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Abstract A framed surface is a smooth surface in the Euclidean space with a moving
frame. The framed surfaces may have singularities. We treat smooth surfaces with
singular points, that is, singular surfaces more directly. By using the moving frame,
the basic invariants and curvatures of the framed surface are introduced. Then we
show that the existence and uniqueness for the basic invariants of the framed surfaces.
We give properties of framed surfaces and typical examples. Moreover, we construct
framed surfaces as one-parameter families ofLegendre curves along framedcurves.We
give a criteria for singularities of framed surfaces by using the curvature of Legendre
curves and framed curves.
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38 T. Fukunaga, M. Takahashi

1 Introduction

The geometry of smooth surfaces in the Euclidean space is a classical object. Recently,
smooth surfaces with singular points are more important for differential geometry,
differential equations and physics (for instance, Arnol’d 1990; Arnol’d et al. 1986;
Bruce and Giblin 1992; Fujimori et al. 2008; Fukui 2017; Fukui and Hasegawa 2012;
Gray et al. 2006; Ishikawa 2015; Izumiya and Saji 2010; Izumiya et al. 2015; Kokubu
et al. 2005; Martins and Nuño-Ballesteros 2015; Martins and Saji 2016; Martins et al.
2016; Oset Sinha and Tari 2015, 2017; Saji 2017; Saji et al. 2009; Teramoto 2016).
One of the idea to treat the smooth surfaces with singular points is that we consider the
fronts or frontals as smooth surfaces with singular points (cf. Arnol’d 1990; Arnol’d
et al. 1986; Martins and Saji 2016; Martins et al. 2016; Saji et al. 2009; Teramoto
2016).

In this paper, we give an other consideration of smooth surfaceswith singular points.
The idea is a generalisation of not only the Legendre curves (Fukunaga and Takahashi
2013) but also framed curves in the Euclidean space (Honda and Takahashi 2016). It
is also related the Cartan’s moving frame (cf. Ivey and Landsberg 2016).

A framed surface in the Euclidean space is a smooth surface with a moving frame.
The framed surface is a generalisation of not only regular surfaces but also frontals at
least locally. The framed surfaces may have singularities. We would like to treat the
surfaces with singular points more directly. In fact, we introduce the basic invariants
of the framed surface in Sect. 2. Then we give the existence and uniqueness theorems
of the basic invariants for the framed surface in Sect. 3. We investigate properties of
the framed surfaces. We give a curvature and a concomitant mapping of the framed
surfaces in Sect. 4. These mappings are useful to recognize a Legendre immersion
or a framed immersion. Moreover, we construct framed surfaces as one-parameter
families of Legendre curves along framed curves in Sect. 5. As an application of the
construction, we give a criterion that the framed surface is locally diffeomorphic to
the cuspidal edge, swallowtail and cuspidal cross cap by using the curvatures of the
Legendre curves and the framed curves. We give concrete examples in Sect. 6.

All mappings and manifolds considered here are differential of class C∞.

2 Definitions and Notations

Let R3 be the 3-dimensional Euclidean space equipped with the inner product a · b =
a1b1 + a2b2 + a3b3, where a = (a1, a2, a3) and b = (b1, b2, b3) ∈ R

3. The norm of
a is given by |a| = √

a · a and the vector product is given by

a × b =
∣
∣
∣
∣
∣
∣

e1 e2 e3
a1 a2 a3
b1 b2 b3

∣
∣
∣
∣
∣
∣

,

where {e1, e2, e3} is the canonical basis on R
3. Let U be a simply connected domain

of R2 and S2 be the unit sphere in R
3, that is, S2 = {a ∈ R

3||a| = 1}. We denote a
3-dimensional smooth manifold {(a, b) ∈ S2 × S2|a · b = 0} by Δ.
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Framed Surfaces in the Euclidean Space 39

Definition 1 We say that (x, n, s) : U → R
3 × Δ is a framed surface if xu(u, v) ·

n(u, v) = 0, xv(u, v)·n(u, v) = 0 for all (u, v) ∈ U , where xu(u, v) = (∂x/∂u)(u, v)

and xv(u, v) = (∂x/∂v)(u, v). We say that x : U → R
3 is a framed base surface if

there exists (n, s) : U → Δ such that (x, n, s) is a framed surface.

We also say that (x, n) : U → R
3 × S2 is a Legendre surface (respectively, a

Legendre immersion) if xu(u, v)·n(u, v) = 0, xv(u, v)·n(u, v) = 0 for all (u, v) ∈ U .
We say that x : U → R

3 is a frontal (respectively, a front) if there exists n : U →
S2 such that (x, n) is a Legendre surface (respectively, Legendre immersion). For
definition and properties of frontals see Arnol’d (1990); Arnol’d et al. (1986).

Suppose that x : U → R
3 is a regular surface. Then (x, n) : U → R

3 × S2 is a
Legendre immersion, where n = xu × xv/|xu × xv|. There exists a smooth mapping
s : U → S2 such that (x, n, s) is a framed surface. Actually we may take s = xu/|xu |
or s = xv/|xv|.

By definition, the framed base surface is a frontal. On the other hand, the frontal is a
framed base surface at least locally. In this paper, we consider framed base surfaces as
singular surfaces. If we do not confuse in the sentence, we also say that x is a framed
surface.

We denote t (u, v) = n(u, v)× s(u, v). Then {n(u, v), s(u, v), t (u, v)} is a moving
frame along x(u, v). Thus, we have the following systems of differential equations:

(

xu
xv

)

=
(

a1 b1
a2 b2

)(

s
t

)

, (1)

⎛

⎝

nu
su
tu

⎞

⎠ =
⎛

⎝

0 e1 f1
−e1 0 g1
− f1 −g1 0

⎞

⎠

⎛

⎝

n
s
t

⎞

⎠ ,

⎛

⎝

nv

sv
tv

⎞

⎠ =
⎛

⎝

0 e2 f2
−e2 0 g2
− f2 −g2 0

⎞

⎠

⎛

⎝

n
s
t

⎞

⎠ , (2)

where ai , bi , ei , fi , gi : U → R, i = 1, 2 are smooth functions and we call the
functions basic invariants of the framed surface. We denote the above matrices by
G ,F1,F2, respectively. We also call the matrices (G ,F1,F2) basic invariants of
the framed surface (x, n, s). Note that (u, v) is a singular point of x if and only if
det G (u, v) = 0.

Since the integrability conditions xuv = xvu andF2,u −F1,v = F1F2 −F2F1,
the basic invariants should be satisfied the following conditions:

⎧

⎪⎨

⎪⎩

a1,v − b1g2 = a2,u − b2g1,

b1,v − a2g1 = b2,u − a1g2,

a1e2 + b1 f2 = a2e1 + b2 f1,

(3)

⎧

⎪⎨

⎪⎩

e1,v − f1g2 = e2,u − f2g1,

f1,v − e2g1 = f2,u − e1g2,

g1,v − e1 f2 = g2,u − e2 f1.

(4)
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40 T. Fukunaga, M. Takahashi

3 Properties of Framed Surfaces

We consider basic properties of framed surfaces. We give fundamental theorems for
framed surfaces, that is, the existence and uniqueness theorems for the basic invariants
of framed surfaces.

Definition 2 Let (x, n, s), (̃x, ñ, s̃) : U → R
3 × Δ be framed surfaces. We say that

(x, n, s) and (̃x, ñ, s̃) are congruent as framed surfaces if there exist a constant rotation
A ∈ SO(3) and a translation a ∈ R

3 such that

x̃(u, v) = A(x(u, v)) + a, ñ(u, v) = A(n(u, v)), s̃(u, v) = A(s(u, v)),

for all (u, v) ∈ U .

The existence theorem of framed surfaces follows from the existence of solutions
of partial differential equations.

Theorem 1 (TheExistenceTheorem for framed surfaces)LetU bea simply connected
domain in R

2 and let ai , bi , ei , fi , gi : U → R, i = 1, 2 be smooth functions with
the integrability conditions (3) and (4). Then there exists a framed surface (x, n, s) :
U → R

3 × Δ whose associated basic invariants is (G ,F1,F2).

Proof Since the integrability condition (4), there exists an orthonormal frame {n, s, t}
such that the condition (2) holds. Moreover, by the integrability condition (3), there
exists a smooth mapping x : U → R

3 such that the condition (1) holds. Therefore,
there exists a framed surface (x, n, s) : U → R

3×Δwhose associated basic invariants
is (G ,F1,F2). ��
Theorem 2 (The Uniqueness Theorem for framed surfaces) Let (x, n, s), (̃x, ñ, s̃) :
U → R

3 × Δ be framed surfaces with basic invariants (G ,F1,F2), (G̃ , F̃1, F̃2),
respectively. Then (x, n, s) and (̃x, ñ, s̃) are congruent as framed surfaces if and only
if the basic invariants (G ,F1,F2) and (G̃ , F̃1, F̃2) coincide.

In order to prove the uniqueness theorem, we prepare the following two lemmas.

Lemma 1 If (x, n, s) and (̃x, ñ, s̃) are congruent as framed surfaces, then (G ,F1,

F2) = (G̃ , F̃1, F̃2).

Proof By Definition 2 and a direct calculation, we obtain the lemma. ��
Lemma 2 If (G ,F1,F2) = (G̃ , F̃1, F̃2) and (x, n, s)(u0, v0) = (̃x, ñ, s̃)(u0, v0)
for some point (u0, v0) ∈ U, then (x, n, s) = (̃x, ñ, s̃).

Proof Firstly, we show (n, s, t) = (̃n, s̃, t̃), where n×s = t and ñ× s̃ = t̃ .We define a
function f : U → R by f (u, v) = n(u, v)·ñ(u, v)+s(u, v) ·̃s(u, v)+t (u, v) ·̃t(u, v).
By the definition of the basic invariants, we have

fu = (e1 − ẽ1)(s · ñ) + ( f1 − f̃1)(t · ñ) + (ẽ1 − e1)(n · s̃)
+ ( f̃1 − f1)(n · t̃) + (g1 − g̃1)(t · s̃) + (g̃1 − g1)(s · t̃).
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Framed Surfaces in the Euclidean Space 41

By the assumption F1 = F̃1, we have fu(u, v) = 0 for all (u, v) ∈ U . Simi-
larly, we also have fv(u, v) = 0 for all (u, v) ∈ U . Moreover, by the assumption
(n, s)(u0, v0) = (̃n, s̃)(u0, v0), we have f (u0, v0) = 3. It conclude that f (u, v) = 3
for all (u, v) ∈ U . Hence, we have n · ñ = s · s̃ = t · t̃ = 1. It follows that n = ñ, s = s̃
and t = t̃ .

Next, we show x = x̃ . By the assumption G1 = G̃1, we have xu = a1s + b1t =
ã1̃s + b̃1̃t = x̃u and xv = a2s + b2t = ã2̃s + b̃2̃t = x̃v . Then, we have (x − x̃)u =
(x − x̃)v = 0. Since x(u0, v0) = x̃(u0, v0), we have x(u, v) = x̃(u, v) for all
(u, v) ∈ U . Therefore, we have (x, n, s) = (̃x, ñ, s̃). ��

Proof of Theorem 2. The necessary part of the theorem is Lemma 1.
We prove the sufficient part of the theorem. Fixing a point (u0, v0) ∈ U , there exist

A ∈ SO(3) and a ∈ R
3 such that (x, n, s)(u0, v0) = (Ax̃ + a, Añ, Ãs)(u0, v0). By

Lemmas 1 and 2, we have (x, n, s) = (Ax̃ +a, Añ, Ãs), that is, (x, n, s) and (̃x, ñ, s̃)
are congruent as framed surfaces. ��

Let (x, n, s) : U → R
3×Δ be a framed surface with basic invariants (G ,F1,F2).

We consider rotations and reflections of the vectors s, t . We denote

(

sθ (u, v)

tθ (u, v)

)

=
(

cos θ(u, v) − sin θ(u, v)

sin θ(u, v) cos θ(u, v)

)(

s(u, v)

t (u, v)

)

,

where θ : U → R is a smooth function. Then n × sθ = tθ and {n, sθ , tθ } is also
a moving frame along x . It follows that (x, n, sθ ) is a framed surface. We call the
frame {n, sθ , tθ } a rotation frame by θ of the framed surface (x, n, s). We denote
by (G θ ,F θ

1 ,F θ
2 ) the basic invariants of (x, n, sθ ). Moreover, we consider a moving

frame {nr , sr , tr } = {−n, t, s} along x and call it a reflection frame of the framed
surface (x, n, s). We denote by (G r ,F r

1 ,F r
2 ) the basic invariants of (x, nr , sr ).

By a direct calculation, we have the following.

Proposition 1 Under the above notations, we have the relations between the basic
invariants (G ,F1,F2) and (G θ ,F θ

1 ,F θ
2 ), (G r ,F r

1 ,F r
2 ), respectively.

(1) For any smooth function θ : U → R,

G θ = G

(

cos θ sin θ

− sin θ cos θ

)

=
(

a1 cos θ − b1 sin θ a1 sin θ + b1 cos θ

a2 cos θ − b2 sin θ a2 sin θ + b2 cos θ

)

,

F θ
1 =

⎛

⎝

0 e1 cos θ − f1 sin θ e1 sin θ + f1 cos θ

−e1 cos θ + f1 sin θ 0 g1 − θu
−e1 sin θ − f1 cos θ −g1 + θu 0

⎞

⎠ ,

F θ
2 =

⎛

⎝

0 e2 cos θ − f2 sin θ e2 sin θ + f2 cos θ

−e2 cos θ + f2 sin θ 0 g2 − θv

−e2 sin θ − f2 cos θ −g2 + θv 0

⎞

⎠ .
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42 T. Fukunaga, M. Takahashi

(2)

G r = G

(

0 1
1 0

)

=
(

b1 a1
b2 a2

)

,F r
1 =

⎛

⎝

0 − f1 −e1
f1 0 −g1
e1 g1 0

⎞

⎠ ,

F r
2 =

⎛

⎝

0 − f2 −e2
f2 0 −g2
e2 g2 0

⎞

⎠ .

Especially, we have

(

eθ
i
f θ
i

)

=
(

cos θ − sin θ

sin θ cos θ

)(

ei
fi

)

, i = 1, 2.

We consider the integrability conditions (3) and (4) of (x, n, sθ ) and (x, nr , sr ),
respectively. Since

xu = a1s + b1t = aθ
1 s

θ + bθ
1 t

θ = ar1s
r + br1t

r , xv = a2s + b2t = aθ
2 s

θ + bθ
2 t

θ

= ar2s
r + br2t

r ,

we also have

⎧

⎪⎨

⎪⎩

aθ
1,v − bθ

1g
θ
2 = aθ

2,u − bθ
2g

θ
1 ,

bθ
1,v − aθ

2g
θ
1 = bθ

2,u − aθ
1g

θ
2 ,

aθ
1e

θ
2 + bθ

1 f
θ
2 = aθ

2e
θ
1 + bθ

2 f
θ
1 ,

for any θ : U → R, and

⎧

⎪⎨

⎪⎩

ar1,v − br1g
r
2 = ar2,u − br2g

r
1,

br1,v − ar2g
r
1 = br2,u − ar1g

r
2,

ar1e
r
2 + br1 f

r
2 = ar2e

r
1 + br2 f

r
1 .

Proposition 2 Let (x, n, s) : U → R
3 ×Δ be a framed surface with basic invariants

(G ,F1,F2). Then the following are equivalent for any smooth function θ : U → R.
(1) F2,u − F1,v = F1F2 − F2F1.

(2) F θ
2,u − F θ

1,v = F θ
1F

θ
2 − F θ

2F
θ
1 .

(3) F r
2,u − F r

1,v = F r
1F

r
2 − F r

2F
r
1 .

Proof We prove that (1) is equivalent to (2). We define matrices R(θ) and � by

R(θ) =
⎛

⎝

1 0 0
0 cos θ − sin θ

0 sin θ cos θ

⎞

⎠ , � =
⎛

⎝

0 0 0
0 0 −θ

0 θ 0

⎞

⎠ .
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Framed Surfaces in the Euclidean Space 43

Then we have F θ
1 = �u + R(θ)F1R(−θ) and F θ

2 = �v + R(θ)F2R(−θ) by
Proposition 1 (1). By a direct calculation, we have

F θ
2,u − F θ

1,v = �vu + R(θ)uF2R(−θ) + R(θ)F2,u R(−θ) + R(θ)F2R(−θ)u

−�uv − R(θ)vF1R(−θ) − R(θ)F1,vR(−θ) − R(θ)F1R(−θ)v.

On the other hand,

F θ
1F

θ
2 − F θ

2F
θ
1 = �u R(θ)F2R(−θ) + R(θ)F1R(−θ)�v − �vR(θ)F1R(−θ)

− R(θ)F2R(−θ)�u + R(θ)(F1F2 − F2F1)R(−θ).

By using the relations �u R(θ) = R(θ)u , R(−θ)�u = R(−θ)u , �vR(θ) = R(θ)v
and R(−θ)�v = R(−θ)v , we have R(θ)(F2,u − F1,v)R(−θ) = R(θ)(F1F2 −
F2F1)R(−θ). Since R(θ) and R(−θ) are invertible matrices, we conclude that (1)
is equivalent to (2).

Next, we prove that (1) is equivalent to (3). We define a matrix R by

R =
⎛

⎝

−1 0 0
0 0 1
0 1 0

⎞

⎠ .

Then we have F r
1 = RF1R and F r

2 = RF2R by Proposition 1 (2). Thus, we have

F r
2,u − F r

1,v = RF2,u R − RF1,vR = R(F2,u − F1,v)R.

On the other hand,

F r
1F

r
2 − F r

2F
r
1 = RF1RRF2R − RF2RRF1R = R(F1F2 − F2F1)R.

Note that R2 is equal to the unit matrix. Since R is an invertible matrix, we conclude
that (1) is equivalent to (3). ��

Next we consider a parameter change of the domain U and a diffeomorphism of
the target space R3.

Proposition 3 Let (x, n, s) : U → R
3 ×Δ be a framed surface with basic invariants

(G ,F1,F2). Let φ : V → U, (p, q) �→ φ(p, q) = (u(p, q), v(p, q)) be a param-
eter change, that is, a diffeomorphism of the domain. Then (̃x, ñ, s̃) = (x, n, s) ◦ φ :
V → R

3 × Δ is a framed surface. Moreover, the basic invariants (G̃ , F̃1, F̃2) of
(̃x, ñ, s̃) is given by

(

ã1 b̃1
ã2 b̃2

)

(p, q) =
(

u p vp

uq vq

)

(p, q)

(

a1 b1
a2 b2

)

(φ(p, q))

(

ẽ1 f̃1 g̃1
ẽ2 f̃2 g̃2

)

(p, q) =
(

u p vp

uq vq

)

(p, q)

(

e1 f1 g1
e2 f2 g2

)

(φ(p, q)).
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44 T. Fukunaga, M. Takahashi

Proof By the chain rule, we have

x̃ p(p, q) = xu(φ(p, q))u p(p, q) + xv(φ(p, q))vp(p, q)

= {a1(φ(p, q))s(φ(p, q)) + b1(φ(p, q))t (φ(p, q))}u p(p, q)

+{a2(φ(p, q))s(φ(p, q)) + b2(φ(p, q))t (φ(p, q)))}vp(p, q)

= {a1(φ(p, q))u p(p, q) + a2(φ(p, q))vp(p, q)}̃s(p, q)

+{b1(φ(p, q))u p(p, q) + b2(φ(p, q))vp(p, q)}̃t(p, q),

x̃q(p, q) = xu(φ(p, q))uq(p, q) + xv(φ(p, q))vq(p, q)

= {a1(φ(p, q))s(φ(p, q)) + b1(φ(p, q))t (φ(p, q))}uq(p, q)

+{a2(φ(p, q))s(φ(p, q)) + b2(φ(p, q))t (φ(p, q)))}vq(p, q)

= {a1(φ(p, q))uq(p, q) + a2(φ(p, q))vq(p, q)}̃s(p, q)

+{b1(φ(p, q))uq(p, q) + b2(φ(p, q))vq(p, q)}̃t(p, q).

It follows that we have the first equation. The second equation in the proposition is
proved similarly as the above by using the chain rule. ��

Proposition 4 Let (x, n, s) : U → R
3 × Δ be a framed surface. Let Φ : R3 → R

3

be a diffeomorphism. Then there exists a smooth mapping (nΦ, sΦ) : U → Δ such
that (Φ ◦ x, nΦ, sΦ) : U → R

3 × Δ is a framed surface.

Proof We denote the Jacobian matrix of Φ at x by DΦ(x). Since Φ is a diffeomor-
phism, DΦ(x) ∈ GL(3,R). We define a mapping (nΦ, sΦ) : U → Δ by

(nΦ, sΦ)(u, v) =
(

n(u, v) T (DΦ)−1(x(u, v))

|n(u, v) T (DΦ)−1(x(u, v))| ,
s(u, v)DΦ(x(u, v))

|s(u, v)DΦ(x(u, v))|
)

,

where T A is the transpose of the matrix A. Then we show that (Φ ◦ x, nΦ, sΦ) : U →
R
3×Δ is a framed surface. In fact, since (d/du)(Φ ◦x)(u, v) = xu(u, v)DΦ ◦x(u, v)

and (d/dv)(Φ ◦ x)(u, v) = xv(u, v)DΦ ◦ x(u, v), we have

(
d

du
(Φ ◦ x)

)

· nΦ = 1

|nT (DΦ)−1 ◦ x | xu(DΦ ◦ x)((DΦ)−1 ◦ x)T n

= 1

|nT (DΦ)−1 ◦ x | xu
T n = 0,

(
d

dv
(Φ ◦ x)

)

· nΦ = 1

|nT (DΦ)−1 ◦ x | xv(DΦ ◦ x)((DΦ)−1 ◦ x)T n

= 1

|nT (DΦ)−1 ◦ x | xv
T n = 0.
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Framed Surfaces in the Euclidean Space 45

Note that all vectors in this proof are row vectors. Moreover, we have

nΦ · sΦ = 1

|n T (DΦ)−1 ◦ x ||sDΦ ◦ x |n(T (DΦ)−1 ◦ x)(T DΦ ◦ x)T s

= 1

|n T (DΦ)−1 ◦ x ||sDΦ ◦ x | n
T s = 0.

Therefore, (Φ ◦ x, nΦ, sΦ) : U → R
3 × Δ is a framed surface. ��

4 Curvatures of Framed Surfaces

Let (x, n, s) : U → R
3 × Δ be a framed surface with basic invariants (G ,F1,F2).

Definition 3 We define a smooth mapping CF = (JF , KF , HF ) : U → R
3 by

JF = det

(

a1 b1
a2 b2

)

, KF = det

(

e1 f1
e2 f2

)

,

HF = −1

2

{

det

(

a1 f1
a2 f2

)

− det

(

b1 e1
b2 e2

)}

.

We call CF = (JF , KF , HF ) a curvature of the framed surface.

Remark 1 By the integrability condition (4), we have KF = g1,v − g2,u .

For concrete examples of curvatures of framed surfaces, see Sect. 6.
Suppose that x : U → R

3 is a regular surface. Then there exists (n, s) : U → Δ

such that (x, n, s) is a framed surface, see Sect. 2. Let E = xu · xu, F = xu · xv,G =
xv · xv be the coefficients of the first fundamental form and L = −xu · nu, M =
−xu · nv, N = −xv · nv be the coefficients of the second fundamental form. The
relationship between the first, second fundamental invariants and the basic invariant
is as follows:

E = a21 + b21, F = a1b1 + a2b2, G = a22 + b22,

L = −a1e1 − b1 f1, M = −a1e2 − b1 f2, N = −a2e2 − b2 f2.

By the integrability condition (3), we have M = −a2e1 − b2 f1. We denote the Gauss
curvature and the mean curvature of the regular surface x by K and H . Then

K = LN − M2

EG − F2 , H = EN − 2FM + GL

2(EG − F)2
.

By a direct calculation, we give a relationship between the Gauss curvature, the mean
curvature and the curvature of the framed surface (x, n, s) as follows.

Proposition 5 Under the above notation, we have K = KF/JF and H = HF/JF .
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Let (x, n, s) : U → R
3×Δ be a framed surface with basic invariants (G ,F1,F2).

Note that the condition H2
F (u, v) − JF (u, v)KF (u, v) ≥ 0 holds for all (u, v) ∈ U .

We give a relation between the curvature of the framed surface and the framed sur-
faces which given by a rotation frame and a reflection frame.We denote the curvatures
Cθ
F = (J θ

F , K θ
F , H θ

F ) of the framed surface (x, n, sθ ) and Cr
F = (JrF , Kr

F , Hr
F ) of the

framed surface (x, nr , sr ), respectively.

Proposition 6 Under the above notation, we have the following.

(1) (J θ
F , K θ

F , H θ
F ) = (JF , KF , HF ) for any smooth function θ : U → R.

(2) (JrF , Kr
F , Hr

F ) = (−JF ,−KF , HF ).

Proof (1) By Proposition 1 (1), we have

J θ
F = det

(

aθ
1 bθ

1

aθ
2 bθ

2

)

= det

{(

a1 b1

a2 b2

) (

cos θ sin θ

− sin θ cos θ

)}

= JF ,

K θ
F = det

(

eθ
1 f θ

1

eθ
2 f θ

2

)

= det

{(

e1 f1

e2 f2

) (

cos θ sin θ

− sin θ cos θ

)}

= KF .

We show H θ
F = HF . By Proposition 1 (1), we also have

(

aθ
1 f θ

1

aθ
2 f θ

2

)

=
(

a1 cos θ − b1 sin θ e1 sin θ + f1 cos θ

a2 cos θ − b2 sin θ e2 sin θ + f2 cos θ

)

,

(

bθ
1 eθ

1

bθ
2 eθ

2

)

=
(

a1 sin θ + b1 cos θ e1 cos θ − f1 sin θ

a2 sin θ + b2 cos θ e2 cos θ − f2 sin θ

)

.

It follows that

det

(

aθ
1 f θ

1

aθ
2 f θ

2

)

= a1e2 cos θ sin θ − b1 f2 sin θ cos θ + a1 f2 cos
2 θ − b1e2 sin

2 θ

−e1a2 cos θ sin θ + f1b2 cos θ sin θ + e1b2 sin
2 θ − f1a2 cos

2 θ,

det

(

bθ
1 eθ

1

bθ
2 eθ

2

)

= a1e2 cos θ sin θ − b1 f2 cos θ sin θ − a1 f2 sin
2 θ + b1e2 cos

2 θ

− e1a2 cos θ sin θ + f1b2 sin θ cos θ − e1b2 cos
2 θ + f1a2 sin

2 θ.

Thus, we have

H θ
F = −1

2

{

det

(

aθ
1 f θ

1
aθ
2 f θ

2

)

− det

(

bθ
1 eθ

1
bθ
2 eθ

2

)}

= −1

2
(a1 f2 cos

2 θ − b1e2 sin
2 θ + e1b2 sin

2 θ − f1a2 cos
2 θ

+ a1 f2 sin
2 θ − b1e2 cos

2 θ + e1b2 cos
2 θ − f1a2 sin

2 θ)

= −1

2
(a1 f2 − f1a2 − b1e2 + e1b2) = HF .
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(2) By Proposition 1 (2), we have

JrF = det

(

ar1 br1
ar2 br2

)

= det

{(

a1 b1
a2 b2

) (

0 1
1 0

)}

= −JF ,

Kr
F = det

(

er1 f r1
er2 f r2

)

= det

{(

e1 f1
e2 f2

) (

0 1
1 0

)}

= −KF .

Moreover,

Hr
F = −1

2

{

det

(

ar1 f r1
ar2 f r2

)

− det

(

br1 er1
br2 er2

)}

= −1

2

{

det

(

b1 −e1
b2 −e2

)

− det

(

a1 − f1
a2 − f2

)}

= HF .

��
Let φ : V → U, (p, q) �→ φ(p, q) = (u(p, q), v(p, q)) be a parameter change.

By Proposition 3, (̃x, ñ, s̃) = (x, n, s) ◦ φ : V → R
3 × Δ is a framed surface with

basic invariants (G̃ , F̃1, F̃2). We denote the curvature of the framed surface (̃x, ñ, s̃)
by ( J̃F , K̃F , H̃F ).

Proposition 7 Under the above notation, the curvature ( J̃F , K̃F , H̃F ) : V → R
3 is

given by

( J̃F (p, q), K̃F (p, q), H̃F (p, q))

= (Jφ(p, q)JF (φ(p, q)), Jφ(p, q)KF (φ(p, q)), Jφ(p, q)HF (φ(p, q))),

where Jφ is the Jacobian of the parameter change φ.

Proof We have J̃F (p, q) = Jφ(p, q)JF (φ(p, q)) and K̃F (p, q) = Jφ(p, q)KF

(φ(p, q)) by Proposition 3. Since

(

ã1 f̃1
ã2 f̃2

)

(p, q) =
(

u p vp

uq vq

)

(p, q)

(

a1 f1
a2 f2

)

(φ(p, q)),

(

b̃1 ẽ1
b̃2 ẽ2

)

(p, q) =
(

u p vp

uq vq

)

(p, q)

(

b1 e1
b2 e2

)

(φ(p, q)),

we have H̃F (p, q) = Jφ(p, q)HF (φ(p, q)). ��
The curvature is useful to recognize that the framed base surface is a front or not.

Proposition 8 Let (x, n, s) : U → R
3 × Δ be a framed surface and p ∈ U. Then

(x, n) : U → R
3 × S2 is a Legendre immersion around p if and only if CF (p) �= 0.

Proof We show the necessarily part of the proposition, that is, if CF (p) = 0, then
(x, n) : U → R

3 × S2 is not a Legendre immersion at p. Since JF (p) = 0, there
exist k1, k2 ∈ R such that k21 + k22 �= 0 and k1(a1, a2) + k2(b1, b2) = 0 at p.
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Moreover, since KF (p) = 0, there exist h1, h2 ∈ R such that h21 + h22 �= 0 and
h1(e1, e2) + h2( f1, f2) = 0 at p. We divide into the following four cases: k1h1 �= 0,
k2h1 �= 0, k1h2 �= 0 and k2h2 �= 0.

Suppose that k1h1 �= 0. In this case, we have (a1, a2) = −(k2/k1)(b1, b2) and
(e1, e2) = −(h2/h1)( f1, f2) at p. Thus,

(

xu nu
xv nv

)

(p) =
(

b1w1 f1w2
b2w1 f2w2

)

(p),

where w1 = −(k2/k1)s + t and w2 = −(h2/h1)s + t . Since w1 and w2 are non-zero

vectors, rank

(

xu nu
xv nv

)

(p) < 2 if and only if det

(

b1 f1
b2 f2

)

(p) = 0.

Now suppose that det

(

b1 f1
b2 f2

)

(p) �= 0. By the assumption HF (p) = 0, we have

0 = det

(

a1 f1
a2 f2

)

(p) − det

(

b1 e1
b2 e2

)

(p) =
(

−k2
k1

+ h2
h1

)

det

(

b1 f1
b2 f2

)

(p).

It follows that

− k2
k1

+ h2
h1

= 0. (5)

On the other hand, by the integrability condition (4),

0 = det

(

a1 e1
a2 e2

)

(p) + det

(

b1 f1
b2 f2

)

(p) =
(
h2k2
h1k1

+ 1

)

det

(

b1 f1
b2 f2

)

(p).

Hence, we have

h2k2
h1k1

+ 1 = 0. (6)

By the Eqs. (5) and (6), we have h22/h
2
1+1 = 0, and this is a contradiction. Therefore,

we conclude det

(

b1 f1
b2 f2

)

(p) = 0. It follows that (x, n) is not an immersion at p.

The other cases are also proved similarly.

Conversely, if rank

(

xu nu
xv nv

)

(p) < 2, then there exist k1, k2 ∈ R such that

k21 + k22 �= 0 and k1(a1, b1, e1, f1) + k2(a2, b2, e2, f2) = 0 at p. By substituting this
relations into CF , we have CF (p) = 0. ��
Remark 2 By Propositions 5 and 8, if (x, n) is a Legendre immersion around p ∈ U
and p is a singular point of x , then the Gauss curvature K or the mean curvature H
must be divergence at the point p.

123



Framed Surfaces in the Euclidean Space 49

By Proposition 8, if CF (p) = 0, then x is not a front but a frontal at the point,
that is, (x, n) is not an immersion. How about the condition that the framed surface
is an immersion or not? Let (x, n, s) : U → R

3 × Δ be a framed surface with basic
invariants (G ,F1,F2). We define a smooth mapping IF : U → R

8 by

IF =
(

CF , det

(

a1 g1
a2 g2

)

, det

(

b1 g1
b2 g2

)

, det

(

e1 g1
e2 g2

)

, det

(

f1 g1
f2 g2

)

, det

(

a1 e1
a2 e2

))

.

We call the mapping IF : U → R
8 a concomitant mapping of the framed surface

(x, n, s). We say that (x, n, s) : U → R
3 × Δ is a framed immersion if (x, n, s) is an

immersion.

Proposition 9 Let (x, n, s) : U → R
3 × Δ be a framed surface and p ∈ U. Then

(x, n, s) is a framed immersion around p if and only if IF (p) �= 0.

Proof We show the necessarily part of the proposition, that is, if IF (p) = 0, then
(x, n, s) is not a framed immersion at p. It is enough to show that

rank

(

xu nu su
xv nv sv

)

(p) < 2.

The above condition is equivalent to the following conditions,

rank

(

xu nu
xv nv

)

(p), rank

(

xu su
xv sv

)

(p), rank

(

nu su
nv sv

)

(p) < 2.

By the assumption CF (p) = 0 and Proposition 8, rank

(

xu nu
xv nv

)

(p) < 2.

We show rank

(

xu su
xv sv

)

(p) < 2. By the definition of the basic invariants, we

have

(

xu su
xv sv

)

=
(

a1s + b1t −e1n + g1t
a2s + b2t −e2n + g2t

)

.

Since JF (p) = 0 anddet

(

e1 g1
e2 g2

)

(p) = 0, there exist k1, k2 ∈ R such that k21+k22 �= 0

and k1(a1, a2) + k2(b1, b2) = 0 at p. Moreover, there exist h1, h2 ∈ R such that
h21 + h22 �= 0 and h1(e1, e2) + h2(g1, g2) = 0 at p. We divide into the following four
cases: k1h1 �= 0, k2h1 �= 0, k1h2 �= 0 and k2h2 �= 0.

Suppose that k1h1 �= 0. In this case, we have (a1, a2) = −(k2/k1)(b1, b2) and
(e1, e2) = −(h2/h1)(g1, g2) at p. Thus,

(

xu su
xv sv

)

(p) =
(

b1w1 g1w2
b2w1 g2w2

)

(p),
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where w1 = −(k2/k1)s + t and w2 = (h2/h1)n + t . Since w1 and w2 are non-zero

vectors, rank

(

xu su
xv sv

)

(p) < 2 if and only if det

(

b1 g1
b2 g2

)

(p) = 0. By the assump-

tion IF (p) = 0, we have det

(

b1 g1
b2 g2

)

(p) = 0. Therefore, rank

(

xu su
xv sv

)

(p) < 2.

The other cases are also proved similarly.

Next, we show rank

(

nu su
nv sv

)

(p) < 2. By the definition of the basic invariants,

we have
(

nu su
nv sv

)

(p) =
(

e1s + f1t −e1n + g1t
e2s + f2t −e2n + g2t

)

(p).

Since we assume KF (p) = 0 and det

(

e1 g1
e2 g2

)

(p) = 0, there exist k1, k2, h1, h2 ∈
R such that k21 + k22 �= 0, h21 + h22 �= 0, k1(e1, e2) + k2( f1, f2) = 0 and h1(e1, e2) +
h2(g1, g2) = 0 at p. We divide into the following four cases: k1h1 �= 0, k2h1 �= 0,
k1h2 �= 0 and k2h2 �= 0.

Suppose that k1h1 �= 0. In this case, we have (e1, e2) = −(k2/k1)( f1, f2) and
(e1, e2) = −(h2/h1)(g1, g2) at p. Thus,

(

nu su
nv sv

)

(p) =
(

f1w1 g1w2
f2w1 g2w2

)

(p),

where w1 = −(k2/k1)s + t and w2 = (h2/h1)n + t . Since w1 and w2 are non-zero

vectors, rank

(

nu su
nv sv

)

(p) < 2 if and only if det

(

f1 g1
f2 g2

)

(p) = 0. By the assump-

tion IF (p) = 0, we have det

(

f1 g1
f2 g2

)

(p) = 0. Therefore, rank

(

nu su
nv sv

)

(p) < 2.

The other cases are also proved similarly. Therefore, (x, n, s) is not an immersion at
p.

Conversely, if rank

(

xu nu su
xv nv sv

)

(p) < 2, then there exist k1, k2 ∈ R such that

k21+k22 �= 0 and k1(a1, b1, e1, f1, g1)+k2(a2, b2, e2, f2, g2) = 0 at p. By substituting
this relations into IF , we have IF (p) = 0. ��

As a summary, we have the following result.

Corollary 1 Let (x, n, s) : U → R
3 × Δ be a framed surface and p ∈ U.

(1) x is an immersion (a regular surface) around p if and only if JF (p) �= 0.
(2) (x, n) is a Legendre immersion around p if and only if CF (p) �= 0.
(3) (x, n, s) is a framed immersion around p if and only if IF (p) �= 0.

Let (x, n, s) : U → R
3 × Δ be a framed surface with IF . We denote IF =

(IF,1, . . . , IF,8) and CF = (JF , KF , HF ) = (IF,1, IF,2, IF,3). Let φ : V →
U, (p, q) �→ φ(p, q) = (u(p, q), v(p, q)) be a parameter change of the domain.
We denote the concomitant mapping of the framed surface (̃x, ñ, s̃) = (x, n, s) ◦ φ :
V → R

3 × Δ by ĨF . By Proposition 3, we have the following proposition.
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Proposition 10 Under the above notation, the concomitant mapping ĨF : V → R
8

is given by

( ĨF,1(p, q), . . . , ĨF,8(p, q)) = (Jφ(p, q)IF,1(φ(p, q)), . . . , Jφ(p, q)IF,8(φ(p, q))).

Remark 3 We denote the concomitant mapping of the framed surface which given
by a rotation frame (respectively, a reflection frame) by I θ

F (respectively I rF ). By
Proposition 1 (1) and (2), we have the following.

I θ
F,4 = det

(

aθ
1 gθ

1

aθ
2 gθ

2

)

= IF,4 cos θ − IF,5 sin θ − det

(

a1 θu
a2 θv

)

cos θ

+ det

(

b1 θu

b2 θv

)

sin θ,

I θ
F,5 = det

(

bθ
1 gθ

1

bθ
2 gθ

2

)

= IF,4 sin θ + IF,5 cos θ − det

(

a1 θu

a2 θv

)

sin θ

− det

(

b1 θu
b2 θv

)

cos θ,

I θ
F,6 = det

(

eθ
1 gθ

1

eθ
2 gθ

2

)

= IF,6 cos θ − IF,7 sin θ − det

(

e1 θu

e2 θv

)

cos θ

+ det

(

f1 θu
f2 θv

)

sin θ,

I θ
F,7 = det

(

f θ
1 gθ

1

f θ
2 gθ

2

)

= IF,6 sin θ + IF,7 cos θ − det

(

e1 θu
e2 θv

)

sin θ

− det

(

f1 θu

f2 θv

)

cos θ,

I θ
F,8 = det

(

aθ
1 eθ

1

aθ
2 eθ

2

)

= (cos2 θ − sin2 θ)IF,8

− cos θ sin θ

{

det

(

a1 f1
a2 f2

)

+ det

(

b1 e1
b2 e2

)}

,

and

I rF,4 = det

(

ar1 gr1
ar2 gr2

)

= det

(

b1 −g1
b2 −g2

)

= − det

(

b1 g1
b2 g2

)

,

I rF,5 = det

(

br1 gr1
br2 gr2

)

= det

(

a1 −g1
a2 −g2

)

= − det

(

a1 g1
a2 g2

)

,

I rF,6 = det

(

er1 gr1
er2 gr2

)

= det

(

f1 g1
f2 g2

)

,
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I rF,7 = det

(

f r1 gr1
f r2 gr2

)

= det

(

e1 g1
e2 g2

)

,

I rF,8 = det

(

ar1 er1
ar2 er2

)

= det

(

b1 − f1
b2 − f2

)

= − det

(

b1 f1
b2 f2

)

= det

(

a1 e1
a2 e2

)

,

that is, I rF = (−JF ,−KF , HF ,−IF,5,−IF,4, IF,7, IF,6, IF,8).

Proposition 11 Let (x, n, s) : U → R
3×Δ be a framed surface with basic invariants

(G ,F1,F2).
(1) Suppose that (g1, g2) �= (0, 0) at p ∈ U. If

det

(

a1 g1
a2 g2

)

= det

(

b1 g1
b2 g2

)

= det

(

e1 g1
e2 g2

)

= det

(

f1 g1
f2 g2

)

= 0

at p, then IF (p) = 0.
(2) Suppose that (g1, g2) = (0, 0) at p ∈ U. If CF (p) = 0, then IF (p) = 0.

Proof (1) By the assumptions, there exist ki ∈ R, i = 1, . . . , 4 such that

(a1, a2) = k1(g1, g2), (b1, b2) = k2(g1, g2),

(e1, e2) = k3(g1, g2), ( f1, f2) = k4(g1, g2)

at p ∈ U . It follows that IF (p) = 0.
(2) Since CF (p) = 0 and Proposition 8, (x, n) is not an immersion at p ∈ U . It

follows that det

(

a1 e1
a2 e2

)

= 0. Hence we have IF (p) = 0. ��

Next, we consider parallel surfaces of framed surfaces. For a framed surface
(x, n, s) : U → R

3 × Δ, we define a parallel surface xλ : U → R
3 of the framed

surface by xλ(u, v) = x(u, v) + λn(u, v), where λ ∈ R.

Proposition 12 Under the above notations, xλ is a framed base surface. Indeed,
(xλ, n, s) : U → R

3 × Δ is a framed surface.

Proof By definition,

xλ
u = xu + λnu = (a1 + λe1)s + (b1 + λ f1)t,

xλ
v = xv + λnv = (a2 + λe2)s + (b2 + λ f2)t.

Thus, xλ
u · n = xλ

v · n = 0. Since (x, n, s) is a framed surface, we have n · s = 0.
Therefore, (xλ, n, s) is a framed surface. ��

By a direct calculation, we have the following proposition.
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Proposition 13 Let (x, n, s) : U → R
3 × Δ be a framed surface with basic

invariants (G ,F1,F2) and the concomitant mapping IF . Then, the basic invari-
ant (G λ,F λ

1 ,F λ
2 ) and the concomitant mapping I λ

F of the parallel surface (xλ, n, s)
are given by

G λ = G + λ

(

e1 f1
e2 f2

)

, F λ
1 = F1, F λ

2 = F2,

Jλ
F = JF − 2HFλ + KFλ2, K λ

F = KF , Hλ
F = HF − KFλ,

I λ
F,4 = IF,4 + λIF,6, I λ

F,5 = IF,5 + λIF,7, I λ
F,6 = IF,6, I λ

F,7 = IF,7, I λ
F,8 = IF,8.

5 Framed Surfaces as One-Parameter Families of Legendre Curves
Along Framed Curves

We consider a framed curve in the Euclidean space (Honda and Takahashi 2016) and a
one-parameter family of Legendre curves (Fukunaga and Takahashi 2013; Takahashi
2017). We construct framed surfaces as one-parameter families of Legendre curves
along the framed curves. The idea is a cut off the surface by a plane of a special
direction along a space curve.

Let I, J ⊂ R be intervals with parameters u, v, respectively. For a, b ∈ R
3, we

denote the orthonormal plane of a through b by 〈a〉⊥b , that is,

〈a〉⊥b = {x ∈ R
3|a · (x − b) = 0}.

If b is the origin, then we denote 〈a〉⊥0 by 〈a〉⊥ briefly.
Let (γ, ν1, ν2) : I → R

3 × Δ be a framed curve with the curvature (�,m, n, α),
see Appendix A (cf. Honda and Takahashi 2016). We denote μ(u) = ν1(u) × ν2(u).
For each u ∈ I , we consider a Legendre curve (x(u, ·), νL (u, ·)) : J → 〈μ(u)〉⊥γ (u) ×
(S2 ∩ 〈μ(u)〉⊥), that is, xv(u, v) · νL(u, v) = 0 for all (u, v) ∈ I × J . We identify the
Euclidean planeR2 and the plane 〈μ(u)〉⊥γ (u) via (a1, a2) �→ γ (u)+a1ν1(u)+a2ν2(u),

and S1 and S2 ∩ 〈μ(u)〉⊥ via (b1, b2) �→ b1ν1(u) + b2ν2(u). We consider induced
inner product on 〈μ(u)〉⊥ by (a1ν1(u) + a2ν2(u)) · (b1ν1(u) + b2ν2(u)) = a1b1 +
a2b2. Under the identification, (x(u, ·), νL (u, ·)) is a Legendre curve in the sense
of Appendix B (cf. Fukunaga and Takahashi 2013). The curvature of the Legendre
curve (x(u, ·), νL (u, ·)) is denoted by (�L(u, ·), βL(u, ·)). By definition, there exist
functions x1, x2 : I × J → R such that x : I × J → R

3 is given by x(u, v) =
γ (u)+x1(u, v)ν1(u)+x2(u, v)ν2(u). We assume that x1 and x2 are smooth functions,
namely, x is a smooth surface. We denote νL(u, v) = νL

1 (u, v)ν1(u) + νL
2 (u, v)ν2(u)

and μL(u, v) = −νL
2 (u, v)ν1(u) + νL

1 (u, v)ν2(u). We also assume that νL
1 and νL

2
are smooth functions. It follows that the curvature of the Legendre curve (�L , βL) :
I × J → R

2 is a smooth mapping.

Theorem 3 Under the above notations, suppose that there exists a smooth function
θ : I × J → R such that xu(u, v) · n(u, v) = 0 for all (u, v) ∈ I × J , where
n(u, v) = cos θ(u, v)νL(u, v) + sin θ(u, v)μ(u). We define s : I × J → S2 by
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s(u, v) = −μL(u, v). Then (x, n, s) : I × J → R
3 × Δ is a framed surface with

basic invariants,

a1(u, v) = (x1u(u, v) − x2(u, v)�(u))νL
2 (u, v) − (x2u(u, v) + x1(u, v)�(u))νL

1 (u, v),

b1(u, v) = sin θ(u, v)
(

(x1u(u, v) − x2(u, v)�(u))νL
1 (u, v)

+ (x2u(u, v) + x1(u, v)�(u))νL
2 (u, v)

)

− cos θ(u, v)(α(u) + x1(u, v)m(u) + x2(u, v)n(u)),

a2(u, v) = −βL(u, v),

b2(u, v) = 0,

e1(u, v) = sin θ(u, v)(n(u)νL
1 (u, v) − m(u)νL

2 (u, v))

+ cos θ(u, v)(νL
1u(u, v)νL

2 (u, v) − νL
2u(u, v)νL

1 (u, v) − �(u)),

f1(u, v) = −θu(u, v) − m(u)νL
1 (u, v) − n(u)νL

2 (u, v),

g1(u, v) = sin θ(u, v)(νL
2u(u, v)νL

1 (u, v) − νL
1u(u, v)νL

2 (u, v) + �(u))

+ cos θ(u, v)(n(u)νL
1 (u, v) − m(u)νL

2 (u, v)),

e2(u, v) = − cos θ(u, v)�L(u, v),

f2(u, v) = −θv(u, v),

g2(u, v) = sin θ(u, v)�L(u, v).

Proof By definition, we have n(u, v)·s(u, v) = 0 for all (u, v) ∈ I × J . It follows that
(n, s) ∈ Δ. By the assumption, we have xu(u, v) · n(u, v) = 0 for all (u, v) ∈ I × J .
Since xv(u, v) · νL(u, v) = 0, we have

xv(u, v) · n(u, v) = (x1v(u, v)ν1(u) + x2vν2(u))

· (cos θ(u, v)νL(u, v) + sin θ(u, v)μ(u))

= cos θ(u, v)(x1v(u, v)νL
1 (u, v) + x2v(u, v)νL

2 (u, v)) = 0

for all (u, v) ∈ I × J . Hence (x, n, s) : I × J → R
3 × Δ is a framed surface. We

omit (u, v) and u below. By a direct calculation, we have

xu = (x1u − x2�)ν1 + (x2u + x1�)ν2 + (α + x1m + x2n)μ,

xv = x1vν1 + x2vν2,

n = cos θνL
1 ν1 + cos θνL

2 ν2 + sin θμ,

s = νL
2 ν1 − νL

1 ν2,

t = n × s = sin θνL
1 ν1 + sin θνL

2 ν2 − cos θμ,

nu = (−θu sin θνL
1 + cos θνL

1u − cos θνL
2 � − sin θm)ν1

+ (−θu sin θνL
2 + cos θνL

1 � + cos θνL
2u − sin θn)ν2

+ cos θ(νL
1 m + νL

2 n + θu)μ,

su = (νL
2u + νL

1 �)ν1 + (−νL
1u + νL

2 �)ν2 + (νL
2 m − νL

1 n)μ,
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Fig. 1 Cuspidal edge, swallowtail and cuspidal cross cap, respectively

nv = −θv sin θνL + cos θνL
v + θv cos θμ,

sv = �LνL .

It follows that we have the basic invariants as the above. ��
By a direct calculation, we have the following condition:

xu(u, v) · n(u, v) = (x1u(u, v) − x2(u, v)�(u)) cos θ(u, v)νL
1 (u, v)

+ (x2u(u, v) + x1(u, v)�(u)) cos θ(u, v)νL
2 (u, v)

+ (α(u) + x1(u, v)m(u) + x2(u, v)n(u)) sin θ(u, v)

= 0

for all (u, v) ∈ I × J.
By the above construction, we say that the framed surface (x, n, s) is a one-

parameter family of Legendre curves along a framed curve.
As an application of Theorem 3, we give a condition that the surface x is diffeo-

morphic to the cuspidal edge, the swallowtail and the cuspidal cross cap, see Figure 1
and Examples 1, 2 and 3 of Sect. 6 for definitions (Fig. 1).

We recall the criteria for singularities of frontals stated in Fujimori et al. (2008),
Kokubu et al. (2005) (see also, Izumiya and Saji 2010). Let x : U → R

3 be the
frontal of a Legendre surface (x, n). We define a function λ : U → R by λ(u, v) =
det(xu, xv, n)(u, v)where (u, v) is a coordinate system onU .We call λ a discriminant
function (or, a signed area density function). When a singular point p of x is non-
degenerate, that is, dλ(p) �= 0, there exists a smooth parametrization δ(t) : (−ε, ε) →
U , δ(0) = p of the singular set S(x). We call the curve δ(t) the singular curve of x .
Moreover, there exists a smooth vector field η(t) along δ satisfying that η(t) generates
ker dxδ(t). Now we define a function φx (t) on (−ε, ε) by φx (t) = det((x ◦ δ)′, n ◦
δ, dn(η))(t). By using these notations, we have the following theorem.

Theorem 4 (Fujimori et al. 2008; Kokubu et al. 2005) Let (x, n) : U → R
3 × S2

be a Legendre surface and p ∈ U be a non-degenerate singular point of x. Then the
following assertions hold.

(1) If ηλ(p) �= 0, then x is a front near p if and only if φx (0) �= 0 holds.
(2) The map germ x at p is A -equivalent to the cuspidal edge if and only if x is a

front near p and ηλ(p) �= 0 hold.
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(3) The map germ x at p isA -equivalent to the swallowtail if and only if x is a front
near p and ηλ(p) = 0 and ηηλ(p) �= 0 hold.

(4) The map germ x at p is A -equivalent to the cuspidal cross cap if and only if
ηλ(p) �= 0, φx (0) = 0 and φ′

x (0) �= 0 hold.

Here, ηλ : U → R means the directional derivative of λ by the vector field η̃,
where η̃ is an extended vector field of η to U.

In this paper, if there is no confusion, we denote η̃ by η. By using the above theorem,
we give criteria of singular points of the framed base surface which is given by a one-
parameter family of Legendre curves along a framed curve.

Theorem 5 Let (x, n, s) : I × J → R
3 × Δ be a one-parameter family of Legendre

curves along a framed curve. Suppose that x(u, 0) = γ (u), the set of singular points
of γ is dense in I and (0, 0) is a non-degenerate singular point of x. Then we have
the following two cases.

(A) Suppose that βL(0, 0) = 0 and α(0) �= 0.
(1) x at (0, 0) isA -equivalent to the cuspidal edge if and only if βL

v (0, 0) �= 0 and
�L(0, 0) �= 0.

(2) x at (0, 0) is A -equivalent to the swallowtail if and only if βL
v (0, 0) =

0, βL
vv(0, 0) �= 0, βL

u (0, 0) �= 0 and �L(0, 0) �= 0.
(3) x at (0, 0) is A -equivalent to the cuspidal cross cap if and only if βL

v (0, 0) �=
0, �L(0, 0) = 0 and (�L ◦ δ)′(0) �= 0.

(B) Suppose that βL(0, 0) �= 0 and α(0) = 0.
(1) x at (0, 0) is A -equivalent to the cuspidal edge if and only if α′(0) �= 0 and

νL
1 (0, 0)m(0) + νL

2 (0, 0)n(0) �= 0.
(2) x at (0, 0) isA -equivalent to the swallowtail if and only if α′(0) = 0, α′′(0) �=

0, νL
2 (0, 0)m(0) − νL

1 (0, 0)n(0) �= 0 and νL
1 (0, 0)m(0) + νL

2 (0, 0)n(0) �= 0.
(3) x at (0, 0) is A -equivalent to the cuspidal cross cap if and only if α′(0) �=

0, νL
1 (0, 0)m(0)+νL

2 (0, 0)n(0) = 0 and ((βL(νL
1 m+νL

2 n+θu)+a1θv)◦δ)′(0) �= 0.
Here δ is a singular curve of x.

Proof Let x(u, v) = γ (u)+x1(u, v)ν1(u)+x2(u, v)ν2(u). By the assumption γ (u) =
x(u, 0), we have x1(u, 0) = x2(u, 0) = 0 for all u ∈ I . Moreover, since the set of
singular points of γ is dense in I and xu(u, v) · n(u, v) = 0, we have sin θ(u, 0) = 0
and hence cos θ(u, 0) = ±1. By b2(u, v) = 0 in Theorem 3, we have λ(u, v) =
−b1(u, v)a2(u, v) = βL(u, v)b1(u, v). Since (0, 0) is a non-degenerate singular point
of x , we divide two cases: (A) βL(0, 0) = 0 and b1(0, 0) �= 0, (B) βL(0, 0) �= 0 and
b1(0, 0) = 0. Moreover, we have λu(0, 0) �= 0 or λv(0, 0) �= 0. By the integrability
condition of a1e2 + b1 f2 = a2e1 + b2 f1, we have αθv = −βL(νL

1uν
L
2 − νL

2uν
L
1 − �)

at (0, 0). The other integrability conditions automatically hold at (0, 0).
First we consider the case (A). By Theorem 3, b1(0, 0) �= 0 if and only if α(0) �= 0.

Moreover, b1(u, 0) = ±α(u) �= 0 around 0 ∈ I . Therefore, γ is a regular curve around
0 ∈ I . In this case, (u, v) is a singular point of x if and only if βL(u, v) = 0. Since
dx = xudu + xvdv = (a1s + b1t)du + a2sdv and a2(u, v) = −βL(u, v), the null
vector field η is given by ∂/∂v. Therefore, the condition ηλ(0, 0) �= 0 is equivalent
to βL

v (0, 0) �= 0, and the conditions ηλ(0, 0) = 0 and ηηλ(0, 0) �= 0 are equivalent
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to βL
v (0, 0) = 0 and βL

vv(0, 0) �= 0. Since (0, 0) is a non-degenerate singular point
of x , we have βL

u (0, 0) �= 0 or βL
v (0, 0) �= 0. By the integrability condition, we

have θv(0, 0) = 0. By a direct calculation, we have KF = −�L(νL
1 m + νL

2 n) and
HF = α�L at (0, 0). It follows that x is a front around (0, 0) if and only if �L(0, 0) �= 0
by Proposition 8. Therefore, by Theorem 4, x at (0, 0) isA -equivalent to the cuspidal
edge (respectively, the swallowtail) if and only if βL

v (0, 0) �= 0 and �L(0, 0) �= 0
(respectively, βL

v (0, 0) = 0, βL
vv(0, 0) �= 0, βL

u (0, 0) �= 0 and �L(0, 0) �= 0).
We now consider the condition for the cuspidal cross cap. Since ηλ(0, 0) =

βL
v (0, 0) �= 0, the singular curve δ is given by the form δ(t) = (t, v(t)), where v

is a smooth function with v(0) = 0. By a direct calculation,

(x ◦ δ)′ = (α + x1m + x2n)μ + (x1u − βLνL
2 v′ − x2�)ν1 + (x2u + βLνL

1 v′ + x1�)ν2

n ◦ δ = cos θ(νL
1 ν1 + νL

2 ν2) + sin θμ

dn(η) = (−θv sin θνL
1 − cos θ�LνL

2 )ν1 + (−θv sin θνL
2 + cos θ�LνL

1 )ν2 + θv cos θμ.

By straightforward calculations, we have

φx = det((x ◦ δ)′, n ◦ δ, dn(η))

= (α + x1m + x2n)�L + (x1u − βLνL
2 v′ − x2�)(θvν

L
2 − sin θ cos θ�LνL

1 )

+ (x2u + βLνL
1 v′ + x1�)(−θvν

L
1 − sin θ cos θ�LνL

2 ).

It follows thatφx (0) = α(0)�L(0, 0) andφ′
x (0) = α(0)(�L ◦δ)′(0) under the condition

φx (0) = 0. Therefore, by Theorem 5, x at (0, 0) isA -equivalent to the cuspidal cross
cap if and only if βL

v (0, 0) �= 0, �L(0, 0) = 0 and (�L ◦ δ)′(0) �= 0.
Second we consider the case (B). Since b1(0, 0) = ∓α(0) = 0, 0 is a singular

point of γ . In this case, (u, v) is a singular point of x if and only if b1(u, v) = 0.
Since dx = xudu + xvdv = (a1s + b1t)du + a2sdv = a1sdu − βLsdv on the
singular set of x , the null vector field η is given by βL(u, v)∂/∂u + a1(u, v)∂/∂v.
Note that we have a1(u, 0) = 0 for all u ∈ I . Therefore, the condition ηλ(0, 0) �= 0
is equivalent to α′(0) �= 0, and the conditions ηλ(0, 0) = 0 and ηηλ(0, 0) �= 0 are
equivalent to α′(0) = 0 and α′′(0) �= 0. Since (0, 0) is a non-degenerate singular point
of x , we have b1u(0, 0) �= 0 or b1v(0, 0) �= 0, that is, α′(0) �= 0 or νL

2 (0, 0)m(0) −
νL
1 (0, 0)n(0) �= 0. By a direct calculation and the integrability condition, we have
KF = −�L(νL

1 m + νL
2 n) and HF = (1/2)βL(νL

1 m + νL
2 n) at (0, 0). It follows that x

is a front around (0, 0) if and only if νL
1 (0, 0)m(0)+νL

2 (0, 0)n(0) �= 0 by Proposition
8. Therefore, by Theorem 4, x at (0, 0) is A -equivalent to the cuspidal edge (respec-
tively, the swallowtail) if and only if α′(0) �= 0 and νL

1 (0, 0)m(0)+ νL
2 (0, 0)n(0) �= 0

(respectively, α′(0) = 0, α′′(0) �= 0, νL
2 (0, 0)m(0) − νL

1 (0, 0)n(0) �= 0 and
νL
1 (0, 0)m(0) + νL

2 (0, 0)n(0) �= 0).
We now consider the condition for the cuspidal cross cap. Since ηλ(0, 0) �= 0 is

equivalent to α′(0) �= 0, the singular curve δ is given by the form δ(t) = (u(t), t),
where u is a smooth function with u(0) = 0. By a direct calculation and b1(u(t), t) =
0,
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(x ◦ δ)′ = (α + x1m + x2n)u′μ + (x1uu
′ − βLνL

2 − x2�u
′)ν1 + (x2uu

′

+βLνL
1 + x1�u

′)ν2
= tan θ((x1u − x2�)ν

L
1 + (x2u + x1�)ν

L
2 )u′μ

+ (x1uu
′ − βLνL

2 − x2�u
′)ν1 + (x2uu

′ + βLνL
1 + x1�u

′)ν2
n ◦ δ = cos θ(νL

1 ν1 + νL
2 ν2) + sin θμ

dn(η) = (sin θ(−θuβ
LνL

1 − βLm − θva1ν
L
1 )

+ cos θ(βLνL
1u − βLν2� − a1�

LνL
2 ))ν1

+ (sin θ(−θuβ
LνL

2 − βLn − θva1ν
L
2 ) + cos θ(βLνL

2u

+βLν1� + a1�
LνL

1 ))ν2

+ cos θ(βL(νL
1 m + ν2n + θu) + a1θv)μ.

By straightforward calculations, we have

φx = det((x ◦ δ)′, n ◦ δ, dn(η))

= sin θ
(

(x1u − x2�)ν
L
1 + (x2u + x1�)ν

L
2

)

u′

×
(

sin θβL(−νL
1 n + νL

2 m) + cos θ(βLνL
1 νL

2u − βLνL
2 νL

1u + βL� + a1�
L)

)

+ (x1uu
′ − βLνL

2 − x2�u
′)
(

cos2 θνL
2 (βL(νL

1 m + νL
2 n + θu) + a1θv)

− sin θ(sin θ(−θuβ
LνL

2 − βLn − θva1ν
L
2 )

+ cos θ(βLνL
2u + βLνL

1 � + a1�
LνL

1 ))
)

+ (x2uu
′ + βLνL

1 + x1�u
′)
(

− cos2 θνL
1 (βL(νL

1 m + νL
2 n + θu) + a1θv)

+ sin θ(sin θ(−θuβ
LνL

1 − βLm − θva1ν
L
1 )

+ cos θ(βLνL
1u − βLνL

2 � − a1�
LνL

2 ))
)

.

It follows that φx (0) = −(βL(0, 0))2(νL
1 (0, 0)m(0) + νL

2 (0, 0)n(0)), and φ′
x (0) =

(βL(νL
1 m + νL

2 n + θu) + a1θv) ◦ δ)′(0) under the condition φx (0) = 0. Therefore, by
Theorem 5, x at (0, 0) isA -equivalent to the cuspidal cross cap if and only if α′(0) �=
0, νL

1 (0, 0)m(0)+ νL
2 (0, 0)n(0) = 0 and (βL(νL

1 m + νL
2 n+ θu)+a1θv) ◦ δ)′(0) �= 0.

This complete the proof of the Theorem. ��
Remark 4 Under the same assumptions in Theorem 5, if γ (u) is the image of the
singular curve of x , then it holds that the singular set is S(x) = {(u, 0)|u ∈ I } and one
has the case (A). Since the null vector field η and the singular direction δ′ are linearly
independent at (0, 0), the singular point (0, 0) can not be the swallowtail.

Remark 5 The conditions νL
2 (0, 0)m(0) − νL

1 (0, 0)n(0) �= 0, νL
1 (0, 0)m(0) +

νL
2 (0, 0)n(0) �= 0 in Theorem 5 (B) (2) is equivalent to the condition (m(0), n(0)) �=

(0, 0).
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Corollary 2 Let (x, n, s) : I × J → R
3 × Δ be a one-parameter family of Legendre

curves along a framed curve. Suppose that γ : I → R
3 is a regular curve, x(u, ·) :

J → 〈μ(u)〉⊥γ (u) is diffeomorphic to the 3/2-cusp at 0 ∈ J and x(u, 0) = γ (u)

for all u ∈ I . Then x : I × J → R
3 is a front around (u, 0). More precisely,

(x, n) : I × J → R
3 × S2 is a Legendre immersion around (u, 0). Moreover, x is

diffeomorphic to the cuspidal edge at (u, 0).

Proof Since γ is a regular curve, we have α(u) �= 0 for all u ∈ I . Moreover,
x(u, ·) is diffeomorphic to the 3/2-cusp at 0 ∈ J if and only if xv(u, 0) = 0
and det(xvv(u, 0), xvvv(u, 0)) �= 0, for all u ∈ I (cf. Bruce and Giblin 1992;
Fukunaga and Takahashi 2014; Ishikawa 2007). By the definition of the curvature
(�L(u, v), βL(u, v)) of the Legendre curve (x(u, ·), νL (u, ·)), we have

xv(u, v) = βL(u, v)μL(u, v),

xvv(u, v) = βL
v (u, v)μL(u, v) − βL(u, v)�L(u, v)νL(u, v)

xvvv(u, v) = (βL
vv(u, v) − βL(u, v)(�L(u, v))2)μL(u, v)

−2βL
v (u, v)�L(u, v)νL(u, v).

It follows that βL(u, 0) = 0, βL
v (u, 0) �= 0 and �L(u, 0) �= 0 for all u ∈ I .

Since x(u, 0) = γ (u), we have x1(u, 0) = x2(u, 0) = 0 for all u ∈ I . Therefore
x1u(u, 0) = x2u(u, 0) = 0. Moreover, by the condition xu(u, v) · n(u, v) = 0 for
all (u, v) ∈ I × J , we have α(u) sin θ(u, 0) = 0 and hence sin θ(u, 0) = 0. Then
a1(u, 0) = 0, b1(u, 0) = − cos θ(u, 0)α(u), a2(u, 0) = −βL(u, 0), b2(u, 0) = 0,
e2(u, 0) = − cos θ(u, 0)�L(u, 0), f2(u, 0) = −θv(u, 0), g2(u, 0) = 0. It follows
that HF (u, 0) = (1/2) cos2 θ(u, 0)α(u)�L(u, 0) �= 0 for all u ∈ I . By Proposition
8, (x, n) is a Legendre immersion around (u, 0). Hence, x is a front around (u, 0).
Moreover, by Theorem 5 (A) (1), x is diffeomorphic to the cuspidal edge at (u, 0).
��

We also have the following result.

Theorem 6 Suppose that x : U → R
3 is diffeomorphic to the cuspidal edge at 0 ∈ U.

Then there exist a parameter change φ : I × J → U around 0 and a smooth mapping
(n, s) : I×J → Δ such that the framed surface (x◦φ, n, s) : I×J → R

3×Δ is given
by a one-parameter family of 3/2-cusp at 0 ∈ J along a regular curve γ : I → R

3

around 0 ∈ I .

Proof The normal form of cuspidal edge by using coordinate transformations on
the source and isometries on the target is given by Martins and Saji (2016). Since
the property of one-parameter family of Legendre curves along a framed curve are
invariant as isometries on the target, there exists a parameter change φ : I × J → U
around 0 such that x̃ = x ◦ φ is given by the following form around (0, 0) ∈ I × J :

x̃(u, v) =
(

u, a(u) + v2

2
, b(u) + v2b2(u) + v3b3(u, v)

)

,
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where a(0) = ȧ(0) = b(0) = ḃ(0) = b2(0) = 0 and b3(0, 0) �= 0, by the proof of
Theorem 3.1 in Martins and Saji (2016). Here we relabelled the coefficient functions.

We define a regular curve γ : I → R
3, γ (u) = (u, 0, 0). If we take (ν1, ν2) : I →

Δ by ν1(u) = (0, 1, 0), ν2(u) = (0, 0, 1), then (γ, ν1, ν2) : I → R
3 × Δ is a framed

curve. By x̃v(u, v) = (0, v, 2vb2(u)+3v2b3(u, v)+v3b3v(u, v)), we have νL (u, v) =
νL
1 (u, v)ν1(u) + νL

2 (u, v)ν2(u) and μL(u, v) = −νL
2 (u, v)ν1(u) + νL

1 (u, v)ν2(u),
where

νL
1 (u, v) = − 2b2(u) + 3vb3(u, v) + v2b3v(u, v)

√

(2b2(u) + 3vb3(u, v) + v2b3v(u, v))2 + 1
,

νL
2 (u, v) = 1

√

(2b2(u) + 3vb3(u, v) + v2b3v(u, v))2 + 1
.

It follows that the curvature of the Legendre curve (̃x(u, ·), νL(u, ·)) is given by

�L(u, v) = 3b3(u, v) + 5vb3v(u, v) + v2b3vv(u, v)

(2b2(u) + 3vb3(u, v) + v2b3v(u, v))2 + 1
,

βL(u, v) = −v
√

(2b2(u) + 3vb3(u, v) + v2b3v(u, v))2 + 1.

We denote

ϕ(u, v) = a′(u)(2b2 + 3vb3(u, v) + v2b3v(u, v)) + b′(u) + v2b′
2(u) + v3b3u(u, v)

√

(2b2(u) + 3vb3(u, v) + v2b3v(u, v))2 + 1
.

Then we define a smooth mapping (n, s) : I × J → Δ by

n(u, v) = 1
√

1 + ϕ2(u, v)
νL(u, v) − ϕ(u, v)

√

1 + ϕ2(u, v)
μ(u), s(u, v) = −μL(u, v).

Since x̃u(u, v) = (1, a′(u), b′(u) + v2b′
2(u) + v3b3u(u, v)), we have x̃u(u, v) ·

n(u, v) = 0 for all (u, v) ∈ I × J . It follows from Theorem 3 that (̃x, n, s)
is a framed surface. Moreover, since x1(u, v) = a(u) + v2/2 and x2(u, v) =
b(u) + v2b2(u, v) + v3b3(u, v), we have

(x1, x2)v(u, v) = (v, 2vb2(u) + 3v2b3(u, v) + v3b3v(u, v)),

(x1, x2)vv(u, v) = (1, 2b2(u) + 6vb3(u, v) + 6v2b3v(u, v) + v3b3vv(u, v)),

(x1, x2)vvv(u, v) = (0, 6b3(u, v) + 18vb3v(u, v) + 9v2b3vv(u, v) + v3b3vvv(u, v)).

It follows that (x1, x2)v(u, 0) = 0 and det((x1, x2)vv(u, 0), (x1, x2)vvv(u, 0)) =
6b3(u, 0) �= 0 around (0, 0) ∈ I × J . Therefore, (u, 0) is a 3/2-cusp of x̃(u, ·)
around 0 ∈ I . ��
The singularities of the swallowtail and of the cuspidal cross cap are more complicated
(cf. Fukui 2017; Oset Sinha and Saji 2017; Saji 2017). The corresponding results for
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Corollary 2 and Theorem 6 of the swallowtail and the cuspidal cross cap (and other
singularities) are future problems (cf. Fukunaga and Takahashi 2018).

6 Examples

We give typical examples of singularities of smooth surfaces. We detect the basic
invariants and curvatures of framed surfaces.

Example 1 (cuspidal edge) A singular point p ∈ U of a mapping x : U → R
3 is

called a cuspidal edge if the map germ x at p isA -equivalent (right-left equivalent) to
the (u, v) �→ (u, v2, v3) at 0. Let x : R2 → R

3 be given by x(u, v) = (u, v2, v3). Ifwe
take (n, s) : U → Δ, n(u, v) = (1/

√
9v2 + 4)(0,−3v, 2), s(u, v) = (1, 0, 0), then

(x, n, s) : U → R
3×Δ is a framed surface. Since t (u, v) = (1/

√
9v2 + 4)(0, 2, 3v),

we have the following basic invariants.

(

a1 b1
a2 b2

)

=
(
1 0
0 v

√
9v2 + 4

)

,

(

e1 f1 g1
e2 f2 g2

)

=
(

0 0 0
0 −6/(9v2 + 4) 0

)

.

It follows that the curvature CF of (x, n, s) is given by

JF (u, v) = v
√

9v2 + 4, KF (u, v) = 0, HF (u, v) = 3

9v2 + 4
.

Example 2 (swallowtail) A singular point p ∈ U of a mapping x : U → R
3 is

called a swallowtail if the map germ x at p is A -equivalent to the (u, v) �→ (3u4 +
u2v,−4u3−2uv, v) at 0. Let x : R2 → R

3 be given by x(u, v) = (3u4+u2v,−4u3−
2uv, v). Ifwe take (n, s) : U → Δ, n(u, v) = (1/

√
1 + u2 + u4)(1, u, u2), s(u, v) =

(1/
√
1 + u2)(u,−1, 0), then (x, n, s) : U → R

3 × Δ is a framed surface.
Since t (u, v) = (1/

√
1 + u2 + u4

√
1 + u2)(u2, u3,−1−u2), we have the follow-

ing basic invariants.

(

a1 b1
a2 b2

)

=
(

(12u2 + 2v)
√
1 + u2 0

u(2+u2)√
1+u2

−
√
1+u2+u4√
1+u2

)

,

(

e1 f1 g1
e2 f2 g2

)

=
(

− 1√
1+u2+u4

√
1+u2

− u(2+u2)
(1+u2+u4)

√
1+u2

u2

(1+u2)
√
1+u2+u4

0 0 0

)

.

It follows that the curvature CF of (x, n, s) is given by

JF (u, v) = 2(6u2 + v)
√

1 + u2 + u4, KF (u, v) = 0,

HF (u, v) = − 1 + 5u2 + 5u4 + u6

2(1 + u2 + u4)(1 + u2)
.

Example 3 (cuspidal cross cap) A singular point p ∈ U of a mapping x : U → R
3

is called a cuspidal cross cap if the map germ x at p isA -equivalent to the (u, v) �→
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(u, v2, uv3) at 0. Let x : R2 → R
3 be given by x(u, v) = (u, v2, uv3). If we take

(n, s) : U → Δ,

n(u, v) = 1√
4v6 + 9u2v2 + 4

(−2v3,−3uv, 2), s(u, v) = 1√
1 + v6

(1, 0, v3),

then (x, n, s) : U → R
3 × Δ is a framed surface.

Since t (u, v) = (1/
√
4v6 + 9u2v2 + 4

√
1 + v6)(−3uv4, 2v6 + 2, 3uv), we have

the following basic invariants.

(

a1 b1
a2 b2

)

=
(√

1 + v6 0
3uv5√
1+v6

v
√
4v6+9u2v2+4√

1+v6

)

,

(

e1 f1 g1
e2 f2 g2

)

=
⎛

⎝
0 − 6v

√
1+v6

4v6+9u2v2+4
0

− 6v2√
4v6+9u2v2+4

√
1+v6

6u(2v6−1)
(4v6+9u2v2+4)

√
1+v6

9uv3√
4v6+9u2v2+4(1+v6)

⎞

⎠ .

It follows that the curvatureCF of (x, n, s) is givenby JF (u, v) = v
√
4v6 + 9u2v2 + 4,

KF (u, v) = − 36v3

(4v6 + 9u2v2 + 4)3/2
, HF (u, v) = − 3u(5v6 − 1)

4v6 + 9u2v2 + 4
.

Example 4 (cross cap) A singular point p ∈ U of a mapping x : U → R
3 is called

a cross cap if the map germ x at p is A -equivalent to the (u, v) �→ (u, v2, uv) at 0.
Let x : R2 → R

3 be given by x(u, v) = (u, v2, uv). Then it is well-known that the
cross cap is not a frontal. However, if we consider the polar coordinate φ : R× R →
R
2, (r, θ) �→ (r cos θ, r sin θ), then x ◦ φ is a frontal and the images are the same

(cf. Fukui and Hasegawa 2012). Note that φ is not diffeomorphic but surjective. We
rewrite x ◦ φ as x : R × R → R

3, x(r, θ) = (r cos θ, r2 sin θ, r2 cos θ sin θ). In this
case, if we take (n, s) : R × R → Δ,

n(r, θ) = 1
√

4r2 sin4 θ + 3 sin2 θ + 1
(−2r sin2 θ,− cos θ, 2 sin θ),

s(r, θ) = 1
√

3 sin2 θ + 1
(0, 2 sin θ, cos θ),

then (x, n, s) : R × R → R
3 × Δ is a framed surface. Since

t (r, θ) = 1
√

(4r2 sin4 θ + 3 sin2 θ + 1)(3 sin2 θ + 1)
(−(3 sin2 θ + 1), 2r sin2 θ cos θ,

− 4r sin3 θ),
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we have the following basic invariants.

(

a1 b1
a2 b2

)

=
⎛

⎜
⎝

2r sin θ(sin2 θ+1)√
3 sin2 θ+1

− cos θ
√

4r2 sin4 θ+3 sin2 θ+1√
3 sin2 θ+1

r2 cos θ
√

3 sin2 θ + 1 r sin θ
√

4r2 sin4 θ+3 sin2 θ+1√
3 sin2 θ+1

⎞

⎟
⎠ ,

(

e1 f1 g1
e2 f2 g2

)

=
⎛

⎝
0 2 sin2 θ

√
3 sin2 θ+1

4r2 sin4 θ+3 sin2 θ+1
0

2√
(4r2 sin4 θ+3 sin2 θ+1)(3 sin2 θ+1)

2r sin θ cos θ(3 sin2 θ+2)

(4r2 sin4 θ+3 sin2 θ+1)
√

3 sin2 θ+1

4r sin2 θ√
4r2 sin4 θ+3 sin2 θ+1(3 sin2 θ+1)

⎞

⎠

It follows that the curvature CF of (x, n, s) is given by

JF (r, θ) = r2(2 sin θ(sin2 θ + 1) + cos2 θ + 1)
√

4r2 sin4 θ + 3 sin2 θ + 1

3 sin2 θ + 1
,

KF (r, θ) = − 2 sin2 θ

(4r2 sin4 θ + 3 sin2 θ + 1)2/3
,

HF (r, θ) = −2 cos θ(−3r2 sin6 θ + 8r2 sin4 θ + 3r2 sin θ + 3 sin2 θ + 2)

(4r2 sin4 θ + 3 sin2 θ + 1)(2 sin2 θ + 1)
.

Especially, CF (r, θ) �= 0 for any (r, θ) ∈ R×R, that is, x is a front by Proposition 8.

Acknowledgements The authors would like to thank the referee for helpful comments to improve the
original manuscript.

A Framed Curves in the Euclidean Space

We quickly review on the theory of framed curves in the Euclidean space, see detail
Honda and Takahashi (2016).

A framed curve in the Euclidean space is a smooth curve with a moving frame.
We say that (γ, ν1, ν2) : I → R

3 × Δ is a framed curve if γ̇ (t) · ν1(t) = 0 and
γ̇ (t) · ν2(t) = 0 for all t ∈ I . We say that γ : I → R

3 is a framed base curve if there
exists (ν1, ν2) : I → Δ such that (γ, ν1, ν2) is a framed curve.

We put μ(t) = ν1(t)×ν2(t). Then {ν1(t), ν2(t), μ(t)} is a moving frame along the
framed base curve γ (t) in R3 and we have the Frenet–Serret type formula,

⎛

⎝

ν̇1(t)
ν̇2(t)
μ̇(t)

⎞

⎠ =
⎛

⎝

0 �(t) m(t)
−�(t) 0 n(t)
−m(t) −n(t) 0

⎞

⎠

⎛

⎝

ν1(t)
ν2(t)
μ(t)

⎞

⎠ , γ̇ (t) = α(t)μ(t)

where �(t) = ν̇1(t) · ν2(t), m(t) = ν̇1(t) · μ(t), n(t) = ν̇2(t) · μ(t) and α(t) =
γ̇ (t) · μ(t). We call the functions (�,m, n, α) the curvature of the framed curve. Note
that t0 is a singular point of γ if and only if α(t0) = 0.
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Definition 4 Let (γ, ν1, ν2) and (γ̃ , ν̃1, ν̃2) : I → R
3 × Δ be framed curves. We

say that (γ, ν1, ν2) and (γ̃ , ν̃1, ν̃2) are congruent as framed curves if there exist a
constant rotation A ∈ SO(3) and a translation a ∈ R

3 such that γ̃ (t) = A(γ (t)) + a,
ν̃1(t) = A(ν1(t)) and ν̃2(t) = A(ν2(t)) for all t ∈ I .

Theorem 7 (The Existence Theorem for framed curves, Honda and Takahashi 2016)
Let (�,m, n, α) : I → R

4 be a smooth mapping. There exists a framed curve
(γ, ν1, ν2) : I → R

3 × Δ whose curvature of the framed curve is (�,m, n, α).

Theorem 8 (The Uniqueness Theorem for framed curves, Honda and Takahashi
2016) Let (γ, ν1, ν2) and (γ̃ , ν̃1, ν̃2) : I → R

3 × Δ be framed curves with the cur-
vature (�,m, n, α) and (�̃, m̃, ñ, α̃), respectively. Then (γ, ν1, ν2) and (γ̃ , ν̃1, ν̃2) are
congruent as framed curves if and only if the curvatures (�,m, n, α) and (�̃, m̃, ñ, α̃)

coincide.

B Legendre Curves in the Euclidean Plane

We quickly review on the theory of Legendre curves in the unit tangent bundle over
R
2, see detail Fukunaga and Takahashi (2013).
We say that (γ, ν) : I → R

2 × S1 is a Legendre curve if (γ, ν)∗θ = 0 for all t ∈ I ,
where θ is a canonical contact formon the unit tangent bundle T1R2 = R

2×S1 overR2

(cf. Arnol’d 1990; Arnol’d et al. 1986). This condition is equivalent to γ̇ (t) · ν(t) = 0
for all t ∈ I . We say that γ : I → R

2 is a frontal if there exists ν : I → S1 such
that (γ, ν) is a Legendre curve. Examples of Legendre curves see Ishikawa (2007),
Ishikawa (2015). We denote J (a) = (−a2, a1) the anticlockwise rotation by π/2 of
a vector a = (a1, a2) ∈ R

2. We put μ(t) = J (ν(t)). Then {ν(t), μ(t)} is a moving
frame of a frontal γ (t) in R2 and we have the Frenet type formula,

(

ν̇(t)
μ̇(t)

)

=
(

0 �(t)
−�(t) 0

)(

ν(t)
μ(t)

)

, γ̇ (t) = β(t)μ(t),

where �(t) = ν̇(t) · μ(t) and β(t) = γ̇ (t) · μ(t). We call the pair (�, β) the curvature
of the Legendre curve.

Definition 5 Let (γ, ν) and (γ̃ , ν̃) : I → R
2 × S1 be Legendre curves. We say that

(γ, ν) and (γ̃ , ν̃) are congruent as Legendre curves if there exist a constant rotation
A ∈ SO(2) and a translation a ∈ R

2 such that γ̃ (t) = A(γ (t))+a and ν̃(t) = A(ν(t))
for all t ∈ I .

Theorem 9 (The Existence Theorem for Legendre curves, Fukunaga and Takahashi
2013) Let (�, β) : I → R

2 be a smooth mapping. There exists a Legendre curve
(γ, ν) : I → R

2 × S1 whose curvature of the Legendre curve is (�, β).

Theorem 10 (The Uniqueness Theorem for Legendre curves, Fukunaga and Taka-
hashi 2013) Let (γ, ν) and (γ̃ , ν̃) : I → R

2 × S1 be Legendre curves with the
curvatures of Legendre curves (�, β) and (�̃, β̃), respectively. Then (γ, ν) and (γ̃ , ν̃)

are congruent as Legendre curves if and only if the curvatures (�, β) and (�̃, β̃) coin-
cide.
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