and every
neighborhoodU of x there exists y ∈ U such that d( f n(x), f n(y)) > δ for some
n ≥ 1.
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(ii) f is said to be topologically transitive if for every pair of non-empty open sets U
and V there exists n ∈ N such that f n(U ) ∩ V 	= φ.

(iii) f is said to be topologically mixing if for every pair of non-empty open sets U
and V there exists N ∈ N such that f n(U ) ∩ V 	= φ for all n ≥ N .

(iv) f is said to be Devaney chaotic if it is topologically transitive, has dense set of
periodic points in X and is sensitive.

(v) f is said to have specification (resp. periodic specification) property if for every
ε > 0 there exists a positive integer M(ε) such that for any finite sequence
x1, x2, . . . , xk in X , any integers 0 ≤ a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk with
a j − b j−1 ≥ M(ε) for all 1 ≤ j ≤ k, there exists y ∈ X (resp. y ∈ Per( f ))
such that d( f i (y), f i (x j )) < ε for all a j ≤ i ≤ b j , 1 ≤ j ≤ k.

(v) For δ > 0, any sequence {xi }i∈N is said to be a δ-pseudo orbit for f if
d( f (xi ), xi+1) < δ for all i ∈ N. For ε > 0, any sequence {xi }i∈N is said to
be ε-traced if there exists a point x ∈ X such that d( f i (x), xi ) < ε for all i ∈ N.
The map f is said to have shadowing if for every ε > 0 there exists δ > 0 such
that every δ-pseudo orbit is ε-traced by some point in X .

Let f be a uniformly continuous surjective map on a metric space (X , d). Let
n ∈ Z

+, ε > 0 and K ∈ K(X), where K(X) denotes the set of all compact subsets
of X . Set dn(x, y) = max0≤i≤(n−1)d( f i (x), f i (y)). A subset F of K is said to be
(n, ε)-separated subset of K if for every pair of distinct points x, y ∈ E , dn(x, y) > ε.
The number sn(ε, K ) denotes the largest cardinality of (n, ε)-separated subset of K .
Set s(ε, K ) =lim supn→∞ 1

n log(sn(ε, K )). The entropy of f is defined as h( f ) =
supK∈K(X) limε→0s(ε, K ). For deeper understanding of this notion of entropy due to
Bowen one may refer to Walters (2000).

3 Pointwise Measure Expansivity

In this section, we study the following notions which are seen to be pointwise versions
of measure expansivity.

(i) Let X be a metric space and let f be a bi-measurable map on X . Then, a non-
atomic Borel measure μ on X is said to be pointwise (resp. positively pointwise)
expansive for f , if for each x ∈ X there exists δx > 0 such that μ(�δx (x)) = 0
(resp. μ(	δx (x)) = 0), where 	δx (x) = {y ∈ X | d( f n(x), f n(y)) ≤ δx for all
n ∈ N}.

(ii) Let X be a non-atomicmetric space and let f be a bi-measurablemap on X . Then,
f is said to be pointwise measure expansive if for each x ∈ X there is δx > 0
(depending on x) such that μ(�δx (x)) = 0 for any non-atomic Borel measure μ.

(iii) Let X be a metric space and let f be a bi-measurable map on X . Then, f is said
to be strongly pointwise measure expansive if for each x ∈ X there is δx > 0
(depending on x) such that μ(�δx (x)) = μ({x}) for any Borel measure μ on X .

(iv) Let X be a metric space and let f be a bi-measurable map on X . Then, f is said
to be pointwise N -expansive if for each x ∈ X , there exists δx > 0 such that
| �δx (x) |≤ N .
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Theorem 3.1 Let f be a uniform equivalence on a metric space X and let μ be a
non-atomic Borel measure on X. Then, μ is pointwise expansive for f if and only if
μ is pointwise expansive for f through every non-trivial subgroup H of Z.

Proof Let μ be pointwise expansive at x ∈ X with pointwise expansive constant
δx and let H be a non-trivial subgroup of Z. Then, we can choose positive integers
{1, 2,...,k} such that Z = ⋃{i + H | 1 ≤ i ≤ k}. By uniform continuity of f there is
εx > 0 such that d(a, b) ≤ εx implies that d( f i (a), f i (b)) ≤ δx for all 1 ≤ i ≤ k.
Since for each n ∈ Z there is i such that n = i + H, we have �H

εx
(x) ⊂ �δx (x) and

hence μ(�H
εx

(x)) = 0. The converse follows from the definition. 
�
Corollary 3.2 Let f be a uniform equivalence on a metric space X and let μ be a
non-atomic Borel measure on X. Then, μ is pointwise expansive for f if and only if
it is pointwise expansive for f m, for any m ∈ Z\{0}.
Theorem 3.3 Let f be a bi-measurable map on a compact metric space X and let μ

be a non-atomic Borel measure on X. Then, μ is pointwise expansive for f if and only
if f has a pointwise μ-generator.

Proof Suppose thatμ is pointwise expansive for f and let δx be a pointwise expansivity
constant for μ at x . Choose an open cover � of X containing open-balls of radius
δx . Choose any bi-sequence {Un}n∈Z of members of � satisfying x ∈ f −n(Un) for
all n ∈ Z. Clearly, ∩n∈Z f −n(Un) ⊂ �δx (x) which implies μ(∩n∈Z f −n(Un)) ≤
μ(�δx (x)) = 0. Thus, � is a pointwise μ-generator for f .

Conversely, suppose that � is a pointwise μ-generator for f at x and let δx > 0
be its Lebesgue number. Choose a sequence {Un}n∈Z such that every closed δx -ball
around f n(x) is contained inUn for all n ∈ Z. Thus, we have�δx (x) ⊂ ∩n∈Z f −n(Un)

which implies μ(�δx (x)) ≤ μ(∩n∈Z f −n(Un)) = 0, Thus, μ is pointwise expansive
for f . 
�

For x, y ∈ X , n, m ∈ N
+, we define

A(x, y, n, m) = {z ∈ X | max{d( f −i (z), x), d( f i (z), y)} ≤ 1

n
for all i ≥ m}.

Lemma 3.4 Let X be a separable metric space and let f : X → X be a bi-measurable
map, then there exists a sequence {xi }i∈N such that

A( f ) ⊂
⋂

n∈N+

⋃

k,k′,m∈N+
A(xk, xk′ , n, m).

Proof If z ∈ A( f ), then both α( f , z) and ω( f , z) reduce to single points x and y
respectively. Then, for each n ∈ N

+, there ism ∈ N
+ such that d( f −i (z), x) ≤ 1

2n and
d( f i (z), y) ≤ 1

2n for all i ≥ m. If {xi }i∈N is dense in X , there are k, k′ ∈ N
+ such that

d(xk, x) ≤ 1
2n and d(xk′ , y) ≤ 1

2n . Therefore, max{d( f −i (z), xk), d( f i (z), xk′)} ≤ 1
n

for all i ≥ m. This completes our proof. 
�
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Lemma 3.5 Let μ be a Borel measure on X. Then, for every measurable Lindelöf
subset K with μ(K ) > 0 there are z ∈ K and δ0 > 0 such that μ(K ∩ B[z, δ]) > 0
for all 0 < δ < δ0.

Proof Otherwise, for every z ∈ K there is 0 < δz < δ0 such thatμ(K ∩ B[z, δz]) = 0.
Since K is Lindelöf, the open cover {K ∩ B[z, δz] | z ∈ K } of K admits a countable
subcover, i.e. there is a sequence {zl}l∈N in K satisfying K = ⋃

l∈N(K ∩ B[zl , δzl ]).
So, μ(K ) = ∑

l∈N μ(K ∩ B[zl , δzl ]) = 0, a contradiction. 
�
Theorem 3.6 The set A( f ) of a bi-measurable map f of a separable metric space X,
has measure zero with respect to any pointwise expansive measure.

Proof Let μ be a pointwise expansive outer regular measure for f . By contradic-
tion, suppose there is A ⊂ A( f ) such that μ(A) > 0. For each n ∈ N

+, let
A(n) be the set of points a ∈ A such that 1

n ≤ δa . Since A = ⋃
n∈N+ A(n),

we have μ(A(M)) > 0 for some M ∈ N
+. By Lemma 3.4, there is a sequence

xk ∈ X such that A(M) ⊂ ⋂
n∈N+

⋃
k,k′,m∈N+ A(xk, xk′ , n, m). Therefore, we

have A(M) ⊂ ⋃
k,k′,m∈N+ A(xk, xk′ , n, m) for all n ∈ N

+. Thus, we can choose
k, k′, m ∈ N

+ such that μ(A(xk, xk′ , n, m)) > 0 for all n ∈ N
+. In particular, we

haveμ(A(xk, xk′ , M, m)) > 0.Hereafter, we fix such k, k′, m ∈ N
+ and for simplicity

we put B = A(xk, xk′ , M, m).
Lusin Theorem (Feldman 1981) implies that for every ε > 0 there is a measurable

subset Cε with μ(X\Cε) < ε such that f i |Cε is continuous for all integer i with
| i |≤ m. Taking ε = μ(B)

2 , we obtain a measurable subset C = C μ(B)
2

such that f i |C
is continuous for all integer i with | i |≤ m andμ(B∩C) > 0. Since B∩C is Lindelöf,
by Lemma 3.5 there are z ∈ B ∩ C and δ0 > 0 such that μ(B ∩ C ∩ B[z, δ]) > 0
for all 0 < δ < δ0. Since z ∈ C and f i |C is continuous for all | i |≤ m, we can fix
0 < δ < δ0 such that d( f i (z), f i (w)) ≤ δz for all | i |≤ m, whenever d(z, w) ≤ δ

with w ∈ C .
Let w ∈ B ∩ C ∩ B[z, δ] which implies w ∈ C ∩ B[z, δ] and hence,

d( f i (z), f i (w)) ≤ δz for all | i |≤ m. Further, since z, w ∈ B ∩ C , we have
d( f i (z), f i (w)) ≤ 1

M ≤ δz for all | i |≥ m. Combining we get d( f i (z), f i (w)) ≤ δz

for all i ∈ Z which implies w ∈ �δz (z) and hence, B ∩ C ∩ B[z, δ] ⊂ �δz (z). Thus,
μ(B ∩ C ∩ B[z, δ]) = 0, which is a contradiction. 
�
Corollary 3.7 (i) A uniform equivalence f of a separable metric space, is aperiodic

with respect to any pointwise expansive measure μ for f .
(ii) The set A( f ) of a pointwise measure expansive homeomorphism f of a separable

metric space, has measure zero with respect to any non-atomic Borel measure.
(iii) Let f be a uniform equivalence of a separable metric space. Then, the set of

periodic points of f has measure zero with respect to any pointwise expansive
measure μ for f .

(iv) The set Per( f ) of a pointwise measure expansive uniform equivalence f of a
separable metric space is at most countable.

Proof (i) If B is a set and n is a positive integer such that f n(x) = x for all x ∈ B,
then B ⊂ A( f m) for some1 ≤ m ≤ n. ByCorollary 3.2,μ is pointwise expansive
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with respect to f m . Then by Theorem 3.6, we have μ(A) = 0. Since A and n are
arbitrary, we conclude that f is aperiodic.

(ii) This clearly follows from the definitions of pointwise expansive measure and
measure expansive homeomorphism.

(iii) It is clear from the fact that Per( f ) = ⋃
m∈N+ Fix( f m), Fix( f m) ⊂ A( f m)

and μ is pointwise expansive for f m , for all m ≥ 1.
(iv) It is enough to show that Fix( f n) is at most countable for each n ∈ N

+. If
possible suppose that Fix( f n) is uncountable for some n ∈ N

+. Then, Fix( f n)

is uncountable, separable, complete metric space and hence there is non-atomic
Borel measure ν on Fix( f n). If we set μ(A) = ν(Fix( f n) ∩ A) for all Borel
measurable set A of X , then μ is a non-atomic Borel measure on X such that
Fix( f n) has full μ-measure which implies Per( f ) has full μ-measure. On con-
trary, μ(Per( f )) = 0 by Corollary 3.7(iii) and hence, Per( f ) must be at most
countable.


�
Theorem 3.8 The set A f (p, q) under a bi-measurable map f of a separable metric
space X, has measure zero with respect to any pointwise expansive outer regular
measure.

Proof Let μ be a pointwise expansive outer regular measure for f . Let p, q ∈ X be
given and A ⊂ A(p, q) be such that μ(A) > 0. For n ∈ N

+, let A(n) be the set of
points a ∈ A such that 1

n ≤ δa . Since A = ⋃
n∈N+ A(n), we have μ(A(M)) > 0

for some M ∈ N
+. If AN = {x ∈ X | d( f n(x), f n(p)) ≤ 1

2M for all n ≥ N and
d( f n(x), f n(q)) ≤ 1

2M for all n ≤ −N }, then A(M) ⊂ ⋃
N≥0 AN and each AN is

measurable.We show thatμ(
⋃

N≥1 AN ) = 0. If possible, supposeμ(
⋃

N≥1 AN ) > 0.
So, there is K ≥ 1 such that μ(AK ) > 0.

Lusin Theorem (Feldman 1981) implies that for every ε > 0 there is a measurable
subset Cε with μ(X\Cε) < ε such that f i |Cε is continuous for all integer i with
| i |≤ K . Taking ε = μ(AK )

2 , we obtain a measurable subset C = C μ(AK )

2
such

that f i |C continuous for all integer i with | i |≤ K and μ(AK ∩ C) > 0. Since
AK ∩ C is Lindelöf, by Lemma 3.5 there are z ∈ B ∩ C and δ0 > 0 such that
μ(AK ∩ C ∩ B[z, δ]) > 0 for all 0 < δ < δ0. Since z ∈ C and f i |C is continuous for
all | i |≤ K , we can fix 0 < δ < δ0 such that d( f i (z), f i (w)) ≤ δz for all | i |≤ K ,
whenever d(z, w) ≤ δ with w ∈ C .

Let w ∈ AK ∩ C ∩ B[z, δ] which implies w ∈ C ∩ B[z, δ] and hence,
d( f i (z), f i (w)) ≤ δz for all | i |≤ K . Since z ∈ AK ∩C , we havew, z ∈ AK . Hence,
d( f i (w), f i (p)) ≤ 1

2M , d( f i (z), f i (q)) ≤ 1
2M for all i ≥ K and d( f i (w), f i (p)) ≤

1
2M , d( f i (z), f i (q)) ≤ 1

2M for all i ≤ −K . Thus, d( f i (z), f i (w)) ≤ 1
M ≤ δz

for all | i |≥ K . Thus d( f i (z), f i (w)) ≤ δz for all i ∈ Z which implies
AK ∩ C ∩ B[z, δ] ⊂ �δz (z) and hence, μ(AK ∩ C ∩ B[z, δ]) = 0, which is a
contradiction. 
�
Corollary 3.9 (i) The set A f (p, q) of a pointwise measure expansive homeomor-

phism of a separable metric space, has measure zero with respect to any
non-atomic Borel measure.
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(ii) The set of all heteroclinic points of a pointwise measure expansive uniform equiv-
alence of a separable metric space has measure zero with respect to non-atomic
Borel measure.

Theorem 3.10 Every stable class of a measurable map on a separable metric space
has measure zero with respect to any positively pointwise expansive outer regular
measure.

Proof One can prove this result by following the same steps as in Theorem 3.8 above.

�

Corollary 3.11 A continuous map of a separable metric space admitting positively
pointwise expansive outer regular measure has uncountably many stable classes.

Theorem 3.12 If a bi-measurable map f with canonical coordinates admits strictly
positive positively pointwise expansive measure μ, then no point is a sink.

Proof If x ∈ X is a sink, then there is δ0 > 0 such that W u(x, δ0) = {x}. Let δx > 0
be a pointwise expansive constant at x and let ε = min{δ0, δx }. Since f has canonical
coordinates, there is δ′ > 0 such that d(x, y) < δ′ implies W s(x, ε) ∩ W u(y, ε) 	= φ.
Observe that W u(x, ε) ⊂ W u(x, δ0) = {x} and hence, W u(x, ε) = {x}. If y ∈ X
be such that d(x, y) < δ′, then because of symmetric property of metric, W s(y, ε) ∩
W u(x, ε) 	= φ. But W u(x, ε) = {x}, we have x ∈ W s(y, ε) which implies y ∈
W s(x, ε) and ε ≤ δx , we have y ∈ W s(x, δx ) proving Bδx (x) ⊂ W s(x, δx ). But then
μ(Bδx (x)) ≤ μ(W s(x, δx )) = 0 which is a contradiction to the fact that μ is strictly
positive. 
�
Example 3.13 Let g be a pointwise expansive homeomorphism on an uncountable
compact metric space (Y , d0). Let p be a periodic point of g with prime period t . Let
X = Y ∪ E , where E is an infinite enumerable set. So, there is a bijection r : N → E .
Consider Q = ⋃

k∈N{1, 2, 3} × {k} × {0, 1, 2, 3, ..., t − 1}. Suppose s : Q → N is a
bijection. Then, consider the bijection q : Q → E given by q(i, k, j) = r(s(i, k, j)).
Thus, any point x ∈ E has the form x = q(i, k, j) for some (i, k, j) ∈ Q.

Define a function d : X × X → R
+ by

d(a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if a = b,

d0(a, b) if a, b ∈ Y
1
k + d0(g j (p), b) if a = q(i, k, j) and b ∈ Y
1
k + d0(a, g j (p)) if a ∈ Y and b = q(i, k, j)
1
k if a = q(i, k, j), b = q(l, k, j) and i 	= l
1
k + 1

m + d0(g j (p), gr (p)) if a = q(i, k, j), b = q(i, m, r) and k 	= m or j 	= r

Then similarly as in Proposition 3.1 and Proposition 3.2 (Carvalho and Cordiero
2016), one can show that (X , d) is a compact metric space.

Define a map f : X → X by

f (x) =
{

g(x) if x ∈ Y

q(i, k, ( j + 1))mod t if x = q(i, k, j)
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The similar procedure as in Carvalho and Cordiero (2016) follows to prove that f
is a homeomorphism. Since for any δ > 0 there is K ∈ N

+ such that 1
k < δ for all

k ≥ K , � 1
K
(p) contains countably many points from E . Therefore, f is not pointwise

expansive. Since X is non-atomic, f is pointwise measure-expansive. Here, f cannot
be strongly pointwise expansive because of the following theorem.

Theorem 3.14 If f is a strongly pointwise measure-expansive map with at least one
periodic point. Then, f /Per( f ) is pointwise expansive.

Proof Let p ∈ Per( f ) and δp be the strong measure-expansive constant for f at p.
Further, suppose q ∈ Per( f ) such that q ∈ �δp (p). Let m and n be the period of p
and q respectively. Let μ be the measure such that for each x ∈ O(p) ∪ O(q), we get
μ(x) = 1

m+n . Then, μ(�δp (p)) ≥ μ(p) + μ(q) = 2
m+n > μ({p}). This leads to a

contradiction. Thus, f /Per( f ) must be pointwise expansive. 
�
The following discussion distinguishes the notion of expansivity and pointwise

expansivity.

Theorem 3.15 If f is pointwise N-expansive, then it is pointwise expansive. In par-
ticular, N-expansive homeomorphisms are pointwise expansive.

Proof Let x ∈ X and δx be the pointwise N -expansive constant for f at x . Let
y1, ..., yk ∈ �δx (x), where k ≤ N . If εx = min1≤i≤kd(x, yi ), then �εx (x) = {x}.
Since x is arbitrary, f is pointwise expansive with pointwise expansive constant εx

at x . 
�
Corollary 3.16 There is no pointwise N-expansive homeomorphism of an arc, circle
or 2-cell.

Proof This follows from Theorem 3.15 and a Corollary of Reddy (1970). 
�
Corollary 3.17 Let X be a compact metric space and let f be a pointwise N-expansive
homeomorphism. If X is an infinite minimal set for f , then f cannot be distal.

Proof This follows from Theorem 3.15 and a Corollary of Reddy (1970). 
�
Example 3.18 If the metric space is non-atomic, then strong pointwise measure-
expansive systems are pointwise measure-expansive. Now, consider X to be the
subspace ofRn (n ≥ 1) given by {a, b}∪{xi | i ∈ Z}, where a 	= b, xi 	= x j for i 	= j
and {xi }i∈Z is a bi-infinite sequence such that limi→∞xi = a and limi→−∞xi = b.
Then, the identity map f on X is not pointwise expansive and hence, by Theorem 3.14
it is not strongly pointwise measure-expansive. But if Y = X\{a, b}, then the identity
map on Y is pointwise expansive and strongly pointwise measure-expansive.

4 Pointwise Specification

In this section, we consider the dynamics of continuous map on any metric space
(unless otherwise stated). In particular, we study the effect of the presence of specifi-
cation points on the nature of the system under different hypothesis.
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Definition 4.1 Let f be a continuous map on X and let x ∈ X . Then, x is said to be
a specification (resp. periodic specification) point of f if for every ε > 0 there exists
a positive integer M(ε) such that for any finite sequence x = x1, x2, . . . , xk in X and
any integers 0 ≤ a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk with a j − b j−1 ≥ M(ε) for
1 ≤ j ≤ k, there exists y ∈ X (resp. y ∈ Per( f )) such that d( f i (y), f i (x j )) < ε

for a j ≤ i ≤ b j , 1 ≤ j ≤ k. A map f is said to have pointwise specification
(resp. pointwise periodic specification) property if every point is a specification (resp.
periodic specification) point.

If f has specification (resp. periodic specification) property, then every point is a
specification (resp. periodic specification) point. Further, every specification point of
f is a specification point of f m , for any m > 0.
A continuous onto map π : X → X is said to be locally isometric covering map if

for each x ∈ X , there exists an open set U (x) containing x such that π−1(U (x)) =
∪αUα , where {Uα} is a pairwise disjoint family of open sets such that π |Uα : Uα →
U (x) is an isometry for each α.

Theorem 4.2 Let f and g be continuous maps on X and X respectively. Let π : X →
X be a locally isometric covering map. Further, suppose that π f = gπ and there
exists δ0 > 0 such that for each x ∈ X and 0 < δ ≤ δ0, π : Uδ(x) → Uδ(π(x)) is an
isometry. Then, the following statements are true

(i) If x is a specification point of g, then every point in π−1(x) is a specification
point of f .

(ii) If x is a specification point of f , then π(x) is a specification point of g.

Proof (i) Suppose that x is a specification point of g. For any 0 < ε ≤ δ0, choose
an integer M(ε) due to the specification of g at x . Let x ∈ π−1(x). Consider a
sequence of points x = x1, x2, . . . , xk and 0 ≤ a1 ≤ b1 < a2 ≤ b2 < · · · <

ak ≤ bk with a j −b j−1 ≥ M(ε) for all 1 ≤ j ≤ k. Choose {xi : 1 ≤ i ≤ k} such
that xi = π(xi ) for all 1 ≤ i ≤ k. Choose y ∈ X such that d(gi (y), gi (x j )) <

ε ≤ δ0 for all a j ≤ i ≤ b j , 1 ≤ j ≤ k or d(gi (π(y)), gi (π(x j ))) < ε ≤ δ0
for all a j ≤ i ≤ b j , 1 ≤ j ≤ k or d(π( f i (y)), π( f i (x j ))) < ε ≤ δ0 for all
a j ≤ i ≤ b j , 1 ≤ j ≤ k, for some y ∈ X . Since π is an isometry on Uδ( f i (y))

for all a j ≤ i ≤ b j , 1 ≤ j ≤ k, we get that d( f i (y), f i (x j )) < ε ≤ δ0 for all
a j ≤ i ≤ b j , 1 ≤ j ≤ k.

(ii) Suppose that x is a specification point of f . For any 0 < ε ≤ δ0, choose an
integer M(ε) due to the specification of x . Let x = π(x). Consider a sequence
of points x = x1, x2, . . . , xk and 0 ≤ a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk with
a j − b j−1 ≥ M(ε) for all 1 ≤ j ≤ k. Choose {xi : 1 ≤ i ≤ k} such that xi =
π(xi ) and x1 = x for all 1 ≤ i ≤ k. Choose y ∈ X such that d( f i (y), f i (x j )) <

ε ≤ δ0 for all a j ≤ i ≤ b j , 1 ≤ j ≤ k. Since π is an isometry on Uε(y),
d( f i (y), f i (x j )) = d(π f i (y), π f i (x j )) = d(gi (π(y)), giπ(x j )) < ε ≤ δ0 or
d(gi (y), gi (x j )) < ε ≤ δ0 for y = π(y), for all a j ≤ i ≤ b j , 1 ≤ j ≤ k. Hence
x is a specification point of g. 
�

Definition 4.3 Let f be a continuous map on X and let x ∈ X . Then,
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(i) x is said to be a sensitive point of f if there exists δx > 0 such that for every
open set U containing x there exists y ∈ U such that d( f n(x), f n(y)) > δx for
some n ∈ N

+. Such a constant δx is said be a sensitivity constant for f at x . A
map f is said to be pointwise sensitive if every point is a sensitive point of f .

(ii) x is said to be a topologically transitive (topologically mixing) point of f if for
any open set U containing x and any non-empty open set V there exists n ∈ N

+
(N ∈ N

+) such that f n(U ) ∩ V 	= φ (for all n ≥ N ).
(iii) f is said to have a dense set of periodic points at x if every deleted open set of x

contains a periodic point of f .

It is easy to verify that every N -expansive map on a metric space without isolated
points is sensitive and hence, it is pointwise sensitive. But we don’t know whether
pointwise sensitivity implies sensitivity. Further, observe that f is topologicallymixing
(resp. topologically transitive) if and only if every point is topologically mixing (resp.
topologically transitive) point of f . Moreover, every topologically mixing point is a
topologically transitive point.

Definition 4.4 Let f be a continuous map on X and let x ∈ X . Then, x is said to be a
Devaney chaotic point of f if the following holds

(i) x is topologically transitive point of f ;
(ii) f has dense set of periodic points at x ;
(iii) x is sensitive point of f .

A continuous map f is said to be pointwise Devaney chaotic if every point in X is
Devaney chaotic.

Theorem 4.5 Every specification point of a continuous map f on X is a topologically
mixing point.

Proof Let f be a continuous map on X and let x ∈ X be a specification point of
f . Assume that U is any open set containing x and V is any non-empty open set in
X . Fix y ∈ V and ε > 0 such that Bε(x) ⊂ U and Bε(y) ⊂ V . Choose a positive
integer M(ε) corresponding to the specification point x of f . Thus for any n ≥ M(ε),
set a1 = 0 = b1, a2 = n = b2, x1 = x , x2 = f −n(y). Choose zn ∈ X such that
d( f i (zn), f i (x j )) < ε for all a j ≤ i ≤ b j , 1 ≤ j ≤ 2. Hence, zn ∈ Bε(x) and
f n(zn) ∈ Bε(y). Since this is true for all n ≥ M(ε) and any open set U containing x ,
we get that x is a topologically mixing point of f . 
�
Corollary 4.6 If a continuous map f on X has pointwise specification property, then
f is topologically mixing.

Theorem 4.7 If x is a periodic specification point of a continuous surjective map f
on X, then f has dense set of periodic points at x.

Proof Let U be any deleted open set of x and choose ε > 0 such that Bε(x)\{x} ⊂ U .
Choose positive integer M = M(ε) corresponding to the periodic specification point
x of f . Let a1 = 0 = b1, a2 = M = b2 and consider x1, x2, where x1 = x and x2 ∈ X
is arbitrary. Then, there exists a periodic point z ∈ X satisfying d( f i (z), f i (x j )) < ε
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for a j ≤ i ≤ b j , 1 ≤ j ≤ 2. If x is non-periodic point, then z ∈ Bε(x)\{x} ⊂ U . If x
is periodic, then choose x2 such that d( f M (x2),O(x)) > ε. Then, z 	= x and hence,
z ∈ U . Since U was chosen arbitrary, x has dense set of periodic points at x . 
�

Theorem 4.8 Let f be a continuous map on X. If x is topologically transitive point
such that f has dense set of periodic points at x, then x is a sensitive point of f .

Proof Since f has dense set of periodic points at x , we can choose δ > 0 and a periodic
point q such that d(x,O(q)) ≥ δ

2 . We claim that η = δ
8 is a sensitivity constant for

f at x . It is clear that d(x,O(q)) ≥ δ
2 = 4η. Let N be an open set containing x and

choose a periodic point p in N ′\{x}, where N ′ = (N ∩ Bη(x)). Suppose that p has
prime period n and that W = ∩n

i=0 f −i (Bη( f i (q))). Clearly, W is a non empty open
set in X . Since x is a topologically transitive point, there exists y ∈ N ′ and k ∈ N

+
such that f k(y) ∈ W . Let j be the integer part of ( k

n + 1). Since 0 ≤ nj − k ≤ n, we
have

f n j (y) = f n j−k+k(y) = f n j−k( f k(y)) ∈ f n j−k(W ) ⊂ Bη( f n j−k(q))

By the triangle inequality,

d(x, f n j−k(q)) ≤ d(x, p) + d(p, f n j−k(q))

≤ d(x, p) + d(p, f n j (y)) + d( f n j (y), f n j−k(q))

or

d( f n j (p), f n j (y)) = d(p, f n j (y))

≥ d(x, f n j−k(q)) − d(x, p) − d( f n j (y), f n j−k(q))

Since p ∈ N ′\{x}, f n j (y) ∈ Bη( f n j−k(q)), d(x,O(q)) > 4η and f n j−k ∈ O(q),
we have −d(x, p) > −η, −d( f n j (y), f n j−k(q)) > −η and d(x, f n j−k(q)) > 4η.
Therefore,

2η = 4η − η − η

< d(x, f n j−k(q)) − d(x, p) − d( f n j (y), f n j−k(q))

< d( f n j (p), f n j (y))

≤ d( f n j (p), f n j (x)) + d( f n j (x), f n j (y))

The last inequality implies that d( f n j (p), f n j (x)) > η or d( f n j (x), f n j (y)) > η.
Hence, η is a sensitivity constant for f at x . 
�

Corollary 4.9 Every continuous surjective map with pointwise periodic specification
property is Devaney chaotic.
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Recall that shadowable points for homeomorphisms on compact metric space is
defined by Morales in Morales (2016), in which it has been proved that every home-
omorphism on compact metric space has shadowing if and only if every point is a
shadowable point. By Remark 1.1 Morales (2016), the definition can be extended to
continuous map as follows.

A sequence {xi }i∈N is said to be through a subset B of X if x0 ∈ B. A point x ∈ X
is said to be shadowable point for f if for every ε > 0 there exists a δ > 0 such that
every δ-pseudo orbit through x can be ε-traced. Following similar steps as in Theorem
1.1 Morales (2016), we can prove the following.

Theorem 4.10 If f is continuous onto map on compact metric space, then f has
shadowing if and only if every point is a shadowable point.

Theorem 4.11 If f is a topologically mixing continuous map on a totally bounded
metric space X, then every shadowable point is a specification point.

Proof Let ε > 0 and choose 0 < δ < ε
2 such that every δ-pseudo orbit through x

can be ε
2 -traced. Since X is totally bounded, there exists {z1, z2, . . . , zm} ⊂ X such

that X = ∪m
i=1B δ

2
(zi ). Since f is topologically mixing, there exists M ∈ N

+ such

that f n(B δ
2
(zi )) ∩ B δ

2
(z j ) 	= φ for all n ≥ M , 1 ≤ i, j ≤ m. Choose 0 ≤ a1 ≤

b1 < a2 ≤ b2 < · · · < ak ≤ bk , with a j − b j−1 ≥ M for all 2 ≤ j ≤ k and x =
x1, x2, . . . , xk . Let B(z) denotes a set in {B δ

2
(zi )} containing z. Since a j − b j−1 ≥ M

for all 2 ≤ j ≤ k, by topological mixing of f we can choose y j ∈ B( f b j (x j )) such
that f a j −b j−1(y j ) ∈ B( f a j+1(x j+1)). We define a sequence

vi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f i (x) 0 ≤ i < a1
f i (x j ) a j ≤ i < b j

f i−b j (y j ) b j ≤ i < a j+1

f i (xk) i ≥ bk

Clearly, {vi }i∈N forms a δ-pseudo orbit of f through x . Hence there exists w ∈ X
such that d( f i (w), vi ) < ε

2 for all i ∈ N, which implies that d( f i (w), f i (x j )) < ε

for all a j ≤ i ≤ b j , 1 ≤ j ≤ k. Hence x is a specification point. 
�
Corollary 4.12 For every uniformly continuous surjective map with the shadowing
property on a totally bounded metric space, pointwise specification property implies
specification property.

Proof Proof follows from the Main Theorem of Das and Das (2018), Corollary 4.6
and Theorem 4.11. 
�
Theorem 4.13 Let f be a uniformly continuous surjective map on X. If f has two
distinct specification points, then f has positive Bowen entropy.

Proof Let x 	= y be two distinct specification points of f . Let ε > 0 be such that
d(x, y) > 3ε. Further, let M(ε) = M be a positive integer given by the specifica-
tion points x and y of f . Consider two distinct (n + 1)-tuples, (z0, z1, . . . , zn) and
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(z′
0, z′

1, . . . , z′
n) with z0 = x , z′

0 = y, zi , z′
i ∈ {x, y} for all 1 ≤ i ≤ n. Choose

a0 = 0 = b0, a1 = M = b1, . . . , an = nM = bn . Then, there exist z, z′ ∈ X
corresponding to the specification points x and y respectively. Observe that z 	= z′,
otherwise d( f i (z), f i (zi )) < ε and d( f i (z), f i (z′

i )) < ε for all a j ≤ i ≤ b j ,
0 ≤ j ≤ n. In particular, d(x, y) < 2ε, a contradiction. Now suppose that z0 = z′

0.
Since f is onto, fix zn+1 ∈ f −(n+1)M (x), z′

n+1 ∈ f −(n+1)M (y). Choose an+1 =
(n + 1)M = bn+1, (z0, z1, . . . , zn, zn+1) and (z′

0, z′
1, . . . , z′

n, z′
n+1). Let z, z′ ∈ X

be such that d( f i (z), f i (zi )) < ε and d( f i (z′), f i (z′
i )) < ε for all a j ≤ i ≤ b j ,

0 ≤ j ≤ (n + 1). If z = z′ then d(x, y) = d( f (n+1)M (zn+1), f (n+1)M (z′
n+1)) ≤

d( f (n+1)M (zn+1), f (n+1)M (z)) + d( f (n+1)M (z), f (n+1)M (z′
n+1)) < 2ε, a contra-

diction. Hence for distinct 2n+1-tuples, we can choose 2n+1-distinct tracing points.
Similarly, if d( f i (z), f i (z′)) < ε for all 0 ≤ i ≤ (n + 1)M , where z and z′ are
tracing points of above sequences then d(x, y) < 3ε, a contradiction. Hence there
exists atleast 2n+1 points which are ((n + 1)M, ε)-separated. Hence,

h( f , X) = supK∈K(X ) lim
ε→0

s(ε, K )

≥ lim
ε→0

s(ε, K )

≥ lim sup
n→∞

1

n
logsn(ε, K )

≥ lim sup
n→∞

1

(n + 1)M
log(2n+1)

= log2

M
> 0


�
Corollary 4.14 Every topologically mixing uniformly continuous surjective map hav-
ing atleast two distinct shadowable points on a totally bounded metric space has
positive Bowen entropy.

Example 4.15 Let f : [0,∞) → [0,∞) be defined by f (x) = 2x . Note that f has
positive Bowen entropy and has shadowing property. It is easy to see that, y = 0 is the
only topologically mixing point and hence, f can have at most one specification point.
Thus, two distinct points is not necessary for a uniformly continuous surjective map
to have positive Bowen entropy. In fact, one can observe that f has no specification
point. Hence, a point which is both topologically mixing point and shadowable point
need not be a specification point.

Example 4.16 Let f : [0, 1] → [0, 1] be defined by f (x) = x2. Note that f has zero
Bowen entropy and has shadowing property. It is easy to see that y = 1 is the only
topologically mixing point. In fact y = 1 is a shadowable point but not a specification
point. Thus, topologically mixing point and shadowable point on a totally bounded
metric space need not be a specification point.
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