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Abstract. In a series of joint works with S. Bianchini [3, 4, 5], we proved a quadratic
interaction estimate for general systems of conservation laws. Aim of this paper is to
present the results obtained in the three cited articles [3, 4, 5], discussing how they are
related with the general theory of hyperbolic conservation laws. To this purpose, first
we explain why this quadratic estimate is interesting, then we give a brief overview of
the techniques we used to prove it and finally we present some related open problems.
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1 Introduction

A system of conservation laws in one space dimension (see [8]) is a system of
PDEs of the form

ut + f (u)x = 0, (1.1)

where u : [0, ∞) × R → R
n is the unknown and f : � ⊆ R

n → R
n is a given

smooth (C3) map, called flux, defined on a neighborhood � of the origin and
satisfying the strict hyperbolicity condition, i.e. the Jacobian D f (u) of f has n
distinct eigenvalues

λ1(u) < · · · < λn(u)

in each point u ∈ � of its domain. Throughout this paper, we will assume
without loss of generality (w.l.o.g.) that

λk(u) ∈ [0, 1] for any k and for any u. (1.2)
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590 STEFANO MODENA

This can always be achieved by a change of variable in the (t, x)-plane. As it
is customary, denote by r1(u), . . . , rn(u) the right eigenvalues (normalized to 1)
associated to λ1(u), . . . , λn(u) respectively:

D f (u)rk(u) = λk(u)rk(u), for any k = 1, . . . , n and for any u ∈ �.

Equation (1.1) is usually coupled with an initial datum

u(t = 0) = ū, (1.3)

where ū : R → R
n is a given map, with sufficiently small total variation. W.l.o.g.

we assume also that ū has compact support.
It is well known that classical (smooth) solutions to the Cauchy problem (1.1),

(1.3) are in general not defined on the whole time interval [0, ∞), even if the
initial datum is smooth, because they develop discontinuities in finite time. On
the other side, the notion of distributional solution is too weak to guarantee the
uniqueness. For this reasons the notion of solution which is typically used is the
following one.

Definition 1. A map u : [0, ∞) × R → Rn belonging to L1
loc is said to be a

weak solution of the Cauchy problem (1.1), (1.3) if:

(1) u satisfies equation (1.1) in the sense of distributions;

(2) u is continuous as a map [0, ∞) → L1
loc(R;Rn);

(3) at time t = 0, u(0, x) = ū(x);

(4) u satisfies some additionaladmissibility criteria, which come from physical
or stability considerations and guarantee the uniqueness of the solution.

Many admissibility criteria have been proposed in the literature: just to name
a few, the Lax-Liu condition on shocks (see [14, 16, 17]), the entropy condition
(see [15]), the vanishing viscosity criterion (see [2]). We do not want to enter
into details: the interested reader can refer to the cited literature.

The existence of solutions to the Cauchy problem (1.1), (1.3) can be proved
through several approximation algorithms, for example the wavefront tracking
algorithm and the Glimm scheme. One of the main problems in the construction
of the approximate solutions and in the proof of the convergence of the approx-
imate solutions to the exact one is to find suitable bounds on some quantities,
usually called amounts of interaction, which, roughly speaking, measure how
strong the interaction between two colliding wavefronts is. In particular, new
results were recently obtained by S. Bianchini and the author [3, 4, 5], about a
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A QUADRATIC INTERACTION ESTIMATE 591

quadratic interaction estimate (see Theorem 1 below) on the change in speed of
the waves in a Glimm approximate solution. This quadratic estimate can be used
to prove sharp results on the convergence rate of the Glimm scheme and could
have applications in regularity and stability analysis.

Aim of this paper is to present the results obtained in the three cited articles
[3, 4, 5], discussing how they are related with the general theory of hyperbolic
conservation laws. To this purpose, first we explain why this quadratic estimate
is interesting, then we give a brief overview of the techniques we used to prove
it and finally we present some related open problems. In particular, after intro-
ducing some notations about the Riemann problem in Section 2, in Section 3
we describe the main results on the convergence of the Glimm scheme in the
genuinely non linear/linearly degenerate case. In Section 4 we see how these re-
sults can be extended to the case in which no assumption on f is made except its
strict hyperbolicity. In Section 5 we summarize what is done in the three papers
[3, 4, 5], stating our main result, namely Theorem 1, and presenting the main
techniques used in the proof. Finally Section 6 concludes the paper with some
open problems for which the new tools introduced in [3, 4, 5] could be of help.

2 The Riemann problem

The basic ingredient to solve the Cauchy problem (1.1), (1.3) is the solution of
the Riemann problem, i.e. the Cauchy problem when the initial datum has the
simple form

u(0, x) = ū(x) =
{

uL if x < 0,

u R if x ≥ 0.
(2.1)

The solutionof the Riemann problem (1.1)-(2.1) was obtained first by P. Lax in
1957 [14], under the assumption that each characteristic field is either genuinely
non linear (GNL), i.e. ∇λk(u) · rk(u) �= 0 for any u or linearly degenerate (LD),
i.e. ∇λk(u) · rk(u) = 0 for any u. In this case, if |u R − uL | 	 1, using Implicit
Function Theorem, one can find intermediate states uL = ω0, ω1, . . . , ωn = u R

such that each pair of adjacent states (ωk−1, ωk) can be connected by either a
shock or a rarefaction wave or a contact discontinuity of the k-th family. The
complete solution is now obtained by piecing together the solutions of the n
Riemann problems (ωk−1, ωk) on different sectors of the (t, x)-plane.

In the general case (here and in the rest of the paper, by general case we mean
that no assumption on f is made besides strict hyperbolicity) the solution to the
Riemann problem (uL, u R) was obtained by S. Bianchini and A. Bressan in [2].
They first construct, for any left state uL and for any family k = 1, . . . , n, a
curve s → T k

s uL of admissible right states, defined for s ∈ R small enough,

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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such that the Riemann problem (uL, T k
s uL) can be solved by (countable many)

admissible shocks (in the sense of limit of viscosity approximations), contact
discontinuities and rarefactions waves. Then, as in the GNL/LD case, the global
solution of (uL, u R) is obtained by piecing together the solutions of n Riemann
problems, one for each family: u R = T n

sn
◦ · · · ◦ T 1

s1
uL .

3 Glimm approximate solutions in the GNL/LD case

The first result about existence of solutions to the Cauchy problem (1.1), (1.3)
can be found in the celebrated paper by J. Glimm [13] in 1965, in which the
existence of solutions is proved under the assumption that each characteristic
field is either GNL or LD. In [13], for any ε > 0 an approximate solution
uε(t, x) is constructed by recursion as follows. First of all, take any sampling
sequence {ϑi}i∈N ⊆ [0, 1]. The algorithm starts choosing, at time t = 0, an
approximation ūε of the initial datum ū, such that ūε is compactly supported,
right continuous, piecewise constant with jumps located at point x = mε, m ∈ Z.
We can thus separately solve the Riemann problems located at (t, x) = (0, mε),
m ∈ Z. Thanks to (1.2), the solution uε(t, x) can now be prolonged up to time
t = ε. At t = ε a restarting procedure is used. The value of uε at time ε is
redefined as

uε(ε+, x) := uε(ε−, mε + ϑ1ε), if x ∈ [mε, (m + 1)ε). (3.1)

The solution u(ε, ·) is now again piecewise constant, with discontinuities on
points of the form x = mε, m ∈ Z. If the sizes of the jumps are sufficiently
small, we can again solve the Riemann problem at each point (t, x) = (ε, mε),
m ∈ Z and thus prolong the solution up to time 2ε, where again the restarting
procedure (3.1) is used, with ϑ2 instead of ϑ1. The above procedure can be
repeated on any time interval [iε, (i + 1)ε], i ∈ N, as far as the size of the jump
at each point (iε, mε), i ∈ N, m ∈ Z, remains small enough, or, in other words,
as far as

Tot.Var.(uε(t);R) 	 1. (3.2)

In order to prove (3.2), Glimm introduces a uniformly bounded decreasing func-
tional t �→ QGlimm(t) ≤ O(1)Tot.Var.(ū)2, such that at any time iε, i ∈ N,

Tot.Var.(uε(iε+);R) − Tot.Var.(u(iε−);R)

≤ O(1)
(
QGlimm(iε−) − QGlimm(iε+)

)
.

(3.3)

Here and in the following O(1) denotes a constant which depends only on the
flux f . As an immediate consequence, we get

Tot.Var.(uε(t);R) ≤ O(1)Tot.Var.(uε(0);R) 	 1

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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and thus the solution uε(t, x) can be defined on the whole (t, x)-plane [0, ∞)

× R. The uniform bound on the Tot.Var.(uε(t);R) yields a compactness on the
family {uε}ε: we can thus extract a converging subsequence, which turns out
to be, for almost every sampling sequence {ϑi}i , a weak admissible solution of
the Cauchy problem (1.1), (1.3).

In 1977 T.-P. Liu [18] improved Glimm’s result, showing that if the sampling
sequence is equidistributed, that means that for any λ ∈ [0, 1],

lim
j→∞

�{i ∈ N | 1 ≤ i ≤ j and ϑi ∈ [0, λ]}
j

= λ,

then the subsequence extracted from {uε}ε converges to a weak admissible solu-
tion of (1.1), (1.3).

A different approach which relies on results about the stabilty of the solution
of (1.1), (1.3) with respect to (w.r.t.) the initial datum ū led to the introduction
of the notion of standard Riemann semigroup.

Definition 2. A standard Riemann semigroup for the system of conservation
laws (1.1) is a map S : D× [0, ∞) → D, defined on a domainD ⊆ L1(R;Rn)

containing all functions with sufficiently small total variation, with the following
properties:

1. for some Lipschitz constants L, L ′,

‖Stū − Ss v̄‖1 ≤ L‖ū − v̄‖1 + L ′|t − s|,
for any ū, v̄ ∈ D, t, s ≥ 0; (3.4)

2. if ū ∈ D is piecewise constant, then for t > 0 sufficiently small St ū
coincides with the solution of (1.1), (1.3), which is obtained by piecing
together the standard self-similar solutions of the corresponding Riemann
problems.

In the GNL/LD case it is proved (see, among others, [9], [20], [11]) that any
system of conservation laws admits a standard Riemann semigroup and that at
any time t ≥ 0 the solution u(t) obtained as limit of Glimm approximations
uε(t), for the initial datum ū, coincides with the semigroup St ū. We will discuss
in the next section the general case.

Relying on the existence of the standard Riemann semigroup for GNL/LD
systems, in 1998 A. Bressan and A. Marson [12] further improved the Glimm
sampling method, constructing an equidistributed sequence {ϑi }, satisfying the
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�

�

“main” — 2016/5/12 — 15:59 — page 594 — #6
�

�

�

�

�

�

594 STEFANO MODENA

additional assumption:

sup
λ∈[0,1]

∣∣∣∣λ − �{i ∈ N | j1 ≤ i < j2 and ϑi ∈ [0, λ]}
j2 − j1

∣∣∣∣ ≤

C · 1 + log( j2 − j1)

j2 − j1
.

(3.5)

Using this sequence, they are able to prove that the rate of convergence of
the Glimm approximate solutions uε(t) to the exact weak admissible solution
u(t) = St ū at any time t is given by

lim
ε→0

∥∥uε(t, ·) − St ū
∥∥

L1∣∣ log ε
∣∣√ε

= 0. (3.6)

The technique used in [12] to prove (3.6) is as follows. Thanks to the Lipschitz
property of the semigroup (3.4), in order to estimate the distance∥∥uε(t, ·) − u(t, ·)∥∥L1 = ∥∥uε(t, ·) − St ū

∥∥
L1 ,

we can partition the time interval [0, t] in subintervals Jr := [tr , tr+1] and
estimate the error

‖uε(tr+1) − Str+1−tr uε(tr)‖L1 (3.7)

on each interval Jr . The error (3.7) on Jr comes from two different sources:

1. first of all there is an error due to the fact that in a Glimm approximate
solution, roughly speaking, we give each wave either speed 0 or speed 1
(according to the sampling sequence {ϑi}i ), while in the exact solution it
would have a speed in [0, 1], but not necessarily equal to 0 or 1;

2. secondly, there is an error due to the fact that some waves can be created
at times t > tr , some waves can be canceled at times t < tr+1 and, above
all, some waves, which are present both at time tr and at time tr+1, can
change their speeds, when they interact with other waves.

The first error source is estimated by choosing the intervals Jr sufficiently large
in order to use estimate (3.5) with j2 − j1 � 1.

The second error source can be estimated (choosing the intervals Jr not too
large) if we are able to bound the change in speed of the waves present in the
approximate solution. In the GNL/LD case, this was achieved by Liu in [18],
where he provides a wave tracing algorithm which splits each wavefront in the
approximate solution into a finite number of discrete waves, whose trajectories

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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A QUADRATIC INTERACTION ESTIMATE 595

can be traced and whose changes in speed at any interaction time are bounded
by the corresponding decrease of the functional QGlimm.

As ε → 0, it is convenient to choose the asymptotic size of the intervals
Jr in such a way that the errors in (1) and (2) have approximately the same
order of magnitude. In particular, the estimate (3.6) is obtained by choosing
|Jr | ≈ √

ε log | log ε|.

4 Glimm approximate solutions in the general case

All the results in the previous section were obtained under the assumption that
each characteristic field is either GNL or LD. In this section we consider now
the general case, when this assumption is removed and the only property of f is
its strict hyperbolicity.

The problem of finding a suitable decreasing potential to bound the increase
of t �→ Tot.Var.(uε(t);R) for a Glimm approximate solution uε (see (3.3)) was
solved first by T.-P. Liu in [19] for fluxes with a finite number of inflection
points. Later, in [1], Bianchini solved the problem for general hyperbolic fluxes,
introducing the cubic functional

t �→ Qcubic(t) :=
∫∫

|σ(t, s) − σ(t, s ′)|dsds ′ ≤ O(1)Tot.Var.(uε(t))3, (4.1)

where s, s ′ are two waves in the approximate solution at time t and σ(t, s),
σ(t, s ′) denote their speed. In [2] Bianchini and Bressan also proved that any
strictly hyperbolic f admits a standard Riemann semigroup (see Definition 2
above) of vanishing viscosity solutions with small total variation obtained as the
(unique) limits of solutions to the viscous parabolic approximations

ut + f (u)x = μuxx , (4.2)

when the viscosity μ → 0.
About the rate of convergence of the Glimm scheme when an equidistibuted

sequence satisfying (3.5) is used, the main problem in extending the proof by
Bressan and Marson to the general case is to partition each wavefront in the ap-
proximate solution in waves whose trajectories can be traced and whose changes
in speed are bounded by some suitable decreasing functional. Indeed, if such a
functional is provided, considerations similar to the ones in previous section can
be made (see Points (1)-(2) above and the consequent analysis). While Glimm
potential QGlimm fits appropriately in the GNL/LD case to control the change in
speed of the waves, it is not apt anymore in the general case. We try to explain

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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the problem as follows. At any interaction time t = iε, the change in speed of
the waves, integrated over all the possible waves,∫

waves

∣∣∣σ (
iε, s

) − σ
(
(i − 1)ε, s

)∣∣∣ds (4.3)

satisfies ∫
waves

∣∣∣σ (
iε, s

) − σ
(
(i − 1)ε, s

)∣∣∣ds ≤ Lip( f )Tot.Var.(uε(t))2

i.e. it is quadratic w.r.t. the total variation of the solution at time t , thanks
to the Lipschitzianity of f . Glimm potential QGlimm is also quadratic w.r.t.
Tot.Var.(uε(t)) and thus it is reasonable to think that it can be used to bound
not only the increase of the Total Variation (3.3), but also the change in speed
of the waves (4.3). On the other hand, the potential Qcubic in (4.1) is cubic w.r.t.
Tot.Var.(uε(t)) and thus there is no hope to use it in order to bound a quadratic
quantity such (4.3).

5 A new quadratic interaction functional

In a series of joint works with S. Bianchini ([3] for the scalar case, [4] for a simple
system case, [5] for the general system case, see also [21] for a summary of the
work done in the three cited papers), we construct a new quadratic functional
t �→ Qquadr(t), defined for any Glimm approximate solution uε(t, x), whose
decrease at each interaction controls the change in speed (4.3) of the waves.

More precisely, we first construct a wave tracing algorithm (which we call
Lagrangian representation) which splits each wavefront in the approximate so-
lution uε into infinite many infinitesimal waves as follows:

• for any family k = 1, . . . , n, we define a set of real numbers Wk ⊆ R,
called the set of (infinitesimal) waves;

• for any wave w ∈ Wk , we define its sign S(w) ∈ {−1, 1}, its time of
creation tcr(w) ∈ [0, ∞) and its time of cancellation tcanc(w) ∈ (0, ∞];

• for any wave w ∈ Wk and any time t ∈ [tcr(w),tcanc(w)) we define the
position x(t, w) of the wave w at time t and the speed σ(t, w) of the wave
w at time t .

The speed σ(t, w) and the position x(t, w) are defined by recursion on time
intervals [iε, (i + 1)ε], i ∈ N and are related to each other as described below:

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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• the speed σ(t, w) is the speed given to the wave wby the Riemann problem
located at point (t,x(t, w));

• the position x(t, w) of the wave w at time t is related to the speed σ(t, w)

by the formula

for any t ∈ [iε, (i + 1)ε), x(t, w) ={
x(iε, w) if σ(iε, w) ≤ ϑi+1

x(iε, w) + t − iε if σ(iε, w) > ϑi+1,

which takes into account the sampling method used to construct the Glimm
approximate solution uε.

Then, for any grid point (iε, mε) ∈ Nε × Zε, we define the change in speed
of the waves which at time iε have position mε and which exist also at time
(i − 1)ε:

	σ(iε, mε) :=
n∑

k=1

∫
Wk(iε,mε)∩Wk ((i−1)ε)

∣∣σ(iε, w) − σ((i − 1)ε, w)
∣∣dw

where for any time t and point x

Wk(t) := {
w ∈ Wk

∣∣ t ∈ [tcr(w),tcanc(w))
}
,

Wk(t, x) := {
w ∈ Wk(t)

∣∣ x(t, w) = x
}
.

The theorem we prove in [5] is the following.

Theorem 1. It holds

+∞∑
i=1

∑
m∈Z

	σ(iε, mε) ≤ O(1)Tot.Var.(ū;R)2. (5.1)

Recall that O(1) is a constant which depends only on the flux f .
The proof of Theorem 1 follows a classical approach used in hyperbolic sys-

tems of conservation laws in one space dimension.
We first prove a local estimate. For the couple of Riemann problems (uL, uM),

(uM , u R), we define the quantity

A(uL, uM , u R) := Atrans(uL, uM , u R)

+
n∑

h=1

(
A

quadr
h (uL, uM , u R) + Acanc

h (uL, uM , u R) + Acubic
h (uL, uM , u R)

)
,

(5.2)

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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which we will call the global amount of interaction of the two merging RPs
(uL, uM), (uM , u R). Three of the terms in the r.h.s. of (5.2) have already been
introduced in the literature, namely

• Atrans(uL, uM , u R) is the transversal amount of interaction (see [13] and
Definition 2.5 in [5]) and measures the strength of the interactions between
waves of different families;

• Acanc
h (uL, uM, u R) is the amount of cancellation of the h-th family (see

Definition 2.8 in [5]) and measures how many waves of the h-th family
are canceled, if two waves of the h-th family with different sign interact;

• Acubic
h (uL, uM , u R) is the cubic amount of interaction of the h-th family

(see [1] and Definition 2.6 in [5]) and measures how many waves of the
h-th family are canceled and created in the interaction because of the full
nonlinearity of the flux f .

The term

• A
quadr
h (uL, uM , u R) is the quadratic amount of interaction of the h-th

family (see Definition 3.1 in [5]) and it is introduced for the first time
in [5]; it measures the change in speed of the waves when two wavefronts
of the same family and having the same sign interact.

The local estimate we prove is the following: at any grid point (iε, mε), the
change in speed is bounded by

	σk(u
L, uM , u R) ≤ O(1)A(ui,m−1, ui−1,m−1, ui,m ) =: A(iε, mε), (5.3)

where, for any j ∈ N and r ∈ Z, u j,r := uε( jε, rε). See Section 3 in [5].
Next we show a global estimate, based on a new interaction potential. For

any grid point (iε, mε) define Atrans(iε, mε), Acanc
h (iε, mε), Acubic

h (iε, mε),
A

quadr
h (iε, mε) as the transversal amount of interaction, the amount of cancel-

lation, the cubic amount of interaction and the quadratic amount of interaction
respectively of the two Riemann problems (ui,m−1, ui−1,m−1), (ui−1,m−1, ui,m)

interacting at the grid point (iε, mε).
We introduce a new interaction potential ϒ with the following properties:

(a) it is uniformly bounded at time t = 0: in fact,

ϒ(0) ≤ O(1)Tot.Var.(ū;R)2;

(b) it is constant on time intervals [(i − 1)ε, iε);

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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(c) at any time iε, it decreases at least of 1
2

∑
m∈Z A(iε, mε).

It is fairly easy to see that Points a, b, c above, together with inequality (5.3),
imply Theorem 1.

The potential ϒ is constructed as follows. We define a quadratic functional
t �→ Qquadr(t), constant in the time intervals [(i − 1)ε, iε) and bounded by
O(1)Tot.Var.(ū;R)2 at t = 0, which satisfies the following inequality:

Qquadr(iε) − Qquadr((i − 1)ε)

≤ −
∑
m∈Z

n∑
h=1

A
quadr
h (iε, mε)

+ O(1)Tot.Var.(ū;R)
∑
m∈Z

A(iε, mε)

= −(
1 −O(1)Tot.Var.(ū;R)

) ∑
m∈Z

n∑
h=1

A
quadr
h (iε, mε)

+ O(1)Tot.Var.(ū;R)
∑
m∈Z

Atrans(iε, mε)

+ O(1)Tot.Var.(ū;R)
∑
m∈Z

n∑
h=1

(
Acanc

h (iε, mε) + Acubic
h (iε, mε)

)
.

(5.4)

It is well known (see [13], [1]) that the decreasing potential

Qknown(t) := c1Tot.Var.(uε(t)) + c2 Q trans(t) + c3 Qcubic(t)

at each time iε satisfies

∑
m∈Z

[
Atrans(iε, mε) +

n∑
h=1

(
Acanc

h (iε, mε) + Acubic
h (iε, mε)

)]

≤ Qknown((i − 1)ε) − Qknown
(
iε

)
.

(5.5)

Here Q trans(t) is the transversal part of the Glimm potential QGlimm(t) (see Sec-
tion 2.4 in [5] for a precise definition). It is straightforward to see from (5.4),
(5.5) that we can find a constant C big enough, such that the potential

ϒ(t) := Qquadr(t) + CQknown(t)

satisfies Properties (a)-(c) above, provided that Tot.Var.(ū;R) 	 1.
We would like to stress the main differences between our constructions (the

Lagrangian representation and the quadratic functional Qquadr) and all the wave
tracing algorithms and functionals already present in the literature.
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First of all, our Lagrangian representation is continuous: each wavefront in
the approximate solution is partitioned into an infinite number of waves whose
strength is infinitesimal, while all previous wave tracing algorithm are based on
the partition provided by Liu in [18], where each wavefront in the approximate
solution is partitioned into a finite number of discrete waves.

Secondly, our functional is non-local in time. All previous functionals

t �→ Tot.Var.(u(t)), QGlimm(t), Qcubic(t)

are local in time: in order to compute their value at a fixed time t̄ it is enough
to know the approximate solution uε(t̄) at time t̄ . On the contrary, to compute
the value of our functional Qquadr(t̄) at time t̄ , one must know the behavior
of the solution uε at any time t ∈ [0, ∞). A non-local in time functional is
needed for the following reason. In the GNL/LD case, the functional QGlimm fits
appropriately to estimate the change in speed (4.3), because two waves w, w′
which interact at time t̄ (i.e. x(t̄, w) = x(t̄, w′)), will have the same position at
any time t ≥ t̄ : x(t, w) = x(t, w′) for any t ≥ t̄. No splitting can occur. The
main problem in the general case is that this property is not true anymore. Indeed
two waves which interact at time t̄ can split after time t̄, due to an interaction
with a wave of the same family but different sign, or due to an interaction with
a wave of a different family. Later they can interact again, then they can split
again and so on. This phenomenon can happen an unbounded number of times.
The non-locality in time of Qquadr takes into account this kind of behavior.

Let us sketch now briefly the definition of the functional t �→ Qquadr(t).
We set

Qquadr(t) :=
n∑

k=1

∫∫
Wk (t)×Wk(t)

q(t, w, w′)dwdw′,

where q(t, w, w′) is called the weight of the pair of waves (w, w′) at time t and
its value is determined by the past and future common history of (w, w′), from
the last time tsplit(t, w, w′) ≤ t before time t when w, w′ interact, to the first
time tint(t, w, w′) > t after time t when they interact again. More precisely, we
define the interval of waves I(t, w, w′) as the smallest interval which contains
all the waves which have the same position as w, w′ at time tsplit(t, w, w′) and
which have not been canceled up to time t . Associated to this interval, we define
a partition P(t, w, w′) of I(t, w, w′): the elements of this partition are waves
with the same past history, from the time tsplit(t, w, w′). The weight q(t, w, w′)
can thus be defined (roughly speaking) as

qk(t, w, w′) ≈
difference in speed of w,w′ , assigned through the partitionP(t ,w,w′)

of the interval I(t ,w,w′) with an appropriate flux function feff
k

length of the interval I(t, w, w′)
.
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The precise form is slightly more complicated, in order to minimize the oscilla-
tions of qk in time. The flux function feff

k at time tsplit(t, w, w′) is defined as the
reduced flux function which splits w, w′; at any later time t > tsplit(t, w, w′) it
changes taking into account all the transversal interactions which occur in the
time interval (tsplit(t, s, s ′), t]. See Section 6 in [5] for a precise definition.

6 Open problems

Even if Theorem 1 has been proved to extend formula (3.6) to a general system
with a strictly hyperbolic flux f , it is also interesting by itself, since we think
that it could be used to prove further results on conservation laws.

In particular, in a work under preparation [6], S. Bianchini and the author are
constructing a Lagrangian representation for the exact solution St ū, passing to
the limit the Lagrangian representation for the Glimm approximate solutions uε

and using Theorem 1. This limit Lagrangian representation can be viewed as a
sort of generalized characteristics method, or, in other words, as a continuous
wavefront tracking, which leads to a deeper understanding of the fine structure
of the solutions.

Both Theorem 1 and the limit Lagrangian representation could be used to
investigate the following problems.

6.1 Regularity of solutions to systems of conservation laws

It is well known that the solution u(t, x) is a BV function of the two variables
(t, x). Hence is shares the regularity properties of general BV functions. In
particular either u is approximately continuous or it has an approximate jump at
each point (t, x), with the exception of a setN whose one-dimensional Hausdorff
measure is zero.

However it seems that much stronger regularity properties hold. In the GNL/
LD case it is proved (see, for instance, [10] and [7]) that the setN is countable
and u is continuous (not just approximately continuous) outsideN and outside
a countable family � of Lipschitz shock curves; moreover at any point � \N ,
the solution has left and right limits (not just approximate limits).

We think that the Lagrangian representation we introduce in [6] can be of
great help to investigate similar regularity properties for a solution to a general
Cauchy problem (1.1), (1.3), without any assumption on f except the strict
hyperbolicity.

Bull Braz Math Soc, Vol. 47, N. 2, 2016



�

�

“main” — 2016/5/12 — 15:59 — page 602 — #14
�

�

�

�

�

�

602 STEFANO MODENA

6.2 Structural stability of solutions to systems of conservation laws

Another interesting problem, reletated to the previous one concerns the structural
stability of the solutions to system of conservation laws: one expects that the
strength and the location of a large shock is not affected too much by a small
perturbation of the initial datum. Various results in this direction, but still in the
GNL/LD case, can be found in [10, 7]. It would be interesting to extend such
results to the general case.

6.3 L1 stability of solutions to system of conservation laws via hyperbolic
methods

As observed in Section 4, the paper [2] by Bianchini and Bressan provides also
the L1 stability of the solutions to systems of conservation laws. However, in
their work the authors use stability estimates on the parabolic equation (4.2) to
get the stability result (3.4) for the hyperbolic system.

In several previous works by different people (see, among many, [9], [20]),
the stability of genuinely non linear/linearly degenerate systems is proved using
purely hyperbolic techniques. One of these techniques relies on a functional
�(t) = �(u(t), v(t)) defined on pairs of solutions, equivalent to the L1 norm,
with the fundamental property that it is “almost decreasing” in time. This func-
tional works only in the GNL/LD setting, while it is not clear how to define a
similar functional in the general case. The tools we developed in [3, 4, 5] could
be of help in answering this question.

6.4 Quadratic interaction estimate for viscous conservation laws

Finally, a very interesting question concerns the proof of a quadratic estimate
similar to (5.1) for the conservation law (4.2) with a viscosity term μuxx , in
which we can assume w.l.o.g. μ = 1 (see [2]).

While the building block of the solution of the hyperbolic equation (1.1) is the
Riemann problem, in the viscous case the building block is the viscous traveling
profile, i.e. a solution of the form

u(t, x) = U (x − λt) (6.1)

which satisfies the second order ODE

U ′′ = (D f (U ) − λ)U ′.

In this case the velocity of the viscous profile is λ and it holds

λ = − ut

ux
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In the inequality (5.1) the l.h.s. is the sum over all grid points (iε, mε), i ∈ N,
m ∈ Z on the (t, x) plane of the change in speed of the wavefronts present at
point (iε, mε) multiplied by their strength. Hence its equivalent in the viscous
setting is the integral over the (t, x) plane of the change in speed multiplied by
the strength of the viscous profile at point (t, x), i.e.∫∫

[0,∞)×R

∣∣∣∣∂t
ut

ux

∣∣∣∣∣∣ux

∣∣dxdt =
∫∫

[0,∞)×R

∣∣∣∣utt − ut

ux
ut x

∣∣∣∣dxdt (6.2)

What would be nice to obtain is an uniform estimate of (6.2) in terms of the
total variation of the initial datum. However, though the term to estimate can be
written down in a very clean form (6.2), it is not clear at all which technique
can be used in order to estimate it. Indeed, the method we use to prove (5.1)
relies heavily on the wave tracing algorithm we developed, in particular on the
notion of position of a given wave w at a given time t : in the viscous case it is
not clear any more what this concept means, since the traveling profiles (6.1) are
not localized in space, and thus it is not at all obvious how to define a suitable
functional which can play the role that Qquadr has in the hyperbolic case. It
would be thus nice to develop an analog theory on viscous conservation laws
which leads to estimate the term (6.2).
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