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On Cauchy problems of thermal non-equilibrium
flows with small data*
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Abstract. We study the equations describing the motion of a thermal non-equilibrium
gas with one non-equilibrium mode. In three space dimensions it is a hyperbolic system
of six equations with a relaxation term. The dissipation mechanism induced by the
relaxation is weak in the sense that Shizuta-Kawashima criterion is violated. However,
there is a significant difference between one dimensional and three dimensional flows
in how the criterion is violated. As a consequence, the velocity components in their
solutionsbehave differently while thermal dynamic variables share common properties.
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1 Introduction

In this paper we consider initial value problems of the dynamics of real gasses.
A real gas has at least one non-equilibrium molecular process, such as vibration,
rotation, chemical composition, etc. We focus our discussion on thermal non-
equilibrium flows. Thus the motion of a non-equilibrium mode is a relaxation
towards its local equilibrium value in a time scale called relaxation time. To
simplify our notation we further assume that the gas has only one non-equilibrium
mode. At least in the case of one space dimension, however, the results on global
existence and large time behavior to be discussed below apply to flows with
several non-equilibrium modes as well. The purpose of this paper is to compare
multi-dimensional flows with one-dimensional flows, and discuss the difference
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in the structure of the partial differential equations describing these flows, and
as a consequence, the difference in the solution behavior.

Without loss of generality we assume that the non-equilibrium mode is the
vibrational mode. Then in three space dimensions, the motion of the gas is
described by the following equations:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρt + div(ρu) = 0,

(ρu)t + div(ρuut ) + ∇ p = 0,

(ρE )t + div(ρE u + pu) = 0,

(ρq)t + div(ρqu) = ρ
Q − q

τ
,

(1.1)

where ρ, u = (u1, u2, u3)
t , p, E , q, Q and τ are the gas density, velocity,

pressure, specific total energy, specific vibrational energy, local equilibrium value
of specific vibrational energy, and local relaxation time, respectively. All these
are functions of the space variable x ∈ R3 and time variable t ∈ R+. We note
that the first three equations are the conservation of mass, momentum and energy,
while the last one is the relaxation equation for the vibrational energy. The total
energy E consists of internal energy and kinetic energy:

E = e + 1

2
|u|2, |u|2 =

3∑
j=1

u2
j , (1.2)

and the internal energy e is further divided into the equilibrium energy e1 and
the vibrational energy q:

e = e1 + q. (1.3)

We use subscript“1” to denote thermodynamic variables related to equilibrium
modes, and subscript “2” to denote those related to the non-equilibrium mode.
Thus s1 and T1 are equilibrium entropy and temperature, respectively, while s2

and T2 are non-equilibrium entropy and temperature. Under these notations the
thermodynamic equations read:

de1 = T1ds1 − pdv, v = 1/ρ, dq = T2ds2. (1.4)

From (1.4) we see that for the equilibrium modes only two thermodynamic
variables are independent, and others can be regarded as known functions of
them. In particular, the local equilibrium value of vibrational energy and the
local relaxation time are given functions of, say, v and e1:

Q = Q(v, e1), τ = τ(v, e1). (1.5)

Bull Braz Math Soc, Vol. 47, N. 2, 2016



�

�

“main” — 2016/6/3 — 14:04 — page 801 — #3
�

�

�

�

�

�

CAUCHY PROBLEMS OF THERMAL NON-EQUILIBRIUM FLOWS WITH SMALL DATA 801

Similarly, for the non-equilibriummode only one of the variables is independent.
Therefore, we have six unknowns: three thermodynamic variables and three
components of the velocity. Equation (1.1) is a system of six equations for these
unknowns.

To state our basic assumptions we introduce the following notations:

p = p(v, e1) = p̆(v, s1) = p̃(v, T1), T1 = T1(v, e1), q = ω(T2), (1.6)

for some known function ω. Recall that Q is the local equilibrium value of q,
and a state is an equilibrium state if and only if T2 = T1. Therefore, (1.6) implies
that

Q = Q(v, e1) = ω(T1). (1.7)

The basic physical assumptions for this paper are:

p̃v = ∂

∂v
p̃(v, T1) < 0, T1e1 = ∂

∂e1
T1(v, e1) > 0,

ω′(T1) > 0, pe1 = ∂

∂e1
p(v, e1) �= 0.

(1.8)

By direct calculation one can verify that assumption (1.8) implies

c2
f ≡ − p̆v/ρ

2 = (ppe1 − pv)v
2 = [− p̃v + T1( p̃T1)

2T1e1]v2 > 0,

c2 ≡
[ pe1(p + Qv)

1 + Qe1

− pv

]
v2 > 0.

(1.9)

Here c f is the frozen speed of sound, i.e., the sound speed of the frozen flow,
which is the limit of the non-equilibrium flow as τ → ∞. On the other hand, c is
the equilibrium speed of sound, the sound speed of the equilibrium flow, which
is the limit of the non-equilibrium flow as τ → 0.

If we consider the special case of plane wave solutions to (1.1) we have one-
dimensional flows. The equations may be further simplified by using Lagrangian
coordinates: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vt − ux = 0,

ut + px = 0,

Et + (pu)x = 0,

qt = Q − q

τ
.

(1.10)

Noting u is a scalar, (1.10) is a system of four equations for four unknowns.

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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2 Structural conditions for well-posedness and dissipation

Consider a general system of hyperbolic balance laws

wt +
m∑

i=1

fi (w)xi = r(w), m ≥ 1, (2.1)

where w ∈ Rn is the unknown density function (mass density, momentum den-
sity, etc), fi ∈ Rn, 1 ≤ i ≤ m, are flux functions, and r ∈ Rn represents external
force, relaxation, chemical reactions and so on. We assume fi and r are smooth
functions of w, which depends on the space variable x = (x1, . . . , xm)t ∈ Rm

and time variable t ∈ R+. A constant state w̄ is an equilibrium state if r(w̄) = 0.
We consider (2.1) in a small neighborhood O of w̄. We also define the equilib-
rium manifold as

E = {w ∈ O|r(w) = 0}.
Physical examples usually come with a certain number of conservation laws.

Thus we assume (2.1) can be written as

(
w1

w2

)
t

+
m∑

i=1

(
fi1

fi2

)
(w)xi =

(
0
r2

)
(w), (2.2)

where w1, fi1 ∈ R
n1 , w2, fi2, r2 ∈ R

n2 , n1 + n2 = n, and n1, n2 > 0. Here
n1 > 0 is demanded by physics as in (1.1) and (1.10), while n2 > 0 is to set (2.1)
apart from hyperbolic conservation laws, which have different solution behavior.

For (2.2) we impose the following assumptions:

(i) The matrix (r2)w2 ∈ Rn2×n2 is non-singular.

(ii) There exists a strictly convex entropy U such that U ′′ symmetries (2.1)
(hence (2.2)) in the following sense: U ′′ f ′

i ,1 ≤ i ≤ m, are symmetric in
O; and U ′′r ′ is symmetric, semi-negative definite on E . Here U ′′ is the
Hessian of U with respect to w, and f ′

i is the Jacobian matrix of fi with
respect to w, etc.

Clearly, (1.1) and (1.10) are examples of (2.2). Under the physical assumptions
(1.8), by direct calculation we can verify that they both satisfy Assumptions (i)
and (ii), see [12, 13, 14].

The first part of Assumption (ii), i.e., the positive definite U ′′ symmetrizing
f ′
i in O, is in fact a condition for well-posedness. It is a classical result that it

implies local existence for Cauchy problems with smooth and small data, see

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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[3, 6], etc. Such a condition, however, does not imply the decay of solution in
time, hence may not be sufficient for global existence. There has been an ex-
tensive literature studying (2.1) or (2.2) under a variety of assumptions, [9, 8,
5, 2, 4, 11, 1, 7] and references therein. The key ingredients of those assump-
tions are a well-posedness condition and a dissipation criterion in some form.
The dissipation criterion gives the full decay of solution in conjunction with the
well-posedness condition. Therefore, energy estimates can be obtained, global
existence can be established, and large time behavior can be studied, for one
space dimension and multi-space dimensions.

A typical version of the dissipation criterion is through the strong coupling
of the flux functions and the inhomogeneous term, known as the Shizuta-Kawa-
shima condition, originally introduced for hyperbolic-parabolic systems, [10].
For (2.1) (or (2.2)) it reads:

(iii) The null space of r ′(w̄) contains no eigenvectors of
∑m

i=1 νi f ′
i (w̄) for all

unit vectors ν = (ν1, . . . , νm)t ∈ Rm .

For the one dimensional thermal non-equilibrium flow, it has been shown in
[12] that (1.10) violates Assumption (iii). Similarly, we can show that the three
dimensional flow (1.1) also violates the assumption. The direct consequence is
that if the initial data is a small perturbation of the constant equilibrium state w̄,
only a portion of the solution decays to w̄. This can be seen by the following
equilibrium solution to (1.10):

v = v(x), u = 0, p = p̄, e1 = e1(v, p) = e1(x), q = Q(v, p) = Q(x),

where p̄ > 0 is a constant. We see that this is a steady state solution, hence
any initial perturbation of v(x) to v̄ > 0 stays all the time. In fact, for a non-
equilibrium solution, the entropy grows in time along the particle path: Let
s = s1 + s2 be the total entropy. Equation (1.10) and assumptions (1.8) imply

st =
(

1

T2
− 1

T1

)
Q − q

τ
> 0, (2.3)

see [12]. For three dimensional flows we have a similar equation for (1.1) as
well, [14]. This is consistent with physics as the motion of a non-equilibrium
flow is irreversible. The growth in entropy, however, is weak as it is easy to see
from (2.3) that the linearized entropy equation is st = 0.

Although both one dimensional flow and three dimensional flow do not sat-
isfy the Shizuta-Kawashima condition, there is a significant difference in their

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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structure. To see this we use non-conserved variables p, u, χ = Q − q and s as
unknowns. Equation (1.10) is equivalent to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pt + c2
f ux = −pe1 χ/τ,

ut + px = 0,

χt + aux = −(1 + Qe1)χ/τ,

st = (1/T2 − 1/T1)χ/τ,

(2.4)

where a = a(v, e1) is a known function of equilibrium thermal dynamic vari-
ables.

Next we linearize (2.4) around a constant equilibrium state ( p̄, 0, 0, s̄)t . Here
we note that χ̄ = 0 and without loss of generality we have set ū = 0. Using the
bar accent to denote thermal dynamic variables taken at the constant equilibrium
state, the linearized equation of (2.4) reads

⎧⎪⎨
⎪⎩

pt + c̄2
f ux = − p̄e1χ/τ̄ ,

ut + px = 0,

χt + āux = −(1 + Q̄e1)χ/τ̄ ,

(2.5)

st = 0. (2.6)

We observe that the linear entropy equation (2.6) is completely decoupled for
the others. Although the 4 × 4 system (2.5), (2.6) violates assumption (iii), after
the decoupling of (2.6), the 3 × 3 system (2.5) now satisfies the assumption,
[12]. The significance of this fact is two-fold. Firstly, the non-decaying part of
the solution is represented by the entropy, while the decaying part represented
by the pressure, velocity and the departure of the vibrational energy from its
local equilibrium value. Secondly, these two parts are weakly coupled (in the
nonlinear level but not in the linear level). It is because of such a weak coupling,
we are able to separate waves according to their decay rates. Consequently, we
are able to obtain an energy estimate to establish the global existence of solution
if the Cauchy datum is a small perturbation of the constant equilibrium state.
We are even able to study the large time behavior of the solution in a space-time
pointwise sense. These have been done in [12]. Parallel results are also obtained
for one dimensional flows with a finite number of non-equilibrium modes, [13].

The structure of the three dimensional flow (1.1), however, is very different.
To see this we use the same unknowns as in (2.4) and consider the following

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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equations equivalent to (1.1):
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pt + ut∇ p + ρc2
f div u = −pe1χ/τ,

uit + ut∇ui + pxi /ρ = 0, 1 ≤ i ≤ 3,

χt + ut∇χ + a div u = −(1 + Qe1)χ/τ,

st + ut∇S = (1/T2 − 1/T1)χ/t .

(2.7)

Now we linearize (2.7) around a constant equilibrium state ( p̄, 0, 0, 0, 0, s̄)t ,
where without loss of generality we have set ū = (0, 0, 0). This gives us

⎧⎪⎨
⎪⎩

pt + ρ̄c̄2
f div u = − p̄e1χ/τ̄ ,

ut + ∇ p/ρ̄ = 0,

χt + ā div u = −(1 + Q̄e1)χ/τ̄,

(2.8)

st = 0. (2.9)

As in the case of one dimensional flow, the linear entropy equation (2.9) is
completely decoupled from the others. The 5 × 5 system (2.8), however, still
violates assumption (iii). To see this we write (2.8) as

w̃t + A1w̃x1 + A2w̃x2 + A3w̃x3 = Bw̃, (2.10)

where w̃ = (p, u, χ)t, and Ai , 1 ≤ i ≤ 3, and B are the constant coefficient
matrices. Assumption (iii) now reads: The null space of B contains no eigen-
vectors of

∑3
i=1 νi Ai for all unit vectors ν = (ν1, ν2, ν3)

t ∈ R3. From (2.8) it is
clear that

3∑
i=1

νi Ai =

⎛
⎜⎜⎜⎜⎝

0 ν1ρ̄c̄2
f ν2ρ̄c̄2

f ν3ρ̄c̄2
f 0

ν1/ρ̄ 0 0 0 0
ν2/ρ̄ 0 0 0 0
ν3/ρ̄ 0 0 0 0

0 ν1ā ν2ā ν3ā 0

⎞
⎟⎟⎟⎟⎠ ,

B =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 − p̄e1 /τ̄

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −(1 + Q̄e1)/τ̄

⎞
⎟⎟⎟⎟⎠ .

(2.11)

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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Equation (2.11) implies that the null space of B is
{ (

η

0

) ∣∣∣η ∈ R
4

}
, which

contains the following eigenvectors of
∑3

i=1 νi Ai :

(0, ν2, −ν1, 0, 0)t, (0, ν3, 0, −ν1, 0)t, ν1 �= 0 or ν2, ν3 �= 0, (2.12)

where ν = (ν1, ν2, ν3)
t is an unit vector in R3. That is, the null space of B

contains at least one, and in many cases, two eigenvectors of
∑3

i=1 νi Ai .
The above discussion indicates that although the non-decaying entropy wave

is weakly coupled in the solution of (1.1) (coupled through nonlinear terms),
there is another non-decaying part strongly coupled in the solution (coupled by
linear terms). As to be revealed in next section, this part is the rotation in the
velocity. At this moment, the following special solution of (1.1) is relevant:

ρ = positive constant, u1 = cos
(
θ(x3)

)
, u2 = sin

(
θ(x3)

)
, u3 = 0,

e1 = positive constant, q = Q(1/ρ, e1) = positive constant.
(2.13)

3 Wave Pattern of Three Dimensional Flows

To understand the wave pattern of the three dimensional flow we consider
the Green’s function for the Cauchy problem of the linearization (2.8), (2.9)
of (1.1). This is the solution matrix G̃(x , t) that satisfies the initial condition
G̃(x , 0) = δ(x)I6×6, where δ(x) is the Dirac δ-function. Clearly, G̃(x , t) =
diag(G(x , t), δ(x)), where G(x , t) is the Green’s function of the Cauchy
problem for (2.8). Therefore, we focus on G, i.e., on the pressure and veloc-
ity, expecting that χ is a higher order term. Here we announce a recent result
about G:

Theorem 3.1. Let assumption (1.8) be true and G(x , t) be the Green’s function
of the Cauchy problem of (2.8). Let M > c̄ f and 0 < c1, c2 < c̄ be constants,
where c̄ f and c̄ are the frozen sound speed and equilibrium sound speed, respec-
tively, taken at the constant equilibrium state, see (1.9). Then there is a constant
C > 0 such that for x ∈ R

3, t ∈ R
+ we have the following estimates: For

|x | ≤ M(t + 1),

G(x , t) = char{t ≥ 1}G∗(x , t) + O(1)(t + 1)− 5
2 e− (|x|−c̄ t)2

C(t+1)

+ char{|x | ≤ c̄t} diag(0, O(1)(t + 1)−3, 0)

− char{|x | ≤ c1(t + 1)} diag(0, �−1∇∇ tδ(x), 0)

+ δ(x) diag(0, I3×3, 0)

+ {exponentially decaying distributions along

the particle path and the frozen sound cone},

(3.1)

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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and for |x | > M(t + 1),

G(x , t) = O(1)e−(|x|+t)/C + δ(x) diag(0, I3×3, 0)

+ {exponentially decaying distributions along

the particle path and the frozen sound cone}.
(3.2)

Here �−1 is the inverse Laplace operator, char{D} is the characteristic function
of a setD, and G∗ is defined as

G∗(x , t) = char{|x | ≥ c2(t + 1)} 1

2(2πᾱt)3/2

|x | − c̄t

t

× e− (|x|−c̄ t)2

2ᾱt

⎛
⎜⎝

1
c̄

c̄ρ̄t
|x|2 x t − p̄e1

c̄ζ̄
t

c̄ρ̄|x|2 x t
|x|3 x x t − p̄e1 t

c̄ρ̄ζ̄ |x|2 x

0 01×3 0

⎞
⎟⎠ .

(3.3)

On the right-hand side of (3.3), we recall that the bar accent is used for thermo-
dynamic variables taken at the constant equilibrium state, and we define

ζ ≡ 1 + Qe1 > 0, α ≡ τω′(T1)T1 p2
e1

ρ2ζ 2
> 0.

The proof of Theorem 3.1 and the explicit formulation of the exponentially
decaying distributions in (3.1) and (3.2) are given in an upcoming paper [14].
Here we give a brief discussion on (3.1). First, G∗ is the leading term of the
decaying part. From (3.3) it is a higher order term of the heat kernel along
the equilibrium sound cone by a factor (|x | − c̄t)/t , which is equivalent to
t−1/2. The second term is a higher order term of G∗ (with faster decay in t).
The third term is an algebraic decay restricted to the inside of the equilibrium
sound cone. It affects u only since the middle block of the Green’s matrix is
for the u components. The fourth and fifth terms are the non-decaying part,
affecting u only as well. It is interesting to observe that in the one dimensional
case, the double Riesz transform becomes one, and these two terms cancel each
other. This explains that in one space dimension there is no non-decaying part
in the velocity. The last term is for exponentially decaying distributions, along
the particle path and the frozen sound cone.

What we have discussed can be illustrated by Figure 1. The cone in dash
lines is the frozen sound cone, along which exponentially decaying distributions
propagate. The shaded region is where G∗ and its higher order terms are. This
region expends in the rate of t1/2 because it is diffusion. Inside the cone it is
filled for u with a decay rate t−3 while it is empty (exponential decay) for p.

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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t

R
3

|x| = c̄f t

|x| = c̄t|x| = c̃1(t+ 1)

O(
√
t)

Figure 1: Wave pattern in Green’s function G(x , t) in three space dimensions.

Near the center, which is the particle path, we have non-decaying distributions
for u. In the center there are exponentially decaying distributions for the whole
solution.
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