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Abstract
In thisworkwegive a characterizationof pseudo-parallel surfaces inSnc×R andHn

c×R,
extending an analogous result by Asperti-Lobos-Mercuri for the pseudo-parallel case
in space forms. Moreover, when n = 3, we prove that any pseudo-parallel surface
has flat normal bundle. We also give examples of pseudo-parallel surfaces which are
neither semi-parallel nor pseudo-parallel surfaces in a slice. Finally, when n ≥ 4 we
give examples of pseudo-parallel surfaces with non vanishing normal curvature.

Keywords Surface · Parallel · Semi-parallel · Pseudo-parallel · λ-Isotropic · Minimal

Mathematics Subject Classification 53B25 · 53C42

1 Introduction

In the theory of submanifolds of a space form, Asperti-Lobos-Mercuri introduced
in Asperti et al. (1999) pseudo-parallel submanifolds as a direct generalization of
semi-parallel submanifolds in the sense of Deprez (1985), which in turn, are a gen-
eralization of parallel submanifolds (extrinsically symmetric in Ferus’ terminology)
Ferus (1980) (in particular, of umbilical and totally geodesic submanifolds), and as
extrinsic analogues of pseudo-symmetric spaces in the sense of Deszcz (1992). They
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studied pseudo-parallel surfaces of a space form in Asperti et al. (2002), Lobos (2002),
and proved that they are surfaces with flat normal bundle or λ-isotropic surfaces in
the sense of O’Neill (1965) (i.e. surfaces whose ellipse of curvature in any point is
a circle). In particular, they proved that pseudo-parallel surfaces of space forms with
non vanishing normal curvature in codimension 2 are superminimal surfaces in the
sense of Bryant (1982) (i.e. surfaces which are minimal and λ-isotropic).

An isometric immersion f : Mm → M̃n is said to be pseudo-parallel if its second
fundamental form α satisfies the following condition:

R̃(X ,Y ) · α = φ(X ∧ Y ) · α,

for some smooth real-valued function φ on Mm , where R̃ is the curvature tensor
corresponding to theVan derWaerden-Bortolotti connection ∇̃ of f and X∧Y denotes
the endomorphism defined by

(X ∧ Y )Z = 〈Y , Z〉X − 〈X , Z〉Y .

Considering the product space Q
n
c × R as the ambient space, the first studies of

pseudo-parallel submanifolds were started in Lin and Yang (2014) and Lobos and
Tassi (2019), where a classification of its hypersurfaces was given, generalizing the
classification of parallel and semi-parallel hypersurfaces in Calvaruso et al. (2010)
and Van der Veken and Vrancken (2008).

In this workwe started the study of pseudo-parallel surfaces inQn
c ×R (with c �= 0).

We begin by observing that any isometric immersion f : M2 → Q
n
c × R with flat

normal bundle is pseudo-parallel (see Proposition 2.2). So, we state the main result of
this work:

Theorem 1.1 Let f : M2 → Q
n
c × R be a pseudo-parallel surface which does not

have flat normal bundle on any open subset of M2. Then n ≥ 4, f is λ-isotropic and

K > φ, (1.1)

λ2 = 4K − 3φ + c(‖T ‖2 − 1) > 0, (1.2)

‖H‖2 = 3K − 2φ + c(‖T ‖2 − 1) ≥ 0, (1.3)

where K is the Gaussian curvature, λ is a smooth real-valued function on M2, H is
the mean curvature vector field of f and T is the tangent part of ∂

∂t , the canonical
unit vector field tangent to the second factor of Qn

c × R.
Conversely, if f is λ-isotropic then f is pseudo-parallel.

We remark that Theorem 1.1 extends forQn
c ×R a similar result for pseudo-parallel

surfaces into space forms given by Asperti-Lobos-Mercuri in Asperti et al. (2002).
However, the class of pseudo-parallel surfaces in Q

3
c × R is not empty. In the last

section we give examples of semi-parallel surfaces which are not parallel as well
as examples of pseudo-parallel surfaces in S

3
c × R and H

3
c × R which are neither

semi-parallel nor pseudo-parallel surfaces in a slice.
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Finally, we remark that pseudo-parallel surfaces in Q
n
c × R with n ≥ 4 and non

vanishing normal curvature do exist, as shown in Examples 4.3, 4.5 and 4.6 in the last
section.

2 Preliminaries

First of all, we establish the notation that we use along this work. Let f : Mm → M̃n

be an isometric immersion.We decompose the tangent bundle T M̃ of M̃n in its tangent
and normal parts, as a sum T M̃ = T M ⊕ N f M , where T M and N f M are the tangent
bundle ofMm and the normal bundle of f , respectively.Using this notationwe consider
∇̃ = ∇ ⊕ ∇⊥ the Van der Waerden-Bortolotti connection of f and R̃ = R ⊕ R⊥ its
curvature tensor. The second fundamental form of f is the symmetric 2-tensor denoted
byα : T M×T M → N f M . For any ξ ∈ N f M the correspondentWeingarten operator
in the ξ -direction is denoted by Aξ , that is,

〈α(X ,Y ), ξ 〉 = 〈Aξ X ,Y 〉, for all X ,Y ∈ T M, and ξ ∈ N f M .

The mean curvature vector field of f is denoted by H . Finally, we say that f has flat
normal bundle (or vanishing normal curvature) if R⊥ = 0.

An isometric immersion f : Mm → M̃n is said to be:

1. Totally geodesic if
α(X ,Y ) = 0; (2.1)

2. Umbilical if the mean curvature vector field H of f satisfies

α(X ,Y ) = 〈X ,Y 〉H ; (2.2)

3. Locally parallel if
(∇̃Xα)(Y , Z) = 0; (2.3)

4. Semi-parallel if
(R̃(X ,Y ) · α)(Z ,W ) = 0; (2.4)

5. Pseudo-parallel if

(R̃(X ,Y ) · α)(Z ,W ) = φ[(X ∧ Y ) · α](Z ,W ), (2.5)

for some smooth real-valued function φ on Mm and for any vector X ,Y ,Z and W
tangents to M .

Here the notation means

(∇̃Xα)(Y , Z) = ∇⊥
X α(Y , Z) − α(∇XY , Z) − α(Y ,∇X Z),

(R̃(X ,Y ) · α)(Z ,W ) = R⊥(X ,Y )[α(Z ,W )] − α(R(X ,Y )Z ,W )

− α(Z , R(X ,Y )W ),

[(X ∧ Y ) · α](Z ,W ) = −α((X ∧ Y )Z ,W ) − α(Z , (X ∧ Y )W ).
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A space form Q
n
c is a simply connected, complete, n-dimensional Riemannian

manifold with constant sectional curvature c. Namely,Qn
c is the n-dimensional sphere

S
n
c or the n-dimensional hyperbolic space Hn

c , respectively given by

S
n
c =

{
(x1, x2, . . . , xn+1) ∈ R

n+1;
n+1∑
i=1

x2i = 1

c

}
, if c > 0,

H
n
c =

{
(x1, x2, . . . , xn+1) ∈ L

n+1;−x21 +
n+1∑
i=2

x2i = 1

c
, x1 > 0

}
, if c < 0,

where L
n+1 is the (n + 1)-dimensional Minkowski space, that is, the (n + 1)-

dimensional euclidean space Rn+1 endowed with the inner product

〈(x1, x2, . . . , xn+1), (y1, y2, . . . , yn+1)〉 = −x1y1 +
n+1∑
i=2

xi yi .

This work is devoted to the study of these classes of surfaces with Q
n
c × R as

the ambient space and we always assume c �= 0. Thus, let ∂
∂t be the canonical unit

vector field tangent to the second factor of Qn
c × R. For a given isometric immersion

f : M2 → Q
n
c ×R, it is convenient to consider the following decomposition of ∂

∂t in
its tangent and normal parts:

∂

∂t
= f∗T + η, (2.6)

for some T ∈ T M and some η ∈ N f M .
Another tools we make use are the Fundamental Equations for a surface f : M2 →

Q
n
c × R and now we recall them. Let {e1, e2} be an orthonormal local frame for M2

and set αi j = α(ei , e j ). By δi j we mean the Kronecker’s Delta. From Mendonça and
Tojeiro (2013) we have the following equations:
Gauss:

R(e1, e2)ek = c(δ2ke1 − δ1ke2 − 〈e2, T 〉〈ek, T 〉e1 + δ1k〈e2, T 〉T
− δ2k〈e1, T 〉T + 〈e1, T 〉〈ek, T 〉e2) + Aα2k e1 − Aα1k e2. (2.7)

Codazzi:

(∇̃e1α)(e2, ek) − (∇̃e2α)(e1, ek) = c(δ1k〈e2, T 〉 − δ2k〈e1, T 〉)η (2.8)

Ricci:
R⊥(e1, e2)ξ = α(e1, Aξ e2) − α(Aξ e1, e2). (2.9)

It follows from the Ricci equation that

R⊥(e1, e2)ξ ∈ span{α(X ,Y ); X ,Y ∈ T M}, for all ξ ∈ N f M(x).
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Thus, the equation (2.9) is equivalent to the following equation:

R⊥(e1, e2)αi j = 〈α12, αi j 〉(α11 − α22) + 〈α22 − α11, αi j 〉α12. (2.10)

On the other hand, the pseudo-parallelism condition is equivalent to the following two
equations:

R⊥(e1, e2)αi i = (−1)i2(K − φ)α12, (2.11)

R⊥(e1, e2)α12 = (K − φ)(α11 − α22), (2.12)

where
K = c(1 − ‖T ‖2) + 〈α11, α22〉 − ‖α12‖2 (2.13)

is the Gaussian curvature of M2. As a consequence, we have the next lemma.

Lemma 2.1 Let f : M2 → Q
n
c ×R be a pseudo-parallel surface. Then R⊥(X ,Y )H =

0, for all X ,Y ∈ T M.

Proof Immediate by equation (2.11), since H = 1
2 (α11 + α22). ��

Proposition 2.2 Let f : M2 → Q
n
c ×R be a surface with flat normal bundle. Then f

is a pseudo-parallel immersion.

Proof Since f has flat normal bundle, by equations (2.11) and (2.12) we conclude that
f is φ-pseudo-parallel by taking φ = K , where K is the Gaussian curvature of M2. ��
In the following, we have two propositions that is useful to construct examples of

pseudo-parallel surfaces.

Proposition 2.3 Let f : Mm → Q
n
c be an isometric immersion and let j : Qn

c →
Q

n
c × R be a totally geodesic immersion. If f is φ-pseudo-parallel, then j ◦ f is

φ-pseudo-parallel.

Proof In this proof, we denote the second fundamental form of f and j ◦ f respectively
by α f and α j◦ f . In the same way, we denote the normal curvature tensors of f and
j ◦ f respectively by R⊥

f and R⊥
j◦ f . Since j is a totally geodesic immersion, we have

the following relations:

α j◦ f (Z ,W ) = j∗α f (Z ,W ),

R⊥
j◦ f (X ,Y )α j◦ f (Z ,W ) = j∗R⊥

f (X ,Y )α f (Z ,W ),

Therefore, applying Definition 2.5 we obtain

(R̃(X ,Y ) · α j◦ f )(Z ,W ) = R⊥
j◦ f (X ,Y )α j◦ f (Z ,W ) − α j◦ f (R(X ,Y )Z ,W )

− α j◦ f (Z , R(X ,Y )W )

= j∗R⊥
f (X ,Y )α f (Z ,W ) − j∗α f (R(X ,Y )Z ,W )
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− j∗α f (Z , R(X ,Y )W )

= φ{− j∗α f ((X ∧ Y )Z ,W ) − j∗α f (Z , (X ∧ Y )W )}
= φ{−α j◦ f ((X ∧ Y )Z ,W ) − α j◦ f (Z , (X ∧ Y )W )}
= φ[(X ∧ Y ) · α j◦ f ](Z ,W ).

��
Proposition 2.4 Let f : Mm → Q

n
c × R be an isometric immersion and let j :

Q
n
c ×R → Q

n+l
c ×R be a totally geodesic immersion. If f is φ-pseudo-parallel, then

j ◦ f is φ-pseudo-parallel.

Proof Is analogous to that of Proposition 2.3. ��

3 Proof of themain theorem

Beforewe give a proof of Theorem1.1we recall that f : M2 → Q
n
c×R is aλ-isotropic

surface if, for each x ∈ M , the ellipse of curvature {α(X , X) ∈ N f M(x); X ∈
TxM with ‖X‖ = 1} is a sphere with radius λ(x), where λ : M2 → R is a smooth
function. The following result, due to Sakaki in Sakaki (2015) plays a vital role in the
proof of Theorem 1.1. Its statement is:

Theorem 3.1 (see Sakaki (2015)) Let f : M2 → Q
3
c × R be a minimal surface with

c �= 0. If f is λ-isotropic, then f is totally geodesic.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 Let us suppose that f : M2 → Q
n
c × R is pseudo-parallel with

non vanishing normal curvature. Combining equations (2.10) to (2.13) we get

〈α12, αi i 〉(α11 − α22) + {2(−1)i+1(K − φ) + 〈αi i , α22 − α11〉}α12 = 0, (3.1)

{‖α12‖2 + (φ − K )}(α11 − α22) + 〈α22 − α11, α12〉α12 = 0. (3.2)

Next, we prove that {α12, α11 −α22} is linearly independent. We can suppose φ �= K .
Otherwise, since 〈R⊥(e1, e2)ξ, ζ 〉 = −〈R⊥(e1, e2)ζ, ξ 〉, by the equations (2.11) and
(2.12) we would have R⊥ = 0, which is a contradiction. Notice that α12 �= 0 and
α11 �= α22. In fact, if α12 = 0 then R⊥(e1, e2)α12 = 0 which implies by equation
(2.12) that α11 = α22, and in this case f is umbilical and has flat normal bundle, a
contradiction. If α11 − α22 = 0, then R⊥(e1, e2)(α11 − α22) = 0, which implies by
equation (2.11) that α12 = 0.

Assume that there exist λ,μ ∈ R such that λα12 + μ(α11 − α22) = 0. Then,
by equations (2.11) and (2.12) we get λ(α11 − α22) − 4μα12 = 0. If μ �= 0 then

(α11−α22) = −λ
μ

α12 and thus
(−λ2

μ
− 4μ

)
α12 = 0,which leadus toλ2 = −4μ2 < 0,

a contradiction. So μ = 0, and therefore λ = 0.
Using this and equations (3.1) and (3.2) we obtain

〈α12, α11〉 = 〈α12, α22〉 = 0, (3.3)
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〈α22 − α11, αi i 〉 = (−1)i2(K − φ), (3.4)

‖α12‖2 = K − φ > 0. (3.5)

From the equation (2.13) we get

〈α11, α22〉 = 2K − φ + c(‖T ‖2 − 1), (3.6)

‖α11‖2 = ‖α22‖2 = 4K − 3φ + c(‖T ‖2 − 1) > 0, (3.7)

‖α11 − α22‖2 = 4(K − φ) > 0, (3.8)

‖H‖2 = 3K − 2φ + c(‖T ‖2 − 1). (3.9)

In particular, f is λ-isotropic with λ2 = 4K − 3φ + c(‖T ‖2 − 1).
Now, we prove that n ≥ 4. Suppose that n = 3. Since f has non flat normal bundle,

for any x ∈ M2 we have that R⊥(x)(e1, e2) : N f M(x) → N f M(x) is a non zero
antisymmetric linear operator, defined in a two-dimensional vector space. Thus, by
Lemma 2.1 we conclude that H(x) = 0. But from Theorem 3.1, we conclude that f
is totally geodesic and in particular, R⊥(x) = 0, which is a contradiction.

Conversely, let us assume that f is λ-isotropic. Set X = cos θe1 + sin θe2. Then

λ2 = ‖α(X , X)‖2
= (cos4 θ + sin4 θ)λ2 + 2 sin2 θ cos2 θ〈α11, α22〉

+ 4 sin3 θ cos θ〈α22, α12〉 + 4 sin θ cos3 θ〈α11, α12〉
+ 4 sin2 θ cos2 θ‖α12‖2.

Since λ does not depend on θ , taking the derivative with respect to θ we get

0 = dλ2

dθ

∣∣∣∣
θ=0

= d

dθ
(‖α(X , X)‖2)|θ=0 = 4〈α11, α12〉,

0 = dλ2

dθ

∣∣∣∣
θ= π

2

= d

dθ
(‖α(X , X)‖2)|θ= π

2
= −4〈α22, α12〉.

On the other hand, with Y = 1√
2
(e1 + e2) we get

λ2 = ‖α(Y ,Y )‖2

= 1

4
{2λ2 + 4‖α12‖2 + 2〈α11, α22〉},

that is,
λ2 = 2‖α12‖2 + 〈α11, α22〉.

Using this and the Gauss equation we get

‖α12‖2 = 1

3
{λ2 − K + c(1 − ‖T ‖2)}.
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From the Ricci equation R⊥(e1, e2)αi i = 〈α22 − α11, αi i 〉α12, i = 1, 2, we obtain

R⊥(e1, e2)αi i = 〈α22 − α11, αi i 〉α12

= (−1)i2‖α12‖2α12

= (−1)i
2

3
{λ2 − K + c(1 − ‖T ‖2)}α12,

Using the Ricci equation once more we obtain

R⊥(e1, e2)α12 = ‖α12‖2(α11 − α22)

= 1

3
{λ2 − K + c(1 − ‖T ‖2)}(α11 − α22).

Therefore, takingφ = 4K−λ2+c(‖T ‖2−1)
3 ,we conclude that f is pseudo-parallel accord-

ing to equations (2.11) and (2.12). ��

4 Some Examples

We now introduce the first examples of semi-parallel and pseudo-parallel surfaces of
Q

3
c ×R which are not locally parallel and semi-parallel, respectively, and that are not

just inclusions of surfaces of Q3
c into Q

3
c × R.

Example 4.1 A general construction of submanifolds of Qn
c × R with flat normal

bundle and T as a principal direction can be found in Mendonça and Tojeiro (2014),
byMendonça-Tojeiro. For our purpose, based on this work, the construction becomes:
let g : J → Q

3
c be a regular curve and {ξ1, ξ2} an orthonormal set of vector fields

normal to g. Put

g̃ = i ◦ j ◦ g,

ξ̃k = i∗ j∗ξk, for k ∈ {1, 2},
ξ̃0 = g̃, ξ̃3 = i∗

∂

∂t
,

where j : Q3
c → Q

3
c × R and i : Q3

c × R → E
5 are the canonical inclusions. If α =

(α0, α1, α2, α3) : I → Q
2
c × R is a smooth regular curve with α′

3(s) �= 0, ∀s ∈ I ,
we have the following isometric immersion f : M2 = J × I → Q

3
c × R given by

f̃ (x, s) = (i ◦ f )(x, s) =
3∑

k=0

αk(s)ξ̃k(x). (4.1)

At regular points, f is an isometric immersion with flat normal bundle and T as a
principal direction. Conversely, if f : M2 → Q

3
c ×R is an isometric immersion with

flat normal bundle and T as a principal direction, then f is given by (4.1) for some
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isometric immersion g : Q3
c × R and some smooth regular curve α : I → Q

2
c × R

whose its last coordinate has non vanishing derivative.
Geometrically, f is obtained by parallel transporting a curve in a product subman-

ifold Q2
c × R of a fixed normal space of g̃ with respect to its normal connection.

In particular, when dealing with pseudo-parallel surfaces in Q3
c × R, at least those

that have T as a principal direction are fully described by this method.
We now construct two simple examples. Let us define

Cc(s) =
{
cos(s), if c > 0
cosh(s), if c < 0

and Sc(s) =
{
sin(s), if c > 0
sinh(s), if c < 0.

By taking

g̃(x) = (Cc(θ(x)), Sc(θ(x)), 0, 0, 0),

ξ̃1(x) = (0, 0, 1, 0, 0), ξ̃2(x) = (0, 0, 0, 1, 0),

α0(s) =
√
1 − sgn(c)d2, α1(s) = d cos s, α2(s) = d sin s, α3(s) = s.

where 0 < d < 1, if c > 0, or d > 0, if c < 0, and θ : R2 → R is the smooth function
given by

θ(u) = u√
1 − sgn(c)d2

,

we obtain a semi-parallel surface in Q3
c × R that is not locally parallel.

Another example can be obtained by taking 0 < d < 1 and

g̃(x) = (0, cos(x), sin(x), 0, 0, 0),

ξ̃1(x) = (1, 0, 0, 0, 0), ξ̃2(x) = (0, 0, 0, 1, 0),

α0(s) = dSc(s), α1(s) = dCc(s), α2(s) =
√
sgn(c)(1 − d2), α3(s) = s,

where the surface obtained is pseudo-parallel in Q
3
c × R but not semi-parallel since

its Gaussian curvature does not vanish. Also, notice that it is not contained in a totally
geodesic slice of the form Q

3
c × {t}, for some t ∈ R.

Question 4.2 Are there other examples, up to isometries, of pseudo-parallel surfaces
in Q3

c × R (c �= 0), for which T is not a principal direction?

The next three examples show us that for n > 3 there exists pseudo-parallel surfaces
with non vanishing normal curvature.

Example 4.3 Let f : S21/3 → S
4
1 be the classical Veronese surface, given by

f (x, y, z) =
(

1√
3
xy,

1√
3
xz,

1√
3
yz,

1

2
√
3
(x2 − y2),

1

6
(x2 + y2 − 2z2)

)
,
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which is a locally parallel, minimal and λ-isotropic immersion (as we can see in
Chern et al. (1970), Itoh and Ogiue (1973) and Sakamoto (1977)) in S

4
1 with non

vanishing normal curvature. If i : S
4
1 → S

4
1 × R is the totally geodesic inclusion

given by i(x) = (x, 0), then by Proposition 2.3 we have that i ◦ f is a pseudo-parallel
immersion in S

4
1 × R with non vanishing normal curvature.

Conjecture 4.4 The only minimal pseudo-parallel surface in Q
4
c × R with non van-

ishing normal curvature and constant φ are these of Example 4.3.

Example 4.5 It’s known by Chern in Chern (1970) that: “Any minimal immersion of
a topological 2-sphere S2 into S4c is a superminimal immersion”. So, by Theorem 1.1,
we have that any minimal immersion of a topological 2-sphere into a slice of S4c × R

whit non vanishing normal curvature is pseudo-parallel with φ = 4K−c−λ2

3 . Moreover,
if the Gaussian curvature is not constant, the immersion is not semi-parallel.

Example 4.6 Let f : R2 → S
5
c be the surface given by

f (x, y) = 2√
6c

(
cos u cos v, cos u sin v,

√
2

2
cos(2u), sin u cos v,

sin u sin v,

√
2

2
sin(2u)

)
,

where u =
√

c
2 x , v =

√
6c
2 y.

This example, that appears in Sakamoto (1989), is a minimal λ-isotropic flat torus

with λ =
√

c
2 and non vanishing normal curvature. In particular, f is a pseudo-parallel

immersion in S
5
c with φ = −c

2 .
Thus, if i : S5c → S

5
c × R is the totally geodesic inclusion given by i(x) = (x, 0),

by Proposition 2.3 we have that i ◦ f is a pseudo-parallel immersion in S
5
c × R with

non vanishing normal curvature.
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