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Abstract
The objective of this paper is to study the existence, multiplicity and non existence of
solutions for semilinear elliptic problems under a local Landesman–Lazer condition.
There is no growth restriction at infinity on the nonlinear term and it may change sign.
In order to establish the existence of solution we combine the Lyapunov–Schmidt
reduction method with truncation and approximation arguments via bootstrap meth-
ods. In our applications we also consider the existence of a bifurcation point which
may have multiple positive solutions for a fixed value of the parameters.
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1 Introduction andMain Results

In this paper we are concerned with the existence, non existence and multiplicity of
weak solutions for the following problem

{−�u = λu + μh(x, u) in �,

u = 0 on ∂�,
(1.1)
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890 M. C. M. Rezende et al.

where� is a bounded smooth domain ofRN , N ≥ 1; λ > 0;μ �= 0 is a real parameter
and h : � × R → R is a Carathéodory function.

One of the most celebrated articles in the area of Nonlinear Analysis is the paper
due to Landesman et al. (1975) which, via Topological Degree Theory, establishes
the existence or non existence of solution for resonant nonlinear elliptic problems. In
Landesman et al. (1975), one of the most famous hypotheses for this class of problems
was introduced, nowadays called the Landesman–Lazer condition.

We emphasize that, besides providing the basic tools for studying resonant prob-
lems, the article Landesman et al. (1975) has allowed researchers to consider the
possibility of using different methods to study that class of problems—see (Ahmad
et al. 1976; Amann 1979; Arcoya and Gámez 2001; Bartolo and Benci 1983; Rabi-
nowitz 1986; Ruiz 2004; Shaw 1977; Silva 1991) and references therein. In particular
we mention the paper by Rabinowitz (1978) where it was demonstrated one of the
most important results on the minimax theory: the Saddle Point Theorem.

Supposing that λ = λ1 and that h is of the form h(x, s) = f (x) + g(s), with
f ∈ L2(�) and g : R → R a bounded continuous function with finite limits g± =
lims→±∞ g(s), the Landesman–Lazer condition for Problem (1.1) may be written as

[ ∫
�

( f + g−)ϕ1dx

][ ∫
�

( f + g+)ϕ1dx

]
< 0, (1.2)

where ϕ1 is a positive eigenfunction associated with λ1, the first eigenvalue of the
operator −� under Dirichlet boundary conditions.

We observe that the Landesman–Lazer condition (1.2) implies that there exist real
numbers t1 and t2, with t1 < t2, such that either

(H+
0 )

∫
�

h(x, t1ϕ1)ϕ1dx > 0 >

∫
�

h(x, t2ϕ1)ϕ1dx,

or

(H−
0 )

∫
�

h(x, t1ϕ1)ϕ1dx < 0 <

∫
�

h(x, t2ϕ1)ϕ1dx .

The main objective of this work is to consider the existence, multiplicity and non
existence of solutions for Problem (1.1) under the local version of the Landesman–
Lazer condition (H±

0 ) when the parameters μ and λ are close to zero and λ1,
respectively. One of the characteristics of our main results is that they do not impose
any growth restriction at infinity on the nonlinear term h. It is worthwhile mentioning
that in Landesman et al. (1975), and in the vast majority of subsequent results, it is
imposed a growth restriction at infinity on the nonlinear term.

In order to establish our first result on the existence of solution for Problem (1.1)
we assume h satisfies (H+

0 ) and the technical hypothesis:

(H1) h is locally Lσ (�)-bounded, σ > {N/2, 1}, i. e., given S > 0, there is fS ∈
Lσ (�) such that |h(x, s)| ≤ fS(x) for every |s| ≤ S, a. e. in �.

We observe that our results are proved via variational methods. However, since
there is no global growth restriction on the nonlinearity h, the associated functional
may not bewell defined in H1

0 (�).We overcome this fact by combining the hypothesis
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A Landesman–Lazer Local Condition for Semilinear Elliptic Problems 891

(H1)with an appropriated truncation of the function h. The hypothesis (H1) also plays
an important role in the approximation method that we use to derive the existence of
solution for Problem (1.1).

Now we may state:

Theorem 1.1 Suppose h satisfies (H+
0 ) and (H1). Then there exist positive constants

μ∗ and ν∗ such that, for every μ ∈ (0, μ∗) and |λ − λ1| < μν∗, Problem (1.1) has a
weak solution uμ = tϕ1 + v, with t ∈ (t1, t2) and v ∈ 〈ϕ1〉⊥.

For proving a corresponding result under the hypothesis (H−
0 ), we suppose more

regularity on the function h:

(H2) h is locally Lσ (�)-Lipschitz, σ > {N/2, 1}, i. e., given S > 0, there is ζS ∈
Lσ (�) such that |h(x, s1)−h(x, s2)| ≤ ζS(x)|s1−s2|, for every |s1|, |s2| ≤ S,
a. e. in �.

Theorem 1.2 Suppose h satisfies (H−
0 ), (H1) and (H2) . Then there exist positive

constants μ∗ and ν∗ such that, for every μ ∈ (0, μ∗) and |λ − λ1| < μν∗, Problem
(1.1) has a weak solution uμ = tϕ1 + v, with t ∈ (t1, t2) and v ∈ 〈ϕ1〉⊥.

It is important to note that in Theorems 1.1 and 1.2 the projections of the solutions
uμ on the direction of ϕ1 are located between t1ϕ1 and t2ϕ1. As a direct consequence of
this fact, wemay establishmultiple solutions for the Problem (1.1) under the following
version of (H±

0 ):

(H0) there exist k ∈ N and ti ∈ R, ti < ti+1, i = 1, . . . , k such that

[ ∫
�

h(x, tiϕ1)ϕ1dx

][ ∫
�

h(x, ti+1ϕ1)ϕ1dx

]
< 0.

Theorem 1.3 Suppose h satisfies (H0), (H1) and (H2). Then there exist positive con-
stantsμ∗ and ν∗ such that, for every 0 < |μ| < μ∗ and |λ−λ1| < |μ|ν∗, Problem (1.1)
has k weak solutions ui = t̂iϕ1 + vi , with t̂i ∈ (ti , ti+1) and vi ∈ 〈ϕ1〉⊥, i = 1, . . . , k.

Remark 1.4 Note that the solutions provided byTheorems 1.1–1.3 are of classC1,γ (�)

if N = 1 and of classC0,γ (�) if N ≥ 2. If we assume (H1) holdswith σ > N , wemay
assert that those solutions are actually in C1,γ (�). Using this fact we may verify that
the solution uμ given by Theorems 1.1 and 1.2 is positive or negative in � provided
t1 ≥ 0 or t2 ≤ 0, respectively. Moreover, for |μ| > 0 sufficiently small, the solutions
of Theorem 1.3 are ordered, see Theorems 2.10 and 2.11 in Sect. 2.

The proofs of Theorems 1.1 and 1.2 are inspired by the Lyapunov–Schmidt Reduc-
tion Method, as presented in the articles (Castro and Lazer 1979; Castro 1982; Cossio
2004; Landesman et al. 1975). However, under the hypotheses of those theorems,
that method can not be applied directly since we do not impose any global growth
restriction on the nonlinear term h. In order to overcome such difficulty we combine
the Lyapunov–Schmidt reduction method with a truncation argument and an approx-
imation method based on the bootstrap technique.
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892 M. C. M. Rezende et al.

Theorems 1.1 and 1.2 imply that the local Landesman–Lazer condition (H±
0 ) is

sufficient to provide the existence of solution uμ for Problem (1.1) such that its orthog-
onal projection on the direction of ϕ1 belongs to the interval (t1ϕ1, t2ϕ1). It is natural
to question if this condition is also necessary. Here we prove such result under the
hypotheses (see also Theorem 2.9)

(H3) there exists f ∈ Lσ (�), σ > {N/2, 1}, such that |h(x, s)| ≤ f (x)(1 +
|s|), for every s ∈ R, a. e. in �;

and

(H4) there exist real numbers t1 and t2, with t1 < t2, such that
∫

�

h(x, tϕ1)ϕ1dx �=
0, for every t ∈ [t1, t2].

Theorem 1.5 Suppose h satisfies (H3) and (H4). Then there exist positive constants
μ∗ and ν∗ such that, for every 0 < |μ| < μ∗ and |λ − λ1| < |μ|ν∗, Problem (1.1)
has no weak solution uμ = tϕ1 + v, with t ∈ [t1, t2] and v ∈ 〈ϕ1〉⊥.

It is important to note that, under our hypotheses, h may change sign in �. This
characterizes the Problem (1.1) as indefinite. This class of problems has been object of
an intense research in the last three decades since the articles by Alama and Tarantello
(1993), Berestycki et al. (1994) and Ouyang (1991) (see Alama and Del Pino 1996;
Alama and Tarantello 1996; Chang and Jiang 2004; Costa and Tehrani 2001; De
Figueiredo et al. 2003, 2006;Medeiros et al. 2014; Silva and Silva 2013 and references
there in). Here we present, as a consequence of our main theorems, results on the
existence of solutions for this class of problems, relating the hypotheses assumed for
such problems with the Landesman–Lazer condition. More specifically, we consider
the existence of a solution for the following problem

{−�u = λu + βb1(x)uq + b2(x)u p in �,

u = 0 on ∂�,
(1.3)

where � is a bounded smooth domain of RN , N ≥ 1; λ, β > 0; p > q, with p �= 1,
and b1, b2 ∈ Lσ (�), with σ > N .

Considering the nomenclature for elliptic problems used in the literature, Problem
(1.3) is superlinear or sublinear at infinity if p > 1 or 0 < p < 1 and it is superlinear,
linear or sublinear at the origin if q > 1, q = 1 or 0 < q < 1, respectively.

Setting

r1 :=
∫

�

b1ϕ
q+1
1 dx and r2 :=

∫
�

b2ϕ
p+1
1 dx,

for the problem linear or superlinear at the origin and superlinear at infinitywe establish
the following result:

Proposition 1.6 Suppose p > q ≥ 1 and r1r2 < 0. Then there exist positive constants
β∗ and ν∗ such that Problem (1.3) has a positive weak solution for every β ∈ (0, β∗)
and |λ − λ1| < β

p−1
p−q ν∗.

123



A Landesman–Lazer Local Condition for Semilinear Elliptic Problems 893

For the problem sublinear at the origin and superlinear or sublinear at infinity we may
state:

Proposition 1.7 Suppose r1 > 0 > r2. Then

(i) if 0 < q < 1 < p, there exist positive constants β∗
1 and ν∗

1 such that Problem

(1.3) has a positive weak solution for every β ∈ (0, β∗
1 ) and |λ−λ1| < β

p−1
p−q ν∗

1 .
(ii) if 0 < q < p < 1, there exist positive constants β∗

2 and ν∗
2 such that Problem

(1.3)has apositiveweak solution for everyβ ∈ (β∗
2 ,∞)and |λ−λ1| < β

p−1
p−q ν∗

2 .

We emphasize that in Proposition 1.6 and in item (i) of Proposition 1.7, we do not
assume the restriction p < (N + 2)/(N − 2) to derive the existence of a solution
for (1.3). Furthermore, in Proposition 1.6 it is worthwhile mentioning that for the
subcritical problem with a nonlinear term superlinear at the origin and infinity (1 <

q < p < (N + 2)/(N − 2)), we are not able to apply a minimax theorem Rabinowitz
(1986) to find a positive solution for Problem (1.3) since we do not know if the
associated functional satisfies any version of the Palais–Smale compactness condition.
Note that, under our hypothesis, the nonlinear term f (x, s) = βb1(x)sq+b2(x)s p does
not satisfy lims→∞ | f (x, s) − b2(x)s p|/s = 0 and we do not suppose that Problem
(1.3) has a thick zero set (see e.g. Alama and Tarantello 1993; Medeiros et al. 2014).

For the problem sublinear at the origin we refer the reader to the papers by
Ambrosetti et al. (1994) and De Figueiredo et al. (2003).

We also note that, as an application of Theorem 1.3, we establish the existence of
multiple solutions for Problem (1.1) with an indefinite nonlinear term h(x, s) that is
a polynomial function with respect to the second variable (see Proposition 3.1).

Inspired by the work of Landesman et al. (1975), we consider applications of
our main results for Problem (1.1) with h of the form h(x) = f (x) + g(s). More
specifically, we are interested in the existence of solution for the problem:

{−�u = λu + μ( f (x) + g(u)) in �,

u = 0 on ∂�,
(1.4)

where � is a bounded smooth domain of RN , N ≥ 1; λ,μ > 0 and f ∈ Lσ (�), with
σ > {N/2, 1}.

In our first result on existence of a solution for Problem (1.4) we suppose

(G1) g : R → R a continuous function and there exists M > 0 such that

g(s) ≥ −M if s ≤ 0 and g(s) ≤ M if s ≥ 0.

Denoting by g−
i := lim infs→−∞ g(s) and g+

s := lim sups→+∞ g(s), we assume:

(LL+)

∫
�

( f + g−
i )ϕ1dx > 0 >

∫
�

( f + g+
s )ϕ1dx .
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894 M. C. M. Rezende et al.

Proposition 1.8 Suppose g satisfies (G1) and (LL+). Then there exist positive con-
stants μ∗ and ν∗ such that, for every μ ∈ (0, μ∗) and |λ − λ1| < μν∗, Problem (1.4)
has a weak solution.

Next, supposing

(Ĝ1) g : R −→ R is a locally Lipschitz function and there exists M > 0 such that

g(s) ≤ M if s ≤ 0 and g(s) ≥ −M if s ≥ 0

and

(LL−)

∫
�

( f + g−
s )ϕ1dx < 0 <

∫
�

( f + g+
i )ϕ1dx,

where g−
s := lim sups→−∞ g(s) and g+

i := lim infs→+∞ g(s), we obtain

Proposition 1.9 Suppose g satisfies (Ĝ1) and (LL−). Then there exist positive con-
stants μ∗ and ν∗ such that, for every μ ∈ (0, μ∗) and |λ − λ1| < μν∗, Problem (1.4)
has a weak solution.

We observe that the above results allow us to consider g such that g−
i = +∞ and

g+
s = −∞ or g−

s = −∞ and g+
i = +∞, respectively. Moreover g may have

unbounded oscillatory behavior.
In our last application we consider the existence of a bifurcation point for the

solutions of the problem{−�u = λu + f (α, x, u) + b(x)u p in �;
u = 0 on ∂�,

(1.5)

where � is a bounded smooth domain of RN , N ≥ 1, λ ∈ R, p > 1, α ∈ R
m , m ≥ 0,

and f : Rm × � × R → R is given by

f (α, x, s) =
m∑
i=1

αi bi (x)s
pi , for every α = (α1, . . . , αm) ∈ R

m, s ∈ R, a. e. in �

(1.6)

with 1 < pi < p, pi �= p j , i �= j ∈ {1, . . . ,m}. For m = 0, we take Rm = {0} and
f ≡ 0.
We also suppose that b1, . . . , bm, b ∈ Lσ (�), σ > N , and that b satisfies

r =
∫

�

b(x)ϕ p+1
1 dx �= 0. (1.7)

Denoting by H the Hilbert space R × R
m × H1

0 (�), a solution of Problem (1.5) is a
point (λ, α, u) ∈ H such that u solves (1.5) for the parameters (λ, α). The elements
of the subspace of H formed by the solutions {(λ, α, 0)/(λ, α) ∈ R × R

m} will be
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A Landesman–Lazer Local Condition for Semilinear Elliptic Problems 895

referred to as the trivial solutions of Problem (1.5). We recall that (λ0, α0, 0) is a
bifurcation point for the solutions of (1.5) if (λ0, α0, 0) is in the closure of the set of
nontrivial solutions of (1.5) or, equivalently, if every neighborhood of (λ0, α0, 0) in
H contains a nontrivial solution of (1.5).

Our main objective here is to find hypotheses on f that guarantee that (λ1, 0, 0)
is a bifurcation point such that close to it we may find multiple nontrivial positive
solutions associated with the same parameters (λ, α).

We say that (λ0, α0, 0) ∈ H is a bifurcation point of multiplicity k for the posi-
tive solutions of (1.5) if every neighborhood of (λ0, α0, 0) in H possesses k distinct
nontrivial solutions (λ, α, u1), . . . , (λ, α, uk) with u1, . . . , uk positive in �.

Considering m ≥ 1, we define ri = ∫
�
bi (x)ϕ

pi+1
1 dx, 1 ≤ i ≤ m, and we set

J := {i ∈ {1, . . . ,m}; ri �= 0}.

We denote by kJ the number of elements of J . We also set kJ = 0 if m = 0.

Proposition 1.10 Suppose b satisfies (1.7). Then (λ1, 0, 0) is a bifurcation point of
multiplicity kJ + 1 for the positive solutions of (1.5).

We note that for the particular case in which f ≡ 0 (corresponding to m = 0) we
have the following nonlinear eigenvalue problem

{−�u = λu + b(x)u p, in �;
u = 0 on ∂�.

(1.8)

As a consequence of Proposition 1.10 and its proof, we may assert that if r , given
by (1.7), is positive then there exists λ < λ1 such that Problem (1.8) has a positive
solution for every λ < λ < λ1. On the other hand, if r is negative then there exists
λ > λ1 such that Problem (1.8) has a positive solution for every λ1 < λ < λ.

Problem (1.8) for dimensions N ≥ 3 with critical exponent, p = (N +2)/(N −2),
and b ≡ 1 has been considered by Brézis and Nirenberg (1983). Applying variational
methods, those authors proved that Problem (1.8) has a positive has for every λ ∈
(0, λ1) if N ≥ 4. They also proved that if � is a ball and N = 3, Problem (1.8)
has a positive solution if and only if λ ∈ (λ1/4, λ1). We also observe that, assuming
more regularity on b, as a consequence of the results derived by Rabinowitz (1971)
via bifurcation theory, we may assert that Problem (1.8) possesses a component C of
positive solutions which meets (λ1, 0) and it is unbounded in R× H1

0 (�). In view of
the above observation we may expect that the projection of C on the λ-axis contains
the interval (λ, λ1) or (λ1, λ) provided r is either positive or negative, respectively.

We emphasize that Proposition 1.10 presents us the possibility of having a bifur-
cation for which we may find multiple positive solutions associated with the same
value of the parameters. We also note that, consideringm ≥ 1 and taking appropriated
functions α(λ), λ ∈ R, in the expression of the function f given by (1.6), we may find
nonlinear eigenvalue problems for which (λ1, 0) is a bifurcation point of multiplicity
greater than one for the positive solutions of the problem (see Proposition 3.3).

As mentioned previously we do not suppose that h satisfies any global growth
restriction, which prevents a direct application of variational methods since the associ-
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ated functional is notwell defined. To overcome such difficulty in our proof of Theorem
1.1, firstly we establish a version of this theorem assuming that |h| is bounded by a
function in Lσ (�). In this case we use a minimization argument to find a solution of
class C0,γ (�) uμ = tϕ1 + v, t ∈ (t1, t2) and v = v(μ) ∈ 〈ϕ1〉⊥. Next, considering
an appropriated truncation of h, we apply this version of Theorem 1.1 and a bootstrap
argument to verify that ‖v‖∞ → 0 asμ → 0+. This allows us to show that the solution
we have found is actually a solution of Theorem 1.1 whenever μ > 0 is sufficiently
small.

In order to prove Theorem 1.2, we first establish a version of it by supposing that |h|
is bounded by a function in Lσ (�) and that h is Lipschitz with respect to the second
variable, with the constant of Lipschitz given by a function in Lσ (�). We note that
the proof of this version is based on the Liapunov–Schmidt Reduction Method. Next,
as in the proof of Theorem 1.1, we complete the proof of Theorem 1.2 by truncating
h and by using an approximation method.

This paper is organized as follows: in the Sect. 2 we present the proofs of the main
results: we reserve the Sects. 2.1, 2.2 and 2.3 for the proofs of Theorems 1.1, 1.2–1.3
and 1.5, respectively. In Sect. 2.4 we establish the results mentioned in Remark 1.4
on positivity, negativity and ordering of the solutions of Problem (1.1). In Sect. 3 we
proof Propositions 1.6–1.9 and 1.10. There, as an application of Theorem 1.3, we
establish a result on the existence of multiple solutions when h(x, s) is a polynomial
function with respect to the variable s. Moreover we also present a result, for a version
of Problem (1.8), that states that (λ1, 0) is a bifurcation point with multiple positive
solutions associated with the same value of the parameter λ.

Throughout this work, we denote by

‖u‖ =
(∫

�

|∇u|2dx
) 1

2

, ‖u‖k,q =
( ∑

0≤|α|≤k

‖Dαu‖qq
) 1

q

, and

‖u‖q =
(∫

�

|u|qdx
) 1

q

,

the norms of the spaces H1
0 (�), Wk,q(�) and Lq(�), with q ∈ [1,∞), respectively.

Moreover, we consider C1,γ (�) equipped with its usual norm ‖ · ‖1,γ . The symbols
A, dq , K and Ki , i = 1, 2, . . ., represent positive constants, reserving dq for the
imbedding constant of H1

0 (�) in Lq(�), q ∈ [1, 2∗].

2 Proofs of theMain Results

We reserve this section for our proofs of Theorems 1.1–1.3 and 1.5. Herewe also verify
the assertion made in Remark 1.4 on the positivity/negativity of the solution provided
by Theorems 1.1 and 1.2 and on the ordering of the solutions given by Theorem 1.3.

Henceforth in this section we suppose without loss of generality that there exists
λ̄ > 0 such that 0 < λ < λ̄, with λ̄ < λ2, the second eigenvalue of the operator −�

under the Dirichlet boundary conditions.
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2.1 Proof of Theorem 1.1

We begin by proving a version of Theorem 1.1 with |h| bounded by a function in
Lσ (�). More specifically we suppose that

(H∗
1 ) there exists f ∈ Lσ (�), σ > {N/2, 1}, such that |h(x, s)| ≤ f (x), for every

s ∈ R, a. e. in �.

Theorem 2.1 Suppose h satisfies (H+
0 ) and (H∗

1 ). Then there exist positive constants
μ∗ and ν∗ such that, for every μ ∈ (0, μ∗) and |λ − λ1| < μν∗, Problem (1.1) has a
weak solution uμ = tϕ1 + v, with t ∈ (t1, t2) and v ∈ 〈ϕ1〉⊥.

Wenote that, under the hypothesis (H∗
1 ), the associated functional Iμ : H1

0 (�) → R

given by

Iμ(u) = 1

2
‖u‖2 − λ

2
‖u‖22 − μ

∫
�

H(x, u)dx, (2.1)

where H(x, t) = ∫ t
0 h(x, s)ds, is well defined and it is of class C1. In addition, the

critical points of Iμ are weak solutions of Problem (1.1).
As mentioned in the introduction, our proof of Theorem 2.1 is based on a mini-

mization argument. More specifically, we shall verify that forμ > 0 sufficiently small
the infimum of Iμ on the set C := {u = τϕ1 + v; τ ∈ [t1, t2], v ∈ 〈ϕ1〉⊥} is attained
on an interior point of C . On this direction, we prove:

Lemma 2.2 Suppose h satisfies (H∗
1 ). Then, for every μ > 0, the functional Iμ is

bounded from below and coercive on C.

Proof From λ < λ < λ2, (H∗
1 ), the Hölder inequality and the Sobolev Imbedding

Theorem, for every u = τϕ1 + v, v ∈ 〈ϕ1〉⊥, we get

Iμ(u) ≥ −(λ − λ1)

2λ1
τ 2 + (λ2 − λ)

2λ2
‖v‖2 − μdσ ′ ‖ f ‖σ ‖v‖.

Since τ ∈ [t1, t2] whenever u ∈ C , the above inequality implies that Iμ is bounded
from below and coercive on C . The lemma is proved. ��
Now we define

mC := inf{Iμ(u); u ∈ C} (2.2)

and, for every τ ∈ [t1, t2],

mτ := inf{Iμ(u); u = τϕ1 + v, v ∈ 〈ϕ1〉⊥}. (2.3)

It follows frow Lemma 2.2 that mτ ≥ mC > −∞ for every τ ∈ [t1, t2]. Actually, we
may also obtain:
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898 M. C. M. Rezende et al.

Corollary 2.3 For everyμ > 0, there exists uμ ∈ C such that Iμ(uμ) = mC.Moreover,
for everyμ > 0 and τ ∈ [t1, t2], there exists vμ ∈ 〈ϕ1〉⊥ such that Iμ(τϕ1+vμ) = mτ .

Proof Noting that (H∗
1 ) implies that Iμ is weakly lower semicontinuous, we may

invoke Lemma 2.2 and the fact that C is a closed convex set to conclude that, for
every μ > 0, there exists uμ ∈ C such that Iμ(uμ) = mC . An analogous argument
implies that for every μ > 0 and τ ∈ [t1, t2], we may find vμ ∈ 〈ϕ1〉⊥ such that
Iμ(τϕ1 + vμ) = mτ . The proof of the corollary is complete. ��
For every τ ∈ [t1, t2] and μ > 0, we set

Sτ := {v ∈ 〈ϕ1〉⊥; Iμ(τϕ1 + v) = mτ }.

In view of Corollary 2.3, Sτ �= ∅ for every μ > 0 and τ ∈ [t1, t2]. Considering the
extreme points of the interval [t1, t2], we obtain:
Lemma 2.4 Suppose h satisfies (H∗

1 ). Then, given δ > 0, there exists μ1 > 0 such
that ‖v‖ < δ, for every v ∈ St1 ∪ St2 .

Proof Without loss of generality we suppose that v ∈ St1 . Using Corollary 2.3, (H
∗
1 ),

the Hölder Inequality and the Sobolev Imbedding Theorem, we obtain

‖v‖2 = λ‖v‖22 + μ

∫
�

h(x, t1ϕ1 + v)vdx ≤ λ‖v‖2/λ2 + μdσ ′ ‖ f ‖σ ‖v‖.

Hence ‖v‖ ≤ λ2μdσ ′ ‖ f ‖σ /(λ2 − λ). Taking 0 < μ2 < min{μ1, δ(λ2 − λ)/

λ2dσ ′ ‖ f ‖σ }, we complete the proof of Lemma 2.4. ��
Now we may present:

Proof of Theorem 2.1 ByCorollary 2.3, for everyμ > 0, there exists uμ = tϕ1+v ∈ C
such that I (uμ) = mC ,mC given by (2.2). It is clear thatmC = mt and, consequently,
v ∈ St . In order to prove Theorem 2.1, it suffices to find μ∗ > 0 and ν∗ > 0 such that
uμ ∈ int(C) for every μ ∈ (0, μ∗) and |λ − λ1| < μν∗.

From the continuity of the functional J : H1
0 (�) → R, given by

J (u) =
∫

�

h(x, u)ϕ1dx, for every u ∈ H1
0 (�),

and the hypothesis (H+
0 ), we find a > 0 and δ > 0 such that, for every u ∈ H1

0 (�),
with ‖u‖ < δ, we have∫

�

h(x, t1ϕ1 + u)ϕ1dx > a > 0 > −a >

∫
�

h(x, t2ϕ1 + u)ϕ1dx . (2.4)

Considering the above value of δ, we take μ∗ = μ1, μ1 given by Lemma 2.4. Taking
μ ∈ (0, μ∗), by Lemma 2.4 and (2.4), for every v1 ∈ St1 and v2 ∈ St2 , we obtain

〈I ′
μ(t1ϕ1 + v1), ϕ1〉 < −μ

[
(λ − λ1)t1

λ1μ
‖ϕ1‖2 + a

]
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and

〈I ′
μ(t2ϕ1 + v2), ϕ1〉 > −μ

[
(λ − λ1)t2

λ1μ
‖ϕ1‖2 − a

]
.

Hence, taking 0 < ν∗ < (λ1a)/(1 + |t1| + |t2|)‖ϕ1‖2, for every 0 < μ < μ∗ and
|λ − λ1| < μν∗, we get

〈I ′
μ(t1ϕ1 + v1), ϕ1〉 < 0 < 〈I ′

μ(t2ϕ1 + v2), ϕ1〉, (2.5)

whenever v1 ∈ St1 and v2 ∈ St2 . Supposing, for example, that uμ = t1ϕ1 + v, it
follows from (2.5) that there is τ ∈ (t1, t2) such that mC ≤ mτ ≤ Iμ(τϕ1 + v) <

Iμ(t1ϕ1 + v) = Iμ(uμ) = mC . This contradiction implies that we may not have
t = t1. A similar argument also implies that we may not have t = t2. Consequently
uμ ∈ int(C). The proof of Theorem 2.1 is complete. ��
Before proving Theorem 1.1 we state the following estimate:

Lemma 2.5 Suppose h satisfies (H∗
1 ). Considerμ∗ and ν∗ the positive constants given

by Theorem 2.1. Then there exists bσ > 0 such that ‖v‖2,σ ≤ bσ μ for every μ ∈
(0, μ∗), |λ − λ1| < μν∗ and uμ = tϕ1 + v a weak solution of Problem (1.1) with
t ∈ (t1, t2) and v ∈ 〈ϕ1〉⊥.
Proof of Lemma 2.5 We present a proof of the lemma for N ≥ 3 since if N = 1 or
N = 2 the proof may be easily adapted by using the fact that H1

0 (�) is continuously
imbedded in L p(�), for every p ≥ 1.

First of all we claim that there exists b̂σ > 0 such that, for every μ ∈ (0, μ∗) and
|λ − λ1| < μν∗,

‖v‖σ ≤ b̂σ μ. (2.6)

As u = tϕ1 + v is a weak solution of Problem (1.1) we obtain that v is weak solution
of the problem

{−�v = (λ − λ1)tϕ1 + λv + μh(x, tϕ1 + v) in �,

v = 0 on ∂�.

Hence, using 0 < λ < λ < λ2, (H∗
1 ), theHölder Inequality and theSobolev Imbedding

Theorem, we obtain

‖v‖ ≤ λ2

λ2 − λ
dσ ′ ‖ f ‖σ μ. (2.7)

Taking p0 = 2∗ = 2N/(N −2), by (2.7) and the continuity of the Sobolev Imbedding
H1
0 (�) ↪→ L2∗

(�), we find K0 > 0 such that

‖v‖p0 ≤ K0μ. (2.8)
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Next, we define ĥ(x) = (λ − λ1)tϕ1(x) + λv(x) + μh(x, tϕ1(x) + v(x)), for every
x ∈ �, and we consider p̂0 = min{σ, p0}. From (H∗

1 ), |λ − λ1| < μν∗, (2.8) and
the fact that Lσ (�) and L p0(�) are continuously imbedded in L p̂0(�), we have that
there exists K̂0 > 0 such that

‖ĥ‖p0 ≤ K̂0μ. (2.9)

Thus, by Agmon–Douglis–Nirenberg Theorem (Agmon et al. 1959), we find K̂ > 0
such that

‖v‖2, p̂0 ≤ K̂ K̂0μ. (2.10)

If p0 ≥ N/2, we have that p̂0 ≥ N/2. In this case the estimate (2.6) is a direct
consequence of (2.10) and the continuity of the Sobolev Imbedding W 2,N/2(�) ↪→
Lσ (�). On the other hand, if p0 < N/2,wehave that p̂0 = p0. In this case, from (2.10)
and the fact thatW 2,p0(�) is continuously imbedded in L p1(�), p1 = Np0/(N− p0),
we find K1 > 0 such that ‖v‖p1 ≤ K1μ.

Arguing as above we have that either (2.6) holds or there exist 0 < p0 < p1 <

· · · < pm < N/2 and K1, K2, . . . , Km > 0 such that pi = Npi−1/(N −2pi−1), i =
1, . . . ,m, and ‖v‖pi ≤ Kiμ, i = 0, 1, . . . ,m. Noting that those relations imply that
limm→∞ pm = ∞, we conclude that (2.6) must hold. The claim is proved.

From the above claim and the arguments used to derive (2.9) and (2.10), we find
bσ > 0 such that ‖v‖2,σ ≤ bσ μ for every μ ∈ (0, μ∗) and |λ−λ1| < μν∗. The proof
of Lemma 2.5 is complete. ��

Now we are in condition of presenting a

Proof of Theorem 1.1 We consider the truncated function hR defined by

hR(x, s) = χ(s)h(x, s), for every x ∈ �, s ∈ R, (2.11)

where R > max{|t1|, |t2|}‖ϕ1‖∞ > 0 and χ ∈ C∞(R, [0, 1]) is a function satisfiying
χ(s) ≡ 1, if |s| ≤ R + 1, and χ(s) ≡ 0, if |s| ≥ R + 2. Associated with hR , we
consider the truncaded problem

{−�u = λu + μhR(x, u) in �,

u = 0 on ∂�.
(2.12)

As ‖tiϕ1‖∞ < R, i = 1, 2, it follows from (2.11) and (H+
0 ) that hR satisfies the

hypothesis (H+
0 ). Moreover, from (H1) we may assert that hR satisfies (H∗

1 ) with
f = fR+2. Applying Theorem2.1we find μ̂ and ν∗ such that, for everyμ ∈ (0, μ̂) and
|λ−λ1| < μν∗, Problem (2.12) has a weak solution uμ = tμϕ1+vμ, with tμ ∈ (t1, t2)
and vμ ∈ 〈ϕ1〉⊥. Since σ > N/2, we may apply the Sobolev Imbedding Theorem
and Lemma 2.5 to conclude that ‖vμ‖∞ → 0 as μ → 0+. Consequently there exists
μ∗ ∈ (0, μ̂) such that ‖vμ‖∞ < 1 for every μ ∈ (0, μ∗) and |λ − λ1| < μν∗.
Thus ‖uμ‖∞ ≤ |tμ|‖ϕ1‖∞ + ‖vμ‖∞ < R + 1. Hence χ(uμ) = 1 and hR(x, uμ) =
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h(x, uμ), almost everywhere in �. It follows that uμ is actually a solution of Problem
(1.1). This concludes the proof of Theorem 1.1. ��

2.2 Proofs of Theorems 1.2 and 1.3

As in Sect. 2.1, we firstly prove a version of Theorem 1.2 with h satisfying (H∗
1 ) and

a hypothesis stronger than (H2):

(H∗
2 ) there exists ζ ∈ Lσ (�), σ > {N/2, 1}, such that

|h(x, s2) − h(x, s1)| ≤ ζ(x)|s2 − s1|, for every s1, s2 ∈ R, a. e. in �.

Our initial goal is to prove

Theorem 2.6 Suppose h satisfies (H−
0 ), (H∗

1 ) and (H∗
2 ). Then there exist positive

constants μ∗ and ν∗ such that, for every μ ∈ (0, μ∗) and |λ − λ1| < μν∗, Problem
(1.1) has a solution uμ = tϕ1 + v, with t ∈ (t1, t2) and v ∈ 〈ϕ1〉⊥.
As in Sect. 2.1, we prove Theorem 2.6 by finding a critical point of the functional
Iμ, given by (2.1). In order to establish the existence of such critical point we use the
Lyapunov-Schmidt ReductionMethod. For the sake of completeness we announce the
version of that method that we will be using in our proof of Theorem 1.2 (see Castro
1982).

Theorem 2.7 Let Y and Z be closed subspaces of a realHilbert X such that X = Y⊕Z.
Let � : X → R be a functional of class C1. If there exists an increasing function
φ : (0,∞) → (0,∞) such that φ(s) → ∞ as s → ∞ and

〈�′
(y + z1) − �

′
(y + z2), z1 − z2〉

≥ ‖z1 − z2‖φ(‖z1 − z2‖), for every y ∈ Y , z1, z2 ∈ Z .

Then,

(i) There exists a continuous function ψ : Y → Z such that �(y + ψ(y)) =
minz∈Z �(y + z). Moreover, ψ(y) is the only element of Z such that 〈�′

(y +
ψ(y)), z〉 = 0, for every z ∈ Z.

(ii) The function �̂ : Y → R defined by �̂(y) = �(y + ψ(y)) is of class C1

and

〈�̂′
(y1), y2〉 = 〈�′

(y1 + ψ(y1)), y2〉, for every y1, y2 ∈ Y .

(iii) y ∈ Y is a critical point of �̂ if and only if y + ψ(y) is a critical point of �.

We are ready to prove Theorem 2.6.

Proof of Theorem 2.6 From (H∗
1 ), (H

∗
2 ), the Hölder Inequality and the Sobolev Imbed-

ding Theorem, for every τ ∈ R and v1, v2 ∈ 〈ϕ1〉⊥, we have that
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〈I ′
μ(τϕ1 + v1) − I

′
μ(τϕ1 + v2), v1 − v2〉

≥ ‖v1 − v2‖2 − λ

λ2
‖v1 − v2‖2 − μ

∫
�

[ h(x, τϕ1 + v1)

− h(x, τϕ1 + v2) ](v1 − v2)dx

≥ λ2 − λ

λ2
‖v1 − v2‖2 − μ‖ζ‖σ ‖v1 − v2‖22σ ′

≥
[
λ2 − λ

λ2
− μ‖ζ‖σd

2
2σ ′

]
‖v1 − v2‖2.

Therefore, taking 0 < μ1 < (λ2 − λ)/2λ2‖ζ‖σd22σ ′ we obtain that I satisfies the
hypothesis of Theorem 2.7, with Y = 〈ϕ1〉, Z = 〈ϕ1〉⊥ and φ(s) = (λ2 − λ)s/2λ2,
for every s ∈ (0,∞). Hence, by Theorem 2.7-(i), there exists a continuous function
ψ : 〈ϕ1〉 → 〈ϕ1〉⊥ such that ψ(τϕ1), with τ ∈ R, is the only element of the space
〈ϕ1〉⊥ that satisfies

〈I ′
μ(τϕ1 + ψ(τϕ1)), v〉 = 0, for every τ ∈ R, v ∈ 〈ϕ1〉⊥. (2.13)

Moreover, from Theorem 2.7-(ii), the functional Î : 〈ϕ1〉 → R, given by Îμ(τϕ1) =
Iμ(τϕ1 + ψ(τϕ1)), is of class C1 and

〈 Î ′
μ(τϕ1), ϕ1〉 = −μ

[
λ − λ1

λ1μ
‖ϕ1‖2τ +

∫
�

h(x, τϕ1 + ψ(τϕ1))ϕ1dx

]
. (2.14)

On the other hand, from (H∗
1 ) and (H−

0 ) we may work as in (2.4) to conclude that
there exists δ > 0 such that, for every u ∈ H1

0 (�), with ‖u‖ < δ, we have∫
�

h(x, t1ϕ1 + u)ϕ1dx <
1

2

∫
�

h(x, t1ϕ1)ϕ1dx

< 0 <
1

2

∫
�

h(x, t2ϕ1)ϕ1dx <

∫
�

h(x, t2ϕ1 + u)ϕ1dx .

(2.15)

Taking v = ψ(τϕ1) in (2.13), it follows from (H∗
1 ), the Hölder Inequality and the

Sobolev Imbedding Theorem that

‖ψ(τϕ1)‖2 ≤ λ

λ2
‖ψ(τϕ1)‖2 + μdσ ′ ‖ f ‖σ ‖ψ(τϕ1)‖.

Hence ‖ψ(τϕ1)‖ ≤ λ2/(λ2 − λ)μdσ ′ ‖ f ‖σ , for every μ ∈ (0, μ1), τ ∈ R. Conse-
quently, takingμ∗ < min{μ1, (λ2 − λ)δ/λ2dσ ′ ‖ f ‖σ }, where δ > 0 is given in (2.15),
we obtain that ‖ψ(τϕ1)‖ < δ, for every τ ∈ R and μ ∈ (0, μ∗). Consequently, from
(2.14) and (2.15),

〈 Î ′
μ(t1ϕ1), ϕ1〉 > −μ

[ |λ − λ1|
λ1μ

‖ϕ1‖2|t1| + 1

2

∫
�

h(x, t1ϕ1)ϕ1dx

]

123



A Landesman–Lazer Local Condition for Semilinear Elliptic Problems 903

and

〈 Î ′
μ(t2ϕ1), ϕ1〉 < −μ

[
− |λ − λ1|

λ1μ
‖ϕ1‖2|t2| + 1

2

∫
�

h(x, t2ϕ1)ϕ1dx

]
.

Therefore, there exists ν∗ > 0 such that 〈 Î ′
μ(t1ϕ1), ϕ1〉 > 0 and 〈 Î ′

μ(t2ϕ1), ϕ1〉 < 0,
for every μ ∈ (0, μ∗) and |λ − λ1| < μν∗. By the Intermediate Value Theorem,
there exists t ∈ (t1, t2) such that 〈 Î ′

μ(tϕ1), ϕ1〉 = 0. Thus, by Theorem 2.7-(iii),
uμ = tϕ1 + ψ(tϕ1) is a critical point of the functional Iμ. This concludes the proof
of Theorem 2.6. ��

Next we present the proofs of Theorems 1.2 and 1.3:

Proof of Theorem 1.2 We consider hR defined by (2.11) and the associated truncated
problem (2.12).As in the proof of Theorem1.1,we have that hR satisfies the hypothesis
(H−

0 ) and (H∗
1 ) with f = fR+2. Furthermore, from the definition of h, (H1) and

(H2), we obtain that hR satisfies (H∗
2 ) with ζ = ‖χ ′‖∞ fR+2 + ζR+2 ∈ Lσ (�), σ >

{N/2, 1}, where fR+2 and ζR+2 are given by (H1) and (H2), respectively. These facts
allow us to apply Theorem 2.6, finding positive constants μ̂ and ν∗ such that, for every
μ ∈ (0, μ̂) and |λ − λ1| < μν∗, Problem (2.12) has a weak solution uμ = tϕ1 + v,
with t ∈ (t1, t2) and v ∈ 〈ϕ1〉⊥. Next, using Lemma 2.5 and arguing as in the proof
of Theorem 1.1, we obtain μ∗ ∈ (0, μ̂) such that uμ is a solution of Problem (1.1) for
every μ ∈ (0, μ∗) and |λ − λ1| < μν∗. The proof of Theorem 1.2 is complete. ��
Proof of Theorem 1.3 Taking −h, whenever μ < 0, we may apply Theorems 1.1 or
1.2, for every i ∈ {1, . . . , k}, to find positive constants μi and νi such that, for every
0 < |μ| < μi and |λ−λ1| < |μ|νi , Problem (1.1) has a weak solution ui = t̂iϕ1+vi ,
with t̂i ∈ (ti , ti+1) and vi ∈ 〈ϕ1〉⊥. The proof of Theorem 1.3 is completed by taking
0 < μ∗ < min{μi ; i = 1, . . . , k} and 0 < ν∗ < min{νi ; i = 1, . . . , k}. ��
Remark 2.8 We observe that, by Lemma 2.5 and the proofs of Theorems 1.1 and 1.2,
we may assert that there exists bσ > 0 such that ‖v‖2,σ ≤ bσ μ for the solutions
uμ = tϕ1 + v, given by these theorems. In particular, since σ > N/2, we obtain that
vμ → 0 in C(�) as μ → 0+. We also note that a similar remark may be made for the
k solutions obtained in Theorem 1.3.

2.3 Proof of Theorem 1.5

Here we present a proof of Theorem 1.5. We also establish a version of this theorem
for solutions uniformly bounded in H1

0 (�) under the hypothesis that h has subcritical
growth.

Proof of Theorem 1.5 Arguing by contradiction, we suppose there exist (μk) ⊂ R\{0},
(λ̂k) ⊂ R and (uk) ⊂ H1

0 (�) such that |μk | → 0, |λ̂k − λ1| < |μk |/k and uk =
τkϕ1 + vk , with τk ∈ [t1, t2] and vk ∈ 〈ϕ1〉⊥, a weak solution of Problem (1.1), with
parameters μ = μk and λ = λ̂k . Then, using (H3), the Hölder inequality and the
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Sobolev Imbedding Theorem, we find K > 0 such that

‖vk‖2 = λ̂k‖vk‖22 + μk

∫
�

h(x, uk)vkdx

≤
(

λ1 + |μk |
K

) ‖vk‖2
λ2

+ |μk |K (‖ f ‖σdσ ′ ‖vk‖ + ‖ f ‖σd
2
2σ ′ ‖vk‖2).

Consequently,

[
1 −

( |μk |
Kλ2

+ λ1

λ2

)
− |μk |K‖ f ‖σd

2
2σ ′

]
‖vk‖ ≤ |μk |K‖ f ‖σdσ ′ .

Since μk → 0, we conclude that ‖vk‖ → 0. Hence, from the compactness of the
Sobolev Imbedding H1

0 (�) ↪→ L2σ ′
(�), we may suppose that uk → τ0ϕ1, a. e. in �,

and that there exists g ∈ L2σ ′
(�) such that, for every k ∈ N, |uk | ≤ g, a. e. in �.

Next, invoking (H3), (H4) and the Lebesgue Dominated Convergence Theorem,
we obtain ∫

�

h(x, uk)ϕ1dx →
∫

�

h(x, τ0ϕ1)ϕ1dx �= 0.

Consequently, from |λ̂k − λ1||τk |/|μk | → 0, we get

〈I ′
μk

(uk), ϕ1〉 = −μk

[
λ̂k − λ1

μkλ1
‖ϕ1‖2τk +

∫
�

h(x, uk)ϕ1dx

]
�= 0,

for every k ∈ N sufficiently large. However this contradicts the fact that uk is a solution
of Problem (1.1). The proof of Theorem 1.5 is complete. ��
Supposing

(Ĥ3) there exist a > 0 and 1 < p < ∞ (p < (N + 2)(N − 2) if N ≥ 3), such that
|h(x, s)| ≤ a(1 + |s|p), for every s ∈ R, a. e. in �,

we may state a version of Theorem 1.5 for solutions of Problem (1.1) which are
uniformly bounded in H1

0 (�):

Theorem 2.9 Suppose h satisfies (Ĥ3) and (H4). Then, given M > 0, there exist
positive constants μ∗ and ν∗ such that for every 0 < |μ| < μ∗ and |λ − λ1| < |μ|ν∗,
Problem (1.1) has no weak solution uμ = tϕ1 + v, with t ∈ [t1, t2] and v ∈ 〈ϕ1〉⊥,
with ‖uμ‖ ≤ M.

Proof Arguing by contradiction, we suppose that there exist M > 0, (μk) ⊂
R\{0}, (λ̂k) ⊂ R and (uk) ⊂ H1

0 (�) such that |μk | → 0, |λ̂k − λ1| < |μk |/k
and uk = τkϕ1 + vk , with τk ∈ [t1, t2], vk ∈ 〈ϕ1〉⊥ and ‖uk‖ ≤ M , a weak solution of
Problem (1.1), with parameters μ = μk and λ = λ̂k .

123



A Landesman–Lazer Local Condition for Semilinear Elliptic Problems 905

Invoking (Ĥ3), we may write

|h(x, uk(x)| ≤ a(1 + |uk(x)|p−1)(1 + |uk(x)|), a.e. in �.

Next, using the above inequality, ‖uk‖ ≤ M and the Sobolev Imbedding Theorem,
we find f ∈ Lσ (�), σ > {1, N/2}, such that

|h(x, uk(x)| ≤ f (x)(1 + |uk(x)|), a.e. in �.

Now, following the argument used in the proof of Theorem 1.5, we derive a con-
tradiction with the fact that uk is a solution of Problem (1.1). The theorem is proved.

��

2.4 Positivity, Negativity and Ordering of the Solutions

Here we verify the assertions made in Remark 1.4. We denote by (Ĥ1) the hypothesis
(H1) with σ > N .

Theorem 2.10 Suppose h satisfies (H+
0 ) and (Ĥ1) or (H−

0 ), (Ĥ1) and (H2). Then there
exist positive constantsμ∗ and ν∗ such that, for everyμ ∈ (0, μ∗) and |λ−λ1| < μν∗,
Problem (1.1) has a positive or negative solution uμ = tϕ1 + v, with t ∈ (t1, t2) and
v ∈ 〈ϕ1〉⊥, provided t1 ≥ 0 or t2 ≤ 0, respectively.

Proof Since the proves of the other cases are similarwe just present a proof of Theorem
2.10 for h satisfying (H+

0 ) and (Ĥ1) with t1 ≥ 0. Using the continuity of the function
�(t) = ∫

�
h(x, tϕ1)ϕ1dx, t ∈ R, we may assume without loss of generality that

t1 > 0. Then, applying Theorem 1.1, we find μ1 > 0 and ν∗ > 0 such that, for every
0 < μ < μ1 and |λ − λ1| < μν∗, Problem (1.1) has a solution uμ = tμϕ1 + vμ, with
tμ ∈ (t1, t2) and vμ ∈ 〈ϕ1〉⊥. Furthermore, from σ > N , Lemma 2.5 and the Sobolev
Imbedding Theorem, we obtain that vμ → 0 in C1(�) as μ → 0+.

We claim that

lim
μ→0+

|vμ(x)|
d(x, ∂�)

= 0, uniformly for x ∈ �.

Supposing the claim, we use that t ≥ t1 > 0 and the fact that there exists K > 0
such that ϕ1(x) ≥ Kd(x, ∂�), for every x ∈ �, to get μ∗ ∈ (0, μ1) such that, for
every μ ∈ (0, μ∗) and |λ − λ1| < μν∗, uμ(x) ≥ t1K

2 d(x, ∂�) > 0, for every x ∈ �.
In order to conclude the proof of the theorem it remains to prove the claim. Arguing

by contradiction, we suppose there exists ε > 0, (xn) ⊂ � and (μn) ⊂ R
+\{0} such

that |vμn (xn)| ≥ εd(xn, ∂�), for every n ∈ N and μn → 0 as n → ∞. Taking
(yn) ⊂ ∂� such that d(xn, ∂�) = |xn − yn|, from vμn (yn) = 0 and the Mean Value
Theorem, for every n ∈ N, we find θn ∈ (0, 1) such that
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ε ≤ |vμn (xn)|
d(xn, ∂�)

= |vμn (xn) − vμn (yn)|
|yn − xn|

= |〈∇vμn (xn + θn(yn − xn),
yn − xn

|yn − xn| 〉| ≤ ‖∇vμn‖∞.

However this contradicts vμn → 0 in C1(�) as n → ∞. The proof of Theorem 2.10
is complete. ��

Arguing as in the proof of Theorem2.10, wemay establish the ordering of the solutions
given by Theorem 1.3.

Theorem 2.11 Suppose h satisfies (H0), (Ĥ1) and (H2) with k ≥ 2. Then there exist
positive constants μ∗ and ν∗ such that, for every 0 < |μ| < μ∗ and |λ−λ1| < |μ|ν∗,
Problem (1.1) has k solutions ui = t̂iϕ1 + vi , with t̂i ∈ (ti , ti+1) and vi ∈ 〈ϕ1〉⊥, such
that ui < ui+1, i = 1, . . . , k − 1.

Proof Arguing as in the proof of Theorem 2.10, for every i ∈ {1, . . . , k} we find
t̃i ∈ (ti , ti+1) such that

[∫
�

h(x, tiϕ1)ϕ1dx

] [∫
�

h(x, t̃iϕ1)ϕ1dx

]
< 0, i = 1, . . . , k.

Hence, applying Theorems 1.1 and 1.2, we find μ1 > 0 and ν∗ > 0 such that, for
every 0 < |μ| < μ1 and |λ−λ1| < |μ|ν∗, Problem (1.1) has k solutions ui = t̂iϕ1+vi ,
with t̂i ∈ (ti , t̃i ) ⊂ (ti , ti+1) and vi ∈ 〈ϕ1〉⊥, i = 1, . . . , k. Furthermore, vi → 0
in C1(�) as μ → 0. Noting that ui+1 − ui = (t̂i+1 − t̂i )ϕ1 + (vi+1 − vi ), with
t̂i+1 − t̂i ≥ ti+1 − t̃i ≥ d > 0, for some d > 0, we may argue as in the proof of
Theorem 2.10 to verify that there exists μ∗ > 0 such that the thesis of Theorem 2.11
holds for every i = 1, . . . , k − 1. The proof of the theorem is complete. ��

3 Applications of theMain Results

The goal of this section is to present the proofs of Propositions 1.6–1.9. We also
present an application of Theorem 1.3, deriving the existence of multiple solutions
for Problem (1.1) when h(x, s) is a polynomial function with respect to the second
variable.

Proofs of Propositions 1.6 and 1.7 Since the argument used in the proof of Proposition
1.7 is analogous, we shall only present the proof of Proposition 1.6. Considering the

rescaling u = β
1

p−q w, β > 0, we obtain that u is a positive solution of Problem 1.3
if, and only if, w is a positive solution of the problem

{−�w = λw + μ(b1wq + b2w p) in �,

w = 0 on ∂�,
(3.1)
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with μ = β
p−1
p−q . Defining h : � × R → R by h(x, s) = 0, for s ≤ 0, and h(x, s) =

b1(x)sq +b2(x)s p, for s ≥ 0, we have that h is a Carathéodory function. Furthermore,
since σ > N and p, q ≥ 1, h satisfies (Ĥ1) and (H2). Considering the function
� : R → R defined by

�(t) =
∫

�

h(x, tϕ1)ϕ1dx, for every t ≥ 0, (3.2)

we obtain that �(t) = r1tq + r2t p, for every t ≥ 0. Hence, using that p > q > 0
and r1r2 < 0, we may find 0 < t1 < t2 such that h satisfies either (H+

0 ) or (H−
0 ).

Next, applying Theorem 2.10, we findμ∗, ν∗ > 0 such that Problem (3.1) possesses a
positive solution for every μ ∈ (0, μ∗) and |λ − λ1| < μν∗. The proof of Proposition
1.6 follows directly from this result by taking β∗ = (μ∗)

p−q
p−1 . ��

Proofs of Propositions 1.8 and 1.9 We present only the proof of Proposition 1.8 since
the argument used here may be easily adapted to prove Proposition 1.9. Since
h(x, s) := f (x) + g(s) satisfies (H1), in order to derive the existence of a solu-
tion for Problem (1.4) via Theorem 1.1 we just need to verify that h satisfies (H+

0 ):
since, by (G1), g(s) + M ≥ 0, for every s ≤ 0, we may apply Fatou’s Lemma and
(LL+) to get

lim inf
t→−∞

∫
�

h(x, tϕ1)ϕ1dx =
∫

�

f ϕ1dx

+ lim inf
t→−∞

∫
�

g(tϕ1)ϕ1dx ≥
∫

�

( f + g−
i )ϕ1dx > 0.

Analogously, from M − g(s) ≥ 0, for every s ≥ 0, Fatou’s Lemma and (LL+), we
obtain

lim sup
t→∞

∫
�

h(x, tϕ1)ϕ1dx =
∫

�

f ϕ1dx

+ lim sup
t→∞

∫
�

g(tϕ1)ϕ1dx ≤
∫

�

( f + g+
s )ϕ1dx < 0.

From the above relations, we find real numbers t1 < 0 < t2 such that the condition
(H+

0 ) is valid for these values. Proposition 1.8 is proved. ��

We conclude this section by presenting an application of Theorem 1.3 when h(x, s)
is a polynomial function in the variable s, i.e., when h is given by

h(x, s) =
m∑
i=0

αi (x)s
i , for every s ∈ R a. e. in �, (3.3)
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with αi ∈ Lσ (�), σ > {N/2, 1}. In this case, the associated function �, given by
(3.2), is also a polynomial function in the variable t . More specifically, we have that

�(t) =
m∑
i=0

di t
i , with di =

∫
�

αi (x)ϕ
i+1
1 dx, i = 1, . . . ,m.

As a consequence of Theorem 1.3, we establish the existence of multiple solutions
for Problem (1.1) in function of the number of roots of odd multiplicity of �:

Proposition 3.1 Suppose h(x, s) is a polynomial function in the variable s. If the
function� has k roots of oddmultiplicity, τ1, . . . , τk , then there exist positive constants
μ∗ and ν∗ such that, for every 0 < |μ| < μ∗ and |λ−λ1| < |μ|ν∗, Problem (1.1) has
k weak solutions u1, . . . , uk. Moreover, if |λ − λ1|/μ → 0, as μ → 0, the solution ui
converges in C(�) to τiϕ1 as μ → 0, i = 1, . . . , k.

Proof Without loss of generality, we may suppose that τ1 < τ2 < · · · < τk . From the
hypothesis of Proposition 3.1, we may write

�(t) = (t − τ1)
2n1−1 . . . (t − τk)

2nk−1(t − c1)
2z1 . . . (t − cl)

2zl p(t),

with n1, . . . , nk, z1, . . . , zl ∈ N and p(t) a product of irreducible quadratic polyno-
mials. As a direct consequence of above expression, we may find t1, . . . , tk+1 such
that t1 ∈ (−∞, τ1), tk+1 ∈ (τk,∞) and ti ∈ (τi−1, τi ), i = 2, . . . , k, c j /∈ (ti , ti+1),
for every i = 1, . . . , k and j = 1, . . . , l; and

�(ti )�(ti+1) =
[∫

�

h(x, tiϕ1)ϕ1dx

] [∫
�

h(x, ti+1ϕ1)ϕ1dx

]
< 0, i = 1, . . . , k.

Hence h satisfies (H0). Noting that h also satisfies (H1) and (H2), we may apply
Theorem 1.3 to find positive constants μ∗ and ν∗ such that, for every 0 < |μ| < μ∗
and |λ−λ1| < |μ|ν∗, Problem (1.1) has k solutions ui = t̂iϕ1+vi , with t̂i ∈ (ti , ti+1)

and vi ∈ 〈ϕ1〉⊥, i = 1, . . . , k.
Next we fix i ∈ {1, . . . , k}. By Remark 2.8, vi = vi (μ) → 0 in C(�) as μ → 0.

Hence, considering sequences (μm) ⊂ R\{0} and (λm) ⊂ R such that μm → 0 and
|λm − λ1|/μm → 0 as m → ∞, and taking a subsequence, if necessary, we may
suppose that ui,m = ui (μm) = t̂i (μm)ϕ1 + vi (μm) → t̂0ϕ1 in C(�) as m → ∞.
Consequently, from

0 = − 1

μm
〈I ′

(t̂i (μm)ϕ1 + vi (μm)), ϕ1〉

= λm − λ1

μm
‖ϕ1‖22 t̂i (μm) +

∫
�

h(x, t̂i (μm)ϕ1 + vi (μm))ϕ1dx,

and the Lebesgue Dominated Convergence Theorem, we obtain that �(t̂0) =∫
�
h(x, t̂0ϕ1)ϕ1dx = 0. As, by construction, τi is the only root of � in the inter-

val [ti , ti+1], we obtain that ui (μm) → τiϕ1 in C(�) as m → ∞. The proof of
Proposition 3.1 is complete. ��
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Remark 3.2 Assuming that αi ∈ Lσ (�), with σ > N , by Theorem 2.11 we may
assert that the solutions u1, . . . , uk provided by Proposition 3.1, are ordered and of
class C1,γ (�).

Proof of Proposition 1.10 For simplicity of notation we set k = kJ . Moreover, reorder-
ing the terms in the expression of f we may suppose that J = {1, . . . , k}. Since the
argument for k even or zero is similar we shall prove Proposition 1.10 for k odd. First
we consider that r > 0.

Given a1, . . . , ak, a ∈ R, we define the function g : R+ → R by

g(t) = t

λ1
+ a1t

p1 + · · · + akt
pk + at p, for every t ≥ 0.

Since 1 < pi < p and pi �= p j , for i �= j ∈ {1, . . . , k}, we may find a1, . . . , ak ∈
R\{0}, a > 0 and 0 < t1 < t2 < · · · < tk+2 such that

g(t1) > 0, g(tl)g(tl+1) < 0, for every 1 ≤ l ≤ k + 1. (3.4)

Next, considering λ > λ1, we take μ = λ − λ1 > 0, and α = (α1, . . . , αm) ∈ R
m

defined by

⎧⎨
⎩αi = ai

ri

( r
a

) pi−1
p−1 μ

p−pi
p−1 , for every 1 ≤ i ≤ k;

αi = ( r
a

) pi−1
p−1 μ

p−pi
p−1 , for every k + 1 ≤ i ≤ m.

(3.5)

We may assert that (λ, α, u), u positive in �, is a solution of Problem (1.5), with

λ > λ1 if, and only if, w = u/β(λ), β(λ) = (aμ/r)
1

p−1 , is a positive solution of the
problem

{−�w = λ1w + μh(x, w), in �;
w = 0 on ∂�,

(3.6)

where, for every (x, s) ∈ � × R,

h(x, s) = s +
k∑

i=1

ai
ri
bi (x)s

pi +
m∑

i=k+1

bi (x)s
pi + a

r
b(x)s p.

Considering the function � defined by (3.2) and the above expression of h, we
obtain that �(t) = g(t), for every t ≥ 0. Hence, by (3.4), Theorem 1.3 and Remark
1.4, we find μ∗ > 0 such that, for every 0 < μ < μ∗, Problem (3.6) possesses k + 1
positive solutions, w1, . . . , wk+1 ∈ H1

0 (�). Moreover, there exists M > 0 such that
‖wi‖ ≤ M , for every 1 ≤ i ≤ k + 1. Consequently, taking λ = λ1 + μ∗, we obtain
that for every λ ∈ (λ1, λ) and α(λ), given by (3.5), Problem (1.5) has k + 1 solutions
{(λ, α(λ), ui ); ui = β(λ)wi , wi positive in �, 1 ≤ i ≤ k + 1}. Since ‖wi‖ ≤ M ,
1 ≤ i ≤ k + 1, and α(λ) → 0 and β(λ) → 0 as λ → λ+

1 , we have proved that
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(λ1, 0, 0) is a point of bifurcation of multiplicity k + 1 for the positive solutions of
Problem (1.5).

If r < 0, we may argue as above to find λ < λ1, α ∈ R
m , and ui ∈ H1

0 (�), ui
positive in �, 1 ≤ i ≤ k + 1, such that, for every λ ∈ (λ, λ1), (λ, α(λ), ui ) is a
solution of (1.5), 1 ≤ i ≤ k+1. Furthermore α(λ) → 0 inRm , ui (λ) → 0 in H1

0 (�),
1 ≤ i ≤ k + 1, as λ → λ−

1 . We conclude that (λ1, 0, 0) is a point of bifurcation of
multiplicity k+1 for the positive solutions of Problem (1.5). The proof of Proposition
1.10 is complete. ��

Fixed a1, . . . , am ∈ R, we may consider f̂ (λ, x, s) = f (α(λ), x, s), with f given
by (1.6), and α(λ) = (α1, . . . , αm) ∈ R defined by

αi = ai |λ − λ1|
p−pi
p−1 , 1 ≤ i ≤ m. (3.7)

Next we consider the nonlinear eigenvalue problem

{−�u = λu + f̂ (λ, x, u) + b(x)u p in �;
u = 0 on ∂�.

(3.8)

Associated with this nonlinear eigenvalue problem we have the functions

�±(t) = ± t

λ1
+

m∑
i=1

airi t
pi + r t p, for every t ≥ 0.

Denoting by k+ and k− the numbers of times �+ and �− change sign on (0,∞),
respectively, as a consequence of our argument (see the proof of Proposition 1.10) we
may state:

Proposition 3.3 Suppose f̂ (λ, x, s) = f (α(λ), x, s) with f and α(λ) given by (1.6)
and (3.7), respectively. Then (λ1, 0) is a bifurcation point of multiplicity k+ and k−
for the positive solutions of the Problem (3.8) on the interval (λ1,∞) and (0, λ1),
respectively.
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