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Abstract We extend the study on shadowable points recently introduced by Morales
in relation to chaotic or non-chaotic properties. Firstly, some sufficient conditions for
a quantitative shadowable point to be approximated by an entropy point are given. As
a corollary, we get different three chaotic conditions from which a shadowable point
becomes an entropy point. Secondly, we provide a dichotomy on the interior of the
set of shadowable chain recurrent points by two canonical chaotic and non-chaotic
dynamics, the full shift and odometers.
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1 Introduction

Shadowing property has been the subject of numerous studies in the qualitative theory
of dynamical systems (Aoki and Hiraide 1994; Pilyugin 1999). Recently, Morales
(2016) introduced the notion of shadowable points by individualizing the shadow-
ing property into pointwise shadowings. A shadowable point of a continuous map is
defined to be a point such that the shadowing lemma holds for pseudo orbits beginning
at the point. It prompts us to reconsider the theory of shadowing from a local point of
view. On the other hand, the notion of quantitative shadowable points was defined in
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600 N. Kawaguchi

Kawaguchi (2017), which is a quantitative version of shadowable points. Some basic
properties and several results of (quantitative) shadowable points have been obtained
in Kawaguchi (2017), Morales (2016). In this paper, we extend the study on (quantita-
tive) shadowable points by the idea of localizing and quantifying the arguments on the
shadowing property in connection with chaos and equicontinuity. The chaos includes
the positive entropy, sensitivity, and Li–Yorke chaos, and corresponds to the full-shift,
while the equicontinuity corresponds to the odometers (or adding machines).

Our first main result gives sufficient conditions for a quantitative shadowable point
to be approximated by an entropy point, which concern the notions of sensitivity and
Li–Yorke pairs (Theorem 1.1). As a corollary, we obtain relatively simple sufficient
conditions for a shadowable point to be an entropy point (Corollary 1.1). By this corol-
lary, owing to the notion of shadowable points, we can concisely specify entropy points
in connection with other chaotic properties of dynamical systems. As a consequence,
we establish the equivalence of two definitions of chaos, Li–Yorke chaos and the pos-
itive topological entropy, under the shadowing property (Corollary 1.2). Moreover,
we give a lower estimate of the positive topological entropy under the presence of a
Li–Yorke pair and a quantitative shadowing property (Theorem 1.2).

Our second main result provides a dichotomy on interior points in the set of shad-
owable points under the assumption of chain recurrence (Theorem 1.3). It tells us that
being an interior point in the set of shadowable points (with chain recurrence) enables
us to characterize the point as a chaotic point or a non-chaotic point in comparison
with two canonical dynamics, i.e., the full shift and odometers (see properties (S2)
and (E2) in Theorem 1.3). It also depicts how chaotic points and non-chaotic points, or
full shift extensions and odometers are mixed in the chain recurrent set. According to
Akin et al. (2003), the mixture of full-shift extensions and odometers is a C0-generic
property of homeomorphisms on a smooth closed manifold, so our results comple-
ment such a picture. In the classical topological theory of hyperbolic dynamics, some
kind of expansiveness, which is also a topological expression of hyperbolicity, is often
assumed with the shadowing property, where the possibility of the presence of non-
trivial equicontinuous subsystems is excluded. Therefore, our results seem to give an
insight into a certain non-hyperbolic behavior.

We begin by defining (quantitative) shadowable points. Throughout this paper, we
deal with a continuous map f : X → X on a compact metric space (X, d). An infinite
sequence of points (xi )

∞
i=0 in X is called a δ-pseudo orbit of f if d( f (xi ), xi+1) ≤ δ for

all i ≥ 0. For ε > 0, a δ-pseudo orbit (xi )
∞
i=0 of f is said to be ε-shadowed by x ∈ X if

d(xi , f i (x)) ≤ ε for all i ≥ 0. For b > 0, we say that f has a b-shadowing property if
there exists δ > 0 such that every δ-pseudo orbit of f is b-shadowed by some x ∈ X .
Then, for c ≥ 0, we say that f has a c+-shadowing property if f has the b-shadowing
property for every b > c. Note that the 0+-shadowing property corresponds with
the usual shadowing property. Now let us define quantitative shadowable points. For
b > 0, a b-shadowable point of f is a point x ∈ X such that there exists δ > 0 for
which every δ-pseudo orbit (xi )

∞
i=0 of f with x0 = x is b-shadowed by some point of

X . We denote by Sh+
b ( f ) the set of b-shadowable points of f . Then, for c ≥ 0, we

define
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Sh+
c+( f ) =

⋂

b>c

Sh+
b ( f ),

and a point of Sh+
c+( f ) is called a c+-shadowable point of f . A 0+-shadowable

point coincides with a shadowable point introduced by Morales (2016), and Sh+
0+( f )

is also denoted by Sh+( f ). It was proved in Kawaguchi (2017) that for any c ≥ 0,
Sh+

c+( f ) is an f -invariant (i.e. f (Sh+
c+( f )) ⊂ Sh+

c+( f )) Borel set in X , and f has
the c+-shadowing property iff Sh+

c+( f ) = X .
Here, we give some basic definitions and notations. A dynamical system is a pair

(X, f ) of a compact metric space X with a metric d and a continuous map f from X
to itself.

A subset S ⊂ X is f -invariant if f (S) ⊂ S. A subsystem of (X, f ) is a pair of a
closed f -invariant subset S ⊂ X and f |S . We say that (X, f ) (or f ) is minimal if X
does not contain any non-empty, proper, and closed f -invariant subset. For dynamical
systems (X, f ) and (Y, g), a factor map is a continuous surjection π : X → Y with
π ◦ f = g ◦ π . When there is a factor map π : X → Y , then we say that (Y, g) is a
factor of (X, f ), and (X, f ) is an extension of (Y, g). When a factor map π : X → Y
is 1-1, π is said to be a conjugacy, and we say that (X, f ) is conjugate to (Y, g). For
e > 0, a point x ∈ X is said to be an e-sensitive point of f if for any neighborhood
U of x , there exist y, z ∈ U and n ∈ N such that d( f n(y), f n(z)) > e. We denote by
Sene( f ) the set of e-sensitive points of f and define Sen( f ) = ⋃

e>0 Sene( f ). Define
also EC( f ) = X\Sen( f ). Then, a point of Sen( f ) (resp. EC( f )) is called a sensitive
(resp. equicontinuous) point of f . If X = Sene( f ) for some e > 0, then f is said to
be sensitive. We say that f is equicontinuous if for every ε > 0, there is δ > 0 such
that d(x, y) ≤ δ implies d( f n(x), f n(y)) ≤ ε for all x, y ∈ X and n ≥ 0. It is easy
to see that f is equicontinuous iff X = EC( f ). A minimal system is either sensitive
or equicontinuous. A finite sequence of points (xi )

k
i=0 in X (where k is a positive

integer) is called a δ-chain of f if d( f (xi ), xi+1) ≤ δ for every 0 ≤ i ≤ k − 1. A
δ-chain (xi )

k
i=0 of f is a δ-cycle of f if x0 = xk . A point x ∈ X is said to be chain

recurrent if for every δ > 0, there is a δ-cycle (xi )
k
i=0 of f with x0 = xk = x . The

set of chain recurrent points of f is denoted by C R( f ). Note that �( f ) ⊂ C R( f ),
where �( f ) denotes the non-wandering set of f . We say that f is chain transitive if
for every x, y ∈ X and every δ > 0, there is a δ-chain (xi )

k
i=0 of f such that x0 = x

and xk = y.
Before stating our first result, we need to define entropy points, Li–Yorke pairs, and

Li–Yorke chaos. Given a continuous map f : X → X and n ≥ 1, define a metric dn on
X by dn(x, y) = max0≤ j≤n−1 d( f j (x), f j (y)). For n ≥ 1 and ε > 0, a subset E ⊂ X
is called (n, ε)-separated if x 	= y (x, y ∈ E) implies dn(x, y) > ε. For A ⊂ X , let
S(A, n, ε) denote the maximal cardinality of an (n, ε)-separated set contained in A
and consider

h( f, A, ε) = lim sup
n→∞

1

n
log S(A, n, ε).

Note that ε2 < ε1 implies h( f, A, ε1) ≤ h( f, A, ε2), which guarantees the existence of
limε→0 h( f, A, ε) ∈ [0,∞]. The topological entropy of f on A, denoted by h( f, A),
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is h( f, A) = limε→0 h( f, A, ε). Then, the topological entropy of f , denoted by
htop( f ), is defined by htop( f ) = h( f, X). Ye and Zhang (2007) introduced the notion
of entropy points. A point x ∈ X is said to be an entropy point of f if h( f, U ) > 0 for
any neighborhoodU of x . Let Ent ( f ) denote the set of entropy points of f . It is known
that Ent ( f ) is a closed f -invariant subset of X , and htop( f ) > 0 iff Ent ( f ) 	= ∅
(see Walters 1982; Ye and Zhang 2007).

For a dynamical system (X, f ), a pair of points {x, y} ⊂ X is said to be a Li–Yorke
pair (with modulus e > 0) if one has simultaneously,

lim inf
n→∞ d( f n(x), f n(y)) = 0 and lim sup

n→∞
d( f n(x), f n(y)) > e > 0.

A subset S ⊂ X is called scrambled if any pair of distinct points x, y ∈ S is a Li–Yorke
pair. Then, a system (X, f ) is called Li–Yorke chaotic if X contains an uncountable
scrambled set.

Now let us state our first result.

Theorem 1.1 Let f : X → X be a continuous map. Given x ∈ Sh+
c+( f ) with c ≥ 0,

if e > 2c and one of the following conditions is satisfied, then there exists w ∈ Ent ( f )

such that d(x, w) ≤ c.

(1) There is a closed f -invariant subset S ⊂ X such that C R( f |S) = S and
ω(x, f ) ∩ Sene( f |S) 	= ∅.

(2) There is y ∈ X such that {x, y} ⊂ X is a Li–Yorke pair with modulus e.
(3) There is a closed f -invariant subset S ⊂ ω(x, f ) such that ω(x, f )\Be(S) 	= ∅,

where Be(S) = {y ∈ X : d(y, S) ≤ e}.
Theorem 1.1 gives three sufficient conditions for a quantitative shadowable point to

be approximated by an entropy point. Roughly speaking, our proof of Theorem 1.1 is
based on the observation that if one of the conditions (1)–(3) is satisfied, then x limits
to a point such that there are sufficiently “separated” pairs of two cycles through the
point. By constructing pseudo orbits beginning at x and eventually turning around the
cycles, and then by shadowing them, we prove that x is approximated by an entropy
point (Lemma 2.3). Indeed, it has been observed so far that the existence of such
a “separated” pair of two cycles near a point together with the shadowing property
enables us to obtain a factor map onto the full shift from a subsystem of some power
of the map (see, for example, Kocielniak and Mazur 2007; Li and Oprocha 2013;
Moothathu and Oprocha 2013). As far as the author knows, such an idea goes back
to 80s (Kirchgraber and Stoffer 1989). In this paper, we explicitly define “e-separated
pairs of two δ-cycles at a point” (Definition 2.1) and provide three sufficient conditions
for the existence of such objects, each of which corresponds to one of the conditions
in Theorem 1.1 (Lemma 2.1). By using them, we prove Theorem 1.1. The method to
obtain a factor map onto the full shift is described in Lemma 2.4.

Applying Theorem 1.1 with c = 0, it is immediate to obtain the following corollary,
which provides sufficient conditions for a shadowable point to be an entropy point.

Corollary 1.1 Let f : X → X be a continuous map. Given x ∈ Sh+( f ), if one of
the following conditions is satisfied, then x ∈ Ent ( f ).
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Properties of Shadowable Points: Chaos and Equicontinuity 603

(1) There is a closed f -invariant subset S ⊂ X such that C R( f |S) = S and
ω(x, f ) ∩ Sen( f |S) 	= ∅.

(2) There is y ∈ X such that {x, y} ⊂ X is a Li–Yorke pair.
(3) ω(x, f ) is non-minimal for f .

By Theorem 1.1 and Lemma 2.4 together with the result of Blanchard et al. (2002),
we obtain the following corollary.

Corollary 1.2 Let f : X → X be a continuous map with the shadowing property.
Then, the following properties are equivalent.

(1) htop( f ) > 0.
(2) (X, f ) has a Li–Yorke pair.
(3) (X, f ) is Li–Yorke chaotic.
(4) There exists x ∈ X such that ω(x, f ) is non-minimal for f .

Positive topological entropy is a characteristic feature of chaos. It is well-known
that positive topological entropy implies Li–Yorke chaos for any surjective continuous
map on a compact metric space (Blanchard et al. 2002, Corollary 2.4). Corollary 1.2
claims that when the shadowing property is assumed, the presence of a Li–Yorke pair
implies positive topological entropy, and so does Li–Yorke chaos by the fact above. As
a consequence, two definitions of chaos coincide under the shadowing property. We
remark here that for interval maps, the presence of a Li–Yorke pair implies Li–Yorke
chaos, but there are Li–Yorke chaotic interval maps with zero topological entropy
(Kuchta and Smital 1989; Smital 1986; Xiong 1986).

As the next step, we give a lower estimate of the topological entropy under the
presence of a Li–Yorke pair and a quantitative shadowing property. Let d2 denote the
metric on X2 = X × X defined by d2((a, b), (a′, b′)) = max{d(a, a′), d(b, b′)}.
Theorem 1.2 Let f : X → X be a continuous map and suppose that the following
three conditions hold:

(1) e > 2b > 0;
(2) x ∈ Sh+

b ( f ) and every δ-pseudo orbit (xi )
∞
i=0 of f with x0 = x is b-shadowed

by some point of X; and
(3) There is y ∈ X such that {x, y} ⊂ X is a Li–Yorke pair with modulus e.

Then, we have

htop( f ) ≥ 1

2N2(δ)
log 2,

where N2(δ) denotes the minimum cardinality of an open cover of (X2, d2) whose
mesh is ≤ δ.

Then, we proceed to a study on the presence of regularly recurrent points near a
chain recurrent point in the interior of the set of shadowable points. The following
proposition claims that there is a periodic point or a point whose orbit closure is
conjugate to an odometer in any neighborhood of such a point. It is a slight extension
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of a recent result by Li and Oprocha (2016, Corollary 3.3), and we also give an
alternative proof of it through the construction of a factor map (Lemma 4.1).

Let us briefly review the definition of odometers. Given a continuous map f : X →
X , a point x ∈ X is said to be regularly recurrent if for every neighborhood U of x ,
there is k ∈ N such that f kn(x) ∈ U for all n ≥ 0, and minimal (or almost periodic)
if the restriction of f to the orbit closure O f (x) = { f n(x) : n ≥ 0} is minimal. We
denote by R R( f ) (resp. M( f )) the set of regularly recurrent (resp. minimal) points
of f . Note that R R( f ) ⊂ M( f ). It holds that M( f ) = M( f m) for every m ∈ N

(see, for example, Moothathu 2011). An odometer (also called an adding machine)
is defined as follows. Given a strictly increasing sequence m = (mk)

∞
k=1 of positive

integers such that m1 ≥ 2 and mk divides mk+1 for each k = 1, 2, . . . , we define

• X (k) = {0, 1, . . . , mk − 1} (with the discrete topology);
• Xm = {x = (xk)

∞
k=1 ∈ ∏∞

k=1 X (k) : xk ≡ xk+1 (mod mk)};
• g(x)k = xk + 1 (mod mk) for x ∈ Xm .

The resulting dynamical system (Xm, g) is called an odometer with the periodic struc-
ture m. An odometer is characterized as a minimal equicontinuous system on Cantor
space (see Kurka 2003). Any infinite minimal system with the shadowing property is
conjugate to an odometer. It is also known that for every continuous map f : X → X
and x ∈ R R( f )\Per( f ), a dynamical system (O f (x), f ) is an almost 1–1 extension
of an odometer. Moreover, if O f (x) ⊂ R R( f ), then (O f (x), f ) is conjugate to an
odometer (see Blokh and Keesling 2004; Downarowicz 2005).

Proposition 1.1 Let f : X → X be a continuous map and let p ∈ Int Sh+( f ) ∩
C R( f ). Then, for every ε > 0, there exists q ∈ X with d(p, q) ≤ ε such that
q ∈ Per( f ) or (O f (q), f ) is conjugate to an odometer.

Remark 1.1 If a continuous map f : X → X satisfies the shadowing property, then
Sh+( f ) = X . In this case, as seen from Proposition 1.1, R R( f ) is dense in the
non-wandering set of f . Therefore, one may expect that if f : X → X has the b-
shadowing property with b > 0, then for every x ∈ �( f ), there exists y ∈ R R( f )

with d(x, y) ≤ b, but this is not the case as shown in the following example. Let
σ : {0, 1}Z → {0, 1}Z be the full shift and let gb : Yb → Yb be a minimal rigid
rotation on a circle Yb with radius b > 0. Then, since σ has the shadowing property,
σ × gb : {0, 1}Z × Yb → {0, 1}Z × Yb has the b-shadowing property. However,
R R(σ × gb) = R R(σ ) × R R(gb) = ∅ because R R(gb) = ∅.

The next theorem describes local features of interior points in the set of shadowable
points, under the assumption that Int Sh+( f ) is contained in a chain recurrent subset.
A key idea of the proof is Bowen type decomposition of chain recurrent subsets.

It has been observed so far that if a continuous map f : X → X is chain recur-
rent, then X admits a canonical decomposition into finitely many chain components.
Such an idea goes back to Smale’s spectral decomposition theorem on Axiom A dif-
feomorphisms. It states that the non-wandering set of an Axiom A diffeomorphism
is decomposed into finitely many clopen transitive components (Smale 1967). Then,
Bowen decomposed each of the components into cyclically alternating clopen com-
ponents for which the power of the diffeomorphism restricted to each component is
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Properties of Shadowable Points: Chaos and Equicontinuity 605

topologically mixing, and used it to develop the ergodic theory of Axiom A diffeo-
morphisms (Bowen 1975). A topological version of Smale and Bowen decomposition
is presented in Aoki and Hiraide (1994) for instance.

Relatively recently, such a type of decomposition is generalized for chain transitive
maps. An idea leading to the generalization was already presented in Akin (1993).
It was used in Richeson and Wiseman (2008) to give a structure theorem of chain
transitive maps, and used in Brian et al. (2015) to prove a certain kind of shadowing
property for chain transitive maps. We consider such a type of decomposition of
chain recurrent subsets by chain equivalence relations without assuming the chain
transitivity, and use it to prove Theorem 1.3.

Theorem 1.3 Let f : X → X be a continuous map and let σ : {0, 1}N → {0, 1}N
be the full shift. Suppose that there is a closed f -invariant subset S ⊂ X such that
C R( f |S) = S and Int Sh+( f ) ⊂ S. Then, for any x ∈ Int Sh+( f ), each of the
following two families of properties (S1)–(S5) and (E1)–(E4) consists of equivalent
properties, and either (S1) or (E1) holds.

(S1) x ∈ Sen( f ).
(S2) For every ε > 0, there are m ∈ N and a closed f m-invariant subset Y ⊂ Bε(x)

for which we have a factor map π : (Y, f m) → ({0, 1}N, σ ), and there exists
y ∈ X with d(x, y) ≤ ε such that y ∈ Per( f ) or (O f (y), f ) is conjugate to
an odometer.

(S3) For every ε > 0, there exists y ∈ X with d(x, y) ≤ ε such that (O f (y), f ) is a
minimal sensitive subsystem.

(S4) x ∈ Ent ( f ).
(S5) x /∈ Int R R( f ).

(E1) x ∈ Int EC( f ).
(E2) There is a neighborhood U of x such that for every y ∈ U, y ∈ Per( f ) or

(O f (y), f ) is conjugate to an odometer.
(E3) x /∈ Ent ( f ).
(E4) x ∈ Int R R( f ).

Moreover, if x ∈ EC( f ), then x ∈ Per( f ) or (O f (x), f ) is conjugate to an odometer.

Remark 1.2 IfC R( f ) = X , then the hypothesis of Theorem1.3 is satisfied for S = X .
When f : X → X is a homeomorphism or an open map and Int Sh+( f ) ⊂ C R( f ),
putting S = Int Sh+( f ), we have f (S) ⊂ S and �( f |S) = S, implying C R( f |S) =
S. Then, the hypothesis of Theorem 1.3 is satisfied. Note that if a continuous map f :
X → X satisfies the shadowing property and S = �( f ), then we have Sh+( f |S) = S
and C R( f |S) = S. Hence, Theorem 1.3 applies to any dynamical system with the
shadowing property restricted to its non-wandering set.

This paper consists of six sections. In Sect. 2, we prove Theorem 1.1 and Corollary
1.2. Theorem1.2 is proved in Sect. 3.We prove Proposition 1.1 in Sect. 4. In Sect. 5, we
give Bowen type decomposition of chain recurrent subsets and some consequences.
Finally, we prove Theorem 1.3 in Sect. 6.
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2 Proof of Theorem 1.1 and Corollary 1.2

In this section, we prove Theorem 1.1 and Corollary 1.2. We first give the definition
of “e-separated pairs of two δ-cycles at a point” mentioned in Sect. 1. Let f : X → X
be a continuous map on a compact metric space (X, d).

Definition 2.1 For x ∈ X , a δ-chain (xi )
k
i=0 of f is said to be a δ-cycle of f at x if

x0 = xk = x . For e > 0, we say that a pair ((z(0)
i )m

i=0, (z
(1)
i )m

i=0) of two δ-cycles of f

at x is e-separated if d(z(0)
i , z(1)

i ) > e for some 0 < i < m.

Note that when we say that a pair of δ-cycles of f is e-separated, the two δ-cycles
have the same length, which will be called the period of the pair. In what follows,
δ-cycles mean δ-cycles of f unless otherwise specified.

Remark 2.1 Let ((z(0)
i )k

i=0, (z
(1)
i )l

i=0) be a pair of δ-cycles at x with d(z(0)
j , z(1)

j ) > e
for some 0 < j < min{k, l}. Then, the pair of the following δ-cycles:

(z(0)
0 , z(0)

1 , . . . , z(0)
j , . . . , z(0)

k−1, z(1)
0 , z(1)

1 , . . . , z(1)
l−1, z(1)

0 ),

(z(1)
0 , z(1)

1 , . . . , z(1)
j , . . . , z(1)

l−1, z(0)
0 , z(0)

1 , . . . , z(0)
k−1, z(0)

0 )

is an e-separated pair of δ-cycles at x with the period k + l.

Lemma 2.1 Let f : X → X be a continuous map. Given e > 0 and z ∈ X, if one of
the following conditions is satisfied, then for any δ > 0, X contains an e-separated
pair of two δ-cycles of f at z.

(1) There is a closed f -invariant subset S ⊂ X such that C R( f |S) = S and z ∈
Sene( f |S).

(2) There are a Li–Yorke pair {x, y} ⊂ X with modulus e and a sequence of integers
0 < n1 < n2 < · · · such that

lim
j→∞ d( f n j (x), f n j (y)) = 0 and lim

j→∞ f n j (x) = z.

(3) There are x ∈ X and a closed f -invariant subset S ⊂ X such that z ∈ S ⊂
ω(x, f ) and ω(x, f )\Be(S) 	= ∅.

��
Proof (1) This proof is a modification of that of Kocielniak and Mazur (2007), Theo-

rem 2. Given δ > 0, fix 0 < δ0 < δ/2 and take 0 < δ1 < δ/2 so that d(a, b) < δ1
implies d( f (a), f (b)) < δ0 for all a, b ∈ X . Then, since z ∈ Sene( f |S), there
are z(0)

0 , z(1)
0 ∈ S and N ∈ N such that max{d(z, z(0)

0 ), d(z, z(1)
0 )} < δ1 and

d( f N (z(0)
0 ), f N (z(1)

0 )) > e. Choose ε > 0 with d( f N (z(0)
0 ), f N (z(1)

0 )) > e + 2ε
and take 0 < δ2 < δ/2 such that for every δ2-chain (x0, x1, . . . , xN ) of f , we
have d( f N (x0), xN ) < ε. Since z(0)

0 , z(1)
0 ∈ S = C R( f |S), there exists a pair of

δ2-cycles in S

((z(0)
0 , z(0)

1 , . . . , z(0)
k−1, z(0)

0 ), (z(1)
0 , z(1)

1 , . . . , z(1)
l−1, z(1)

0 ))
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with min{k, l} > N . By the choice of δ2, we have

d(z(0)
N , z(1)

N ) ≥ d( f N (z(0)
0 ), f N (z(1)

0 )) − d( f N (z(0)
0 ), z(0)

N ) − d( f N (z(1)
0 ), z(1)

N )

> e + 2ε − 2ε = e.

From

d( f (z), z(0)
1 ) ≤ d( f (z), f (z(0)

0 )) + d( f (z(0)
0 ), z(0)

1 ) < δ0 + δ2 < δ

and

d( f (z(0)
k−1), z) ≤ d( f (z(0)

k−1), z(0)
0 ) + d(z(0)

0 , z) < δ2 + δ1 < δ,

it follows that (z, z(0)
1 , . . . , z(0)

k−1, z) is a δ-cycle at z. Similarly, (z, z(1)
1 , . . . , z(1)

l−1, z)
is also a δ-cycle at z. Hence, as in Remark 2.1, S contains an e-separated pair of
δ-cycles at z with period k + l.

(2) Given δ > 0, take 0 < η = η(δ) < δ such that d(a, b) ≤ η implies
d( f (a), f (b)) ≤ δ for all a, b ∈ X . Then, there are 1 ≤ N1 < N2 < N3
with N2 − N1 and N3 − N2 arbitrarily large such that

{ f N1(x), f N1(y), f N3(x), f N3(y)} ⊂ Bη(z) = {u ∈ X : d(z, u) ≤ η}.

and d( f N2(x), f N2(y)) > e. Then, the pair of the following

(z, f N1+1(x), . . . , f N2−1(x), f N2(x), f N2+1(x), . . . , f N3−1(x), z),
(z, f N1+1(y), . . . , f N2−1(y), f N2(y), f N2+1(y), . . . , f N3−1(y), z)

is an e-separated pair of δ-cycles at z.
(3) Fix p ∈ ω(x, f )with d(p, S) > e. Given δ > 0, since f |ω(x, f ) is chain transitive,

there is a δ-chain (x (1)
i )a

i=0 of f |ω(x, f ) such that x (1)
0 = z and x (1)

a = p. Note that
f a(z) ∈ S, and hence d( f a(z), p) ≥ d(p, S) > e. By the chain transitivity of
f |ω(x, f ) again, there is a pair ((y(0)

i )b
i=0, (y(1)

i )c
i=0) of δ-chains of f |ω(x, f ) such

that (y(0)
0 , y(1)

0 ) = ( f a(z), p) and (y(0)
b , y(1)

c ) = (z, z). Consider the following
pair of δ-cycles of f :

((z, f (z), . . . , f a−1(z), y(0)
0 , y(0)

1 , . . . , y(0)
b−1, z), (z, x (1)

1 , . . . , x (1)
a−1, y(1)

0 , y(1)
1 , . . . , y(1)

c−1, z)).

Since d(y(0)
0 , y(1)

0 ) = d( f a(z), p) > e, as in Remark 2.1, there is an e-separated
pair of δ-cycles at z with period 2a + b + c contained in ω(x, f ).

��
Remark 2.2 Under the assumption of (1) (resp. (3)), the e-separated pairs of δ-cycles
of f at z can be taken in S (resp. ω(x, f )).

We need the following lemma given by Ye and Zhang (2007).
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608 N. Kawaguchi

Lemma 2.2 (Ye and Zhang 2007, Proposition 2.5) If h( f, A) > 0 for a closed subset
A ⊂ X, then A ∩ Ent ( f ) 	= ∅.

This lemma is obtained by the fact that for any choice of compact subsets
K1, . . . , Km ⊂ X , we have h( f,

⋃m
i=1 Ki ) = max{h( f, Ki ) : 1 ≤ i ≤ m} and a

simple concentration argument.
The next lemma is essential in the proof of Theorem 1.1.

Lemma 2.3 Let f : X → X be a continuous map and let x ∈ Sh+
b ( f ) with b > 0.

Given e, δ > 0, and z ∈ ω(x, f ), suppose that the following conditions are satisfied.

• e > 2b.
• Every δ-pseudo orbit (xi )

∞
i=0 of f with x0 = x is b-shadowed by some point of X.

• There is an e-separated pair ((z(0)
i )m

i=0, (z
(1)
i )m

i=0) of δ-cycles of f at z with period
m.

Then, htop( f ) ≥ (log 2)/m, and there exists w ∈ Ent ( f ) such that d(x, w) ≤ b.

Proof Fix 0 < j < m with d(z(0)
j , z(1)

j ) > e and take k > 0 with d( f k(x), z) ≤ δ.
By the hypothesis, given n ∈ N, for each s = (s1, . . . , sn) ∈ {0, 1}n , we can consider
the following δ-chain of f :

(x, f (x), . . . , f k−1(x), z(s1)
0 , z(s1)

1 , . . . , z(s1)
m−1, . . . , z(sn)

0 , z(sn)
1 , . . . , z(sn)

m−1),

which is b-shadowed by y(s) ∈ Bb(x). Put En = {y(s) ∈ X : s ∈ {0, 1}n} and let
us claim that En is a (k + mn, e − 2b)-separated set. In fact, for any s, t ∈ {0, 1}n , if
s 	= t , then sa 	= ta for some 1 ≤ a ≤ n, and letting K = k + (a − 1)m + j , we have
K < k + mn, and

d
(

f K (y(s)), f K (y(t))
) ≥ d(z(sa)

j , z(ta)
j ) − d( f K (y(s)), z(sa)

j ) − d( f K (y(t)), z(ta)
j ) > e − 2b.

Note that En ⊂ Bb(x) and the cardinality of En is 2n . Hence, we have S(Bb(x), k +
mn, e − 2b) ≥ 2n for every n ∈ N, and then

h( f, Bb(x)) ≥ h( f, Bb(x), e − 2b) = lim sup
n→∞

1

n
log S(Bb(x), n, e − 2b)

≥ lim sup
n→∞

1

k + mn
log S(Bb(x), k + mn, e − 2b)

≥ lim sup
n→∞

1

k + mn
log 2n

= 1

m
log 2 > 0.

Thus, we obtain htop( f ) ≥ h( f, Bb(x)) ≥ (log 2)/m, and from Lemma 2.2, it follows
that Bb(x) ∩ Ent ( f ) 	= ∅. ��

Now let us prove Theorem 1.1.

123



Properties of Shadowable Points: Chaos and Equicontinuity 609

Proof of Theorem 1.1 Take b > c with e > 2b > 2c and choose δ > 0 such that every
δ-pseudo orbit (xi )

∞
i=0 of f with x0 = x is b-shadowed by some point of X . For such

δ, if one of the conditions (1)-(3) in Theorem 1.1 (corresponding to those in Lemma
2.1) is satisfied, then there exist z ∈ ω(x, f ) and an e-separated pair of δ-cycles of f
at z by Lemma 2.1. Hence, using Lemma 2.3, we see that there exists w ∈ Ent ( f )

such that d(x, w) ≤ b. Since b > c can be taken arbitrarily close to c, and Ent ( f )

is a closed subset of X , there exists w ∈ Ent ( f ) such that d(x, w) ≤ c, proving the
theorem. ��

Let σ : {0, 1}N → {0, 1}N be the full shift. The following lemma is a restatement
(with modification) of Proposition 2 in Sect. 2 of Kirchgraber and Stoffer (1989). It
describes how we obtain from an e-separated pair of δ-cycles at x together with the
shadowing property, a subsystem of some power of f which is an extension of the full
shift.

Lemma 2.4 Let e ≥ 2b > 0 and let ((z(0)
i )m

i=0, (z
(1)
i )m

i=0) be an e-separated pair of
δ-cycles at x ∈ X. For each s = (s1, s2, . . . ) ∈ {0, 1}N, define a δ-pseudo orbit γ (s)
as follows:

γ (s) = (z(s1)
0 , z(s1)

1 , . . . , z(s1)
m−1, z(s2)

0 , z(s2)
1 , . . . , z(s2)

m−1, z(s3)
0 , z(s3)

1 , . . . , z(s3)
m−1, . . . ).

If every γ (s), s ∈ {0, 1}N, is b-shadowed by some point of X, then there exist a closed
f m-invariant subset Y ⊂ Bb(x) and a factor map π : (Y, f m) → ({0, 1}N, σ ).

Proof Let

Y = {y ∈ X : y is a b-shadowing point of γ (s) for some s ∈ {0, 1}N},

and define a map π : Y → {0, 1}N so that y is a b-shadowing point of γ (π(y)). Then,
it is easy to see that the following properties hold.

(1) Y is a closed subset of X ;
(2) f m(Y ) ⊂ Y ;
(3) π is well-defined;
(4) π is surjective;
(5) π is continuous; and
(6) π ◦ f m = σ ◦ π .

Hence, π : (Y, f m) → ({0, 1}N, σ ) is a factor map, and Y ⊂ Bb(x) is obvious. ��
Remark 2.3 Let I d : [0, 1] → [0, 1] be the identity map on the unit interval. Then,
for any δ > 0, if m ≥ 1 is large enough, we can take a δ-cycle (z(0)

i )m
i=0 of I d at 0

with z(0)
j = 1 for some 0 < j < m. Consider the δ-cycle (z(1)

i )m
i=0 of I d at 0 defined

by z(1)
i = 0 for all 0 ≤ i ≤ m. Then, we have d(z(0)

j , z(1)
j ) = 1, and every δ-pseudo

orbit γ (s), s ∈ {0, 1}N, defined as in Lemma 2.4 is 1/2-shadowed by 1/2. But, it is
obvious that there is no subsystem of (powers of) I d admitting a factor map to the
full shift. Note that ((z(0)

i )m
i=0, (z

(1)
i )m

i=0) is not a 1-separated pair of δ-cycles at 0 by
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610 N. Kawaguchi

the definition. This example shows that the assumption of the separation > e cannot
be replaced by ≥ e in order that Lemma 2.4 holds.

Remark 2.4 There is a sensitive continuous map f : X → X with the shadowing
property such that (X, f ) admits ({0, 1}N, σ ) as a factor, but any subsystem of powers
of f is not conjugate to ({0, 1}N, σ ). In fact, ({0, 1}N × Xm, σ × g) with an odometer
(Xm, g) gives such an example. The natural projection onto ({0, 1}N, σ ) is a factor
map. Note that Per(σ × g) = ∅ because Per(g) = ∅, but if some subsystem of some
power of σ × g were conjugate to ({0, 1}N, σ ), then Per(σ × g)would be non-empty.

As a corollary of Lemmas 2.1 and 2.4, we obtain the following lemma.

Lemma 2.5 Let f : X → X be a continuous map and let S ⊂ X be a closed f -
invariant subset such that C R( f |S) = S. If x ∈ Sen( f |S) ∩ Sh+( f ), then for every
ε > 0, there are m ∈ N and a closed f m-invariant subset Y ⊂ Bε(x) for which we
have a factor map π : (Y, f m) → ({0, 1}N, σ ).

Proof Take positive constants e, ε, and δ > 0 with the following properties.

• x ∈ Sene( f |S).
• e > 2ε.
• Every δ-pseudo orbit (xi )

∞
i=0 of f with x0 = x is ε-shadowed by some point of X .

Then, the condition (1) of Lemma 2.1 is satisfied, and therefore S contains an e-
separated pair of δ-cycles of f at x by Lemma 2.1. Hence, we can use Lemma 2.4 to
obtain the conclusion. ��

For the proof of Corollary 1.2, we need the following lemma, which is also used in
the proof of Theorem 1.3.

Lemma 2.6 Let f : X → X be a continuous map. If Y ⊂ X is a closed f m-invariant
subset with m ∈ N, and π : (Y, f m) → ({0, 1}N, σ ) is a factor map, then we have the
following properties.

(1) There is y ∈ Y such that ω(y, f ) is non-minimal for f .
(2) There is y ∈ Y such that (O f (y), f ) is a minimal sensitive subsystem.

Proof (1) Take s ∈ {0, 1}N with ω(s, σ ) = {0, 1}N and y ∈ π−1(s). Putting Z =
ω(y, f m), we have f m(Z) ⊂ Z and π(Z) = {0, 1}N, which implies that π :
(Z , f m) → ({0, 1}N, σ ) is a factor map. Then, defining W = Z ∪ f (Z) ∪ · · · ∪
f m−1(Z), we have W = ω(y, f ). To show that W is non-minimal for f by
contradiction, assume that W is minimal for f . Then, we have Z ⊂ W ⊂ M( f ) =
M( f m), which contradicts that M(σ ) 	= {0, 1}N, because the π -image of any
minimal point for f m is also a minimal point for σ . Thus, W is non-minimal for
f .

(2) It suffices to show that there exists y ∈ Y such that (O f m (y), f m) is a minimal
sensitive subsystem of (Y, f m). Put g = f m and take an infinite minimal subshift

 ⊂ {0, 1}N. Since Z = π−1(
) is g-invariant, there is a minimal g-invariant
subset W ⊂ Z . Then, since π(W ) ⊂ 
 is σ -invariant and 
 is minimal, we have
π(W ) = 
. Let us claim that g|W is sensitive. Fix any w ∈ W . Note that σ |
 is
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positively expansive, and hence if π(U ) 	= {π(w)} for every neighborhood U of
w in W , then w is a sensitive point of g|W . Assume the contrary, i.e., there is a
neighborhood U of w in W such that π(U ) = {π(w)} to exhibit a contradiction.
SinceW isminimal for g, there isn > 0 such that gn(w) ∈ U . Then,π(w) ∈ 
 and
σ n(π(w)) = π(gn(w)) = π(w), which contradicts that
 is infinite and minimal.
Thus, for every w ∈ W , (Og(w), g)=(W, g) is a minimal sensitive subsystem of
(Y, g), proving the lemma.

��
As the final proof of this section, we give a proof of Corollary 1.2.

Proof of Corollary 1.2 (1) ⇒ (3): htop( f ) > 0 implies that htop( f |�( f )) =
htop( f ) > 0. By the shadowing property of f , we see that f |�( f ) is surjective.
Hence, from Blanchard et al. (2002), Corollary 2.4, it follows that f |�( f ) is Li-Yorke
chaotic, and so is f .

(3) ⇒ (2): This is obvious by the definition.
(2) ⇒ (1): Let {x, y} ⊂ X be a Li–Yorke pair with modulus e. Note that x ∈

Sh+( f ) since Sh+( f ) = X . Applying Theorem 1.1 (2) with c = 0, we have x ∈
Ent ( f ), implying that Ent ( f ) 	= ∅, and thus htop( f ) > 0.

(1) ⇒ (4): If Sen( f |�( f )) = ∅, then htop( f ) = htop( f |�( f )) = 0. Therefore,
when htop( f ) > 0, we have Sen( f |�( f )) 	= ∅. The shadowing property of f implies
that �( f ) = �( f |�( f )) ⊂ C R( f |�( f )) ⊂ �( f ), so C R( f |�( f )) = �( f ). Since
Sh+( f ) = X , we can apply Lemma 2.5 with S = �( f ) to have m ∈ N and a
closed f m-invariant subset Y ⊂ X for which we have a factor map π : (Y, f m) →
({0, 1}N, σ ). Thus, by Lemma 2.6 (1), there is x ∈ X such thatω(x, f ) is non-minimal
for f .

(4) ⇒ (1): Let x ∈ X be a point such that ω(x, f ) is non-minimal for f . Then,
applying Theorem 1.1 (3) with c = 0, we have x ∈ Ent ( f ), which implies htop( f ) >

0. ��

3 Proof of Theorem 1.2

To prove Theorem 1.2, we need the following technical lemma, which is a version
of the shortcut lemma proved in Kawaguchi (2016), Lemma 2.2. Intuitively, the open
cover U of (X2, d2) in the lemma works as a “scale”, and any pair of chains of f with
sufficiently small gaps and an arbitrary length can be replaced by a pair of chains with
the same beginning and end points, whose gaps and length are bounded by the mesh
and the cardinality of U , respectively.
Lemma 3.1 Let δ > 0 and let U = {U1, . . . , UK } be an open cover of (X2, d2)
with mesh U = max1≤i≤K diam Ui ≤ δ. Suppose that β > 0 is a Lebesgue num-
ber of U . Then, for every pair ((x (0)

i )k
i=0, (x (1)

i )k
i=0) of β-chains of f , there is a

pair ((y(0)
i )l

i=0, (y(1)
i )l

i=0) of δ-chains of f such that (y(0)
0 , y(1)

0 ) = (x (0)
0 , x (1)

0 ) and

(y(0)
l , y(1)

l ) = (x (0)
k , x (1)

k ) with 1 ≤ l ≤ K .

Proof Put g = f × f and zi = (x (0)
i , x (1)

i ) ∈ X2 for each 0 ≤ i ≤ k. Then, we
have d2(g(zi ), zi+1) ≤ β for every 0 ≤ i < k. Since d2(g(z0), z1)) ≤ β, there is
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1 ≤ i0 ≤ K such that {g(z0), z1} ⊂ Ui0 . Put j1 = max{1 ≤ j ≤ k : z j ∈ Ui0}. Since
{g(z0), z j1} ⊂ Ui0 and diam Ui0 ≤ δ, we have d2(g(z0), z j1) ≤ δ. If j1 < k, then
since d2(g(z j1), z j1+1) ≤ β, there is 1 ≤ i1 ≤ K such that {g(z j1), z j1+1} ⊂ Ui1 . Put
j2 = max{ j1 + 1 ≤ j ≤ k : z j ∈ Ui1}. Since {g(z j1), z j2} ⊂ Ui1 and diam Ui1 ≤ δ,
we have d2(g(z j1), z j2) ≤ δ. Note that z j1+1 ∈ Ui1\Ui0 , and so Ui1 	= Ui0 . If j2 < k,
we repeat the process, and so on. Inductively, we obtain a sequence of integers 0 =
j0 < j1 < j2 < · · · . If jK < k, then Ui0 , Ui1 , . . . , UiK would be K + 1 distinct
elements of U , which is absurd. Therefore, we have jl = k for some 1 ≤ l ≤ K and
d2(g(z jα ), z jα+1) ≤ δ for every 0 ≤ α < l. Put z jα = (x (0)

jα
, x (1)

jα
) = (y(0)

α , y(1)
α ) for

each 0 ≤ α ≤ l. Then, we have (y(0)
0 , y(1)

0 ) = (x (0)
0 , x (1)

0 ), (y(0)
l , y(1)

l ) = (x (0)
k , x (1)

k ),
and

max{d( f (y(0)
α ), y(0)

α+1), d( f (y(1)
α ), y(1)

α+1)} = d2
(
( f (y(0)

α ), f (y(1)
α )), (y(0)

α+1, y(1)
α+1)

)

= d2(g(z jα ), z jα+1) ≤ δ

for all 0 ≤ α < l. Hence, ((y(0)
α )l

α=0, (y(1)
α )l

α=0) is a pair of δ-chains of f satisfying
the required property. ��

By the virtue of Lemma 3.1, we can reduce the period of a separated pair of cycles
at a point in some case.

Lemma 3.2 Under the same hypothesis as in Lemma 3.1, for every e-separated
pair ((z(0)

i )m
i=0, (z

(1)
i )m

i=0) of β-cycles at x ∈ X, there is an e-separated pair

((w
(0)
i )n

i=0, (w
(1)
i )n

i=0) of δ-cycles at x with period n ≤ 2K .

Proof Fix 0 < j < m with d(z(0)
j , z(1)

j ) > e. We split the pair ((z(0)
i )m

i=0, (z
(1)
i )m

i=0)

into two parts corresponding to 0 ≤ i ≤ j and j ≤ i ≤ m respectively, and apply
the shortcut lemma (Lemma 3.1) to each part. Then, by joining them, we obtain a
separated pair with a shortened period. Precisely, by Lemma 3.1, there exist two pairs
((x (0)

i )k
i=0, (x (1)

i )k
i=0) and ((y(0)

i )l
i=0, (y(1)

i )l
i=0) of δ-chains of f such that

• (x (0)
0 , x (1)

0 ) = (z(0)
0 , z(1)

0 ) = (x, x) and (x (0)
k , x (1)

k ) = (z(0)
j , z(1)

j );

• (y(0)
0 , y(1)

0 ) = (z(0)
j , z(1)

j ) and (y(0)
l , y(1)

l ) = (z(0)
m , z(1)

m ) = (x, x); and
• max{k, l} ≤ K .

Then, the pair of the following δ-cycles:

(x (0)
0 , x (0)

1 , . . . , x (0)
k−1, y(0)

0 , y(0)
1 , . . . , y(0)

l−1, y(0)
l ),

(x (1)
0 , x (1)

1 , . . . , x (1)
k−1, y(1)

0 , y(1)
1 , . . . , y(1)

l−1, y(1)
l )

is an e-separated pair of δ-cycles at x with period n = k + l ≤ 2K . ��
Finally, using Lemma 3.2, we prove Theorem 1.2.

Proof of Theorem 1.2 Take an open cover U of (X2, d2) such that mesh U ≤ δ and
card U = N2(δ). Let β > 0 be a Lebesgue number of U . Then, by assumption (3) and
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Lemma 2.1, there is z ∈ ω(x, f ) such that X contains an e-separated pair of β-cycles
at z. Applying Lemma 3.2 to this pair, we obtain an e-separated pair of δ-cycles at z
whose period n is ≤ 2N2(δ). Then, by assumptions (1) and (2), we can use Lemma
2.3 to conclude that

htop( f ) ≥ 1

n
log 2 ≥ 1

2N2(δ)
log 2.

��

4 Proof of Proposition 1.1

In this section, we prove Proposition 1.1. We first prove the following lemma.

Lemma 4.1 Let f : X → X be a continuous map. If p ∈ Int Sh+( f ) is a chain
recurrent point of f , then for every ε > 0, there exist a closed f -invariant subset
Y ⊂ X with Y ∩ Bε(p) 	= ∅ and a factor map π : (Xm, g) → (Y, f ), where
Bε(p) = {x ∈ X : d(p, x) ≤ ε} and (Xm, g) is an odometer.

Given p ∈ Int Sh+( f )∩C R( f ) and ε > 0, take εk > 0, k ∈ N, with
∑

k∈N εk ≤ ε.
For any subset S ⊂ X and any δ > 0, let Bδ(S) = {x ∈ X : d(x, S) ≤ δ}. We may
suppose that Bε(p) ⊂ Sh+( f ).

The next two lemmas are needed to prove Lemma 4.1. The first lemma is similar to
Moothathu and Oprocha (2013), Lemma 3.1, but we extend it to a sequence of finite
collections of subsets of X .

Lemma 4.2 There exist a strictly increasing sequence (mk)k∈N of positive integers
and a sequence ({A(k)

j : 0 ≤ j < mk})k∈N of finite collections of compact subsets of
X such that the following properties are satisfied for each k ∈ N.

(1) A(k)
0 ⊂ B∑k

i=1 εi
(p).

(2) mk divides mk+1.
(3) f mk (A(k)

0 ) = A(k)
0 and A(k)

0 is minimal for f mk .

(4) f j (A(k)
0 ) = A(k)

j for all 0 ≤ j < mk.

(5) diam A(k)
j ≤ 2εk for all 0 ≤ j < mk.

(6) For any 0 ≤ j < mk+1, if j = qmk + r with 0 ≤ r < mk, then A(k+1)
j ⊂

Bεk+1(A(k)
r ).

Proof Let us prove the claim by induction on k. When k = 1, since p ∈ Sh+( f ), there
is δ1 > 0 such that every δ1-pseudo orbit (zi )

∞
i=0 with z0 = p is ε1-shadowed by some

point of X . Then, since p ∈ C R( f ), there is a δ1-cycle (x (1)
i )

m1
i=0 with x (1)

0 = x (1)
m1 = p.

Consider the following m1-periodic δ1-pseudo orbit

(x (1)
0 , x (1)

1 , . . . , x (1)
m1−1, x (1)

0 , x (1)
1 , . . . , x (1)

m1−1, . . . ),

which is ε1-shadowed by y1 ∈ X . Then, for every n ≥ 0, f m1n(y1) is also an ε1-
shadowing point, and hence every y ∈ ω(y1, f m1) is an ε1-shadowing point of the
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above pseudo orbit. Since ω(y1, f m1) is f m1 -invariant, there is a minimal subset
Y1 ⊂ ω(y1, f m1) for f m1 . Given 0 ≤ j < m1, we have d( f j (y), x (1)

j ) ≤ ε1 for every

y ∈ Y1, and therefore f j (Y1) ⊂ Bε1(x (1)
j ). For each 0 ≤ j < m1, put A(1)

j = f j (Y1).

Then, A(1)
0 = Y1 ⊂ Bε1(x (1)

0 ) = Bε1(p), and properties (3), (4), and (5) are satisfied
for k = 1.

Now given k ∈ N, assume that mk and {A(k)
j : 0 ≤ j < mk} satisfying (1),

(3), (4), and (5) are chosen. Fix x (k+1)
0 ∈ A(k)

0 . Then, since A(k)
0 ⊂ B∑k

i=1 εi
(p) ⊂

Bε(p) ⊂ Sh+( f ), there is δk+1 > 0 such that every δk+1-pseudo orbit (zi )
∞
i=0 with

z0 = x (k+1)
0 is εk+1-shadowed by some point of X . Since A(k)

0 is minimal for f mk ,

there is ak ≥ 2 such that d(x (k+1)
0 , f ak mk (x (k+1)

0 )) ≤ δk+1. Put mk+1 = akmk and
consider the following mk+1-periodic δk+1-pseudo orbit

(x(k+1)
0 , f (x(k+1)

0 ), . . . , f mk+1−1(x(k+1)
0 ), x(k+1)

0 , f (x(k+1)
0 ), . . . , f mk+1−1(x(k+1)

0 ), . . . ),

which is εk+1-shadowed by some yk+1 ∈ X . Similarly to the above, we take a
minimal subset Yk+1 ⊂ ω(yk+1, f mk+1) for f mk+1 . Note that every y ∈ Yk+1 is
an εk+1-shadowing point of the pseudo orbit above. Given 0 ≤ j < mk+1, we
have d( f j (y), f j (x (k+1)

0 )) ≤ εk+1 for every y ∈ Yk+1, and therefore f j (Yk+1) ⊂
Bεk+1( f j (x (k+1)

0 )). Put A(k+1)
j = f j (Yk+1) for every 0 ≤ j < mk+1. Then,

A(k+1)
0 = Yk+1 ⊂ Bεk+1(x (k+1)

0 ) ⊂ Bεk+1(A(k)
0 ) ⊂ Bεk+1(B∑k

i=1 εi
(p)) ⊂ B∑k+1

i=1 εi
(p),

(2) is satisfied for k, and (3), (4), and (5) are satisfied for k + 1. Suppose that 0 ≤ j <

mk+1 is written as j = qmk + r with 0 ≤ r < mk . Then, f j (x (k+1)
0 ) ∈ f j (A(k)

0 ) =
A(k)

r , which implies A(k+1)
j = f j (Yk+1) ⊂ Bεk+1(A(k)

r ). Hence, (6) is also satisfied
for k, and thus the lemma has been proved. ��

Recall that the definition of the odometer (Xm, g) with the periodic structure m =
(mk)k∈N was given in Sect. 1. For m = (mk)k∈N and ({A(k)

j : 0 ≤ j < mk})k∈N
constructed in Lemma 4.2, we have the following property.

Lemma 4.3 Let r = (rl)l∈N ∈ Xm and k ∈ N. Then, we have

A(k+N )
rk+N

⊂ Bεk+1+···+εk+N (A(k)
rk

)

for every N ∈ N.

Proof We prove this lemma by induction on N . When N = 1, since rk+1 ≡ rk

(mod mk), by substituting rk+1 and rk for j and r in Lemma 4.2 (6), we have A(k+1)
rk+1 ⊂

Bεk+1(A(k)
rk ). Let us assume that the claim holds for some N ∈ N and prove it for

N + 1. Since rk+N+1 ≡ rk+N (mod mk+N ), we have A(k+N+1)
rk+N+1 ⊂ Bεk+N+1(A(k+N )

rk+N )

by Lemma 4.2 (6). On the other hand, we have A(k+N )
rk+N ⊂ Bεk+1+···+εk+N (A(k)

rk ) by the
induction hypothesis. Hence,
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A(k+N+1)
rk+N+1

⊂ Bεk+N+1(Bεk+1+···+εk+N (A(k)
rk

)) ⊂ Bεk+1+···+εk+N +εk+N+1(A(k)
rk

),

which completes the induction. ��
Now let us prove Lemma 4.1.

Proof of Lemma 4.1 Given r = (rl)l∈N ∈ Xm , using Lemma 4.3, for every k ∈ N and
every N ∈ N, we have

A(k+N )
rk+N

⊂ Bεk+1+···+εk+N (A(k)
rk

) ⊂ B∑∞
i=k+1 εi

(A(k)
rk

).

Since diam A(k)
rk ≤ 2εk by Lemma 4.2 (5), we see that dH (A(k)

rk , A(k+N )
rk+N ) ≤∑∞

i=k 2εi → 0 as k → ∞, where dH denotes the Hausdorff distance. In other

words, the sequence (A(l)
rl )l∈N is a Cauchy sequence with respect to dH , and so

liml→∞ dH (A(l)
rl , C) = 0 for some closed subsetC ⊂ X . Since diam A(l)

rl ≤ 2εl → 0
as l → ∞ by Lemma 4.2 (5) again, we have C = {x} for some x ∈ X . Then, define a
map π : Xm → X by putting π(r) = x , which implies

lim
l→∞ dH (A(l)

rl
, {π(r)}) = 0

for every r = (rl)l∈N ∈ Xm . We need two claims concerning the map π .
Claim 1: π : Xm → X is continuous.
Given r = (rl)l∈N and s = (sl)l∈N ∈ Xm , suppose rl = sl for every 1 ≤ l ≤ K .

Then,

A(K+N )
rK+N

⊂ B∑∞
i=K+1 εi

(A(K )
rK

)

for all N ∈ N as above. Taking the limit as N → ∞, we obtain

π(r) ∈ B∑∞
i=K+1 εi

(A(K )
rK

).

Similarly,

π(s) ∈ B∑∞
i=K+1 εi

(A(K )
sK

) = B∑∞
i=K+1 εi

(A(K )
rK

).

By Lemma 4.2 (5), we have diam A(K )
rK ≤ 2εK , and therefore d(π(r), π(s)) ≤∑∞

i=K 2εi → 0 as K → ∞. Thus, π : Xm → X is continuous.
Claim 2: π ◦ g = f ◦ π .
Given r ∈ Xm , put g(r) = s. Then, for each l ∈ N, we have sl = rl + 1 (mod ml)

by the definition of g, and hence A(l)
sl = f (A(l)

rl ) by Lemma 4.2 (4). Taking the limit
as l → ∞, we obtain π(s) = f (π(r)), that is, π(g(r)) = f (π(r)). Since r ∈ Xm is
arbitrary, this claim has been proved.

Putting π(Xm) = Y , from Claims 1 and 2, we see that Y ⊂ X is a closed f -
invariant subset, and π : (Xm, g) → (Y, f ) is a factor map. Hence, it only remains
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to prove that there exists q ∈ Y such that q ∈ Bε(p). Put q = π(0) ∈ Y , where
0 = (0, 0, 0, . . .) ∈ Xm . By Lemma 4.2 (1), we have

A(k)
0 ⊂ B∑k

i=1 εi
(p) ⊂ B∑∞

i=1 εi
(p) ⊂ Bε(p)

for every k ∈ N. Taking the limit as k → ∞, we obtain q ∈ Bε(p), proving the
theorem. ��

Using Lemma 4.1, we prove Proposition 1.1.

Proof of Proposition 1.1 By Lemma 4.1, for any given ε > 0, there are a closed f -
invariant subset Y ⊂ X with Y ∩ Bε(p) 	= ∅ and a factor map π : (Xm, g) → (Y, f ),
where (Xm, g) is an odometer. Then, (Y, f ) is minimal, and it holds that Y ⊂ R R( f )

because Xm = R R(g). By Blokh and Keesling (2004), Corollary 2.5, we see that Y
is a periodic orbit or (Y, f ) is conjugate to an odometer. Thus, taking q ∈ Y ∩ Bε(p),
we have q ∈ Per( f ) or (O f (q), f ) is conjugate to an odometer. ��

5 Bowen Type Decomposition of Chain Recurrent Subsets

In this section, we give Bowen type decomposition of chain recurrent subsets and
present some consequences.

Let g : S → S be a chain recurrent continuous map on a compact metric space S.
For δ > 0, we define a relation ∼δ on S as follows. For x, y ∈ S, x ∼δ y iff there
are a δ-chain (xi )

k
i=0 of g with x0 = x and xk = y, and a δ-chain (yi )

l
i=0 of g with

y0 = y and yl = x . By the chain recurrence of g, we can show that x ∼δ g(x) for
every x ∈ S, and x ∼δ y for all x, y ∈ S with d(x, y) < δ. Hence, every equivalence
class C with respect to ∼δ is clopen in S and g-invariant, i.e., g(C) ⊂ C . Then, each
equivalence class is called a δ-chain component of S (with respect to g), and so S is
decomposed into finitely many δ-chain components. Such a decomposition is called a
δ-chain decomposition of S (with respect to g). Now, fix a δ-chain component C . Note
that for any δ-cycle c = (xi )

n
i=0 of g, if xi ∈ C for some 0 ≤ i ≤ n, then xi ∈ C for all

0 ≤ i ≤ n. In such a case, we write c ⊂ C . Set l(c) = n for any δ-cycle c = (xi )
n
i=0.

Define

N = {n ∈ N : ∃ δ-cycle c o f g with c ⊂ C and l(c) = n},

and put

m = gcdN = max{ j ∈ N : j |n for every n ∈ N }.

Then, we define a relation∼δ,m onC as follows. For any x, y ∈ C , x ∼δ,m y iff there is
a δ-chain (xi )

k
i=0 of g with x0 = x , xk = y and m|k. By the definition ofm, we see that

∼δ,m is an equivalence relation onC , and by the chain recurrence of g, for all x, y ∈ C
with d(x, y) < δ, we have x ∼δ,m y. Hence, every equivalence class D with respect
to ∼δ,m is clopen in S. Take p ∈ C and consider m points p, g(p), . . . , gm−1(p).
Then, it is easy to see that C = ⊔m−1

i=0 [gi (p)] is the partition of C into equivalence
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classes with respect to ∼δ,m , where [gi (p)] denotes the equivalence class containing
gi (p). Put Di = [gi (p)] for 0 ≤ i ≤ m − 1 and Dm = D0. Then, we have

(D1) C = ⊔m−1
i=0 Di and every Di , 0 ≤ i ≤ m − 1, is clopen in S;

(D2) g(Di ) ⊂ Di+1 for every 0 ≤ i ≤ m − 1 (Lemma 5.1);
(D3) Given x, y ∈ Di with 0 ≤ i ≤ m − 1, there exists M ∈ N such that for any

integer N ≥ M , there is a δ-chain c = (xi )
k
i=0 of g in C with x0 = x , xk = y,

and l(c) = k = m N .

(D3) is proved in Brian et al. (2015), Lemma 2.3. The proof is based on the fact that for
every positive integers n1, n2, . . . , nl ∈ N with gcd{n1, n2, . . . , nl} = m, there exists
L ∈ N such that for every integer N ≥ L , we have n1a1 + n2a2 + · · · + nlal = m N
for some integers a1, a2, . . . , al ≥ 0. We call each Di , 0 ≤ i ≤ m − 1, a δ-cyclic
component of C , and C = ⊔m−1

i=0 Di is called a δ-cyclic decomposition of C .

Proof of Lemma 5.1 It is obvious from the definition that x ∼δ,m gm(x) for every
x ∈ C , and hence g3m+i (p) ∈ Di for every 0 ≤ i ≤ m − 1. Fix 0 ≤ i ≤ m − 1 and
x ∈ Di . Since both g3m+i (p) and x are in Di , there are N ∈ N and a δ-chain (xi )

m N
i=0

of g such that x0 = g3m+i (p) and xm N = x . Then, the following

(gi+1(p), gi+2(p), . . . , gi+3m(p), x1, . . . , xm N−1, x, g(x))

is a δ-chain of g of length m(N + 3), which implies gi+1(p) ∼δ,m g(x). Thus, we
have g(x) ∈ Di+1, and since x ∈ Di is arbitrary, g(Di ) ⊂ Di+1 has been proved. ��

In what follows, for x ∈ S, we denote by C(x, δ, g) the δ-chain component con-
taining x . For the given δ-cyclic decomposition C(x, δ, g) = ⊔m−1

i=0 Di with x ∈ D0,
we define

• D(x, δ, g) = D0;
• r(x, δ, g) = max{diam Di : 0 ≤ i ≤ m − 1}; and
• m(x, δ, g) = m.

Note that for any 0 < δ2 < δ1, we have

• C(x, δ2, g) ⊂ C(x, δ1, g);
• D(x, δ2, g) ⊂ D(x, δ1, g);
• r(x, δ2, g) ≤ r(x, δ1, g); and
• m(x, δ1, g)|m(x, δ2, g).

Then,wepresent someconsequences of theBowen typedecomposition.The follow-
ing lemma characterizes the dynamics of a point x ∈ S satisfying limδ→0 r(x, δ, g) =
0.

Lemma 5.2 Let g : S → S be a chain recurrent continuous map. Suppose that
limδ→0 r(x, δ, g) = 0. Then, we have Og(x) ⊂ EC(g)∩ R R(g) and dim Og(x) = 0.
Moreover,

(1) If limδ→0 m(x, δ, g) = ∞, then (Og(x), g) is conjugate to an odometer.
(2) If limδ→0 m(x, δ, g) < ∞, then x ∈ Per(g).
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Proof It is obvious from the definition of the δ-cyclic decomposition that Og(x) ⊂
EC(g) ∩ R R(g) and dim Og(x) = 0. Note that Og(x) is minimal and Og(x) ⊂
R R( f ). If Og(x) is a finite set, then gn(x) = x for somen ∈ N, and hencem(x, δ, g) ≤
n for every δ > 0. Therefore, if limδ→0 m(x, δ, g) = ∞, then Og(x) is infinite, and
thus by Blokh and Keesling (2004), Corollary 2.5, (Og(x), g) is conjugate to an
odometer. If limδ→0 m(x, δ, g) = n < ∞, then it is easy to see that gn(x) = x . ��

The next lemma gives a quantitative relation between the Bowen type decompo-
sition and the presence of separated pairs of cycles at a point, whose definition was
given in Definition 2.1.

Lemma 5.3 Let g : S → S be a chain recurrent continuous map. For every x ∈ S and
every e, δ > 0, S contains an e-separated pair of δ-cycles of g at x iff r(x, δ, g) > e.

Proof Put m = m(x, δ, g) and let C(x, δ, g) = ⊔m−1
i=0 Di be the δ-cyclic decomposi-

tion of C(x, δ, g) with x ∈ D0.
Assume that r(x, δ, g) ≤ e. Then, by the definition of r(x, δ, g), we have

diam Di ≤ e for every 0 ≤ i ≤ m − 1. Let ((z(0)
j )n

j=0, (z
(1)
j )n

j=0) be a pair of δ-cycles

of g such that z(0)
0 = z(1)

0 = z(0)
n = z(1)

n = x . Then, both (z(0)
j )n

j=0 and (z(1)
j )n

j=0 are
contained in C(x, δ, g), and m|n. Moreover, for given 0 ≤ j ≤ n and 0 ≤ i ≤ m − 1,
if j ≡ i (mod m), then we have {z(0)

j , z(1)
j } ⊂ Di . Hence, d(z(0)

j , z(1)
j ) ≤ e for all

0 ≤ j ≤ n, and thus ((z(0)
j )n

j=0, (z
(1)
j )n

j=0) is not e-separated.
Conversely, assume that r(x, δ, g) > e and take 0 ≤ i ≤ m − 1 such that

diam Di > e. Choose y0, y1 ∈ Di with d(y0, y1) > e. Then, by (D3), there are
N1 ∈ N and a pair of δ-chains ((x (0)

j )
m N1
j=0 , (x (1)

j )
m N1
j=0 ) of g with x (0)

0 = x (1)
0 = f i (x)

and (x (0)
m N1

, x (1)
m N1

) = (y0, y1). Since x ∈ D0 and f m−i (y0), f m−i (y1) ∈ D0, using

(D3) again, we have N2 ∈ N and a pair of δ-chains ((y(0)
j )

m N2
j=0 , (y(1)

j )
m N2
j=0 ) of g with

(y(0)
0 , y(1)

0 ) = ( f m−i (y0), f m−i (y1)) and y(0)
m N2

= y(1)
m N2

= x . Then, the pair of the
following δ-cycles

(x, . . . , f i−1(x), x(0)
0 , x(0)

1 , . . . , x(0)
m N1−1, y0, . . . , f m−i−1(y0), y(0)

0 , y(0)
1 , . . . , y(0)

m N2−1, x),

(x, . . . , f i−1(x), x(1)
0 , x(1)

1 , . . . , x(1)
m N1−1, y1, . . . , f m−i−1(y1), y(1)

0 , y(1)
1 , . . . , y(1)

m N2−1, x)

is an e-separated pair of δ-cycles of g at x with period m(N1 + N2 + 1), proving the
lemma. ��

By Lemmas 5.3 and 2.4, we obtain the following lemma.

Lemma 5.4 Let f : X → X be a continuous map and let S ⊂ X be a closed f -
invariant subset such that C R( f |S) = S. Given x ∈ S, suppose that the following
conditions are satisfied.

• Every δ-pseudo orbit (xi )
∞
i=0 contained in S with x0 = x is b-shadowed by some

point of X.

123



Properties of Shadowable Points: Chaos and Equicontinuity 619

• r(x, δ, f |S) > 2b.

Then, there exist m ∈ N and a closed f m-invariant subset Y ⊂ Bb(x) for which we
have a factor map π : (Y, f m) → ({0, 1}N, σ ).

From Lemma 5.4, we obtain the following corollary, which is a quantitative local-
ized version of Moothathu (2011), Corollary 6. For b > 0 and S ⊂ X , we say that a
continuous map f : X → X has the b-shadowing property around S if there is δ > 0
such that every δ-pseudo orbit of f contained in S is b-shadowed by some point of X .

Corollary 5.1 Let f : X → X be a continuous map with the b-shadowing property
around a closed f -invariant subset S. If C R( f |S) = S and htop( f ) = 0 , then for
every x ∈ S, there is a clopen subset D of S such that x ∈ D and diam f n(D) ≤ 2b
for all n ≥ 0.

Proof Choose δ > 0 such that every δ-pseudo orbit contained in S is b-shadowed
by some point of X . Given x ∈ S, by Lemma 5.4, we have r(x, δ, f |S) ≤ 2b.
Put D = D(x, δ, f |S). Then, D is a clopen subset of S containing x , and we have
diam f n(D) ≤ 2b for all n ≥ 0 by (D2) and the definition of r(x, δ, f |S). ��

By Corollary 5.1, we can recover (Moothathu 2011, Corollary 6) as the continuous
limit when b → 0.

Corollary 5.2 (Moothathu 2011, Corollary 6) Let f : X → X be a continuous map
with the shadowing property. If htop( f ) = 0, then dim �( f ) = 0, and f |�( f ) is
equicontinuous.

Proof The shadowingproperty of f implies that�( f ) = �( f |�( f )) ⊂ C R( f |�( f )) ⊂
�( f ), so C R( f |�( f )) = �( f ). Note that for every b > 0, f has the b-shadowing
property around �( f ), and hence Corollary 5.1 applies to S = �( f ). By taking the
limit as b → 0, we obtain dim �( f ) = 0, and f |�( f ) is equicontinuous. ��

The next lemma gives a quantitative relation between the Bowen type decomposi-
tion and the distribution of sensitive points under quantitative pointwise shadowability.

Lemma 5.5 Let f : X → X be a continuous map and let S ⊂ X be a closed f -
invariant subset such that C R( f |S) = S. Given x ∈ S, suppose that every δ-pseudo
orbit (xi )

∞
i=0 contained in S with x0 = x is b-shadowed by some point of X. Then, we

have the following properties.

(1) If r(x, δ, f |S)−2b > e > 0, then there exists y ∈ Sene( f ) such that d(x, y) ≤ b.
(2) If r(x, δ, f |S) ≤ e, then x /∈ Sene( f |S).

Proof We first prove (1). Since r(x, δ, f |S) > e + 2b, by Lemma 5.3, S contains
an (e + 2b)-separated pair of δ-cycles at x . By Lemma 2.4, there exist m ∈ N, a
closed f m-invariant subset Y ⊂ Bb(x), and a factor map π : (Y, f m) → ({0, 1}N, σ ).
Moreover, the construction of the factor map π in the proof of Lemma 2.4 implies that
if π(a) 	= π(b) for a, b ∈ Y , then d( f n(a), f n(b)) > e for some n ≥ 0. Now, since Y
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is compact andπ is surjective, there exists y ∈ Y such that for every neighborhoodU of
y in Y , there is z ∈ U withπ(z) 	= π(y). Then, we have y ∈ Sene( f ) and d(x, y) ≤ b,
proving (1). Suppose that r(x, δ, f |S) ≤ e. Then, putting D = D(x, δ, f |S), we have
diam f n(D) ≤ e for every n ≥ 0 by (D2) and the definition of r(x, δ, f |S). Hence,
we have x /∈ Sene( f |S), proving (2). ��

6 Proof of Theorem 1.3

In this section, we prove Theorem 1.3. Let f : X → X be a continuous map and let
S ⊂ X be a closed f -invariant subset such that C R( f |S) = S and Int Sh+( f ) ⊂ S.
Then, S admits Bowen type decomposition with respect to f |S .

The following lemma claims that for any x ∈ Int Sh+( f ), we have a dichotomy,
limδ→0 r(x, δ, f |S) > 0 with x ∈ Sen( f ) or limδ→0 r(x, δ, f |S) = 0 with x ∈
EC( f ).

Lemma 6.1 For any x ∈ Int Sh+( f ), we have the following properties.

(1) If limδ→0 r(x, δ, f |S) > 0, then x ∈ Sen( f ).
(2) If limδ→0 r(x, δ, f |S) = 0, then x ∈ EC( f ) ∩ R R( f ).

Proof Let us suppose that limδ→0 r(x, δ, f |S) > e > 0 and prove that x ∈ Sene( f ).
Take ε > 0 and δ0 > 0 such that limδ→0 r(x, δ, f |S) > e + 2ε > e and every
δ0-pseudo orbit (xi )

∞
i=0 of f with x0 = x is ε-shadowed by some point of X . Then,

since r(x, δ0, f |S) − 2ε > e > 0, by Lemma 5.5, there exists y ∈ Sene( f ) such that
d(x, y) ≤ ε. Since ε > 0 can be taken arbitrarily small, we obtain x ∈ Sene( f ) =
Sene( f ). As for (2), if limδ→0 r(x, δ, f |S) = 0, then from Lemma 5.2, it follows that
x ∈ EC( f |S) ∩ R R( f |S). Since x ∈ Int Sh+( f ) ⊂ Int S, we have x ∈ EC( f ), and
obviously x ∈ R R( f ). ��

By Lemmas 5.2 and 6.1, we obtain the following corollary.

Corollary 6.1 For every x ∈ Int Sh+( f ), if x ∈ EC( f ), then x ∈ Per( f ) or
(O f (x), f ) is conjugate to an odometer.

Now let us prove Theorem 1.3.

Proof of Theorem 1.3 (S1) ⇒ (S2): Let x ∈ Sen( f ). By Proposition 1.1, for every
ε > 0, there exists y ∈ X with d(x, y) ≤ ε such that y ∈ Per( f ) or (O f (y), f )

is conjugate to an odometer. On the other hand, given ε > 0, take y ∈ Sen( f ) ∩
Int Sh+( f ) with d(x, y) ≤ ε/2. Note that y ∈ Int Sh+( f ) ⊂ Int S, and so y ∈
Sen( f |S) ∩ Sh+( f ). By Lemma 2.5, there are m ∈ N and a closed f m-invariant
subset Y ⊂ Bε/2(y) for which we have a factor map π : (Y, f m) → ({0, 1}N, σ ).
Since Bε/2(y) ⊂ Bε(x), (S1) ⇒ (S2) has been proved.

(S2) ⇒ (S3): This follows from Lemma 2.6 (2).
(S2) ⇒ (S4): Let U be a neighborhood of x in X . Then, there are m ∈ N, a closed

f m-invariant subset Y ⊂ U , and a factor map π : (Y, f m) → ({0, 1}N, σ ). We have

h( f, U ) ≥ 1

m
h( f m, U ) ≥ 1

m
h( f m, Y ) ≥ 1

m
log 2 > 0.

123



Properties of Shadowable Points: Chaos and Equicontinuity 621

Since U is arbitrary, we have x ∈ Ent ( f ).
(S2) ⇒ (S5): Take s /∈ R R(σ ) and y ∈ π−1(s). Then, we have y /∈ R R( f m) =

R R( f ). Hence, there exists y ∈ Bε(x) with y /∈ R R( f ) for every ε > 0, which
implies (S5).

(S3) ⇒ (S1): This is obvious.
(S4) ⇒ (S1): Suppose that x /∈ Sen( f ). Then, x ∈ Int EC( f ). Take a neigh-

borhood U of x such that U ⊂ EC( f ). Then, we have h( f, U ) = 0, and hence
x /∈ Ent ( f ).

(S5) ⇒ (S1): Suppose that x /∈ Sen( f ). Then, x ∈ Int EC( f ). Take a neighbor-
hood U of x such that U ⊂ EC( f ) ∩ Int Sh+( f ). Then, using Lemma 6.1, we have
limδ→0 r(y, δ, f |S) = 0 for every y ∈ U , and hence y ∈ R R( f ) by Lemma 5.2.
Thus, we have x ∈ Int R R( f ).

(E1) ⇐⇒ (E3) ⇐⇒ (E4) has been already proved.
(E1) ⇒ (E2): Take a neighborhood U of x such that U ⊂ EC( f ) ∩ Int Sh+( f ).

Then, using Lemma 6.1, we have limδ→0 r(y, δ, f |S) = 0 for every y ∈ U , and hence
by Lemma 5.2, y ∈ Per( f ) or (O f (y), f ) is conjugate to an odometer.

(E2) ⇒ (E4): This is obvious.
The last claim has been already proved as Corollary 6.1. ��
Finally, we give an example in which Theorem 1.3 holds.

Example 6.1 Let C ⊂ [0, 1] be the Cantor ternary set. Take a homeomorphism g :
C → C which is conjugate to the full shift σ : {0, 1}Z → {0, 1}Z. Then, g has the
shadowing property. Set xn = 1/n, Cn = {y/n : y ∈ C} for each n ∈ N, and let

X = {(0, 0)} ∪
⋃

n∈N
{xn} × Cn ⊂ R

2.

Then, X is a compact subset of R2. Define a homeomorphism f : X → X by
f ((0, 0)) = (0, 0), and f (xn, y/n) = (xn, g(y)/n) for y ∈ Cn , n ∈ N. Then, it is
easy to see that Sh+( f ) = X , and so f has the shadowing property. It is also obvious
that f is non-wandering. Note that (0, 0) ∈ EC( f ), but (0, 0) /∈ Int EC( f ). Then,
we see that (S1)–(S5) are satisfied for x = (0, 0).
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