

Pseudo-parallel surfaces of $\mathbb{S}^n_c \times \mathbb{R}$ and $\mathbb{H}^n_c \times \mathbb{R}$

G. A. Lobos¹ · M. P. Tassi¹ · A. J. Yucra Hancco²

Received: 26 March 2018 / Accepted: 1 November 2018 / Published online: 22 November 2018 © Sociedade Brasileira de Matemática 2018

Abstract

In this work we give a characterization of pseudo-parallel surfaces in $\mathbb{S}_c^n \times \mathbb{R}$ and $\mathbb{H}_c^n \times \mathbb{R}$, extending an analogous result by Asperti-Lobos-Mercuri for the pseudo-parallel case in space forms. Moreover, when n = 3, we prove that any pseudo-parallel surface has flat normal bundle. We also give examples of pseudo-parallel surfaces which are neither semi-parallel nor pseudo-parallel surfaces in a slice. Finally, when $n \ge 4$ we give examples of pseudo-parallel surfaces with non vanishing normal curvature.

Keywords Surface \cdot Parallel \cdot Semi-parallel \cdot Pseudo-parallel $\cdot \lambda$ -Isotropic \cdot Minimal

Mathematics Subject Classification 53B25 · 53C42

1 Introduction

In the theory of submanifolds of a space form, Asperti-Lobos-Mercuri introduced in Asperti et al. (1999) pseudo-parallel submanifolds as a direct generalization of semi-parallel submanifolds in the sense of Deprez (1985), which in turn, are a generalization of parallel submanifolds (extrinsically symmetric in Ferus' terminology) Ferus (1980) (in particular, of umbilical and totally geodesic submanifolds), and as extrinsic analogues of pseudo-symmetric spaces in the sense of Deszcz (1992). They

G. A. Lobos: Partially supported by FAPESP, Grant 2016/23746-6.

M. P. Tassi mtassi@dm.ufscar.br

A. J. Yucra Hancco alvaroyucra@uft.edu.br

¹ Departament of Mathematics, Federal University of São Carlos, São Carlos, SP, Brazil

M. P. Tassi: Partially supported by CAPES, Grant 88881.133043/2016-01.

G. A. Lobos lobos@dm.ufscar.br

² Federal University of Tocantins, Campus Araguaína, Araguaína, TO, Brazil

studied pseudo-parallel surfaces of a space form in Asperti et al. (2002), Lobos (2002), and proved that they are surfaces with flat normal bundle or λ -isotropic surfaces in the sense of O'Neill (1965) (i.e. surfaces whose ellipse of curvature in any point is a circle). In particular, they proved that pseudo-parallel surfaces of space forms with non vanishing normal curvature in codimension 2 are superminimal surfaces in the sense of Bryant (1982) (i.e. surfaces which are minimal and λ -isotropic).

An isometric immersion $f: M^m \to \tilde{M}^n$ is said to be *pseudo-parallel* if its second fundamental form α satisfies the following condition:

$$\tilde{R}(X, Y) \cdot \alpha = \phi(X \wedge Y) \cdot \alpha$$

for some smooth real-valued function ϕ on M^m , where \tilde{R} is the curvature tensor corresponding to the Van der Waerden-Bortolotti connection $\tilde{\nabla}$ of f and $X \wedge Y$ denotes the endomorphism defined by

$$(X \wedge Y)Z = \langle Y, Z \rangle X - \langle X, Z \rangle Y.$$

Considering the product space $\mathbb{Q}_c^n \times \mathbb{R}$ as the ambient space, the first studies of pseudo-parallel submanifolds were started in Lin and Yang (2014) and Lobos and Tassi (2019), where a classification of its hypersurfaces was given, generalizing the classification of parallel and semi-parallel hypersurfaces in Calvaruso et al. (2010) and Van der Veken and Vrancken (2008).

In this work we started the study of pseudo-parallel surfaces in $\mathbb{Q}_c^n \times \mathbb{R}$ (with $c \neq 0$). We begin by observing that any isometric immersion $f : M^2 \to \mathbb{Q}_c^n \times \mathbb{R}$ with flat normal bundle is pseudo-parallel (see Proposition 2.2). So, we state the main result of this work:

Theorem 1.1 Let $f : M^2 \to \mathbb{Q}^n_c \times \mathbb{R}$ be a pseudo-parallel surface which does not have flat normal bundle on any open subset of M^2 . Then $n \ge 4$, f is λ -isotropic and

$$K > \phi, \tag{1.1}$$

$$\lambda^{2} = 4K - 3\phi + c(||T||^{2} - 1) > 0, \qquad (1.2)$$

$$||H||^{2} = 3K - 2\phi + c(||T||^{2} - 1) \ge 0,$$
(1.3)

where K is the Gaussian curvature, λ is a smooth real-valued function on M^2 , H is the mean curvature vector field of f and T is the tangent part of $\frac{\partial}{\partial t}$, the canonical unit vector field tangent to the second factor of $\mathbb{Q}_c^n \times \mathbb{R}$.

Conversely, if f is λ -isotropic then f is pseudo-parallel.

We remark that Theorem 1.1 extends for $\mathbb{Q}_c^n \times \mathbb{R}$ a similar result for pseudo-parallel surfaces into space forms given by Asperti-Lobos-Mercuri in Asperti et al. (2002).

However, the class of pseudo-parallel surfaces in $\mathbb{Q}_c^3 \times \mathbb{R}$ is not empty. In the last section we give examples of semi-parallel surfaces which are not parallel as well as examples of pseudo-parallel surfaces in $\mathbb{S}_c^3 \times \mathbb{R}$ and $\mathbb{H}_c^3 \times \mathbb{R}$ which are neither semi-parallel nor pseudo-parallel surfaces in a slice.

Finally, we remark that pseudo-parallel surfaces in $\mathbb{Q}_c^n \times \mathbb{R}$ with $n \ge 4$ and non vanishing normal curvature do exist, as shown in Examples 4.3, 4.5 and 4.6 in the last section.

2 Preliminaries

First of all, we establish the notation that we use along this work. Let $f: M^m \to \tilde{M}^n$ be an isometric immersion. We decompose the tangent bundle $T\tilde{M}$ of \tilde{M}^n in its tangent and normal parts, as a sum $T\tilde{M} = TM \oplus N_f M$, where TM and $N_f M$ are the tangent bundle of M^m and the normal bundle of f, respectively. Using this notation we consider $\tilde{\nabla} = \nabla \oplus \nabla^{\perp}$ the Van der Waerden-Bortolotti connection of f and $\tilde{R} = R \oplus R^{\perp}$ its curvature tensor. The second fundamental form of f is the symmetric 2-tensor denoted by $\alpha : TM \times TM \to N_f M$. For any $\xi \in N_f M$ the correspondent Weingarten operator in the ξ -direction is denoted by A_{ξ} , that is,

$$\langle \alpha(X, Y), \xi \rangle = \langle A_{\xi} X, Y \rangle$$
, for all $X, Y \in TM$, and $\xi \in N_f M$

The mean curvature vector field of f is denoted by H. Finally, we say that f has flat normal bundle (or vanishing normal curvature) if $R^{\perp} = 0$.

An isometric immersion $f: M^m \to \tilde{M}^n$ is said to be:

1. Totally geodesic if

$$\alpha(X, Y) = 0; \tag{2.1}$$

2. Umbilical if the mean curvature vector field H of f satisfies

$$\alpha(X, Y) = \langle X, Y \rangle H; \tag{2.2}$$

3. Locally parallel if

$$(\tilde{\nabla}_X \alpha)(Y, Z) = 0; \tag{2.3}$$

4. Semi-parallel if

$$(\tilde{R}(X,Y) \cdot \alpha)(Z,W) = 0; \qquad (2.4)$$

5. Pseudo-parallel if

$$(\widehat{R}(X,Y)\cdot\alpha)(Z,W) = \phi[(X\wedge Y)\cdot\alpha](Z,W), \qquad (2.5)$$

for some smooth real-valued function ϕ on M^m and for any vector X, Y, Z and W tangents to M.

Here the notation means

$$(\tilde{\nabla}_X \alpha)(Y, Z) = \nabla_X^{\perp} \alpha(Y, Z) - \alpha(\nabla_X Y, Z) - \alpha(Y, \nabla_X Z),$$

$$(\tilde{R}(X, Y) \cdot \alpha)(Z, W) = R^{\perp}(X, Y)[\alpha(Z, W)] - \alpha(R(X, Y)Z, W)$$

$$- \alpha(Z, R(X, Y)W),$$

$$[(X \wedge Y) \cdot \alpha](Z, W) = -\alpha((X \wedge Y)Z, W) - \alpha(Z, (X \wedge Y)W).$$

A space form \mathbb{Q}_c^n is a simply connected, complete, *n*-dimensional Riemannian manifold with constant sectional curvature *c*. Namely, \mathbb{Q}_c^n is the *n*-dimensional sphere \mathbb{S}_c^n or the *n*-dimensional hyperbolic space \mathbb{H}_c^n , respectively given by

$$\begin{split} \mathbb{S}_{c}^{n} &= \left\{ (x_{1}, x_{2}, \dots, x_{n+1}) \in \mathbb{R}^{n+1}; \sum_{i=1}^{n+1} x_{i}^{2} = \frac{1}{c} \right\}, & \text{if } c > 0, \\ \mathbb{H}_{c}^{n} &= \left\{ (x_{1}, x_{2}, \dots, x_{n+1}) \in \mathbb{L}^{n+1}; -x_{1}^{2} + \sum_{i=2}^{n+1} x_{i}^{2} = \frac{1}{c}, x_{1} > 0 \right\}, & \text{if } c < 0, \end{split}$$

where \mathbb{L}^{n+1} is the (n + 1)-dimensional Minkowski space, that is, the (n + 1)-dimensional euclidean space \mathbb{R}^{n+1} endowed with the inner product

$$\langle (x_1, x_2, \dots, x_{n+1}), (y_1, y_2, \dots, y_{n+1}) \rangle = -x_1 y_1 + \sum_{i=2}^{n+1} x_i y_i.$$

This work is devoted to the study of these classes of surfaces with $\mathbb{Q}_c^n \times \mathbb{R}$ as the ambient space and we always assume $c \neq 0$. Thus, let $\frac{\partial}{\partial t}$ be the canonical unit vector field tangent to the second factor of $\mathbb{Q}_c^n \times \mathbb{R}$. For a given isometric immersion $f: M^2 \to \mathbb{Q}_c^n \times \mathbb{R}$, it is convenient to consider the following decomposition of $\frac{\partial}{\partial t}$ in its tangent and normal parts:

$$\frac{\partial}{\partial t} = f_* T + \eta, \qquad (2.6)$$

for some $T \in TM$ and some $\eta \in N_f M$.

Another tools we make use are the Fundamental Equations for a surface $f : M^2 \rightarrow \mathbb{Q}_c^n \times \mathbb{R}$ and now we recall them. Let $\{e_1, e_2\}$ be an orthonormal local frame for M^2 and set $\alpha_{ij} = \alpha(e_i, e_j)$. By δ_{ij} we mean the Kronecker's Delta. From Mendonça and Tojeiro (2013) we have the following equations: GAUSS:

$$R(e_1, e_2)e_k = c(\delta_{2k}e_1 - \delta_{1k}e_2 - \langle e_2, T \rangle \langle e_k, T \rangle e_1 + \delta_{1k} \langle e_2, T \rangle T - \delta_{2k} \langle e_1, T \rangle T + \langle e_1, T \rangle \langle e_k, T \rangle e_2) + A_{\alpha_{2k}}e_1 - A_{\alpha_{1k}}e_2.$$
(2.7)

CODAZZI:

$$(\tilde{\nabla}_{e_1}\alpha)(e_2, e_k) - (\tilde{\nabla}_{e_2}\alpha)(e_1, e_k) = c(\delta_{1k}\langle e_2, T \rangle - \delta_{2k}\langle e_1, T \rangle)\eta \qquad (2.8)$$

RICCI:

$$R^{\perp}(e_1, e_2)\xi = \alpha(e_1, A_{\xi}e_2) - \alpha(A_{\xi}e_1, e_2).$$
(2.9)

It follows from the Ricci equation that

 $R^{\perp}(e_1, e_2)\xi \in \operatorname{span}\{\alpha(X, Y); X, Y \in TM\}, \text{ for all } \xi \in N_f M(x).$

Thus, the equation (2.9) is equivalent to the following equation:

$$R^{\perp}(e_1, e_2)\alpha_{ij} = \langle \alpha_{12}, \alpha_{ij} \rangle (\alpha_{11} - \alpha_{22}) + \langle \alpha_{22} - \alpha_{11}, \alpha_{ij} \rangle \alpha_{12}.$$
(2.10)

On the other hand, the pseudo-parallelism condition is equivalent to the following two equations:

$$R^{\perp}(e_1, e_2)\alpha_{ii} = (-1)^i 2(K - \phi)\alpha_{12}, \qquad (2.11)$$

$$R^{\perp}(e_1, e_2)\alpha_{12} = (K - \phi)(\alpha_{11} - \alpha_{22}), \qquad (2.12)$$

where

$$K = c(1 - ||T||^2) + \langle \alpha_{11}, \alpha_{22} \rangle - ||\alpha_{12}||^2$$
(2.13)

is the Gaussian curvature of M^2 . As a consequence, we have the next lemma.

Lemma 2.1 Let $f : M^2 \to \mathbb{Q}^n_c \times \mathbb{R}$ be a pseudo-parallel surface. Then $R^{\perp}(X, Y)H = 0$, for all $X, Y \in TM$.

Proof Immediate by equation (2.11), since $H = \frac{1}{2}(\alpha_{11} + \alpha_{22})$.

Proposition 2.2 Let $f: M^2 \to \mathbb{Q}^n_c \times \mathbb{R}$ be a surface with flat normal bundle. Then f is a pseudo-parallel immersion.

Proof Since f has flat normal bundle, by equations (2.11) and (2.12) we conclude that f is ϕ -pseudo-parallel by taking $\phi = K$, where K is the Gaussian curvature of M^2 .

In the following, we have two propositions that is useful to construct examples of pseudo-parallel surfaces.

Proposition 2.3 Let $f : M^m \to \mathbb{Q}_c^n$ be an isometric immersion and let $j : \mathbb{Q}_c^n \to \mathbb{Q}_c^n \times \mathbb{R}$ be a totally geodesic immersion. If f is ϕ -pseudo-parallel, then $j \circ f$ is ϕ -pseudo-parallel.

Proof In this proof, we denote the second fundamental form of f and $j \circ f$ respectively by α^f and $\alpha^{j \circ f}$. In the same way, we denote the normal curvature tensors of f and $j \circ f$ respectively by R_f^{\perp} and $R_{j \circ f}^{\perp}$. Since j is a totally geodesic immersion, we have the following relations:

$$\alpha^{j \circ f}(Z, W) = j_* \alpha^f(Z, W),$$

$$R^{\perp}_{j \circ f}(X, Y) \alpha^{j \circ f}(Z, W) = j_* R^{\perp}_f(X, Y) \alpha^f(Z, W),$$

Therefore, applying Definition 2.5 we obtain

$$\begin{split} (\tilde{R}(X,Y) \cdot \alpha^{j \circ f})(Z,W) &= R_{j \circ f}^{\perp}(X,Y) \alpha^{j \circ f}(Z,W) - \alpha^{j \circ f}(R(X,Y)Z,W) \\ &- \alpha^{j \circ f}(Z,R(X,Y)W) \\ &= j_* R_f^{\perp}(X,Y) \alpha^f(Z,W) - j_* \alpha^f(R(X,Y)Z,W) \end{split}$$

$$\begin{split} &-j_*\alpha^f(Z, R(X, Y)W) \\ &= \phi\{-j_*\alpha^f((X \wedge Y)Z, W) - j_*\alpha^f(Z, (X \wedge Y)W)\} \\ &= \phi\{-\alpha^{j \circ f}((X \wedge Y)Z, W) - \alpha^{j \circ f}(Z, (X \wedge Y)W)\} \\ &= \phi[(X \wedge Y) \cdot \alpha^{j \circ f}](Z, W). \end{split}$$

Proposition 2.4 Let $f : M^m \to \mathbb{Q}^n_c \times \mathbb{R}$ be an isometric immersion and let $j : \mathbb{Q}^n_c \times \mathbb{R} \to \mathbb{Q}^{n+l}_c \times \mathbb{R}$ be a totally geodesic immersion. If f is ϕ -pseudo-parallel, then $j \circ f$ is ϕ -pseudo-parallel.

Proof Is analogous to that of Proposition 2.3.

3 Proof of the main theorem

Before we give a proof of Theorem 1.1 we recall that $f: M^2 \to \mathbb{Q}_c^n \times \mathbb{R}$ is a λ -isotropic surface if, for each $x \in M$, the ellipse of curvature $\{\alpha(X, X) \in N_f M(x); X \in T_x M \text{ with } ||X|| = 1\}$ is a sphere with radius $\lambda(x)$, where $\lambda: M^2 \to \mathbb{R}$ is a smooth function. The following result, due to Sakaki in Sakaki (2015) plays a vital role in the proof of Theorem 1.1. Its statement is:

Theorem 3.1 (see Sakaki (2015)) Let $f : M^2 \to \mathbb{Q}^3_c \times \mathbb{R}$ be a minimal surface with $c \neq 0$. If f is λ -isotropic, then f is totally geodesic.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 Let us suppose that $f: M^2 \to \mathbb{Q}^n_c \times \mathbb{R}$ is pseudo-parallel with non vanishing normal curvature. Combining equations (2.10) to (2.13) we get

$$\langle \alpha_{12}, \alpha_{ii} \rangle (\alpha_{11} - \alpha_{22}) + \{2(-1)^{i+1}(K - \phi) + \langle \alpha_{ii}, \alpha_{22} - \alpha_{11} \rangle \} \alpha_{12} = 0, \quad (3.1)$$

$$\{\|\alpha_{12}\|^2 + (\phi - K)\}(\alpha_{11} - \alpha_{22}) + \langle \alpha_{22} - \alpha_{11}, \alpha_{12} \rangle \alpha_{12} = 0.$$
(3.2)

Next, we prove that $\{\alpha_{12}, \alpha_{11} - \alpha_{22}\}$ is linearly independent. We can suppose $\phi \neq K$. Otherwise, since $\langle R^{\perp}(e_1, e_2)\xi, \zeta \rangle = -\langle R^{\perp}(e_1, e_2)\zeta, \xi \rangle$, by the equations (2.11) and (2.12) we would have $R^{\perp} = 0$, which is a contradiction. Notice that $\alpha_{12} \neq 0$ and $\alpha_{11} \neq \alpha_{22}$. In fact, if $\alpha_{12} = 0$ then $R^{\perp}(e_1, e_2)\alpha_{12} = 0$ which implies by equation (2.12) that $\alpha_{11} = \alpha_{22}$, and in this case *f* is umbilical and has flat normal bundle, a contradiction. If $\alpha_{11} - \alpha_{22} = 0$, then $R^{\perp}(e_1, e_2)(\alpha_{11} - \alpha_{22}) = 0$, which implies by equation (2.11) that $\alpha_{12} = 0$.

Assume that there exist $\lambda, \mu \in \mathbb{R}$ such that $\lambda \alpha_{12} + \mu(\alpha_{11} - \alpha_{22}) = 0$. Then, by equations (2.11) and (2.12) we get $\lambda(\alpha_{11} - \alpha_{22}) - 4\mu\alpha_{12} = 0$. If $\mu \neq 0$ then $(\alpha_{11} - \alpha_{22}) = \frac{-\lambda}{\mu}\alpha_{12}$ and thus $(\frac{-\lambda^2}{\mu} - 4\mu)\alpha_{12} = 0$, which lead us to $\lambda^2 = -4\mu^2 < 0$, a contradiction. So $\mu = 0$, and therefore $\lambda = 0$.

Using this and equations (3.1) and (3.2) we obtain

$$\langle \alpha_{12}, \alpha_{11} \rangle = \langle \alpha_{12}, \alpha_{22} \rangle = 0, \qquad (3.3)$$

$$\langle \alpha_{22} - \alpha_{11}, \alpha_{ii} \rangle = (-1)^i 2(K - \phi),$$
 (3.4)

$$\|\alpha_{12}\|^2 = K - \phi > 0. \tag{3.5}$$

From the equation (2.13) we get

$$\langle \alpha_{11}, \alpha_{22} \rangle = 2K - \phi + c(||T||^2 - 1),$$
 (3.6)

$$\|\alpha_{11}\|^2 = \|\alpha_{22}\|^2 = 4K - 3\phi + c(\|T\|^2 - 1) > 0,$$
(3.7)

$$\|\alpha_{11} - \alpha_{22}\|^2 = 4(K - \phi) > 0, \qquad (3.8)$$

$$||H||^{2} = 3K - 2\phi + c(||T||^{2} - 1).$$
(3.9)

In particular, f is λ -isotropic with $\lambda^2 = 4K - 3\phi + c(||T||^2 - 1)$.

Now, we prove that $n \ge 4$. Suppose that n = 3. Since f has non flat normal bundle, for any $x \in M^2$ we have that $R^{\perp}(x)(e_1, e_2) : N_f M(x) \to N_f M(x)$ is a non zero antisymmetric linear operator, defined in a two-dimensional vector space. Thus, by Lemma 2.1 we conclude that H(x) = 0. But from Theorem 3.1, we conclude that f is totally geodesic and in particular, $R^{\perp}(x) = 0$, which is a contradiction.

Conversely, let us assume that f is λ -isotropic. Set $X = \cos \theta e_1 + \sin \theta e_2$. Then

$$\lambda^{2} = \|\alpha(X, X)\|^{2}$$

= $(\cos^{4}\theta + \sin^{4}\theta)\lambda^{2} + 2\sin^{2}\theta\cos^{2}\theta\langle\alpha_{11}, \alpha_{22}\rangle$
+ $4\sin^{3}\theta\cos\theta\langle\alpha_{22}, \alpha_{12}\rangle + 4\sin\theta\cos^{3}\theta\langle\alpha_{11}, \alpha_{12}\rangle$
+ $4\sin^{2}\theta\cos^{2}\theta\|\alpha_{12}\|^{2}$.

Since λ does not depend on θ , taking the derivative with respect to θ we get

$$0 = \left. \frac{d\lambda^2}{d\theta} \right|_{\theta=0} = \frac{d}{d\theta} (\|\alpha(X, X)\|^2)|_{\theta=0} = 4\langle \alpha_{11}, \alpha_{12} \rangle,$$

$$0 = \left. \frac{d\lambda^2}{d\theta} \right|_{\theta=\frac{\pi}{2}} = \frac{d}{d\theta} (\|\alpha(X, X)\|^2)|_{\theta=\frac{\pi}{2}} = -4\langle \alpha_{22}, \alpha_{12} \rangle.$$

On the other hand, with $Y = \frac{1}{\sqrt{2}}(e_1 + e_2)$ we get

$$\lambda^{2} = \|\alpha(Y, Y)\|^{2}$$

= $\frac{1}{4} \{ 2\lambda^{2} + 4 \|\alpha_{12}\|^{2} + 2\langle \alpha_{11}, \alpha_{22} \rangle \},$

that is,

$$\lambda^{2} = 2 \|\alpha_{12}\|^{2} + \langle \alpha_{11}, \alpha_{22} \rangle$$

Using this and the Gauss equation we get

$$\|\alpha_{12}\|^2 = \frac{1}{3} \{\lambda^2 - K + c(1 - \|T\|^2)\}.$$

From the Ricci equation $R^{\perp}(e_1, e_2)\alpha_{ii} = \langle \alpha_{22} - \alpha_{11}, \alpha_{ii} \rangle \alpha_{12}, i = 1, 2$, we obtain

$$R^{\perp}(e_1, e_2)\alpha_{ii} = \langle \alpha_{22} - \alpha_{11}, \alpha_{ii} \rangle \alpha_{12}$$

= $(-1)^i 2 \|\alpha_{12}\|^2 \alpha_{12}$
= $(-1)^i \frac{2}{3} \{\lambda^2 - K + c(1 - \|T\|^2)\} \alpha_{12}$

Using the Ricci equation once more we obtain

$$R^{\perp}(e_1, e_2)\alpha_{12} = \|\alpha_{12}\|^2 (\alpha_{11} - \alpha_{22})$$

= $\frac{1}{3} \{\lambda^2 - K + c(1 - \|T\|^2)\} (\alpha_{11} - \alpha_{22}).$

Therefore, taking $\phi = \frac{4K - \lambda^2 + c(||T||^2 - 1)}{3}$, we conclude that *f* is pseudo-parallel according to equations (2.11) and (2.12).

4 Some Examples

We now introduce the first examples of semi-parallel and pseudo-parallel surfaces of $\mathbb{Q}_c^3 \times \mathbb{R}$ which are not locally parallel and semi-parallel, respectively, and that are not just inclusions of surfaces of \mathbb{Q}_c^3 into $\mathbb{Q}_c^3 \times \mathbb{R}$.

Example 4.1 A general construction of submanifolds of $\mathbb{Q}_c^n \times \mathbb{R}$ with flat normal bundle and *T* as a principal direction can be found in Mendonça and Tojeiro (2014), by Mendonça-Tojeiro. For our purpose, based on this work, the construction becomes: let $g : J \to \mathbb{Q}_c^3$ be a regular curve and $\{\xi_1, \xi_2\}$ an orthonormal set of vector fields normal to *g*. Put

$$\begin{split} \tilde{g} &= i \circ j \circ g, \\ \tilde{\xi}_k &= i_* j_* \xi_k, \quad \text{for } k \in \{1, 2\}, \\ \tilde{\xi}_0 &= \tilde{g}, \quad \tilde{\xi}_3 &= i_* \frac{\partial}{\partial t}, \end{split}$$

where $j : \mathbb{Q}_c^3 \to \mathbb{Q}_c^3 \times \mathbb{R}$ and $i : \mathbb{Q}_c^3 \times \mathbb{R} \to \mathbb{E}^5$ are the canonical inclusions. If $\alpha = (\alpha_0, \alpha_1, \alpha_2, \alpha_3) : I \to \mathbb{Q}_c^2 \times \mathbb{R}$ is a smooth regular curve with $\alpha'_3(s) \neq 0$, $\forall s \in I$, we have the following isometric immersion $f : M^2 = J \times I \to \mathbb{Q}_c^3 \times \mathbb{R}$ given by

$$\tilde{f}(x,s) = (i \circ f)(x,s) = \sum_{k=0}^{3} \alpha_k(s) \tilde{\xi}_k(x).$$
 (4.1)

At regular points, f is an isometric immersion with flat normal bundle and T as a principal direction. Conversely, if $f: M^2 \to \mathbb{Q}_c^3 \times \mathbb{R}$ is an isometric immersion with flat normal bundle and T as a principal direction, then f is given by (4.1) for some

isometric immersion $g : \mathbb{Q}_c^3 \times \mathbb{R}$ and some smooth regular curve $\alpha : I \to \mathbb{Q}_c^2 \times \mathbb{R}$ whose its last coordinate has non vanishing derivative.

Geometrically, f is obtained by parallel transporting a curve in a product submanifold $\mathbb{Q}_c^2 \times \mathbb{R}$ of a fixed normal space of \tilde{g} with respect to its normal connection.

In particular, when dealing with pseudo-parallel surfaces in $\mathbb{Q}^3_c \times \mathbb{R}$, at least those that have *T* as a principal direction are fully described by this method.

We now construct two simple examples. Let us define

$$C_c(s) = \begin{cases} \cos(s), & \text{if } c > 0\\ \cosh(s), & \text{if } c < 0 \end{cases} \text{ and } S_c(s) = \begin{cases} \sin(s), & \text{if } c > 0\\ \sinh(s), & \text{if } c < 0. \end{cases}$$

By taking

$$\begin{split} \tilde{g}(x) &= (C_c(\theta(x)), S_c(\theta(x)), 0, 0, 0), \\ \tilde{\xi}_1(x) &= (0, 0, 1, 0, 0), \quad \tilde{\xi}_2(x) = (0, 0, 0, 1, 0), \\ \alpha_0(s) &= \sqrt{1 - \operatorname{sgn}(c)d^2}, \quad \alpha_1(s) = d\cos s, \quad \alpha_2(s) = d\sin s, \quad \alpha_3(s) = s. \end{split}$$

where 0 < d < 1, if c > 0, or d > 0, if c < 0, and $\theta : \mathbb{R}^2 \to \mathbb{R}$ is the smooth function given by

$$\theta(u) = \frac{u}{\sqrt{1 - \operatorname{sgn}(c)d^2}}.$$

we obtain a semi-parallel surface in $\mathbb{Q}^3_c \times \mathbb{R}$ that is not locally parallel.

Another example can be obtained by taking 0 < d < 1 and

$$\begin{split} \tilde{g}(x) &= (0, \cos(x), \sin(x), 0, 0, 0), \\ \tilde{\xi}_1(x) &= (1, 0, 0, 0, 0), \quad \tilde{\xi}_2(x) = (0, 0, 0, 1, 0), \\ \alpha_0(s) &= dS_c(s), \quad \alpha_1(s) = dC_c(s), \quad \alpha_2(s) = \sqrt{\operatorname{sgn}(c)(1 - d^2)}, \quad \alpha_3(s) = s, \end{split}$$

where the surface obtained is pseudo-parallel in $\mathbb{Q}_c^3 \times \mathbb{R}$ but not semi-parallel since its Gaussian curvature does not vanish. Also, notice that it is not contained in a totally geodesic slice of the form $\mathbb{Q}_c^3 \times \{t\}$, for some $t \in \mathbb{R}$.

Question 4.2 Are there other examples, up to isometries, of pseudo-parallel surfaces in $\mathbb{Q}_c^3 \times \mathbb{R}$ ($c \neq 0$), for which *T* is not a principal direction?

The next three examples show us that for n > 3 there exists pseudo-parallel surfaces with non vanishing normal curvature.

Example 4.3 Let $f : \mathbb{S}^2_{1/3} \to \mathbb{S}^4_1$ be the classical Veronese surface, given by

$$f(x, y, z) = \left(\frac{1}{\sqrt{3}}xy, \frac{1}{\sqrt{3}}xz, \frac{1}{\sqrt{3}}yz, \frac{1}{2\sqrt{3}}(x^2 - y^2), \frac{1}{6}(x^2 + y^2 - 2z^2)\right),$$

Deringer

which is a locally parallel, minimal and λ -isotropic immersion (as we can see in Chern et al. (1970), Itoh and Ogiue (1973) and Sakamoto (1977)) in \mathbb{S}_1^4 with non vanishing normal curvature. If $i : \mathbb{S}_1^4 \to \mathbb{S}_1^4 \times \mathbb{R}$ is the totally geodesic inclusion given by i(x) = (x, 0), then by Proposition 2.3 we have that $i \circ f$ is a pseudo-parallel immersion in $\mathbb{S}_1^4 \times \mathbb{R}$ with non vanishing normal curvature.

Conjecture 4.4 *The only minimal pseudo-parallel surface in* $\mathbb{Q}_c^4 \times \mathbb{R}$ *with non vanishing normal curvature and constant* ϕ *are these of Example* 4.3.

Example 4.5 It's known by Chern in Chern (1970) that: "Any minimal immersion of a topological 2-sphere \mathbb{S}^2 into \mathbb{S}_c^4 is a superminimal immersion". So, by Theorem 1.1, we have that any minimal immersion of a topological 2-sphere into a slice of $\mathbb{S}_c^4 \times \mathbb{R}$ whit non vanishing normal curvature is pseudo-parallel with $\phi = \frac{4K - c - \lambda^2}{3}$. Moreover, if the Gaussian curvature is not constant, the immersion is not semi-parallel.

Example 4.6 Let $f : \mathbb{R}^2 \to \mathbb{S}^5_c$ be the surface given by

$$f(x, y) = \frac{2}{\sqrt{6c}} \left(\cos u \cos v, \cos u \sin v, \frac{\sqrt{2}}{2} \cos(2u), \sin u \cos v, \\ \sin u \sin v, \frac{\sqrt{2}}{2} \sin(2u) \right),$$

where $u = \sqrt{\frac{c}{2}}x$, $v = \frac{\sqrt{6c}}{2}y$.

This example, that appears in Sakamoto (1989), is a minimal λ -isotropic flat torus with $\lambda = \sqrt{\frac{c}{2}}$ and non vanishing normal curvature. In particular, f is a pseudo-parallel immersion in \mathbb{S}_c^5 with $\phi = \frac{-c}{2}$.

Thus, if $i : \mathbb{S}_c^5 \to \mathbb{S}_c^5 \times \mathbb{R}$ is the totally geodesic inclusion given by i(x) = (x, 0), by Proposition 2.3 we have that $i \circ f$ is a pseudo-parallel immersion in $\mathbb{S}_c^5 \times \mathbb{R}$ with non vanishing normal curvature.

Acknowledgements The authors are thankful to the referee for their valuable comments and suggestions towards the improvement of this work.

References

- Asperti, A.C., Lobos, G.A., Mercuri, F.: Pseudo-parallel immersions of a space form. Mat. Contemp. 17, 59–70 (1999)
- Asperti, A.C., Lobos, G.A., Mercuri, F.: Pseudo-parallel submanifolds of a space form. Adv. Geom. 2, 57–71 (2002)
- Asperti, A.C., Mercuri, F.: Semi-parallel immersions into space forms. Boll. Un. Mat. Ital. 8, 883–895 (1994)
- Bryant, R.: Conformal and minimal immersions of compact surfaces into the 4-sphere. J. Diff. Geom. 17, 455–473 (1982)
- Calvaruso, G., Kowalczyk, D., Van der Veken, J.: On extrinsically symmetric hypersurfaces of $\mathbb{H}^n \times \mathbb{R}$. Bull. Aust. Math. Soc. 82, 390–400 (2010)

- Chern, S.S.: On minimal spheres in the four-sphere. In: Studies and Essays (Presented to Yu-why Chen on his 60th Birthday, April 1, 1970), Math. Res. Center, Nat. Taiwan Univ., Taipei, pp. 137–150 (1970)
- Chern, S.S.: do Carmo, M.P., Kobayashi, S.: Minimal submanifolds of a sphere with second fundamental form of constant length. In: Browder, F.E. (ed.) Functional Analysis and Related Fields, pp. 59–75. Springer, Berlin (1970)
- Deprez, J.: Semiparallel surfaces in Euclidean space. J. Geom. 25, 192-200 (1985)
- Deszcz, R.: On pseudosymmetric spaces. Bull. Soc. Math. Belg. Sér. A 44, 1-34 (1992)
- Lin, F., Yang, B.: Pseudo-parallel hypersurfaces of $\mathbb{S}^n \times \mathbb{R}$ and $\mathbb{H}^n \times \mathbb{R}$. JP J. Geom. Topol. **15**(2), 99–111 (2014)
- Ferus, D.: Symmetric submanifolds of Euclidean space. Math. Ann. 247, 81-93 (1980)
- Itoh, T., Ogiue, K.: Isotropic immersion. J. Differ. Geom. 8, 305-316 (1973)
- Lobos, G.A.: Pseudo-parallel surfaces in space forms. Differential Geometry, Valencia 2001. World Scientific Publications, River Edge (2002)
- Lobos, G.A., Tassi, M.P.: A classification of pseudo-parallel hypersurfaces of $\mathbb{S}^n \times \mathbb{R}$ and $\mathbb{H}^n \times \mathbb{R}$. Differ. Geom. Appl. **62**, 72–82 (2019)
- Mendonça, B., Tojeiro, R.: Submanifolds of products of space forms. Indiana Univ. Math. J. 62(4), 1283– 1314 (2013)
- Mendonça, B., Tojeiro, R.: Umbilical submanifolds of $\mathbb{S}^n \times \mathbb{R}$. Can. J. Math. **66**, 400–428 (2014)
- O'Neill, B.: Isotropic and Kähler immersions. Canad. J. Math. 17, 907-915 (1965)
- Sakaki, M.: On the curvature ellipse of minimal surfaces in $N^3(c) \times \mathbb{R}$. Bull. Belg. Math. Soc. Simon Stevin **22**, 165–172 (2015)
- Sakamoto, K.: Constant isotropic surfaces in 5-dimensional space forms. Geometria Dedicata **29**, 293–306 (1989)
- Sakamoto, K.: Planar geodesic immersions. Tohoku Math. J. 29, 25–56 (1977)
- Van der Veken, J., Vrancken, L.: Parallel and semi-parallel hypersurfaces of $\mathbb{S}^n \times \mathbb{R}$. Bull. Braz. Math. Soc. **39**, 355370 (2008)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.