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Abstract In this paper, we investigate a complete noncompact submanifold M™ in a
sphere S”*! with flat normal bundle. We prove that the dimension of the space of L?
p-harmonic [-forms (whenm > 4,2 <] <m — 2 and whenm = 3,1l = 2)on M is
finite if the total curvature of M is finite and m > 3. We also obtain that there are no
nontrivial L? p-harmonic /-forms on M if the total curvature is bounded from above
by a constant depending only on m, p, [.
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1 Introduction

Let M™ be a submanifold in a Riemannian manifold N”"*’. Fix a point x € M and
a local orthonormal frame {ej, ..., e,4,} of N such that {ey, ..., e,,} are tangent
fields of M™ at x. In the following we shall use the following convention on the ranges
of indices: 1 < i, j,k,... <mandm + 1 < o < m + ¢t. The second fundamental
form A is defined by

AX.Y) =) (VxY. eq)eq
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108 Y. Han

for any vector IE:lds X, Y on M™, where V is the Riemannian connection of N7,
Denote hf‘J = (Ve eq), then A = Yo Zij (h;?‘j)z, and the mean curvature vector
field H is defined by

H= Y o= 3 Y e
o o i
The traceless second fundamental form & is defined by
(X, Y)=AX,Y)—(X,Y)H
for any vector fields X, Y on M. It is easy to see that
|®> = |A> —m|H?

which measures how much the immersion deviates from being totally umbilical. We
say M has finite total curvature if

1

NPl zm ) = </ ICDIm) < 00.
M

In Cao et al. (1997), Cao, Shen and Zhu showed that a complete connected stable
minimal hypersurface in Euclidean space must have exactly one end. Their strategy was
to utilize a result of Schoen-Yau asserting that a complete stable minimal hypersurface
in Euclidean space can not admit a non-constant harmonic function with finite integral
Schoen and Yau (1976). According to the work of Li and Tam (1992), Li and Wang
modified the proof to show that each end of a complete immersed minimal submanifold
must be parabolic in Li and Wang (2002). Due to this connection with harmonic
functions, this allows one to estimate the number of ends of the above hypersurface
by estimating the dimension of the space of bounded harmonic functions with finite
Dirichlet integral. They prove that if M has finite index, then the dimension of space
of L? harmonic 1-forms on M is finite, and M must have finitely many ends in Li and
Wang (2002). In Fu and Xu (2010), Fu and Xu proved that a complete submanifold
M'™ with finite total curvature and some conditions on mean curvaute in an (n + p)-
dimensional simply connected space form M""*7 (c) must have finitely many ends. In
Cavalcante et al. (2014), Cavalcante, Mirandola and Vitério proved that a complete
submanifold M™ with finite total curvature and some conditions on the first eigenvalue
of the Laplace—Beltrami operator of M in an Hadamard manifold must have finitely
many ends. In Lin (2015c), Lin proved vanishing and finiteness theorems for L?
harmonic forms under the assumptions on Schrodinger operators involving the squared
norm of the traceless second fundamental form. In Zhu and Fang (2014a,b), Zhu and
Fang obtained some vanishing and finiteness theorems for L harmonic 1-forms on
submanifold in sphere. In Zhu (2016), Zhu obtained that the space of all L? harmonic
2-forms on submanifolds with finite total curvture in spheres had finite dimension.
And in the same paper, Zhu also gave the following conjecture.
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Conjecture Zhu (2016) Let M™ m > 3 be an m-dimensional complete noncompact
oriented manifold isometrically immersed in S, If the total curvature is finite, then
the space of all L* harmonic l-forms 3 <1 < m — 3 has finite dimension.

For p-harmonic 1-forms, Zhang Zhang (2001) obtained vanishing results for p-
harmonic 1-form. Chang Chang et al. (2010) obtained the compactness for any
bounded set of p-harmonic 1-forms. The author and Pan in Han and Pan (2016) inves-
tigated L? p-harmonic 1-forms on complete noncompact submanifolds in a Hadamard
manifolds, and obtained some vanishing and finiteness theorems under finite total cur-
vature and the first eigenvalues of Laplace—Beltrami operator. The author Zhang and
Liang in Han et al. (0000) obtained some vanishing and finiteness theorems under
the conditions of the scalar curvature and Ricci curvature. The author and Zhang in
Han and Zhang (0000) obtained that if the total curvature of complete noncompact
submanifold in $™7 is finite, then the space of L? p-harmonic 1-form is finite. In
Dung and Seo (2016) Dung and Seo obtained some vanishing results for p-harmonic
forms. In Dung (2017) Dung obtained some vanishing results for p-harmonic /-forms,
for 2 <[ < n — 2 on Riemannian manifolds with a weighted Poincaré inequality.

Let (M™, g) be a Riemannian manifold, and let u be a real C*° function on M™.
Fix p € R, p > 2 and consider a compact domain 2 C M™. The p-energy of u on
2, is defined to be

1
E,(Q,u)=— [ [Vul”.
pPJa

The function u is said to be p-harmonic on M™ if u is a critical point of E,(£2, %)
for every compact domain Q2 C M"™. Equivalently, u satisfies the Euler-Lagrange
equation.

div(|Vu|P~2Vu) = 0.
Thus, the concept of p-harmonic function is a natural generalization of that of harmonic

function, that is, of a critical point of the 2-energy functional.

Definition 1.1 A p-harmonic /-form is a differentiable /-form on M™ satisfying the
following properties:

do =0,
§(lwlP~2w) =0,

where § is the codifferential operator. It is easy to see that the differential of a p-
harmonic function is a p-harmonic 1-form.

In this paper, we investigate the properties for p-harmonic /-form (when m > 4,
2 <l <m —2and when m = 3,1 = 2) on complete noncompact submanifolds in
space forms. We assume that M is a complete noncompact manifold and define the
space of the L? p-harmonic [-forms on M by

H"? (M) = {a)|/ lw|? <00, do=0 and §(|w|’ ’w) =0}
M
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where p > 2 and whenm > 4,2 <[ <m —2 and whenm = 3,1 = 2. We obtain the
following results:

Theorem 1.2 (cf. Theorem 3.1) Let M™, m > 3 be an m-dimensional complete
noncompact oriented manifold isometrically immersed in an (m + t)-dimensional
sphere S™T! with flat normal bundle. If the total curvature is finite, then we have
dimHl”’(M) < ooforp > 2andwhenm > 4,2 <] <m—2andwhenm = 3,1 = 2.

Remark 1.3 When p = 2,1 = 2 and t = 1, we can obtain the Theorem 1 in Zhu
(2016). When p =2,3 <l <m — 3 and t = 1, we know that the Conjecture in Zhu
(2016) is true.

Theorem 1.4 (cf. Theorem 3.2) Let M, m > 3 be an m-dimensional complete
noncompact oriented manifold isometrically immersed in an (m + t)-dimensional
sphere S"™ 1. There exists a positive constant A depending only on m, p, I, such that
if 1®llLmmy < A, then there is no nontrivial LP p-harmonic [-forms on M, i.e.
Hl'p(M) = {0}, for p > 2 and whenm > 4,2 <l <m —2, whenm = 3,1 = 2.
More precisely, A can be given explicitly by a constant C(M) in (7) as follows:

. 8(p—1) 1 2l(m — 1)
A < min s ; .
p2mC(M) m(m — 1)C(M) m2(m — 1)C(M)

2 Preliminaries

Let M™ be an m-dimensional complete noncompact submanifold in F"**(c), and let
A be the Hodge Laplace-Beltrami operator of M™ acting on the space of differential
[-forms. Given two /-forms w and 6, we define a pointwise inner product

m

(@.0)= > ole.....e;)0. ....e)

Here we omit the normalizing factor % The Weitzenbock formula Wu (1988) gives
A=V—W, (1

where V2 is the Bochner Laplacian and W; is an endomorphism depending upon the

curvature tensor of M. Let {91 ,...,0™}beanorthonormal basis dual to {ey, ..., e;},
then
m
<Wz(w>,w> =() ekAie_,R<ek,e,->w,w> )
jk=1

for any /-form w. For any w € H"?(M), by (1) and (2) we have
1 _ _ _ _
S8l = V(0" 0)? = (3d(ol" o), ol o)
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m
2 (32 i )

jk=1

= [V(lwP20)* — (8d(lo|"2w), |o|"2w)

+wPP 2| Y Rije™ ]

ijin-i]

-1 L
. ijiz--ip, ks
_T E szksa) 3 ]0)53...,'[
ijksiz--i
where we used w is /-harmonic in the second equality. This can be read as
-1 -1 -2 52 —1p2 -2 -2
P AlwlP™" = V(o "o)|” = [V]e|P77 7 = ($d(lo]P o), o/’ o)
2(p=2) E NI
+lw| Rijw Wi, )
ijin-i]
-1

_ . ijiz--ip ks
B E Rt]ksw Wis...j)
ijksiz--ip

By Kato type inequality |V (Jo|”2w) |* > |V]w|?~!|?, we have
lo|” Al > —(8d(|0]" ), [0|"w)

. [—1 S
2(p—2 ] k
+lw|?P~2 E Rijo"* "oy - E Rijs@™ Myl | (3)
iy ijksize iy

Here whenm > 4,2 <[ < m — 2 and when m = 3, = 2. By the Gauss equation,
we have

m+t
Rijiks = c(8ixSjs — SisSjx) + Z [h?kh‘;s _ h?{qh[}lk]y
a=m+1
and
m+t
Rij=(m—1)csj+ Y [mHhS; — h§ih%].
a=m—+1

Thus,

L 1—1 L

ijiz--i ijksize-ip
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where
Fiw)=cm—1) Y 8o el . — -1 3 Gus;
1w) = clm ij@ Wy, —C€ ) ikOjl
ijin---iy ijkliz---i
—8ud e el
= (m — Delo|? 4)
and

m-t m
Bw= Y ( 5 [H oy })
k=1

ijip--ip \a=m+1
I 1 m-+t
o opa _ papo ijiz--ip, ks
- 2 (X A |
ijksiz---i; \a=m+1

From the computation in Lin (2015a,b), it follows that
1
P(0) = o (m* H? — max{l,m — | AP ol )

where the assumption of flat normal bundle is used. Substituting (4), (5) into (3), we
have

P AloP ™! > —(8d(Jw|P2w), |o|P"2w) + 1(m — [)c|w|*P >
1
+§(m2H2 —max{l,m — [}|A|®)|w|*P 2
> —(8d(|w|P2w), [w|""2w) + I[(m — Dc|w|*P~2
m—1

m
_ DLwl2P2 + ™ HI2 w22
> | D7 |w] + 2| I“lol

that is,

jwlAlw]P! = —(8d(|w]"w), ©) +1(m — clo]” ©)
m—1 _, m, 5
ST ) P+ \H p
5 [Pl + S H[ ol
In order to prove our main result, we need the following results:

Lemma 2.1 Li(1980) Let E be a finite dimensional subspace of the space L? g-forms
on a compact Riemannian manifold M™. Then there exists w € E such that

dimE

2 : m . 2
—_— w|“dv < min ,dimE} sup|w|”.
Vol(M)/M| 2dv < min{(") Jsup o)
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From Lemma 2.1, the author and H. Pan in Han and Pan (2016) obtained the
following result.

Lemma 2.2 Han and Pan (2016) Let E be a finite dimensional subspace of the space
L? g-forms on a compact Riemannian manifold M'™. Then there exists v € E such
that

dimE . .
——— | |w|Pdv §m1n{Cp(Z’),dsz}sup|w|”,
Vol(M) Ji i

where C), is a positive constant depending only p and p > 2.
Lemma 2.3 Hoffman and Spruck (1974); Michael and Simon (1973); Zhu and Fang

(2014a) Let M™ be a complete noncompact oriented manifold isometrically immersed
in a sphere S™*!. Then we have

)
(/ |f|»3'—”2) < Cm) (/ IVf|2+m2/(1+|H|2)f2) ™
M M M

forall f e C3°(M), where C(m) depends only on m and H is the mean curvature
vector of M in S,

Lemma 2.4 Let f : M™ — R be a smooth function on Riemannian manifold M, and
w be an l-form on M, | > 2. Then we have

ldf Aol < ldfllo].

Proof We can choose a local orthonormal basis e, ..., e, with the dual basis
0, ...,6™ on M. df and w are denoted by the following: df = Yo, fi0" and

w = Z wil,...,,-le"l/\~-~/\9"l

i1<---<iy
so we have
I+1
— _DkLg - AL, i141
df no= Y | (=D Fa®oipyy |07 A A BT
i1<--<ijy1 Lk=1

Now we compute

ldf Plol* — |df A wl?

m 1+1
= <Z f12> Z a),'zl...jl - Z (Z(_l)k_lfikwil...i;(...i/_'_l)
i=1

i1<--<ip i1<-<ijy1 \k=1

2
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2 2
= ) A
Z Z flk [T

i1<--<ipyp | k#t

k+t (¢ . : R
+ Y O Sy i D@ i) | 20
ket
Here i} means that iy does not appear. This proves the lemma. O

3 Proof of the main results

In this section, we obtain the following results.

Theorem 3.1 Let M™, m > 3 be an m-dimensional complete noncompact oriented
manifold isometrically immersed in an (m + t)-dimensional sphere ™" with flat
normal bundle. If the total curvature is finite, then we have dimH""? (M) < oo for
p>2and whenm > 4,2 <l <m —2, whenm =3, =2.

Proof Assume that  is a p-harmonic /-form on M™, i.e. w € H'"?(M). From (6),
we have

| AloP ™! > —(8d(Jo|P ), w) + 1(m — D)|w]|” ®
-1
—T 0Pl + SIHP ol
Fixed a point xo € M and denote by p(x) the geodesic distance on M from xg to x.
Let us choose n € C§°(M) satisfying

0 on By, (ro) U (M\By, (2r)),
) p(xo,x) —ro on By, (ro + 1) \ By, (ro)
)1 on By, (r)\Bx, (ro + 1),

2r=p(x0.x) on By, (2r) \ By, (1) ,

T

where r > ro+ 1 and ro will be determined later. Multiplying (8) by n> and integrating
over M, we have

—/ n2<V|w|,V|w|P”>—2/ n|w|<Vn,V|w|P*‘>+/ (8d(|lw|P 2 w), n*w)
M M M
m—1 m
zz(m—nf nzlwl”—Tf |<1>|2|w|”n2+3/ |H|*w|Pn? )
M M M
Now we first estimate the third term of the left side of (9)

' / ($d(|o]Pw). nzw)‘ _ ’ / (d(lwl”_zw),d(nza)»‘
M M
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< / ld(lw|P2w)||d(n*w)| < 2 / nldnllol?|d|o|” 2| (10)

4(p 2)
/ nIVnlle|? Vel 2.

Here we use the inequality |df A | < |df]||w|, for any f € C°°(M). By direct
computation, we get

—f n*(V]wl|, Vo) —2f nlw|(Vn, Viw|P™)
M M

4p—1) o 41 I
=——2/ n2|V|w|z|2——/ (V. Vio|2)|o|T (1)
p M p M

4p—1) 3 4p—-1) p »
——zf n2IVIw|2|2+—f nIVillo| 2 |Vie] 7.
p M p M

From (9), (10) and (11), we have

4p—1 r 42p —3) p 2
0<———5— [ PIVIol?P+ ——= [ nIVllo|?|V|e|?|
p M P M
m—1 m
—l(m—l)/ ”2"”'p+Tf |<1>|2|w|”n2—3/ |H|*|w|Pn?
M M M

For g1 > 0, we apply the Cauchy-Schwarz inequality, we have

4(p — 1 42 3 2 3) 1
[(” . (” )]/nIVIII (” ) /||"|Vn|

—l(m—l)/ n Ia)lp+—/ D] n* — / |HP|olPn*  (12)

On the other hand, since m > 3, we use Holder, Sobolev inequality (7), and Cauchy-
Schwartz inequalities to obtain

2 m=2
n p 2m \ ™M
/|¢|2lepn2§</ |<I>|'”> (/ (n|w|z>mz>
M supp(n) M

2
< C(m) (/ |d>|’") /(|V(n|w|%)|2+m2<1+|H|2>n2|w|f’>
supp(n) M
1
SC(m)¢2(n)[(l+82)/ n2|V|w|‘z’|+(1+—>/ lo|”|Vyl*]  (13)
M &2 M

+Cm)@* (ym? /M PloP (1 + [HP)
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for &, > 0, where ¢ (n) = (fsupm7 |<I>|’”)%. From (12) and (13), we have

A/ﬁﬁme+B/|m%M#+CfMM#stMMWW(M)
M M M M
where

=D 4Cp=3) om0 s e

A 2

P p 2
B_ﬁ_m__lc( Y2 (n)m?

=5 5 m)p-(n)m
C=Im-1)— mT_lC(m)cbz(n)m2
2p—3) 1 -1 1

p=Cr=d L m-leo matdy

p €1 2 &2

—(mp+T1p—12)++/ (mp+71p—12)2+16(m—1)(p—1) 1
2m—1)p > 2(m—1)ym>

} and a positive constant A (e) > 0 satisfying:

We choose 0 < ¢ < min{
I(m—1)
(m—1)m?2

P2 - e+ < 22D
P

m—1 5
TC(m)A (&) < (m— e

Since M has finite total curvature, we can fix 7| large enough such that

1
f o™ )] <A (15)
M\on(rl)

Take ro > rq, thus supp(n) € M\By,(r1) and ¢(n) < A. Choose 0 < ¢; < ¢, for
i = 1,2, we have

ap-1) 42p-3)
” ‘

oS

Y
=)
I

—(m—1De(l+¢e)>0,

Bz(B):z—m(m—l)e>0

C>C=Im—1)—m*m—1e>0
~ @2p=-3)1 -1 1
0<p<pP=dH1  m C(m)A2(1+—)
p £1 2 &2

From (14), we have
Xfrﬁvwﬁﬂ+ﬁf|Hﬁw%ﬁ+5f|m%255/ﬁwmvm2am
M M M M
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From (7) and the Cauchy-Schwarz inequality, we have

m=2
_ P 2m_ m P
L om) (/ <n|w|z)m—z) 5/ IV(an|2)|2+m2/ (1 + [HP ol
M M M
1
s(1+s)/ n2|V|w|3|2+<1+—>/ leplvn|2+m2/(1+|H|2)nzlw|2
M s M M

7)

From (16) and (17), we have

m=2 ~
c~'(m) (/ <n|w|5)»f’"z) "< (m2—<1+s)5)/ |H|?|o|Pn?

+(m _a+9S )/ ol?n? 4 (14 L aan? >/ |7V

Choose a sufficiently large s such that m%— (14 s)-ﬁ: <Oand m? — (1 + s)—i: <0
Then we have

m=2

1 p_2m \ M 1 5 )
(m) </ (nlwlz)mz) =< <1+—+(1+S)w>/ lw|? V]
M s A)Ju

That is,

(/ (1]w| )= 2) ' <E/ |w|?|Vn[? (18)

where E is a positive constant depending only on m, p. It follows from the definition
of n and (18), we have

m=2

» om m E
f (olH)as) < Ef l? + —zf jol?
on(r)\on(rOJ"]) on(r0+l)\BX0(r0) r on(zr)\on(r)

Since |w| € L? (M), taking r — 00, we have

m=2

2m "
/ lolHms) < E/ l? (19)
M\BXO (r0+1) BXO (r0+1)\BX0 (r())

It follows from the Holder inequality that

2 pm_ m=2
/ lw|” < [Vol(By, (ro + 2))]17 ( lw|m=2) m
By (ro+2)\ By, (ro+1) By (ro+2)\ By, (ro+1)

(20)
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From (19) and (20), we have

f e / ol?, 1)
on (r0+2) BXO (r0+1)

where Cy depends on Vol(By,(rg + 2)), m and p. From (8), we have
lo|Alw|P™! > —(8d(jw|Pw), w) — Flol?, (22)

where F : M — [0, 00) is a function given by
m—1 m
F=l0n—1) = =——|®P + Z|H|.

Fix x € M and take n € Cgo(Bx(l)). Multiply both sides of (22) by n2|a)|¥_1’, with
q > 2, and integrating by parts we obtain

4(p—-1) pg_p P
=D et vielh)
p By (1)
2(p—1 -2 2 p p
> 2= DWa 20 ED [ 5 vl 3)
p By (1)

2] _ g _
F el [ el dorio) e
By (1) By (1)
From the inequality |df A w| < |df]||w| and Cauchy-Schwatz inequality, we have

/B M (@l 2w), doP o] ¥ 7o) < / ld(jol” ) ld(Plol P )]

B, (1)

_ rq Pq
</ IVIo|? 2|0 lldmP)|wl 7 7 + nPdlo] 7 7] (24)
By (1)

< 4(p—2)
p B (1)

2(p—2)(q -2
s el I el
p B, (1)
< . 283
p(m—=1) Jp 1y
2 1 2 B
R2p =M= [ VoLl

Be(1)
2(p—2)(g —2
n (p—2(@q—-2)
p By (1)

rg_p P
nlw| 272 |Vn||V]w| 2|

Pq P
lo| 2 ~P|V]w| 2 |29

2 (B )
nlwl2 7P |V]w| 2|
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where €3 > 0 is a positive constant. And

A(p—1
D ¥

p By (1)
2¢e3

RS
p=m—1) Jp (1

1 Pq
+2(p — D)*(m — 1)—/ IVil? || 2
€3 JB (1)

4
(Vn, Viw|Z)

ol 7 PV |w] % 29 (25)

From (23), (24) and (25), we have

[2(;7 ~D(pg—2p+2)  2(p—2(g ~2)
p? p

4e3 Pq _ P
_—2:|/ lo| 2 7P| V]w|Z [*n?
(m —1)p=]JB.)

< Ff Plol® + 200 — 1)
By (1)

1 24
20 =220 = [ (il 6)
We can choose &3 small enough such that [ 22=D(2g=2p+2) _ 2(p 72;@72) — (m4_‘913)p2] >
0. By using the Cauchy-Schwarz inequality, we have
L) L8 2 6]2 2 2_p )
IV(nlw| +)|” = lw| 2 |Vn]~ + T nlw| 2 7 FIV]w| 2|
(1) By (1) By (1)
Pq__p p
+61f nwl272(Vny, Viw|7) (27)
By (1)

g q
< +q>f lo| 2 |Vy|* + @+
B, (1)
x/ nlwl? P |V]w| 2.
B, (1)
From (26) and (27), we have

P Pq Pq
f IV(nlw| #)* < 01/ lo| 7 |Vy|* + 02/ Frllo|?,  (28)
B (1) B, (1) By (1)

where

1
Cr=1+q+ %(q +DI2p — 17 +2(p = 2Mm — D)

[2(19 —Dlpg—2p+2) 2p-2(q—2) 4

—1
< C(p, e3)mgq,
p? p (m — l)pz}
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120 Y. Han

q 2p—D(pg —2p+2)  2p—2)(g —2)
Cy = 4(q +D [ » »
483 -1
—m} < C(p, &3)q,

where C(p, €3) is a positive constant depending only on p, €3. Applying (7) to n|w| K
and using (28), we have

2m mT q
(/ (nlwlpf)m—z> < C(m) (/ Vol )P
By (1) (1)

+m2/ (1+|H|2>n2|w|"zq>
By (1)

5/ [CoF +m2(1 + | HP) I ool &
By (1)

Pq
+01/ PERZ
By (1)

so we have

m=2

pg_ 2m \ M g
(/ (o] # )) < q63/ n* + [Vn*llo| 7, (29)
B, (1) B, (1)

for a constant C3 > 0 depending m, p, 3, Vol(Bx (1)), supg (1) F and supp ;) [H]|.
% and pp = 1 + ﬁ Take a function

& € C3°(By(px)) satisfying ne > 0, e = 1 on By(oxt1) and [Vie| < 2843,
Replacing ¢ and n in (29) by ¢gx and ny respectively, we have

1 1
D 1 . ar
( f |w|”kz“)qk“ < (qr G345y i ( / |w|> (30)
By (pk+1) By (pk)

Applying the Moser iteration to (30), we conclude that

Given an integer k > 0, we set g =

P(x) < P < P 31
lw]?(x) < IIwIILOO(BX(%» <Cy /B’X(l) 5] (31)

for a constant C4 > 0 depending only on m, p, €3, Vol(B(1)), supg (1 F and
supp (1) [H|. Take x € By,(ro + 1) such that

lw|P(x) = sup |wl|”. (32)
By (ro+1)
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From (31) and (32), we have

sup |wl” < Cy / . (33)
By (ro+1) By (ro+2)

From (21) and (33), we have

sup  [w]? < Cs / wl?, (34)
Bey (ro-+1) By (ro+1)

where C7 > 0 is a constant depending on m, p, €3, Vol(By (rg + 2)), SUpg (ro+2) F
and supp (,,12) [ H|.

Finally, let V be any finite-dimensional subspace of H”(M). From Lemma 2.2,
there exists w € V such that

dimV
LA — jw|? < min{C,("),dimV} sup |ol”. (35
Vol(Bxy(ro + 1)) JB, (ro+1) By (ro+1)

From (34) and (35), we have dimV < Cg, where C¢ > 0 depends only ononm, p, €3,
Vol(Bx(ro + 2)), supg, (y,+2) F and supg (42 [H|. This implies that H'“P(M) has
finite dimension.

Theorem 3.2 Let M™, m > 3 be an m-dimensional complete noncompact oriented
manifold isometrically immersed in an (m +)-dimensional sphere ™. There exists
a positive constant A depending only on m, p, 1, such that if ||®||p» ) < A, then
there admit no nontrivial L? p-harmonic I-forms on M, i.e. H"P (M) = {0}, for p > 2
and whenm > 4,2 <1 <m —2, whenm = 3, = 2. More precisely, A can be given
explicitly by a constant C(M) in (7) as follows:

A < min 8p—1) , L , 21m — D) . (36)
pPmC (M)’ \ m(m — HCM)" \| m2(m — 1)C(M)

Proof From (36), we know that A > 0, B > 0 and C > 0 in (14). For a fixed point
xo and take a cut-off function n such that

n=<1,
1 on By, (r)
0 on M\By,(2r)

’

1A

0
n
n

Q

Vil <

S

=

where c is a positive real number. From (14), we have

%) 2 Dc?
A [Vlw|2|"+ B |H|"|w|” + C ol < — [ |ol?,
By (1) By (1) By (1) re Ju

Let r — oco. We obtain that |w| = 0, that is, w = 0. O
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