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Abstract The purpose of this article is to determine explicitly the complete surfaces
with parallel mean curvature vector, both in the complex projective plane and the
complex hyperbolic plane. The main results are as follows: when the curvature of the
ambient space is positive, there exists a unique such surface up to rigid motions of the
target space. On the other hand, when the curvature of the ambient space is negative,
there are ‘non-trivial’ complete parallel mean curvature surfaces generated by Jacobi
elliptic functions and they exhaust such surfaces.
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1 Introduction

Recently, the study of non-zero parallelmean curvature surfaceswith codimension two
has progressed in the various ambient spaces (seeManzano et al. 2017 for references).
Such surfaces in complex space-forms are already classified when the Kaehler angle
is constant by Chen (1998), and finally by Hirakawa (2006). If the Kaehler angles of
these surfaces are not constant, Ogata (1995)was the first to study such surfaces in non-
flat complex space-forms, and later in Kenmotsu and Zhou (2000), Kenmotsu (2016),
Hirakawa (2006), Ferreira and Tribuzy (2014), and Fetcu (2012), they continued the
research. In particular, Kenmotsu and Zhou (2000) and Kenmotsu (2016) proved that
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the first and second fundamental forms of such a surface in non-flat complex space-
forms are determined by a harmonic function and five real constants.We shall note that
a parallel mean curvature surface in a flat complex space-form with codimension two
is contained in a totally umbilical real hypersurface of the ambient space as a minimal
or constant mean curvature surface (Chen 1973; Yau 1974), and also if the mean
curvature vector vanishes identically, there are many articles studying such surfaces
(see, for instance, Eschenburg et al. 1985).

In this article, by the refinement of our method developed in Kenmotsu and Ogata
(2015) and Kenmotsu (2018), we prove that any parallel mean curvature surface in
the complex projective plane CP2 with the Fubini–Study metric must have constant
Kaehler angle, thus it is congruent to the flat torus if the surface is complete. For parallel
mean curvature surfaces in the complex hyperbolic plane CH2, with its canonical
structure of Kaehler surface, the situation is different from CP2-case. There is a two-
parameter family of those surfaces, say xt,p, (0 ≤ t ≤ π, 0 < p ( �= 1/4) < ∞), such
that any parallel mean curvature surface of a general type inCH2 is locally congruent
to some xt,p. Moreover, there exists the limit of xt,p, as p tends to 0, that is Hirakawa
surface, and also letting p → 1/4+ and p → 1/4−, there are the limits of xt,p which
are the same ones presented in Section 4 of Kenmotsu (2016).

In Sect. 2,we refineLemma3.3 ofKenmotsu andZhou (2000), because its statement
is incomplete. In Sect. 3, the key result of this article is proved by using our previous
results (Kenmotsu 2016, 2018) that is Lemma 3.4: a constant appeared in the second
fundamental form in Kenmotsu (2018) must be zero if the ambient space is non-flat.
In Sect. 4, we will concentrate on the study in CH2-case and prove that any parallel
mean curvature surface of a general type in CH2 is determined by two real constants,
one of which is the parameter of the associated family, and the other is the modulus of
a Jacobi elliptic function of the first kind. The moduli space of the complete parallel
mean curvature surfaces in CH2 is presented at the end of this section. In Sect. 5 we
state some open questions related to this article.

2 Parallel Mean Curvature Surfaces of a Special Type

This section establishes the notation that will be used in this article, recalls the structure
equations of parallelmean curvature surfaces, and defines two families of parallelmean
curvature surfaces as a refinement of Lemma 3.3 of Kenmotsu and Zhou (2000).

Let M[4ρ] be a complex two-dimensional complex space-form with constant
holomorphic sectional curvature 4ρ, and let M be an oriented and connected real two-
dimensional Riemannian manifold with Gaussian curvature K and x : M −→ M[4ρ]
be an isometric immersion, with Kaehler angle α such that the mean curvature vec-
tor H is nonzero and parallel for the normal connection on the normal bundle of
the immersion. Since the length of the mean curvature vector is constant, we write
|H | = 2b > 0. Hereafter, we call such an immersion as a parallel mean curvature
surface.

Let M0 = {p ∈ M | x is neither holomorphic nor anti-holomorphic at p}. M0
is an open dense subset of M . Because all of the calculations and formulas on M0
presented in Ogata (1995) are valid until page 400, according to a remark in Hirakawa

123



Complete Parallel Mean Curvature Surfaces in Two-Dimensional... 777

(2006), there exists a local field of unitary coframes {w1, w2} on M0 such that, by
restricting it to x , the Riemannian metric ds2 on M0 can be written as ds2 = φφ̄,
where φ = cosα/2 · ω1 + sin α/2 · ω̄2 . Let a and c be the complex-valued functions
on M0 that determine the second fundamental form of x . Then the Kaehler angle α

and the complex 1-form φ satisfy

dα = (a + b)φ + (ā + b)φ̄, and dφ = (ā − b) cot α φ ∧ φ̄. (2.1)

Equations (2.4), (2.5), and (2.6) in Ogata (1995) are

K = −4(|a|2 − b2) + 6ρ cos2 α, (2.2)

da ∧ φ = −
(
2a(ā − b) cot α + 3

2
ρ sin α cosα

)
φ ∧ φ̄, (2.3)

dc ∧ φ̄ = 2c(a − b) cot α φ ∧ φ̄, (2.4)

|c|2 = |a|2 + ρ

2
(−2 + 3 sin2 α), (2.5)

where (2.2) is the Gauss equation, (2.3) and (2.4) are the Codazzi–Mainardi equations,
and (2.5) is the Ricci equation of x .

Remark 2.1 (1) The immersion x is holomorphic (resp. anti-holomorphic) at p ∈ M
if and only if α = 0 (resp. α = π) at p. Hence, sin α �= 0 on M0.

(2) The unitary coframes {w1, w2} appeared in (2.1)–(2.5) are uniquely determined
up to orientations of both M[4ρ] and M0 (see Ogata 1995), hence the complex one-
form φ on M0 is unique up to sign and conjugacy. Thus, for the immersion x satisfying
(2.1)–(2.5), the data {ψ := φ̄, α, ā, c̄}, which satisfy the conjugated structure equa-
tions, define the same surface as x .

For a parallel mean curvature surface x satisfying a = ā on M0, it is proved in
Kenmotsu and Zhou (2000) and Kenmotsu and Ogata (2015) that if ρ > 0, then x
is totally real and the image is a part of the flat torus and in the case of ρ < 0, if x
has a constant Kaehler angle, then it is totally real, flat and −2b2 ≤ ρ < 0, or it is
non-totally real, K = constant = −2b2, and ρ = −3b2 (see also Theorem 1.1 of
Hirakawa 2006). If the Kaehler angle is not constant, then Lemma 3.3 of Kenmotsu
and Zhou (2000) tells us that there are ‘non-trivial ones’. But, the statement of Lemma
3.3 is incomplete, so we give here the correction as follows:

Theorem 2.2 Let x : M −→ M[4ρ] be a parallel mean curvature surface with
|H | = 2b (> 0). Suppose that the Kaehler angle is not constant and a = ā on M0. If
ρ < 0, then ρ = −3b2 and x is determined by a real constant and the amplitude of a
Jacobi elliptic function with the modulus either 2

√
2/3 or 1/3.

Proof All formulas and results in Kenmotsu and Zhou (2000) are valid under the
assumption of Theorem 2.2 (Kenmotsu and Ogata 2015). The first claim of The-
orem 2.2 is proved by the first paragraph of page 302 in Kenmotsu and Zhou
(2000). Formula (2.5) and Theorem 4.1, both in Kenmotsu and Zhou (2000), imply
λ(u)4(a(u)2+b2(3−9/2 sin2 α(u))) = m2, for some non-zero real constantm, where
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θ(u) in Kenmotsu and Zhou (2000) is replaced byα(u) andφ = λ(u)(du+idv). Since
λ(u) is real-valued and defined up to a real multiplicative constant, we assume that
m = 9b3. Formula (2.10) and Theorem 4.1, both in Kenmotsu and Zhou (2000), yield
a(u) = b(1 − 9/4 sin2 α(u)). These two formulas imply λ(u)2(8 − 9 sin2 α(u)) =
±36b2. By (2.3) of Kenmotsu and Zhou (2000), α satisfies the ODE (dα/du)2 =
±9b4(8 − 9 sin2 α(u)). Since we may assume α(u) > 0, two cases to be studied
arise:

(i) dα
du = 3b2

√
−8 + 9 sin2 α(u), −8 + 9 sin2 α(u) > 0,

(ii) dα̃
du = 3b2

√
8 − 9 sin2 α̃(u), 8 − 9 sin2 α̃(u) > 0.

For case (i), put sin γ (u) = −3 cosα(u). The function γ (u) satisfies the ODE
dγ /du = 9b2

√
1 − 1/9 sin2 γ , i.e., γ (u) = am(9b2u, 1/3), where am(·, p) denotes

the amplitude of a Jacobi elliptic function with the modulus p. Hence,

cosα(u) = −1

3
sin

(
am

(
9b2u,

1

3

))
, −K (1/3)

9b2
< u <

K (1/3)

9b2
, (2.6)

where K (1/3) denotes the complete integral of the first kind of the Jacobi elliptic
function with the modulus 1/3. For case (ii), put sin γ̃ (u) = 3/(2

√
2) sin α̃(u). Then

the function γ̃ (u) satisfies the ODE dγ̃ /du = 9b2
√
1 − 8/9 sin2 γ̃ , which means

γ̃ (u) = am(9b2u, 2
√
2/3). Hence,

sin α̃(u) = 2
√
2

3
sin

(
am

(
9b2u,

2
√
2

3

))
, −K (2

√
2/3)

9b2
< u <

K (2
√
2/3)

9b2
.

(2.7)
Now we will find the expression of c in terms of sin α: By (2.5), c is written as
c = b|8 − 9 sin2 α|/4 exp(i t (u, v)) for some real-valued function t (u, v). Equation
(2.4) implies t (u, v) = constant. The first and second fundamental forms of x are
determined by the Kaehler angle α(u) or α̃(u) and a real number t ∈ [0, π ] as follows:

{
λ(u) = 6b√

|8−9 sin2 α(u)| , 8 − 9 sin2 α(u) �= 0,

a(u) = b
(
1 − 9

4 sin
2 α(u)

)
, c(u) = b

4 |8 − 9 sin2 α(u)|eit , (2.8)

where in the above formulas, α(u) is replaced by α̃(u) if 8 − 9 sin2 α(u) > 0. Con-
versely, given b > 0, t ∈ [0, π ], and the amplitude γ (u) with a modulus 1/3 or its
conjugate γ̃ (u), we defineα(u) by (2.6) or (2.7), andλ(u), a(u) and c(u) by (2.8). Then
it is straightforward to prove that these data satisfy the structure equations (2.1)–(2.5)
under the condition ρ = −3b2, proving Theorem 2.2. 	

Remark 2.3 Case (i) above is missed in Lemma 3.3 of Kenmotsu and Zhou (2000).

We denote both surfaces obtained in Theorem 2.2 as xt,1/4+ if it is determined by
γ (u) and xt,1/4− if determined by γ̃ (u). The surface xt,1/4± is isometric to x0,1/4± and
both surfaces have the same length of the mean curvature vector. Consequently, the
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set {xt,1/4± | t ∈ [0, π ]} is the associated family of x0,1/4±. We note that in general
sin α(u) �= sin α̃(u), hence surfaces xt,1/4+ and xt,1/4− are not isometric to each other.
Let D± be the domain in R2 given by

D± =
{
(u, v) ∈ R

2 | − K (q)

9b2
< u <

K (q)

9b2
, −∞ < v < ∞

}
,

where the plus sign and the minus one of D± are taken for q = 1/3 and q = 2
√
2/3,

respectively. We will prove that the immersions xt,1/4± are complete.

Proposition 2.4 For each t ∈ [0, π ], xt,1/4± : D± −→ M[−12b2] are complete.
Proof For case (i), the Riemannian metric ds2 on xt,1/4+ is estimated as follows:

1

36b2
ds2 = du2 + dv2

−8 + 9 sin2 α
= du2 + dv2

cos2 γ (u)
,

(
−π

2
< γ <

π

2

)

= 1

cos2 γ

(
dγ 2

9(1 − 1/9 sin2 γ )
+ dv2

)
≥ 1

9

1

cos2 γ
(dγ 2 + d(3v)2).

Since the metric in the right hand is complete (see, for instance, Lemma 3.13 of
Hirakawa 2006), the considered metric is also complete. The proof in the second case
is similar and we conclude the proof. 	

Remark 2.5 In the third line of the proof of Lemma 3.13 in Hirakawa (2006), arctan u
should be read as tan u.

A parallel mean curvature surface is of a general type if it satisfies dα �= 0 and
a �= ā at a point of M0. Now, we will recall results in Kenmotsu (2016) and Kenmotsu
(2018) which are used in the next section: if x is of a general type, then a is a function
of α, say a = a(α), satisfying the first order complex ODE (see (3.1) of Kenmotsu
2016)

da

dα
= cot α

a + b

(
−2ba + 2|a|2 + 3ρ

2
sin2 α

)
, (a + b �= 0). (2.9)

Let us consider isothermal coordinates for the Riemannian metric φφ̄ on M0 that
makes M0 a Riemann surface with a local complex coordinate z. By Lemma 2.4
of Kenmotsu (2018), there is a complex analytic transformation w = w(z) on the
Riemann surface M0 such that in φ = μdw, μ is a complex-valued function of a
single real variable (w + w̄)/2. Let w = u + iv, (u, v ∈ R). Then α is a function of
u only, satisfying the ODE

dα

du
= 2 exp

(∫
F(α)dα

)
, (2.10)

where F(α) = cot α(|a − b|2 + 3ρ/2 sin2 α)/|a + b|2 and μ is expressed as

μ = exp
(∫

F(α)dα
)

a + b
, (2.11)
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where μ is a complex-valued function of α defined up to sign and a real multiplicative
constant.

We will also need the following fact proved in Lemma 2.5 of Kenmotsu (2018):
there are real numbers k and t such that

c =
(
|a|2 + ρ

2
(−2 + 3 sin2 α)

)1/2 (a + b)

a + b
e−i(kv+t). (2.12)

Remark 2.6 In (2.14) of Kenmotsu (2018), exp(−i t), (0 ≤ t ≤ π), is missed,
because c is unique up to a complex multiplicative constant with the absolute value
equal to one.

3 Main Lemma

In this section, we prove that the constant k in (2.12) is zero, which is the key result
of this article.

Lemma 3.1 Let x : M −→ M[4ρ] be a parallel mean curvature surface with |H | =
2b (> 0) of a general type. Then

|a + b|2 = (8b2 + 3ρ sin2 α)

4b
(�a + b), (3.1)

(
a)2 = (�a + b)

(
(8b2 + 3ρ sin2 α)

4b
− (�a + b)

)
. (3.2)

where �a and 
a denote the real and imaginary parts of a respectively.

Proof Formula (2.17) of Kenmotsu (2018) yields μ2(8ba − 3ρ sin2 α) = c1, where
the constant c1(∈ C) is not zero, because the immersion x is of a general type. By
a transformation: μ → eiξμ, (ξ ∈ R), c1 can be assumed to be real. By (2.11),
μ · (a + b) is also real-valued. Coupling these together, one obtains

μ2 · (a + b)2 = c1(a + b)2

8ba − 3ρ sin2 α
= μ2 · (a + b)2 = c1(ā + b)2

8bā − 3ρ sin2 α
.

The simplification of the above formula proves (3.1). Formula (3.2) is another expres-
sion of (3.1), proving Lemma 3.1. 	


Since we are now studying a parallel mean curvature surface of a general type, α
is not constant, hence 8b2 + 3ρ sin2 α �= 0. Then the real part of a satisfies a linear
ODE:

Lemma 3.2 Let x : M −→ M[4ρ] be a parallel mean curvature surface of a general
type. Then �a satisfies the first order linear ODE

d

dα
�a + 2 cot α

(8b2 − 3ρ sin2 α)

8b2 + 3ρ sin2 α
�a − 2b cot α

(8b2 + 9ρ sin2 α)

8b2 + 3ρ sin2 α
= 0. (3.3)
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Proof It follows from (2.9) and (3.2) that

d

dα
�a + (�a + b)

2b|a + b|2
{
(8b2 − 3ρ sin2 α)�a − b(8b2 + 9ρ sin2 α)

}
cot α = 0.

We conclude by coupling this with (3.1).
If ρ �= 0, then the general solution of (3.3) is given by

�a = −b + 1

3bρ sin2 α
(8b2 + 3ρ sin2 α)(−2b2 + c3(8b

2 + 3ρ sin2 α)), (c3 ∈ R),

(3.4)
and if ρ = 0, then �a = (c3 − b/2 cos 2α)/ sin2 α.

By (3.1) and (3.4),

|a + b|2 = (8b2 + 3ρ sin2 α)2

12b2ρ sin2 α
(−2b2 + c3(8b

2 + 3ρ sin2 α)), (ρ �= 0), (3.5)

in particular,
ρ(−2b2 + c3(8b

2 + 3ρ sin2 α) ≥ 0. (3.6)

The formula |a − b|2 = |a + b|2 − 4b�a, (3.1), and (3.4) yield

|a − b|2 + 3ρ

2
sin2 α = (8b2 + 3ρ sin2 α)(16b4 − c3(64b4 − 9ρ2 sin4 α))

12b2ρ sin2 α
.

By (3.4) and the above formula, the function F(α) in (2.10) can be expressed as

F(α) = (16b4 − 64b2c3 + 9c3ρ2 sin4 α)

(8b2 + 3ρ sin2 α)(−2b2 + c3(8b2 + 3ρ sin2 α))
cot α.

Integrating, we obtain, up to a positive multiplicative constant,

e
∫
F(α)dα =

√
|8b2 + 3ρ sin2 α|| − 2b2 + c3(8b2 + 3ρ sin2 α)|

sin α
. (3.7)

By (3.2) and (3.4), the imaginary part of a is expressed in terms of sin α as follows:

(
a)2 = (1 − 4c3)

36b2ρ2 sin4 α
(8b2 + 3ρ sin2 α)3(−2b2 + c3(8b

2 + 3ρ sin2 α)), (ρ �= 0).

(3.8)
	


Remark 3.3 We may assume 
a ≥ 0, by Remark 2.1 (2).

If ρ �= 0, Eq. (3.8) implies

(1 − 4c3)(8b
2 + 3ρ sin2 α)(−2b2 + c3(8b

2 + 3ρ sin2 α)) ≥ 0. (3.9)

The next lemma is the main result of this section.
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Lemma 3.4 Let x : M −→ M[4ρ] be a parallel mean curvature surface of a general
type. If ρ �= 0, then ρ = −3b2 < 0 and k = 0 or c3 = c ≡ 0. Moreover, in the latter
case the Gaussian curvature of M is constant equal to = −2b2.

Proof By (2.16) of Kenmotsu (2018) and (2.11) of this article, we have:

2k|a + b|2|c|2 = ρe
∫
F(α)dα(8|a|2 + 9b(a + ā) sin2 α − 8b2 + 18b2) cot α,

(3.10)

where k1 in Kenmotsu (2018) is replaced here by k. It follows from (2.5), (3.1) and
(3.4) that

{
8|a|2 + 9b(a + ā) sin2 α − 8b2 + 18b2 sin2 α = 6(ρ+3b2)

b (�a + b) sin2 α,

|c|2 = −(ρ + 3b2) + c3
4b2

(8b2 + 3ρ sin2 α)2.

(3.11)
By (3.5), (3.7), (3.10), and the above formulas, we obtain

ρ2(ρ + 3b2)2(−2b2 + c3(8b
2 + 3ρ sin2 α))(1 − sin2 α)

− k2(8b2 + 3ρ sin2 α)
(
−(ρ + 3b2) + c3

4b2
(8b2 + 3ρ sin2 α)2

)2 = 0.

(3.12)

This is a polynomial equation of degree 5 in sin2 αwith constant coefficients. It follows
that if ρ �= 0 and α is not constant, then all the coefficients of the polynomial vanish,
in particular, k = 0 or c3 = 0 which comes from the term of the highest degree. Then
we have ρ = −3b2 by (3.12). In the case when c3 = 0, we get c ≡ 0 by (3.11) and
K = constant = −2b2 by (2.2) and (2.5). Consequently, this is Hirakawa surface
(Hirakawa 2006), which concludes the proof. 	


It shall be noted that Lemma 3.4 does not need any global assumption of M . As
a direct application of Lemma 3.4, we have: Even locally, there is no parallel mean
curvature surface of a general type in CP2. So, a parallel mean curvature surface
in CP2 has either constant Kaehler angle or non-constant Kaehler angle satisfying
a = ā on an open subset of M . However, the latter does not occur by Theorem 4.1
of Kenmotsu and Zhou (2000) (we note that all results in Kenmotsu and Zhou 2000
hold under the additional condition a = ā by Kenmotsu and Ogata 2015). Therefore,
a parallel mean curvature surface in CP2 must have a constant Kaehler angle, in
particular, a constant Gaussian curvature. Then, such a surface is flat and totally real
(Hirakawa 2006). Thus, we proved

Theorem 3.5 Any complete parallel mean curvature surface with |H | = 2b (> 0) in
CP2 is the flat torus up to rigid motions of CP2.

Theorem 3.5 is in contrast to the fruitful theory of minimal surfaces in CP2 (see
Introduction of Inoguchi et al. 2016 for references).
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4 Jacobi Elliptic Functions

In this section, non-zero parallel mean curvature surfaces in CH2 are studied by
applying the results of Sect. 3, and we will prove that such a surface is determined by
a Jacobi elliptic function. Let x : M −→ M̄[4ρ] be a parallel mean curvature surface
of a general type with |H | = 2b (> 0). We can assume ρ = −3b2 by Lemma 3.4 and
a �= ā by Theorem 2.2. Lemma 3.4 and the second formula of (3.11) yield c3 ≥ 0,
and a is explicitly expressed in terms of sin α by (3.4), (3.8), and Remark 3.3:

a = b

9 sin2 α
{16 − 27 sin2 α − c3(8 − 9 sin2 α)2

+ i

2
|8 − 9 sin2 α|

√
(1 − 4c3)(8 − 9 sin2 α)(−2 + c3(8 − 9 sin2 α)) }.

(4.1)

From now on, let p = c3. By (3.6) with ρ + 3b2 = 0 and (3.9), since 2 − p(8 −
9 sin2 α) > 0, two cases to be studied arise: (i) 0 < p < 1/4 and 8 − 9 sin2 α < 0,
and (ii) 1/4 < p and 8 − 9 sin2 α > 0.

First, we study case (i). By (2.10) and (3.7), α = α(u) satisfies the ODE

dα

du
= 2b2

√
(−8 + 9 sin2 α)(2 − p(8 − 9 sin2 α))

sin α
. (4.2)

Consider the function γ = sin−1(−3 cosα). By (4.2), this satisfies theODE dγ /du =
6b2

√
2 + p − p sin2 γ . Hence, γ is the amplitude of a Jacobi elliptic function with

the modulus
√
p/(2 + p), i.e., γ = γ (u) is written as

γ = am(6b2
√
2 + pu,

√
p/(2 + p)), −π

2
< γ <

π

2
. (4.3)

For case (ii), α = α(u) satisfies the ODE

dα

du
= 2b2

√
(8 − 9 sin2 α)(2 − p(8 − 9 sin2 α))

sin α
. (4.4)

Consider the function γ̃ = cos−1
√
p(8 − 9 sin2 α)/2. This satisfies the ODE

dγ̃ /du = 6b2
√
2 + p − 2 sin2 γ̃ . Hence, γ̃ is the amplitude of a Jacobi elliptic func-

tion with the modulus
√
2/(2 + p), i.e., γ̃ = γ̃ (u) is written as

γ̃ = am(6b2
√
2 + pu,

√
2/(2 + p)), −π

2
< γ̃ <

π

2
. (4.5)

We note that γ̃ is the conjugate of γ . We showed that in these two cases, Kaehler
angles are determined by a Jacobi elliptic function or its conjugate.
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Let us put

D =
{
(u, v) ∈ R2 | − K (q)

6b2
√
2 + p

< u <
K (q)

6b2
√
2 + p

, −∞ < v < ∞
}

, (4.6)

where K (q) denotes the complete elliptic integral of the first kind with the modulus
q = √

p/(2 + p) for 0 < p < 1/4 and q = √
2/(2 + p) for p > 1/4. We note that

D is transformed to the slab {(ũ, v) ∈ R
2 | − π/2 < ũ < π/2, v ∈ R}, where ũ = γ

for 0 < p < 1/4 and ũ = γ̃ for p > 1/4.
Given p ∈ (0,∞), let us define a real-valued function of α, θ(α), by

eiθ(α) = 1

3 sin α

(
2
√
2 − p(8 − 9 sin2 α) ± i

√
|(1 − 4p)(8 − 9 sin2 α)|

)
, (4.7)

where the plus sign is taken for 0 < p ≤ 1/4 and the minus one for 1/4 < p. By
(2.11), (2.12), (3.7) and (4.1), μ, a, and c are expressed as follows:

μ = 6beiθ(α)√
|8 − 9 sin2 α|

, (8 − 9 sin2 α �= 0),

a = −b + b(8 − 9 sin2 α)
√
2 − p(8 − 9 sin2 α)

6 sin α
e−iθ(α)

c = b

2
√
p|8 − 9 sin2 α|ei(2θ(α)+t), (t ∈ [0, π ]). (4.8)

The last main result of this article is the following theorem.

Theorem 4.1 Let x : M −→ M[−12b2] be a parallel mean curvature surface with
|H | = 2b (> 0). If x is of a general type, then there exists a positive number p ( �=
1/4) such that the Kaehler angle is determined by a Jacobi elliptic function (4.3) if
0 < p < 1/4 and (4.5) if 1/4 < p < ∞. Moreover, the first and second fundamental
forms of x are given by (4.8). Conversely, given three real numbers b (> 0), t ∈
[0, π ], p (> 0, �= 1/4), there exist a domain D ⊂ R

2 and a parallel mean curvature
immersion of a general type from D into M[−12b2] such that the first and second
fundamental forms are determined by t and a Jacobi elliptic function whose modulus
depends only on p, and the length of the mean curvature vector is equal to 2b.

Proof We only have to prove the last part of Theorem 4.1. Consider three numbers
b, t, p presented in Theorem 4.1 and define the domain D ⊂ R

2 by (4.6). Suppose,
first, that 0 < p < 1/4. Take the amplitude γ of a Jacobi elliptic function as in
(4.3). Define a function α by α = α(u; p) = cos−1(− sin γ /3). Then, 8− 9 sin2 α <

0, 2 − p(8 − 9 sin2 α) > 0, and α satisfies the ODE (4.2). If p > 1/4, for a given
amplitude γ̃ as in (4.5), we have a function α which satisfies the ODE (4.4). Let us
define a real-valued function θ(α) by (4.7), and μ, a, c by (4.8). Now, we prove that
the data {D, φ = μ(du + idv), a, c} satisfy the structure equations (2.1)–(2.5) under
the condition ρ = −3b2. In fact, by the first and second formulas of (4.8), we see
that (a + b)μ = (ā + b)μ̄, which proves the first equation of (2.1). To show the
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second equation of (2.1), we use that an equation dφ = − logμ′(α)(ā + b)φ ∧ φ̄

which is derived by virtue of the first equation of (2.1). Thus, the second equation
of (2.1) is equivalent to μ′(α)(ā + b) + μ(ā − b) cot α = 0. This follows from
(4.8) by direct computation. To prove (2.2), we recall the formula of Gauss curvature
K = −e−2σ (σuu + σvv) in terms of isothermal coordinates (u, v) given by ds2 =
e2σ (du2 +dv2). Now, e2σ = 36b2/(−8+9 sin2 α(u; p)), and the direct computation
using (4.2) implies σuu = 36b4(2 + p(−8 + 9 sin2 α)2)/(−8 + 9 sin2 α), which
implies (2.2). To prove (2.3), we first note that μ2(8a + 9b sin2 α) = constant, which
is observedby (4.8). Taking the exterior derivative of this formula, (2.3)withρ = −3b2

follows from (2.1). To prove (2.4), we use μ2c̄ = constant which can be seen from
(4.8). Taking the exterior derivative of this formula and using (2.1), (2.4) is proved.
(2.5) follows from the formula |a|2 = |a + b|2 − 2b�(a + b) + b2 and (4.8). For the
case when p > 1/4, the proof is done by the similar way as before using (4.4) and
(4.5), so we omit it, proving Theorem 4.1. 	


Let CH2[4ρ] be the complex hyperbolic plane of constant holomorphic sectional
curvature 4ρ, (ρ < 0). By xt,p, (0 ≤ t ≤ π, 0 < p < ∞, p �= 1/4), we denote the
immersion fromD ⊂ R

2 intoCH2[−12b2] obtained by Theorem 4.1. Note that these
surfaces are the simplified version of the ones given in Sect. 4 of Kenmotsu (2016),
because ξ(t) in Kenmotsu (2016) is explicitly integrated here by using the special
isothermal coordinates.

Now, we list the properties of xt,p:

1. The mean curvature vector H is parallel, |H | = 2b, and the Kaehler angle is not
constant.
It follows from the structure equations (2.1)–(2.5).

2. xt,p : D −→ CH2[−12b2] is complete.
We do not give the proof here, as it can be performed almost in the same way as
the proof of Proposition 2.4.

3. For any p, q with 0 < p < q < ∞, xt,p is not isometric to xt,q , and hence they
are not congruent each other, because of sin2 α(u; p) �= sin2 α(u; q).

4. By letting p → 0, xt,p has a limit, say xt,0, that is Hirakawa surface (Hirakawa
2006).
In fact, as p → 0 in (4.2), (4.7) and (4.8), α satisfies an ODE, φ and a are
well defined and c ≡ 0. It is verified in the same way as in the case when 0 <

p < 1/4 in Theorem 4.1 that these data satisfy the structure equations (2.1)–
(2.5) under the condition ρ = −3b2. Therefore, there exists an immersion xt,0 :
D −→ CH2[−12b2]. It can be easily shown that the immersion xt,0 has a constant
Gaussian curvature K = −2b2 by (2.2), but is not of a constant Kaehler angle. So,
xt,0 is congruent to Hirakawa surface by Theorem 1.1 (1) of Hirakawa (2006).

Remark 4.2 At page 230 of Hirakawa (2006), author describes two parallel mean
curvature surfaces of constant Gaussian curvature K = −2b2, but both surfaces are
congruent to each other in CH2[−12b2] by Remark 2.1 (2).

5. As p → 1/4 − 0, xt,p has a limit which is xt,1/4−, and as p → 1/4 + 0, xt,p has
also a limit which is xt,1/4+.
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In fact, as p → 1/4 − 0 in (4.2), (4.7), and (4.8), α, φ, a and c have limits which
are the same ones in Theorem 2.2. In the case when p > 1/4, we have similar
formulas.

6. xt,p is isometric to xt̃,p for any t, t̃ ∈ [0, π ] and both surfaces have the same
length of the mean curvature vector. Hence, for any fixed p, {xt,p | t ∈ [0, π ]} is
the associated family of x0,p.
In fact, the metric is determined only by the Kaehler angle function and therefore
independent from c.

Finally, we describe the manifold structure of the set of the complete parallel mean
curvature surfaces in CH2[4ρ] as follows: By the moduli space of parallel mean cur-
vature surfaces, wemean the quotient set of all parallelmean curvature surfaces, where
the equivalence relation is given by rigid motions of the target space. By Theorem 3.5,
the moduli space of complete parallel mean curvature surfaces in CP2 reduces to a
point.

If there exists a parallel mean curvature surface of a constant Gaussian curvature in
CH2[4ρ], then ρ satisfies the condition (i)−2b2 ≤ ρ < 0 or (ii) ρ = −3b2 (Hirakawa
2006). For case (i), by Theorem 2.2 and Lemma 3.4, a parallel mean curvature surface
with |H | = 2b in CH2[4ρ], (−2b2 ≤ ρ < 0), is of a constant Kaehler angle, and
hence has a constant Gaussian curvature. Then, the surface is flat (Hirakawa 2006)
and the image is explicitly determined in Hirakawa (2004). For case (ii), if the Kaehler
angle is constant, then the surface is uniquely determined as Chen surface (Chen 1998)
and if the Kaehler angle is not constant, then we have Hirakawa surface (Hirakawa
2006). Applying Theorems 2.2 and 4.1, we get the following:

Theorem 4.3 The moduli space of complete parallel mean curvature surfaces with
|H | = 2b in CH2[−12b2] is the disjoint union of two cones in R3.

Proof Let x : M −→ CH2[−12b2] be a parallel mean curvature surface with |H | =
2b > 0, where it is not assumed that x is of a general type. First, we prove that if
a �= ā at a point of M0, then this holds throughout M0. In fact, suppose that there is
a point u0 ∈ M0 with a = ā at u0. Since the set of points in M0 satisfying a = ā
is not open, as n → ∞, we have a sequence of points un → u0 such that a �= ā at
un . Then, at un , we have (4.1) for a and, in particular, 1 − 4p �= 0. As n tends to
∞, both functions 8 − 9 sin2 α and 2 − p(8 − 9 sin2 α) do not vanish at u0, because,
otherwise, a → −b (un → u0) by the second formula of (4.8), which contradicts
|μ| < ∞ at u0 by (2.11). Consequently, since the imaginary part in (4.1) goes to
zero, we have 1 − 4p = 0, giving a contradiction. We proved that the set of parallel
mean curvature surfaces in CH2[−12b2] is divided by the surfaces with a = ā on
M0 and those with a �= ā on M0. If a complete parallel mean curvature surface with
|H | = 2b in CH2[−12b2] is of a general type, then there are real numbers p (> 0)
and t ∈ [0, π ] such that x = xt,p, p �= 1/4, up to rigid motions of CH2[−12b2]
by Theorem 4.1, i.e., (t, p) are the coordinates of the non-singular part of the moduli
space we now considering. Since x0,p and xπ,p are congruent because c is defined
up to sign, we identify t = 0 and t = π in [0, π ], so we have a circle S

1, and the
moduli space of the surfaces satisfying dα �= 0 and a �= ā is the disjoint union of
S
1 × (0, 1/4) ∪ S

1 × (1/4,∞). When p = 0, up to rigid motions, there is only
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one surface of CH2[−12b2] which is Hirakawa surface, and as p → 1/4−, there is
the one-parameter family {xt,1/4− | t ∈ S

1}. These make a Cone1 in R3, in which
the vertex of the cone is Hirakawa surface and the base of the cone is the circle
{xt,1/4− | t ∈ [0, π ]}. A Cone2 is the one point compactification of infinite cylinder
S
1 × [1/4,∞), where the base of the cone is the circle {xt,1/4+ | t ∈ S

1} and ∞
corresponds to Chen surface, proving Theorem 4.3. 	


Compact parallel mean curvature surfaces with the genus ≤ 1 in CP2 and CH2

are classified in Ogata (1995), Hirakawa (2006), Fetcu (2012) and Kenmotsu (2018).
As a corollary of Theorem 4.3 of this article, we can see that the assumption of the
genus in those classification results is not necessary.

Corollary 4.4 Let M be a two-dimensional compact Riemannian manifold and let
x : M −→ M[4ρ] be an isometric immersionwith a non-zero parallel mean curvature
vector. If ρ �= 0, then both the Kaehler angle and the Gaussian curvature are constant.

Parallel mean curvature surfaces of constant Gaussian curvature are even locally clas-
sified in Hirakawa (2006).

5 Added in Proof

We can state two open problems for parallel mean curvature surfaces which are related
to this article.

1. A parallel mean curvature surface in a higher dimensional complex space-form is
contained in a totally geodesic submanifold of the ambient spacewith codimension
at most 8, if the surface is not totally real (Fetcu 2012, Ferreira and Tribuzy 2014).
Can be the main results of this article, Theorems 3.5 and 4.1, generalized to CPn

and CHn with (3 ≤ n ≤ 5) ?
2. Parallel mean curvature surfaces in S3 × R, H

3 × R, S
2 × S

2, and H2 × H
2 are

studied in Fetcu and Rosenberg (2012) and Torralbo and Urbano (2011). What
are the moduli spaces of the complete parallel mean curvature surfaces in these
ambient spaces ?
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