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Abstract A framed surface is a smooth surface in the Euclidean space with a moving
frame. The framed surfaces may have singularities. We treat smooth surfaces with
singular points, that is, singular surfaces more directly. By using the moving frame,
the basic invariants and curvatures of the framed surface are introduced. Then we
show that the existence and uniqueness for the basic invariants of the framed surfaces.
We give properties of framed surfaces and typical examples. Moreover, we construct
framed surfaces as one-parameter families of Legendre curves along framed curves. We
give a criteria for singularities of framed surfaces by using the curvature of Legendre
curves and framed curves.
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1 Introduction

The geometry of smooth surfaces in the Euclidean space is a classical object. Recently,
smooth surfaces with singular points are more important for differential geometry,
differential equations and physics (for instance, Arnol’d 1990; Arnol’d et al. 1986;
Bruce and Giblin 1992; Fujimori et al. 2008; Fukui 2017; Fukui and Hasegawa 2012;
Gray et al. 2006; Ishikawa 2015; Izumiya and Saji 2010; Izumiya et al. 2015; Kokubu
et al. 2005; Martins and Nufio-Ballesteros 2015; Martins and Saji 2016; Martins et al.
2016; Oset Sinha and Tari 2015, 2017; Saji 2017; Saji et al. 2009; Teramoto 2016).
One of the idea to treat the smooth surfaces with singular points is that we consider the
fronts or frontals as smooth surfaces with singular points (cf. Arnol’d 1990; Arnol’d
et al. 1986; Martins and Saji 2016; Martins et al. 2016; Saji et al. 2009; Teramoto
2016).

In this paper, we give an other consideration of smooth surfaces with singular points.
The idea is a generalisation of not only the Legendre curves (Fukunaga and Takahashi
2013) but also framed curves in the Euclidean space (Honda and Takahashi 2016). It
is also related the Cartan’s moving frame (cf. Ivey and Landsberg 2016).

A framed surface in the Euclidean space is a smooth surface with a moving frame.
The framed surface is a generalisation of not only regular surfaces but also frontals at
least locally. The framed surfaces may have singularities. We would like to treat the
surfaces with singular points more directly. In fact, we introduce the basic invariants
of the framed surface in Sect. 2. Then we give the existence and uniqueness theorems
of the basic invariants for the framed surface in Sect. 3. We investigate properties of
the framed surfaces. We give a curvature and a concomitant mapping of the framed
surfaces in Sect. 4. These mappings are useful to recognize a Legendre immersion
or a framed immersion. Moreover, we construct framed surfaces as one-parameter
families of Legendre curves along framed curves in Sect. 5. As an application of the
construction, we give a criterion that the framed surface is locally diffeomorphic to
the cuspidal edge, swallowtail and cuspidal cross cap by using the curvatures of the
Legendre curves and the framed curves. We give concrete examples in Sect. 6.

All mappings and manifolds considered here are differential of class C*°.

2 Definitions and Notations

Let R3 be the 3-dimensional Euclidean space equipped with the inner product a - b =
aiby + axby + azbs, where a = (ay, ar, az) and b = (b1, by, b3) € R3. The norm of
a is given by |a| = +/a - a and the vector product is given by

€y ey €3
axb=\|a a a3,
by by b3

where {e1, e, e3} is the canonical basis on R3. Let U be a simply connected domain
of R? and S? be the unit sphere in R3, that is, S* = {a € R3||a| = 1}. We denote a
3-dimensional smooth manifold {(a, b) € $? x $2|a - b = 0} by A.
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Framed Surfaces in the Euclidean Space 39

Definition 1 We say that (x,n,s) : U — R3 x Ais a framed surface if x, (u, v) -
n(u,v) =0, x,(u, v)-n(u, v) = 0forall (u, v) € U, where x,,(u, v) = (dx/0u)(u, v)
and x, (u, v) = (0x/3v)(u, v). We say that x : U — R? is a framed base surface if
there exists (n, s) : U — A such that (x, n, s) is a framed surface.

We also say that (x,n) : U — R? x S? is a Legendre surface (respectively, a
Legendre immersion) if x, (u, v)-n(u, v) = 0, x,(u, v)-n(u, v) = Oforall (u, v) € U.
We say that x : U — R> is a frontal (respectively, a front) if there exists n : U —
S2 such that (x,n) is a Legendre surface (respectively, Legendre immersion). For
definition and properties of frontals see Arnol’d (1990); Arnol’d et al. (1986).

Suppose that x : U — R3 is a regular surface. Then (x,n) : U — R3 x §%isa
Legendre immersion, where n = x,, X x,/|x, X xy|. There exists a smooth mapping
s : U — §2%such that (x, n, 5) is a framed surface. Actually we may take s = x,/|xy|
or s = Xxy/|xyl.

By definition, the framed base surface is a frontal. On the other hand, the frontal is a
framed base surface at least locally. In this paper, we consider framed base surfaces as
singular surfaces. If we do not confuse in the sentence, we also say that x is a framed
surface.

We denote ¢ (u, v) = n(u, v) X s(u, v). Then {n(u, v), s(u, v), t(u, v)} is a moving
frame along x (u, v). Thus, we have the following systems of differential equations:

Xy _ (a1 bi\ (s
()= 2)C) ®

ny 0 et  f1\ (n My 0 e fa\ (n
sul=1-e 0 gi]|s]:-|sv]=|-e 0 g]|s] -@
Iy _fl —&1 0 t ty _f2 —&2 0 t

where a;, b;, e;, fi,gi : U — R,i = 1,2 are smooth functions and we call the

functions basic invariants of the framed surface. We denote the above matrices by
9, F1, F,, respectively. We also call the matrices (¢, .71, .%2) basic invariants of
the framed surface (x, n, s). Note that (u, v) is a singular point of x if and only if
det 4 (u,v) =0.

Since the integrability conditions x,, = xy, and %2, — F1,, = F1.F%2 — Fr 71,
the basic invariants should be satisfied the following conditions:

aiy —b1g2 = azy — bagu,
b1,y —axg1 =bry — a1, 3)
aiex + by fr = aze; + by f1,

el — f182 = ey — f281,
fiv—eg1 = fru—e1g, 4)
glv—e1fr=g.u—efi.
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40 T. Fukunaga, M. Takahashi

3 Properties of Framed Surfaces

We consider basic properties of framed surfaces. We give fundamental theorems for
framed surfaces, that is, the existence and uniqueness theorems for the basic invariants
of framed surfaces.

Definition 2 Let (x, n, s), (X,7,5) : U — R x A be framed surfaces. We say that
(x,n,s)and (X, n,s) are congruent as framed surfaces if there exist a constant rotation
A € SO(3) and a translation a € R3 such that

Xu,v) =AW, v))+a,nu,v)=An@w,v)),su,v) =A@, v)),

for all (u, v) € U.

The existence theorem of framed surfaces follows from the existence of solutions
of partial differential equations.

Theorem 1 (The Existence Theorem for framed surfaces) Let U be a simply connected
domain in R? and let ai,bi,ei, fi,gi : U — R,i = 1,2 be smooth functions with
the integrability conditions (3) and (4). Then there exists a framed surface (x, n, s) :
U — R3 x A whose associated basic invariants is (4, F, F>).

Proof Since the integrability condition (4), there exists an orthonormal frame {n, s, ¢}
such that the condition (2) holds. Moreover, by the integrability condition (3), there
exists a smooth mapping x : U — R? such that the condition (1) holds. Therefore,
there exists a framed surface (x, n, s) : U — R3 x A whose associated basic invariants
is (¥, %1, F). O

Theorem 2 (The Uniqueness Theorem for framed surfaces) Let (x, n, s), (X, 7,5) :
U — R3 x A be framed surfaces with basic invariants (4, 1, %), (4, F, %),
respectively. Then (x,n, s) and (X, 1, 5) are congruent as framed surfaces if and only
if the basic invariants (4, %1, 5,) and (4, F1, .5,) coincide.

In order to prove the uniqueness theorem, we prepare the following two lemmas.

Lemma 1 If (x, n, s) and (X, 1,5) are congruent as framed surfaces, then (4, 71,
F) = (b, 71, F2).

Proof By Definition 2 and a direct calculation, we obtain the lemma. O

Lemma 2 If (¥, %1, %) = (4, %1, F2) and (x, n, 5)(ug, vo) = (X, 7,5)(uo, vo)
for some point (ug, vo) € U, then (x,n,s) = (X, 1,7).

Proof Firstly, we show (n, s, 1) = (i1,5,7), wheren x s = t and 77 x5 = 7. We define a
function f : U — Rby f(u, v) = n(u, v)-i(u, v)+su, v)-5u, v)+1(u, v)-1(u, v).
By the definition of the basic invariants, we have

fu=(e1 =& - )+ (fi — )t -T) + (@ —en)(n-3)
+ (= f)0-D+ (g1 — -5+ (G — g)(s - D).
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By the assumption .#| = ﬁl, we have f,(u,v) = 0 for all (u,v) € U. Simi-
larly, we also have f,(u,v) = O for all (u, v) € U. Moreover, by the assumption
(n, s)(uo, vo) = (1, 5)(ug, vo), we have f(ug, vg) = 3. It conclude that f(u,v) =3
forall (u, v) € U.Hence,wehaven - =s-5=1¢-7 = 1. Itfollowsthatn =7, s =%
andt =7. N

NexE we show x = X. By the assumption gi = ¥, we have x, = a1s + bt =
ai5s + bif =%, and x, = ass + bat = &5 + bat = X,,. Then, we have (x — X), =
(x —X), = 0. Since x(ug, v9) = Xx(ug, v9), we have x(u,v) = X(u,v) for all
(u, v) € U. Therefore, we have (x, n,s) = (X, 7,5). O

Proof of Theorem 2. The necessary part of the theorem is Lemma 1.

We prove the sufficient part of the theorem. Fixing a point (u¢, vg) € U, there exist
A € SO(3) and a € R? such that (x, n, s)(ug, vo) = (AX + a, AR, AS)(ug, vo). By
Lemmas 1 and 2, we have (x, n, s) = (AX +a, An, AS), thatis, (x, n, s) and (X, 71, 5)
are congruent as framed surfaces. O

Let (x, n,s) : U —> R3 x A be a framed surface with basic invariants (¢, .%;, .%).
We consider rotations and reflections of the vectors s, . We denote

s%u,v)\ _ [cosO(u,v) —sinO@u,v)\ (su,v)
@, v))  \sinO@,v) cosOu,v) ) \t(u,v))’

where 6 : U — R is a smooth function. Then n x s = 1 and {n, 5%, 1} is also

a moving frame along x. It follows that (x, n, s?) is a framed surface. We call the
frame {n, sY, te} a rotation frame by 0 of the framed surface (x, n, s). We denote
by (%9, F 19 , f/"‘f ) the basic invariants of (x, n, se). Moreover, we consider a moving
frame {n",s",t"} = {—n,t,s} along x and call it a reflection frame of the framed
surface (x, n, s). We denote by (¢, %], #]) the basic invariants of (x, n", s").

By a direct calculation, we have the following.

Proposition 1 Under the above notations, we have the relations between the basic

invariants (4, %, %) and (4?, 919, 929), (9", F|, F}), respectively.
(1) For any smooth function 6 : U — R,

@ — ( cos 6 sin@) _ <a1 cos® —bysinf aj;sinf + by cos@)
- —sin6 - ’

cos aycosO —bysin®  apsinf + by cos O
0 e1cosf — fisinf e;sinf + f1cos6
5“{9 = | —ejcos6 + fisin6 0 g1 — 6y ,
—eysinf — fjcosb —g1+6, 0
0 eycosf — frsinf ersinf + f>cosb
5329 = | —excos6 + frsin6 0 g — 0,
—epsinf — frcosé —g2+ 0, 0
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@

0 —fi —a
r 0 1 by a ,
v =s¢<1 O)=<b; ‘),ﬂfl: o0 =],

@ er & 0
0 —-fr —e
Fry=1fr 0 -2
e & 0

Especially, we have

0 e )
el-9 _ CQSQ sinf\ (e; =12
fi sinf  cos6 fi
We consider the integrability conditions (3) and (4) of (x, n, s?) and (x, n", s"),
respectively. Since

xy = ars + byt =als? + 6617 = alls" + bi1", x, = aps + bat = afs? + Y10
= ays’" + byt",

we also have

0 0.6 _ 6 _ 160
ay, —big =ay, —bygy,
0 0.6 _ 160 _ 6.6
by, —aygy =by, —ayg;,
0.0 0,60 _ 0.0 0 6
ajey + by fy =ayey +b; fy,

forany 6 : U — R, and

r ro,r r r . r
ajy — bigy = aru — b, gy,
r r,r r _ r ,r
by, —aygy =by, —ajg;,
r _r r r o __ r _r r r
ayey + bl fy =asel +b;f].

Proposition 2 Let (x,n,s) : U — R3x Abea framed surface with basic invariants
(Y, 71, F,). Then the following are equivalent for any smooth function 6 : U — R.
(D) Fou — F10 = F1F2 — T2 T,
Q) F, -7, =TT - F)F].
Q) Fy, —F, = F|Fy — F,F].
Proof We prove that (1) is equivalent to (2). We define matrices R(0) and ® by
1 0 0 0

0 0
R@O®)=10 cosf —sinf|,®=10 0 -0
0 sinf  cosé 0 6 0

@ Springer



Framed Surfaces in the Euclidean Space 43

Then we have #{ = ©, + R(0).F R(-0) and FJ = O, + R(0).F2R(—0) by
Proposition 1 (1). By a direct calculation, we have

FL = T, = O+ RO)TF2R(—0) + R(©).F2uR(—0) + R(0).F2R(—0),
— Ouy — R(0)y.F1R(=0) — R(0)F1 s R(—0) — R(©).F1R(—0),.

On the other hand,

FOF) — FLF0 = ©,R(0).F2R(—0) + R(O).F1R(—0)0©, — O,R(6).F1R(—0)
— R(0)F2R(—0)0, + R(O)(F1F2 — F2.F1)R(=0).

By using the relations ®, R(0) = R(@),, R(—0)®, = R(—0),, O,R(6) = R(9),

and R(—0)®, = R(—0),, we have R(0)(F2, — F1.,)R(—0) = R(O)(F1F> —

F»Z1)R(—0). Since R(0) and R(—0) are invertible matrices, we conclude that (1)

is equivalent to (2).
Next, we prove that (1) is equivalent to (3). We define a matrix R by

—1

0 0
R=|10 0 1
0 1 0

Then we have 7| = R.%| R and .#] = R.Z> R by Proposition 1 (2). Thus, we have
Fyu—Fly=RFruR — RF1 4R = R(F2u — F10)R.
On the other hand,
F| F; — F3 F| = RZ1RRFR — RFHRRF R = R(F %2 — FrF1)R.

Note that R? is equal to the unit matrix. Since R is an invertible matrix, we conclude
that (1) is equivalent to (3). O

Next we consider a parameter change of the domain U and a diffeomorphism of
the target space R3.

Proposition 3 Let (x,n,s) : U — R3 x A be a framed surface with basic invariants
@, 7, F2). Letp -V — U, (p,q) = ¢(p,q) = u(p,q),v(p,q)) be a param-
eter change, that is, a diffeomorphism of the domain. Then (X, 1,5) = (x,n,5)0¢:
V > R¥x Aisa framed surface. Moreover, the basic invariants (4, %1, %) of
(X, 7n,75) is given by

a b (up v ap b
<a~2 b~2>(p,q)—<u2 vZ)(p,q)(a2 bz)(qb(p,q))

a Ji & —(“r Vr er N g1)
(;2 % g~2>(p,q)—<uq vq)(p,q)(e2 o) @PO).
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Proof By the chain rule, we have

Xp(p,q) = xu(@(p. @)up(p, q) +xu (@ (P, g)Vp(p, q)

{ai(p(p, @)s(@(p,q)) +bi(d(p,g)t(d(p,g)}up(p, q)
+{a2(@(p, 9)s(p(p, @) + b2(P(p, gt (P (p, )N}vp(p, q)
= {a1(p(p, )up(p, q) + a2(d(p, ) vp(p, I (p, q)

+{b1(@(p. 9)up(p, q) + ba(d(p. ) vp(p, DY (p. q),
Xqg(psq) = xu(@(p, @)ug(p, q) + xu(P(p, 9)vg(p, q)
= {a1(@(p, 9)s(@(p,q)) +b1(@(p, gt (@ (p,g)}tug(p, q)
+{ax(@d(p, 9)s(@(p, ) + b2(d(p, 9Nt (@ (p, 9))}vg(p, q)
= {a1(@(p, 9)ug(p, q) + az(d(p, 9)vy(p, )I5(p, q)
+{b1@(p, @)y (p, q) + b2 (P, 9)vg (P, YT (P, @)-

It follows that we have the first equation. The second equation in the proposition is
proved similarly as the above by using the chain rule. O

Proposition 4 Let (x,n,s) : U — R3 x A be a framed surface. Let ® : R? — R3
be a diffeomorphism. Then there exists a smooth mapping (n®,s®) : U — A such
that (® o x, n?, sd’) U > R3x Ais a framed surface.

Proof We denote the Jacobian matrix of @ at x by D¢ (x). Since @ is a diffeomor-
phism, Dg (x) € GL(3, R). We define a mapping (ncb, sd’) :U — Aby

nu,v) T(De) ' (x(u,v)) s, v)Deg(x(u, v)) )

o @ _
s )(”’”)_<|n(u,v>T(an)—l(x(u,v))r 15(t, v) Do (x (11, v))]

where T A is the transpose of the matrix A. Then we show that (@ o x, n®, s‘p) U —
R3 x A is a framed surface. In fact, since (d /du)(® ox)(u, v) = x, (1, v) Dg ox (u, v)
and (d/dv)(® o x)(u, v) = xy(u, v)Dg o x(u, v), we have

d & 1 -1 T
<E(d) OX)) nt = mxu(D@ 0)C)((Dd>) OX) n
— ! Thw—o0

T T (Dg)Tex T
d @ 1 -1 T
<%(¢) O)C)) nt = mxv(D(p OX)((DQ&) O)C) n
1 T
v n=0.

= T (Do) Tox|
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Note that all vectors in this proof are row vectors. Moreover, we have

1
b D T -1 T T
no-s = n(" (D x)(" D x)'s
nT(Dg) ToxlisDgox| L (Do) 00 Doox)
! Ts=o.

= TD 1 D n s =
In " (Dg)~" o x||s Do o x|

Therefore, (@ o x,n?,s®) : U — R3 x A is a framed surface. ]

4 Curvatures of Framed Surfaces

Let (x,n,s) : U — R3 x A be a framed surface with basic invariants (¢, %, .%»).

Definition 3 We define a smooth mapping Cr = (Jr, Kr, Hr) : U — R3 by
ar b el fl
Jr = det , Kp = det ,
F (az bz) F (62 fz)
1 ar  fi by e
Hp = ——= {det — det .
F 2 { <az P by e
We call Cr = (Jr, KF, HF) a curvature of the framed surface.

Remark 1 By the integrability condition (4), we have Kr = g1,y — 82.4-

For concrete examples of curvatures of framed surfaces, see Sect. 6.

Suppose that x : U — R3 is a regular surface. Then there exists (n,s) : U — A
such that (x, n, s) is a framed surface, see Sect. 2. Let E = x,, - x,,, F = x,, - x, G =
Xy - Xy be the coefficients of the first fundamental form and L = —x,, - n,, M =
—Xxy - ny, N = —Xx, - ny be the coefficients of the second fundamental form. The
relationship between the first, second fundamental invariants and the basic invariant
is as follows:

E:a%—i—bz, F =ab) +axbs, G:a%—i—b%,
L =—aiei —bi1fi, M=—aje;—bifr, N=—aes—brfs.

By the integrability condition (3), we have M = —ase; — by f1. We denote the Gauss
curvature and the mean curvature of the regular surface x by K and H. Then

_LN—M2 _EN-2FM+GL
~ EG—F?’ ~ 2(EG —F)?

By a direct calculation, we give a relationship between the Gauss curvature, the mean
curvature and the curvature of the framed surface (x, n, s) as follows.

Proposition 5 Under the above notation, we have K = Kr/Jr and H = Hf [ JF.
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46 T. Fukunaga, M. Takahashi

Let (x, n,s) : U = R3 x A be a framed surface with basic invariants (¢, .%,, .%>).
Note that the condition H%(u, v) — Jp(u, v)KFr(u, v) > 0 holds for all (u,v) € U.

We give a relation between the curvature of the framed surface and the framed sur-
faces which given by a rotation frame and a reflection frame. We denote the curvatures
C% = (Je, KIQ,, Hg) of the framed surface (x, n, se) and C, = (Jp, K%, Hp) of the
framed surface (x, n", s”), respectively.

Proposition 6 Under the above notation, we have the following.

1 (JY, K?, Hf,) = (Jr, K, HF) for any smooth function 0 : U — R.
(2’) (Jr ) K;‘s H;‘) = (_JF9 _KF» HF)‘

Proof (1) By Proposition 1 (1), we have
0 10
a b aq bl 1
20 =det [T 1) = et ( cos sm@) _ g
a  bj a by) \—sinf cosf
0 0
el et fi i
ki =det( ) Z e (S i) =xr.
eg f20 er fr) \—sinf cos6
We show Hf; = Hp. By Proposition 1 (1), we also have

(af ff)_(alcosé—blsiné elsinc9+flcose>

ag f29 arcos® — by sinf ez sin@ + frcosf

(b? e?) _ (m sin® + by cos® ejcosh — fi sin9>

bg eg azsin@ 4+ by cos6 ercosf — frsinf
It follows that
0 0
d ay [ . . 2 .2
et p o] = ajer cossinf — by f>sin 6 cos 0 + ay f> cos” 0 — brey sin” 6
a
—e1az cosOsinf + fibycosOsinb + erby sin% 6§ — fiaz cos? 0,
b e
1 1 . . ) 2
det . = ajeycosfsind — by frcosOsind — ajy f>sin” 0 + biez cos” 0
2

—ejazcosfsinf + fibysinfcosh — e1by cos2 6 + fiaz sinZ 6.

1 0 0 0 0
(s )i )
2 ay fy by €

1
= _E(alfz cos? 6 — bies sin® 0 + e1b; sin? 6 — fiaz cos? 6

Thus, we have

H;;

+ai fr sin? 6 — biey cos” 0 + ey by cos> 0 — fiaz sin® )

1
=3 (a1f> — fiax —biex +e1by) = Hf.
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(2) By Proposition 1 (2), we have

ro_ a{ bi . aq b1 0 1 _

Jp = det <a§ bg = det 4 by 1 0 =—Jr,
ro_ e'i flr _ [ fl 0 1 _

K = det <e5 7)) det e )l o)™ Kp.

1 ar fr br er
r— __ 1 1) 1 1
== fo ()=l )]

1 by —e ar —fi
2{ y (bz —€2> ¢ (az ) F

Let¢ : V — U, (p,q) — ¢(p,q) = (w(p,q), v(p,q)) be a parameter change.
By Proposition 3,~()7j,§l: (x,n,s)o¢ : V— R? x Ais a framed surface with
basic invariants (¢, F1, F>). We denote the curvature of the framed surface (X, 71, 5)
by (Jr, Kr, Hp).

Moreover,

O

Proposition 7 Under the above notation, the curvature (.7 F, K F, H )V > R s
given by

(Jr(p.q), Kr(p.q). Hr (p, 9))
= (Jp(p, DIF (@ (P, ), Jp(p, Y KFr(d(p,q)), Jp(p, ) Hr (¢ (P, q))),

where Jy is the Jacobian of the parameter change ¢.

Proof We have Jr(p.q) = Jo(p.q)Jr(¢(p.q)) and Kp(p.q) = Jo(p.9)KF
(¢ (p, q)) by Proposition 3. Since

a f _fup vy ar  fi
<&v2 f2> (p,q) = (uq vq) (p.q) <a2 f2> (@(p,q)),
by & _fup v b1 el
<b~2 e~2> (p.q) = (M;’ U:) (p.q) <b2 62) (9(p.9)),
we have Hr(p, ¢) = Jyp(p, ) HF (. ). =

The curvature is useful to recognize that the framed base surface is a front or not.

Proposition 8 Let (x,n,s) : U — R3 x A be a framed surface and p € U. Then
(x,n) : U — R3 x S2 is a Legendre immersion around p if and only if Cr(p) # 0.

Proof We show the necessarily part of the proposition, that is, if Cr(p) = 0, then
(x,n) : U — R3 x S%is not a Legendre immersion at p. Since Jr(p) = 0, there
exist k1, k> € R such that k7 + k3 # 0 and ki (a1, a2) + ka(b1,b2) = O at p.
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Moreover, since Kp(p) = 0, there exist 1, hy € R such that h% + h% # 0 and
hi(e1, e2) + ha(f1, f2) = 0 at p. We divide into the following four cases: k1h; # 0,
kzhl ;é 0, k1h2 ;é 0 and k2h2 ;é 0.

Suppose that ki1 # 0. In this case, we have (ay, a2) = —(ka/k1)(b1, by) and
(e1,e2) = —(h2/h1)(f1, f2) at p. Thus,

Xy ny _ (biwr  fiws
(xv ny) (p) - (bzw] f2w2> (p)9
where w; = —(ka/k1)s + ¢t and wy = —(h2/h1)s +t. Since w; and w; are non-zero

w , . b h
tors, rank 7% " 2 if and only if det =0.
vectors, ran (X nv) (p) < Z 11 and only 1I de <b2 f2> (P)

v

Now suppose that det (Z; g) (p) # 0. By the assumption Hr (p) = 0, we have

_ ar fi B by e A R by fi
O—det<a2 f2>(p) det(b2 eZ)(p)—( k]+h1)det(b2 f2>(p).

It follows that

ky ~hy

A e — ) 5
o ©)

On the other hand, by the integrability condition (4),
ar e by fi haka ) <bl f1>
0 = det + det =|-—-+1])det .
¢ <az ez) (p) +de <b2 f2> (P) <h1k1 N ()
Hence, we have
—+1=0. (6)

By the Egs. (5) and (6), we have h% / h% + 1 = 0, and this is a contradiction. Therefore,

b fi
by f
The other cases are also proved similarly.

we conclude det ( ) (p) = 0. It follows that (x, n) is not an immersion at p.

Conversely, if rank (i" Z”) (p) < 2, then there exist k1, ko € R such that
v

v
k% + k% # 0and ky(ay, by, e1, f1) + ka(az, by, ez, f2) = 0 at p. By substituting this
relations into Cr, we have Cr(p) = 0. m]

Remark 2 By Propositions 5 and 8, if (x, n) is a Legendre immersion around p € U

and p is a singular point of x, then the Gauss curvature K or the mean curvature H
must be divergence at the point p.
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By Proposition 8, if Cr(p) = 0, then x is not a front but a frontal at the point,
that is, (x, n) is not an immersion. How about the condition that the framed surface
is an immersion or not? Let (x, n, s) : U — R3 x A be a framed surface with basic
invariants (¢, .71, .%). We define a smooth mapping I : U — R® by

IF:<CF,det<al gl),det(b1 gl),det<e1 gl),det(fl gl),det(a1 el)).
a & by g e @ 2 & a; e

We call the mapping Ir : U — R® a concomitant mapping of the framed surface
(x,n,s). Wesay that (x,n,s) : U — R3x Ais a framed immersion if (x, n, s) is an
immersion.

Proposition 9 Let (x,n,s) : U — R3 x A be a framed surface and p € U. Then
(x, n, s) is a framed immersion around p if and only if Ir(p) # 0.

Proof We show the necessarily part of the proposition, that is, if Ir(p) = 0, then
(x, n, s) is not a framed immersion at p. It is enough to show that

Xu Ny Sy
rank (x Su) (p) <2.

v My

The above condition is equivalent to the following conditions,
Xu Ny Xu  Su ny  Su
rank <Xu nv) (p), rank <xU Su) (p), rank (nv Sv) (p) <2.

By the assumption Cr(p) = 0 and Proposition 8, rank <iu Z”) (p) <2.
v v

We show rank <i” i“) (p) < 2. By the definition of the basic invariants, we

v v
have

Xy su\ _ (ars +bit —ein+ gt
Xy Sy) \aos+bat —ean+got)’
e

Since JF(p) = Oand det (62 2) (p) = 0, thereexistky, k» € Rsuchthatk?+k3 # 0

and ki (a1, a2) + ka(b1, b2) = 0 at p. Moreover, there exist i1, ho € R such that
h3 +h3 # 0and hy(e1, e2) + ha(g1, g2) = 0 at p. We divide into the following four
cases: k1hy # 0, kohy # 0, k1hy # 0 and kyhy # 0.

Suppose that k1h1 # 0. In this case, we have (a1, ap) = —(ka/k1)(b1, b2) and
(e1, e2) = —(ha/h1)(g1, g2) at p. Thus,

Xy Sy _ (bw  giwa
(xv Sv)(p)—<b2wl gzwz)(p),

@ Springer



50 T. Fukunaga, M. Takahashi

where wy = —(k2/k1)s + ¢t and wy = (hp/h1)n + ¢t. Since w; and w, are non-zero
X s . . b1 g1

vectors,rank [ 7% ¥ < 2if and only if det = 0. By the assump-
( X Sv) (p) y (bz g2> (p) y p

tion I (p) = 0, we have det (bl g1> (p) = 0. Therefore, rank <x” S”) (p) < 2.
by g Xy Sy

The other cases are also proved similarly.
ny

Next, we show rank (n i”) (p) < 2. By the definition of the basic invariants,
v

v
we have

Ny exs + fot  —ean + got

<nu iz) (p)=<€1S+f1t —€1n+glt> ).

Since we assume Kz (p) = 0 and det (il ?) (p) = 0, there exist k1, kp, hy, hy €
2 82

R such that k2 + k3 # 0, h? + h3 # 0, ki(e1, €2) + ka(f1, f2) = 0 and hy(e1, e2) +
ha(g1, g2) = 0 at p. We divide into the following four cases: k1h; # 0, kohy # 0,
kiho # 0 and kxho # O.

Suppose that k1h1 # 0. In this case, we have (e1, e2) = —(ka/k1)(f1, f2) and
(e1,e2) = —(h2/h1)(g1, g2) at p. Thus,

ny Sy _ (fiwr giwz
(nu Sv) (P) = (f2w1 gzUJz) (P).

where w1 = —(k2/k1)s +t and wp = (hy/hi)n + t. Since wi and wy are non-zero
vectors, rank (n“ s”) (p) < 2ifand only if det (fl g1> (p) = 0.By the assump-
Ny Sy L &

tion Ir(p) = 0, we have det s (p) = 0. Therefore, rank M Su (p) < 2.
L & ny, Sy

The other cases are also proved similarly. Therefore, (x, n, s) is not an immersion at

Conversely, if rank (i“ Z“ i”) (p) < 2, then there exist k1, k, € R such that
v v v
k%—i—k% # 0and k| (a1, by, e1, f1, 81)+ka(az, ba, ez, f2, g2) = Oat p. By substituting

this relations into Iy, we have Ir(p) = 0. O
As a summary, we have the following result.

Corollary 1 Let (x,n,s) : U — R3 x A be a framed surface and p € U.

(1) x is an immersion (a regular surface) around p if and only if Jr(p) # 0.
(2) (x,n) is a Legendre immersion around p if and only if Cr(p) # 0.
3) (x,n,s) is a framed immersion around p if and only if Iz (p) # 0.

Let (x,n,s) : U — R3 x A be a framed surface with Ir. We denote Ip =
Ir1,....1IF3g) and Cr = (Jp,Kp,HF) = Ur1.1r2,Ir3). Let ¢ : V —
U,(p,q) — ¢(p,.q) = (u(p,q),v(p,q)) be a parameter change of the domain.
We denote the concomitant mapping of the framed surface (X, 7,5) = (x,n,s) o ¢ :
V — R3x Aby Ir. By Proposition 3, we have the following proposition.
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Proposition 10 Under the above notation, the concomitant mapping 1, r:V > RS

is given by

Tr1(p.q), -,

Trs(p, @) = (0, DIF 1D (P, @), - -,

Jo(p, ) Ir8(9 (P, q))).

Remark 3 We denote the concomitant mapping of the framed surface which given
by a rotation frame (respectively, a reflection frame) by I 9 (respectively I} ). By

Proposition 1 (1) an

IF4_det(

+ det

F5_det<

d (2), we have the following.

0 gt g

! 1) _IF40050—Ipssin9—det< !

2] 2] ) 5 a

a 8

( )sin@,

Tosf . ai
= Ip4sinf + I 5cosf — det

0 0 £ El a

by & 2

( )cos@

i g . el
= Ipgcosf — Ip7sin6 — det

9 9 ) ’ 62

& &

+det< 9)sm9

— CO

and

r

I =det [
F,4 - et r
a

I7. < = det b
F,5 b,

.
€

s e;

6
f] 81
1%

2
( )cos@,
f
aj
af
a,

e
é) (cos” O — sin’ 0)IFg
€

. ar fi b
6 6 {det + det
S Sin { € (a2 f2> (¢} <b2

2}

8 = det b e = —det b s
g5 by —g by )’
81 ar —gi a 81
& az  —&2 a &

g1
&)’

A 1
gE) = det (fz

) = Ifesind + Ir7cosf — det (il
2

Ou
Qv) cosf

Ou
sin 6
Oy

Ou
cosf
Oy

O\ .
91;) sin 6
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r r
I 7 = det i —det (€' & ,
’ Iy gg e 82

2
17 o = det a4 = det b =Sy _ det b\ 2 det (1 ¢
F8 = ay ) by —f) by f) a e)’

thatis, I, = (=Jp, —Kp, Hp, =I5, —Ip4, Ir7, IF6, IF8).

Proposition 11 Let (x, n, s) : U — R3 x A be a framed surface with basic invariants
(4, 71, F2).
(1) Suppose that (g1, 82) # (0,0) at p € U. If

det (al gl) — det (bl gl) — det <€1 gl) — det (fl gl) —0
a g by @ e & 2 &

at p, then Ir(p) = 0.
(2) Suppose that (g1, 82) = (0,0)at p e U. If Cr(p) =0, then Ir(p) = 0.

Proof (1) By the assumptions, there exist k; € R,i =1, ..., 4 such that

(a1, a2) = ki(g1, 82), (b1, b2) = ka(g1, &2),
(e1, e2) = k3(g1, &2), (f1, f2) = ka(g1, &2)

at p € U. It follows that Ir(p) = 0.
(2) Since Cr(p) = 0 and Proposition 8, (x, n) is not an immersion at p € U. It

follows that det (Zl i1> = 0. Hence we have Ir(p) = 0. O
2 e
Next, we consider parallel surfaces of framed surfaces. For a framed surface

(x,n,s) : U — R3 x A, we define a parallel surface x* : U — R3 of the framed
surface by x*(u, v) = x(u, v) + An(u, v), where A € R.

A

Proposition 12 Under the above notations, x* is a framed base surface. Indeed,

(x*,n,s): U — R3 x Ais a framed surface.

Proof By definition,

xt = x, + any, = (a1 + rep)s + (b1 + Afi)t,
xi‘ = Xy + Any = (a2 + Aez)s + (by + Af2)t.

Thus, x)y -n = x} - n = 0. Since (x, n, s) is a framed surface, we have n - s = 0.
Therefore, (x)‘, n, s) is a framed surface. O

By a direct calculation, we have the following proposition.
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Proposition 13 Let (x,n,s) : U — R3 x A be a framed surface with basic
invariants (4, %1, %,) and the concomitant mapping Ip. Then, the basic invari-
ant (4*, ﬂlk, 352)”) and the concomitant mapping Iﬁ of the parallel surface (x*, n, s)
are given by

%A:%_’_)L(el fi
e [

Jk=Jr —2Hph+ Kp)?, Ky = Kp, Hp = Hp — Kg2,

Iy =1Ira+Mre, Ifs=1Irs+Mr7, Ipg=1Ire Ip7=1r7 I}g=Irs.

). 7 =5 7=

5 Framed Surfaces as One-Parameter Families of Legendre Curves
Along Framed Curves

We consider a framed curve in the Euclidean space (Honda and Takahashi 2016) and a
one-parameter family of Legendre curves (Fukunaga and Takahashi 2013; Takahashi
2017). We construct framed surfaces as one-parameter families of Legendre curves
along the framed curves. The idea is a cut off the surface by a plane of a special
direction along a space curve.

Let I, J C R be intervals with parameters u, v, respectively. For a, b € R3, we
denote the orthonormal plane of a through b by (a)f;, that is,

(@)} ={x eR3a- (x —b) =0}.

If b is the origin, then we denote (a)é‘ by (a)* briefly.

Let (y,vi, ) : [ — R3 x A be a framed curve with the curvature E,m,n,a),
see Appendix A (cf. Honda and Takahashi 2016). We denote (u) = vi(u) x va(u).
For each u € I, we consider a Legendre curve (x (u, -), vE@u, ) J — (,u(u))){-(u) X
(S2 N (u(u))b), that s, x, (u, v) - vE(u, v) = 0 forall (u,v) € I x J. We identify the
Euclidean plane R? and the plane (,u(u))}%(u) via(ai, az) — y(u)+ajvi(u)+ayva(u),
and S' and S% N ()t via (b1, by) — bivi(u) + brvy(u). We consider induced
inner product on (1 (u))® by (ajvi () + azva(w)) - (b1vi(u) + bava(u)) = arby +
a>by. Under the identification, (x(u, ), vE(u, ) is a Legendre curve in the sense
of Appendix B (cf. Fukunaga and Takahashi 2013). The curvature of the Legendre
curve (x(u, -), vi(u, -)) is denoted by (¢ (u, -), L (u, -)). By definition, there exist
functions xj,x» : I x J — Rsuchthatx : [ x J — R3is given by x(u, v) =
y () +x1(u, v)vi () +x2(u, v)va(u). We assume that x; and x» are smooth functions,
namely, x is a smooth surface. We denote v’ (i, v) = vlL (u, v)vi(u) + sz (u, v)va(u)
and ,uL(u, v) = —sz (u, v)vi(u) + vlL (u, v)vy(u). We also assume that v{“ and sz
are smooth functions. It follows that the curvature of the Legendre curve (¢X, gL) :
I x J — R? is a smooth mapping.

Theorem 3 Under the above notations, suppose that there exists a smooth function
0 : 1 xJ — R such that x,,(u,v) - n(u,v) = 0 for all (u,v) € I x J, where
n(u,v) = cosOu, v)vEh(u, v) + sin6(u, v)u(u). We define s : I x J — s2 by
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s(u,v) = —,uL(u, v). Then (x,n,s) : I x J = R3 x Ais a framed surface with
basic invariants,

ai(u, v) = (g, v) — x2(u, VIE@)VE (U, v) — (x2, (u, V) + X1 (1, V)LV (1, V),

bi(u, v) = sinf(u, v) ((xlu(u, v) — x2(u, v)E(u))vlL(u, V)

+ (X2, V) + 10, V)EE)VE (1, v) )
— cos 0 (u, v)(a(u) + x1(u, v)m(u) + x2(u, v)n(u)),
ay(u,v) = —p"(u, v),
ba(u,v) =0,
e1(u, v) = sin 0 (u, v)(n()vE (U, v) — m@)vk (u, v))
+ cos O (u, v)(vlLu(u, v)vZL(u, v) — v2Lu(u, v)vlL(u, v) — L(u)),
i@, v) = =0, u, v) — m@)vEu, v) — n@)vk(u, v),
g1(u, v) = sinf(u, v)(szu(u, v)vlL(u, v) — vlLu(u, v)v2L(u, v) + £(u))
+ €08 (u, v) (n(u)vE (U, v) — m@)vk (u, v)),
er(u,v) = —cosb(u, v)EL(u, v),
fa(u,v) = —0,(u, v),
22(u, v) = sinO(u, v)€- (u, v).

Proof By definition, we have n(u, v)-s(u, v) = Oforall (u, v) € I x J.Itfollows that
(n, s) € A. By the assumption, we have x, (u, v) - n(u, v) = 0forall (u,v) € I x J.
Since x, (1, v) - vE(u, v) = 0, we have

xy(u, v) - n(u, v) = (1, V)V () + x2012(1))
- (cos 6 (u, v)vL(u, v) + sin 6 (u, v)u(u))
= c0s 6 (u, v) (x1, (, V)VE U, v) + x20 (u, VIVE(, v)) = 0

for all (u,v) € I x J.Hence (x,n,s): I x J — R3 x A is a framed surface. We
omit (u, v) and u below. By a direct calculation, we have

Xy = (X1 — x20)v1 + (X2 + x16)v2 + (o + x1m + X2M) W4
Xy = X1pV1 + X2 V2,
n= cos@vlLvl + cos 911%\12 +sinfu,
s = viv) —vfu,
t=nxs=sinfviv +sindvivy —cosOu,
ny = (=6, sin vl + cos Ovl, — cos Gvi £ — sin Gm)v;
+ (=6, sin Ovr + cos G L + cos BVl — sinfn)vy
+ cosO(vEm +vin +6,)u,
su= (i, +vEOv + (—vf, +vEOv + vEm —vEn)u,
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Fig. 1 Cuspidal edge, swallowtail and cuspidal cross cap, respectively

ny, = —0, sin vl + cos eva + 6, cosOpu,
Sy = AL
It follows that we have the basic invariants as the above. O

By a direct calculation, we have the following condition:

Xy (u,v) -n(u,v) = (x1,(u, v) —x2(u, v)€(u)) cosf(u, v)vlL(u, v)
+ (x4 (1, v) + x1 (1, v)€(u)) cos 0 (u, v)sz(u, v)
+ (a(u) + x1(u, v)m(u) + x2(u, v)n(u)) sin 6 (u, v)
=0

for all (u,v) € I x J.

By the above construction, we say that the framed surface (x, n,s) is a one-
parameter family of Legendre curves along a framed curve.

As an application of Theorem 3, we give a condition that the surface x is diffeo-
morphic to the cuspidal edge, the swallowtail and the cuspidal cross cap, see Figure 1
and Examples 1, 2 and 3 of Sect. 6 for definitions (Fig. 1).

We recall the criteria for singularities of frontals stated in Fujimori et al. (2008),
Kokubu et al. (2005) (see also, Izumiya and Saji 2010). Let x : U — R3 be the
frontal of a Legendre surface (x, n). We define a function A : U — R by A(u, v) =
det(xy, xy, n)(u, v) where (u, v) is a coordinate system on U. We call A a discriminant
Sfunction (or, a signed area density function). When a singular point p of x is non-
degenerate, thatis, d1(p) # 0, there exists a smooth parametrization () : (—e&, &) —
U, §(0) = p of the singular set S(x). We call the curve §(¢) the singular curve of x.
Moreover, there exists a smooth vector field 1 (¢) along § satisfying that n(¢) generates
ker dxs(). Now we define a function ¢, (1) on (—¢, &) by ¢, () = det((x 0 8),n o
8, dn(n))(t). By using these notations, we have the following theorem.

Theorem 4 (Fujimori et al. 2008; Kokubu et al. 2005) Let (x,n) : U — R3 x §2
be a Legendre surface and p € U be a non-degenerate singular point of x. Then the
following assertions hold.

(1) If nA(p) # O, then x is a front near p if and only if ¢ (0) # 0 holds.
(2) The map germ x at p is @/ -equivalent to the cuspidal edge if and only if x is a
front near p and nA(p) # 0 hold.
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(3) The map germ x at p is o/ -equivalent to the swallowtail if and only if x is a front
near p and ni(p) = 0 and nni(p) # 0 hold.

(4) The map germ x at p is <f -equivalent to the cuspidal cross cap if and only if
ni(p) # 0, ¢ (0) = 0 and ¢,.(0) # 0 hold.

Here, n) : U — R means the directional derivative of A by the vector field 1,
where 7] is an extended vector field of n to U.

In this paper, if there is no confusion, we denote 77 by 1. By using the above theorem,
we give criteria of singular points of the framed base surface which is given by a one-
parameter family of Legendre curves along a framed curve.

Theorem 5 Let (x,n,s) : I x J — R3 x A be a one-parameter family of Legendre
curves along a framed curve. Suppose that x(u, 0) = y (u), the set of singular points
of v is dense in I and (0, 0) is a non-degenerate singular point of x. Then we have
the following two cases.

(A) Suppose that B (0, 0) = 0 and a(0) # 0.

(1) x at (0, 0) is o7 -equivalent to the cuspidal edge if and only ifﬂUL (0,0) # 0and
2£(0,0) # 0.

(2) x at (0,0) is o7 -equivalent to the swallowtail if and only if /31[; 0,00 =
0, BE (0,0) # 0, BL(0,0) # 0 and (0, 0) # 0.

(3) x at (0, 0) is o -equivalent to the cuspidal cross cap if and only ifﬂvL 0,0) #
0, £5(0,0) = 0 and (£X 0 8)'(0) # 0.

(B) Suppose that ,BL(O, 0) #0and x(0) = 0.

(1) x at (0,0) is of -equivalent to the cuspidal edge if and only if &’ (0) # 0 and
vlL(O, 0)m(0) + vé‘ (0,0)n(0) # 0.

(2) x at (0, 0) is o/ -equivalent to the swallowtail if and only if o’ (0) = 0, a” (0) #
0, v3 (0, 0)m(0) — vF (0, 0)n(0) # 0 and vE (0, 0)m(0) 4 v4 (0, 0)n(0) # O.

(3) x at (0,0) is o -equivalent to the cuspidal cross cap if and only if a'(0) #
0, v (0, 0)m(0) +v4 (0, 0)n(0) = 0 and (B (vEm +vin+6,)+a16,)08)'(0) # 0.

Here § is a singular curve of x.

Proof Letx(u,v) =y u)+x1(u, v)vy (u)+x2(u, v)v2 (). By the assumption y (1) =
x(u,0), we have x1(u,0) = xp(u,0) = 0 for all u € I. Moreover, since the set of
singular points of y is dense in I and x, (u, v) - n(u, v) = 0, we have sinf(u, 0) =0
and hence cos@(u,0) = %1. By ba(u, v) = 0 in Theorem 3, we have A(u,v) =
—by(u, v)az(u, v) = BL(u, v)by (u, v). Since (0, 0) is a non-degenerate singular point
of x, we divide two cases: (A) 8L (0, 0) = 0 and b1 (0, 0) # 0, (B) BX(0,0) # 0 and
b1(0, 0) = 0. Moreover, we have 1, (0, 0) # 0 or A,(0, 0) # 0. By the integrability
condition of ajex + by fo = aze1 + ba f1, we have b, = —,BL(vlLu Uf — vé‘uv{‘ —¥{)
at (0, 0). The other integrability conditions automatically hold at (0, 0).

First we consider the case (A). By Theorem 3, b1 (0, 0) # 0 if and only if «(0) # O.
Moreover, by (1, 0) = a(u) # 0around 0 € I. Therefore, y is aregular curve around
0 € I.In this case, (u, v) is a singular point of x if and only if 8% (u, v) = 0. Since
dx = xydu + xydv = (a1s + b1t)du + arsdv and ar(u, v) = —ﬁL(u, v), the null
vector field n is given by d/dv. Therefore, the condition nA(0, 0) # O is equivalent
to ,BUL (0, 0) # 0, and the conditions (0, 0) = 0 and nnA(0, 0) # 0 are equivalent
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to ,BUL (0,0) = 0 and ﬂvLU (0,0) # 0. Since (0, 0) is a non-degenerate singular point
of x, we have ﬁuL 0,0) # 0 or ﬂlf (0,0) # 0. By the integrability condition, we
have 6,(0,0) = 0. By a direct calculation, we have K = —ZL(vle + szn) and
Hr = afl at (0, 0). It follows that x is a front around (0, 0) if and only if £ (0, 0) # 0
by Proposition 8. Therefore, by Theorem 4, x at (0, 0) is .<7-equivalent to the cuspidal
edge (respectively, the swallowtail) if and only if ﬂUL (0,0) % 0 and ££(0,0) # 0
(respectively, BL(0,0) = 0, BL (0,0) # 0, BL(0,0) # 0 and ¢£(0, 0) # 0).

We now consider the condition for the cuspidal cross cap. Since nA(0,0) =
,BUL (0,0) # 0, the singular curve § is given by the form §(¢r) = (¢, v(¢)), where v
is a smooth function with v(0) = 0. By a direct calculation,

(x08) = (@ +xim+x2m)p + (x1y — BEVEV — X201 + (va + BEVEV + 1100,
nod = cos@(v]Lvl + vé‘vz) + sinOu
dn(n) = (=0, sin v — cos GLEvE) vy + (—6, sin Ov5 + cos €5 vy + 6, cosO.

By straightforward calculations, we have

¢x = det((x 08),n08,dn(n))
= (& + x1m + xn)€F + (x1, — BEvEV — x00)(B,vF — sin 6 cos0LE V)
+ (xou + BEVEV 4 x10) (=6, v — sin 6 cos HLF V).

It follows that ¢, (0) = a(0)£% (0, 0) and ¢.(0) = a(0) (£ 08)(0) under the condition
¢x(0) = 0. Therefore, by Theorem 5, x at (0, 0) is .o/ -equivalent to the cuspidal cross
cap if and only if B (0, 0) # 0, ££(0,0) = 0 and (¢£ 0 §)'(0) # 0.

Second we consider the case (B). Since b1(0,0) = Fa(0) = 0, 0 is a singular
point of y. In this case, (u, v) is a singular point of x if and only if b (u, v) = 0.
Since dx = x,du + xydv = (a1s + bit)du + apsdv = aysdu — ﬂLsdv on the
singular set of x, the null vector field 5 is given by AL (u, v)d/du + aj(u, v)d/dv.
Note that we have a;(u, 0) = 0 for all u € I. Therefore, the condition nA(0, 0) # 0
is equivalent to o’(0) # 0, and the conditions nA(0, 0) = 0 and nnA(0, 0) # 0 are
equivalent to @’ (0) = 0 and &” (0) # 0. Since (0, 0) is a non-degenerate singular point
of x, we have b1,(0,0) # 0 or b1,(0,0) # 0, that is, &’ (0) # 0 or UZL(O, 0)m(0) —
vlL(O, 0)n(0) # 0. By a direct calculation and the integrability condition, we have
Kp = —tE(wEm +vEn) and Hp = (1/2)BE(vEm + vin) at (0, 0). It follows that x
is a front around (0, 0) if and only if vf‘ (0, 0)m(0) + sz (0, 0)n(0) # 0 by Proposition
8. Therefore, by Theorem 4, x at (0, 0) is <7-equivalent to the cuspidal edge (respec-
tively, the swallowtail) if and only if &’(0) # 0 and vE (0, 0)m(0) + v£ (0, 0)n(0) # 0
(respectively, a’(0) = 0,a”(0) # 0, sz 0, 0)m(0) — vlL (0,0)n(0) # 0 and
vE(0, 0)m(0) + v£(0, 0)n(0) # 0).

We now consider the condition for the cuspidal cross cap. Since nA(0, 0) # 0 is
equivalent to o’(0) # 0, the singular curve § is given by the form §(¢) = (u(z), 1),
where u is a smooth function with u(0) = 0. By a direct calculation and by (u(t), t) =
0,
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(x 08) = (a + xym + xon)u' ;w4 (xpu’ — BEvE — xplu'yvy 4 (xpuu’
+ BEvE + x1euyvy
= tan 0 (X1, — X20v{ + (x2u + x10)v3)u’p
+ (epr’ — BEVE — xolu' vy + (eouu’ + BEVE + xpu' )1y
nod = cos@(vlLvl + szvz) +sinfu
dn(n) = (sin (=6, vF — pEm — 6yarvl)
+ cos O(BEvE, — BLval — areFviy
+ (sin (=6, BEvE — BEn — Oyarvk) + coso(BEVE
+ vt + arttob)n
+ cosO(BEWEmM 4+ van + 6,) + a16,) .

By straightforward calculations, we have

¢, =det((x 08),no08,dn(n))
= sinf ((x1u — x0)vE 4 (o + xlﬂ)sz) u'

X (sin 0B (—vin + vim) + cosO(Brvivy, — plvivE + ple+ alﬂL)>

+ Gepert — BEVE - xzzu/)(cosz Ok (BL (wEm + vEn +6,) + a16,)

— sin@(sin (=6, BEvE — BEn — 0,a105)

+ cosO(BLVE, + BEvle + aleLvlL)))

+ (xou’ + ,BLvlL + x18u) (— cos? leL(,BL(vle + szn +6,) +aiby)

+ sin 6 (sin O(—0, L vE — BEm — Oyarvi)

+ cos@(ﬁLvlLu — ,BvaLZ — alszé)))'
It follows that ¢, (0) = —(BL(0, 0))?(vE (0, 0)m(0) + v£(0, 0)n(0)), and ¢, (0) =
(BEEm +vin +06,) + a16,) 0 8)'(0) under the condition ¢, (0) = 0. Therefore, by
Theorem 5, x at (0, 0) is «7-equivalent to the cuspidal cross cap if and only if &’ (0) #

0, vf (0, 0)m(0) + v£(0, 0)n(0) = 0 and (BE(vEm +vin+6,) 4+ a16,) 08)'(0) # 0.
This complete the proof of the Theorem. O

Remark 4 Under the same assumptions in Theorem 5, if y (u) is the image of the
singular curve of x, then it holds that the singular setis S(x) = {(u, 0)|u € I} and one
has the case (A). Since the null vector field n and the singular direction 8" are linearly
independent at (0, 0), the singular point (0, 0) can not be the swallowtail.

Remark 5 The conditions vl (0,0)m(0) — vE(0,0)n(0) # 0,vE©0,0m©) +
sz (0,0)n(0) # 01in Theorem 5 (B) (2) is equivalent to the condition (m(0), n(0)) #
(0, 0).
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Corollary 2 Let (x,n,s) : I x J — R3 x A be a one-parameter family of Legendre
curves along a framed curve. Suppose that y : I — R> is a regular curve, x(u, ) :
J — (/L(u))f;(u) is diffeomorphic to the 3/2-cusp at 0 € J and x(u,0) = y(u)
forallu € 1. Then x : I x J — R3 is a front around (u,0). More precisely,
,n):IxJ—>RxS8%isa Legendre immersion around (u,0). Moreover, x is
diffeomorphic to the cuspidal edge at (u, 0).

Proof Since y is a regular curve, we have a(u) # O for all u € I. Moreover,
x(u, -) is diffeomorphic to the 3/2-cusp at 0 € J if and only if x,(u,0) = 0
and det(xyy(u, 0), xypy(u,0)) # O, for all u € [ (cf. Bruce and Giblin 1992,
Fukunaga and Takahashi 2014; Ishikawa 2007). By the definition of the curvature
(L (u, v), ﬂL(u, v)) of the Legendre curve (x(u, -), vE(u, -)), we have

xo(u,v) = B, v)p* (u, v),
X (tt, v) = BE@, v)k (u, v) — BE(u, v)- (u, v)vE(u, v)
Xovu(tt, ) = (B, . v) — B (u, v) (" w, V)" (u, v)
=28 u, vyt (u, vyvE(u, v).

It follows that BL(u,0) = 0, BE(u,0) # 0 and €5 (u,0) # O for all u € I.
Since x(u,0) = y(u), we have x1(u,0) = x(u,0) = 0 for all u € I. Therefore
X1y (u, 0) = x2,(u, 0) = 0. Moreover, by the condition x, («, v) - n(u, v) = 0 for
all (u,v) € I x J, we have a(u) sinf(u, 0) = 0 and hence sind(u, 0) = 0. Then
ai(u,0) = 0,b1(u,0) = —cosO(u, 0)a(u), ar(u,0) = —BLu,0), by(u,0) = 0,
er(u,0) = —cosOu,0)Ewu,0), fr(u,0) = —0,(u,0), g2(u,0) = 0. It follows
that Hr(u,0) = (1/2)cos? 0 (u, 0)or (u)eL (1, 0) # 0 forall u € I. By Proposition
8, (x, n) is a Legendre immersion around (u, 0). Hence, x is a front around (u, 0).
Moreover, by Theorem 5 (A) (1), x is diffeomorphic to the cuspidal edge at (u, 0).
O

We also have the following result.

Theorem 6 Suppose thatx : U — R3 is diffeomorphic to the cuspidal edge at0 € U.
Then there exist a parameter change ¢ : I x J — U around 0 and a smooth mapping
(n,s) : I xJ — Asuchthatthe framed surface (xo¢p,n,s) : [ xJ — R3x A is given
by a one-parameter family of 3/2-cusp at 0 € J along a regular curve y : I — R3
around 0 € 1.

Proof The normal form of cuspidal edge by using coordinate transformations on
the source and isometries on the target is given by Martins and Saji (2016). Since
the property of one-parameter family of Legendre curves along a framed curve are
invariant as isometries on the target, there exists a parameter change ¢ : I x J — U
around 0 such that X = x o ¢ is given by the following form around (0, 0) € I x J:

2
X(u,v) = (u a(u) + % b(u) + v*by(u) + v’ b3(u, v)) ,
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where a(0) = a(0) = b(0) = 15(0) = by(0) = 0 and b3(0, 0) # 0, by the proof of
Theorem 3.1 in Martins and Saji (2016). Here we relabelled the coefficient functions.

We define a regular curve y : [ — R3, ¥ () = (u, 0,0). If we take (vi, v2) : [ —
Abyvi(u) = (0,1,0), ) = (0,0, 1), then (y, v, v2) : I — R3 x A is a framed
curve. By X, (u, v) = (0, v, 20by (u)+3v2b3(u, v)+v3b3y (1, v)), we have vE (u, v) =

vEu, v)vi () + vE @, v)va@) and wh @, v) = —vk @, v)vi@) + vE @, V@),
where
L 2bs(u) + 3vbs(u, v) + v2b3y(u, v)
vy (u,v) = — ,
V 2ba (1) + 3vb3(u, v) + v2b3y (u, v)* + 1
. 1
vy (U, v) =

V@b () + 3vbs(u, v) + Vb3, (u, V)2 + 1

It follows that the curvature of the Legendre curve (X(u, -), v (u, -)) is given by

L 3b3(u, v) + 5vb3y (U, v) + V2b3yy (U, v)
L= (u,v) = ,
(2by (1) + 3vb3(u, v) + vV2b3y (u, v))% + 1
BL(u, v) = —vy/ 2ba(u) + 3vb3(u, v) + V2b3y (u, v))2 + 1.

We denote

a’ () (2b* 4 3vb3(u, v) + v2b3y (1, v)) + b () + v?bh (u) + v3b3, (u, v)
V@b (u) + 3vb3(u, v) + v2b3y (u, v))2 + 1 '

pu,v) =
Then we define a smooth mapping (n,s) : I x J — A by

n(u,v) = —vL(u,v)— ol v) wu), s(u, v) = —ML(M,U).

V1+¢2(u, v) V1+¢*u,v)

Since X, (u,v) = (1,ad’ (w), b (u) + v2b/2(u) + v3b3,(u, v)), we have X, (u, v) -
n(u,v) = 0 for all (u,v) € I x J. It follows from Theorem 3 that (X, n,s)
is a framed surface. Moreover, since xi(u,v) = a(u) + v2/2 and xy(u,v) =
b(u) 4 v?by(u, v) + v>b3(u, v), we have

(x1, %2)y (1, v) = (v, 20ba(u) + 3v%b3(u, v) + v3b3,(u, v)),
(X1, X2) 0 (1, v) = (1, 2b2(u) + 6Vb3(u, V) + 6V2b3, (1, V) + V3 b3y (u, v)),
(X1, X2)puw (1, ) = (0, 6b3 (1, v) + 18vb3, (i, v) + Y2 b3y (i, V) + V3 b3y (1, V).

It follows that (xi,x2)y(u,0) = 0 and det((xy, x2)yy(u, 0), (x1, X2)po(u, 0)) =
6b3(u,0) # 0 around (0,0) € I x J. Therefore, (u,0) is a 3/2-cusp of X(u, -)
around 0 € I. |

The singularities of the swallowtail and of the cuspidal cross cap are more complicated
(cf. Fukui 2017; Oset Sinha and Saji 2017; Saji 2017). The corresponding results for
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Corollary 2 and Theorem 6 of the swallowtail and the cuspidal cross cap (and other
singularities) are future problems (cf. Fukunaga and Takahashi 2018).

6 Examples

We give typical examples of singularities of smooth surfaces. We detect the basic
invariants and curvatures of framed surfaces.

Example 1 (cuspidal edge) A singular point p € U of a mapping x : U — R is
called a cuspidal edge if the map germ x at p is o/ -equivalent (right-left equivalent) to
the (u, v) — (u, v, v3)at0.Letx : RZ — R3 be givenby x (u, v) = (u, v2, v3). If we
take (n,s) : U — A, n(u, v) = (1/4/9v2 +4)(0, —3v, 2), s(u, v) = (1,0, 0), then
(x,n,s): U — R3x Aisaframed surface. Since 7 (u, v) = (1/4/9v2 + 4)(0, 2, 3v),
we have the following basic invariants.

ar b\ _ (1 0 er fi &\_ (0 0 0
a b)) " \0 wWT+4) \ea o g2) \0 —6/Ov*+4) 0)°
It follows that the curvature Cr of (x, n, s) is given by

Jr(u,v) = vvo? +4, Kr(u,v) =0, Hrp(u,v) = L

92 +4

Example 2 (swallowtail) A singular point p € U of a mapping x : U — R3 is

called a swallowtail if the map germ x at p is <7-equivalent to the (u, v) — (3u* +

u?v, —4ud —2uv, v)at0.Letx : R? > R3 be givenby x (u, v) = (3u4+u2v, —4ud—

2uv, v). Ifwetake (n,s) : U — A,n(u,v) = (1/vV1+u? +u®)(1, u, u?), su, v) =

(1/~/14+u?)(u, —1,0), then (x,n,s) : U — R3 x A is a framed surface.
Since 1 (u, v) = (1/v/1 + u? + u*V1 4+ u?)(u?, u3, —1 —u?), we have the follow-

ing basic invariants.

<a1 b1> ((12u2+2v)«/1+u2 0 )

u+u? NAET—

@ b 1+u? 1+u?

e f _ 1 _ u(24u?) u?
< ! ! gl) = V1+u2+ut14u? (42 +u)vV1+u? (+u?)V1+u2+u* | .
e fo & 0 0 0

It follows that the curvature Cr of (x, n, s) is given by

Jr(u, v) = 26u”> + V1 +u? +u*, Kp(u,v) =0,
1+ 5u® + 5u* + ub

Hr@, ) = = e v 32

Example 3 (cuspidal cross cap) A singular point p € U of a mapping x : U — R?
is called a cuspidal cross cap if the map germ x at p is .o/-equivalent to the (u, v)
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2

(u, v2, uv3) at 0. Let x : R?2 — R3 be given by x(u, v) = (u,v ,uvd). If we take

(n,s) :U — A,

1 1
n(u, v) = (—2v°, —3uv, 2), s(u, v) = ———(1,0,v%),
V4 + 9uv? + 4 V140

then (x, n,s) : U — R3 x A is a framed surface.
Since ¢ (u, v) = (1/3/4v0 + 9u2v? + 4/1 + v0)(=3uv?, 20° + 2, 3uv), we have
the following basic invariants.

ar b V1 + 00 0
a b = 3uv® vWV4v5+9uZv2+4 | 0
1+v° JER
6vv/1+0°
el fl 81 _ 0 T 4649,202+4 0
e f2 & -\ _ 6v? 6u(2v671) ouv? .
40549120244V 1406 (4064+9u2v2 +4)v/ 1406 400 +9u2v24+4(1+v0)
It follows that the curvature Cg of (x, n, s)is givenby Jr (1, v) = v4/4v° + 9u2v? + 4,
3603 3u(5v8 — 1)
Krp(u,v) = Hrp(u,v) =

(400 + 9u2v? + 4)3/2° 400 +9u20? + 4

Example 4 (cross cap) A singular point p € U of a mapping x : U — R3 is called
a cross cap if the map germ x at p is o/ -equivalent to the (u, v) — (u, vZ, uv) at 0.
Let x : R2 — R3 be given by x (u, v) = (u, v2, uv). Then it is well-known that the
cross cap is not a frontal. However, if we consider the polar coordinate ¢ : R x R —
R2, (r,0) — (rcos6,rsinf), then x o ¢ is a frontal and the images are the same
(cf. Fukui and Hasegawa 2012). Note that ¢ is not diffeomorphic but surjective. We
rewrite xogpasx : R x R — R3, x(r,0) = (rcosé, r2sin6, r2 cos 6 sin 0). In this
case, if we take (n,s) : R x R — A,

1
n(r,0) = (—2rsin® 6, —cos 6, 2sin6),
V4r2sin*0 + 3sin20 + 1

1
V3sin26 + 1

s(r,0) = (0,2sin 8, cosh),

then (x,n,s) :Rx R — R3 x A is a framed surface. Since

1
t(r,0) = (—(3sin®0 + 1), 2r sin® 6 cos 6,
V(@r2sin* 6 + 3sin?0 + 1)(3sin26 + 1)

— 47 sin? 0),
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we have the following basic invariants.

2r sin A (sin® 641) — cos 0+/4r2 sin* 043 sin® 641
(al bl) _ A/3sin2 6+1 A/3sin2 +1
a b B i 472 sin* in2 9+1
2 2 r20059 3s1n29+1 rsin 0 r#sin® 043 sin“ 6+
A/3sin? 0+1
et fi g\ _
e fr &
25sin? 64/3sin% 0+1
0 4r2 sin? 643 sin2 6 +1 0
2 2r sin 6 cos 6(3 sin 6+2) 4rsin? 9
V(@2 sin? 0+3sin? 6+1)(3sin2 6+1)  (dr2sin® 0+3sin2 6+1)4/3sin? 0+1  /4r2 sin* 6-+3 sin? 6+1(3 sin? H+1)

It follows that the curvature Cr of (x, n, s) is given by

r2(2sinO(sin? 6 + 1) + cos? 0 + 1)v/4r2sin*6 + 3sin20 + 1

e 0) = 3sin?0 + 1 ’
Kr(r.0) = — 2sin% 6
' (4r2sin* 0 + 3sin% 6 + 1)2/3°
2c0s0(—3r2sin® 6 + 8r2sin* 0 + 3r2sin @ + 3sin? 6 + 2)
Hp(r,0) = — .

(4r2sin* 0 + 3sin?6 + 1)(2sin% 0 + 1)
Especially, Cr(r, 8) # 0 for any (r, 0) € R x R, that is, x is a front by Proposition 8.

Acknowledgements The authors would like to thank the referee for helpful comments to improve the
original manuscript.

A Framed Curves in the Euclidean Space

We quickly review on the theory of framed curves in the Euclidean space, see detail
Honda and Takahashi (2016).

A framed curve in the Euclidean space is a smooth curve with a moving frame.
We say that (y,vi,v2) 1 [ — R3 x A is a framed curve if y(t) - vi(t) = 0 and
y(t) - va(t) = Oforallr € I. We say that y : I — R is a framed base curve if there
exists (vy, vp) : I — A such that (y, vy, 1») is a framed curve.

We put w(t) = vi(t) x va(t). Then {v( (¢), v2(¢), u(z)} is a moving frame along the
framed base curve y (¢) in R? and we have the Frenet—Serret type formula,

Vi (1) 0 )y  m(@)\ (vi()
n@ | =1 —to 0 n() v |, y@) =a@®p@)
() —m(t) —n() 0 pu(t)

where £() = vi() - va(r), m(t) = vi(t) - p(@), n(t) = va(t) - pn(t) and a(t) =
y(t) - u(t). We call the functions (¢, m, n, o) the curvature of the framed curve. Note
that #( is a singular point of y if and only if a(f9) = 0.
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Definition 4 Let (y, vy, 12) and (¥,71,%) : I — R? x A be framed curves. We
say that (y, vy, v2) and (¥, V1, V) are congruent as framed curves if there exist a
constant rotation A € SO(3) and a translation a € R? such that 7 (1) = A(y (¢)) + a,
v1(t) = A(vi(¢)) and D3 (¢) = A(va(r)) forallt € .

Theorem 7 (The Existence Theorem for framed curves, Honda and Takahashi 2016)
Let ((,m,n,a) : I — R* be a smooth mapping. There exists a framed curve
(y,vi,m): I - R3 x A whose curvature of the framed curve is (€, m, n, a).

Theorem 8 (The Uniqueness Theorem for framed curves, Honda and Takahashi
2016) Let (v, vi, v2) and (¥,71, %) : I — R3 x A be framed curves with the cur-
vature (£, m, n, o) and (Z m, i, a), respectively. Then (y, vi, v2) and (¥, El , V) are
congruent as framed curves if and only if the curvatures (£, m, n, ) and (£, m, 7, &)
coincide.

B Legendre Curves in the Euclidean Plane

We quickly review on the theory of Legendre curves in the unit tangent bundle over
R2, see detail Fukunaga and Takahashi (2013).

We say that (y, v) : I — R? x S'is a Legendre curve if (y, v)*6 = O forallt € I,
where 6 is a canonical contact form on the unit tangent bundle 71 R?> = R? x S! over R?
(cf. Arnol’d 1990; Arnol’d et al. 1986). This condition is equivalent to y (¢) - v(¢) = 0
for all r € I. We say that y : I — RZ is a frontal if there exists v : I — S! such
that (y, v) is a Legendre curve. Examples of Legendre curves see Ishikawa (2007),
Ishikawa (2015). We denote J(a) = (—az, a1) the anticlockwise rotation by 7 /2 of
a vector a = (ay, az) € R%. We put u(t) = J(v(¢)). Then {v(r), u(¢)} is a moving
frame of a frontal y (r) in R? and we have the Frenet type formula,

O _( 0 O\ (vO L. _
<ﬂ(t)) - (—z(z) 0 ) (u(ﬂ)’ v (@) = BOr),

where £(1) = v(¢) - u(¢) and B(¢) = y(t) - u(t). We call the pair (¢, ) the curvature
of the Legendre curve.

Definition 5 Let (y, v) and (7,V) : I — R? x S! be Legendre curves. We say that
(y,v) and (¥, V) are congruent as Legendre curves if there exist a constant rotation
A € SO(2) and atranslationa € R? suchthat (1) = A(y (1)) +a and V() = A(v(r))
forallt € I.

Theorem 9 (The Existence Theorem for Legendre curves, Fukunaga and Takahashi
2013) Let (¢, B) : I — R? be a smooth mapping. There exists a Legendre curve
(y,v) : I = R? x S' whose curvature of the Legendre curve is (¢, B).

Theorem 10 (The Uniqueness Theorem for Legendre curves, Fukunaga and Taka-
hashi 2013) Let (y,v) and (y,v) : I — R? x S' be Legendre curves with the
curvatures of Legendre curves (£, B) and (¢, E), respectively. Then (y, v) and (Y, V)
are congruent as Legendre curves if and only if the curvatures (£, B) and (27, ,B~) coin-
cide.
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