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A priori error estimates for upwind finite volume
schemes for two-dimensional linear convection
diffusion problems
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Abstract. It is still an open problem to prove a priori error estimates for finite volume
schemes of higher order MUSCL type, including limiters, on unstructured meshes,
which show some improvement compared to first order schemes. In this paper we
use these higher order schemes for the discretization of convection dominated elliptic
problems in a convex bounded domain � in R2 and we can prove such kind of an a
priori error estimate. In the part of the estimate, which refers to the discretization of the
convective term, we gain h1/2. Although the original problem is linear, the numerical
problem becomes nonlinear, due to MUSCL type reconstruction/limiter technique.
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1 Introduction

There are many Finite Volume and Discontinuous Galerkin schemes for solv-
ing elliptic convection dominated problems and nonlinear conservation laws on
unstructured grids in multi dimensions, like

∂tv + div f (v) = 0 in Rn × R+ (1.1)

v(x , 0) = u0(x) on Rn.
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474 D. KRÖNER and M. ROKYTA

While for strongly elliptic problems like

−ε�v + div(bv) + cv = f in � (1.2)

v(x) = 0 on ∂�

with dominating diffusion (ε = 1) no stabilization is necessary for numerical
schemes, we need some upwinding or, for higher order schemes, a suitable stabi-
lization for convection dominated problems (with small ε). The same statement
holds also for nonlinear conservation laws as in (1.1). In this case the stabiliza-
tion is obtained e.g. by reconstruction technique with so called limiters. They
make the scheme nonlinear, even in cases where the underlying partial differ-
ential equation (1.1) is linear. For finite volume schemes, the reconstruction
with limiters can be realized in a very easy way even on unstructured grids, e.g.
by MUSCL type discretizations. However, the theoretical background for these
schemes, in particular when applied to conservation laws, is not yet satisfactorily
developed. Concerning the convergence of both first and higher order schemes,
there are results in the case of nonlinear scalar conservation laws [6], [19], [18],
[8], and in the case of weakly coupled systems of conservation laws [23]. For
conservation laws as in (1.1) a priori error estimates of the form

||v − uh ||L∞(L1) ≤ ch
1
4 + approximation error of data (1.3)

are available [5], [25], [6], [1], [4]. Here, v denotes the exact solution of the
underlying partial differential equation and uh the approximative numerical so-
lution obtained by a first order finite volume scheme in multi dimensions on
unstructured grids.

From numerical experiments one would expect h
1
2 in (1.3), but the proof for

this on unstructured grids is an open question. For smooth solutions of the linear
transport equation one gets [1] ||v − uh ||p ≤ ch.

There are also no error estimates ||v−uh || ≤ chβ for higher order finite volume
schemes for conservation laws in multi dimensions on unstructured grids includ-
ing limiters with β > 1

4 . To get results in this direction, concerning nonlinear
hyperbolic conservation laws, seems to be very difficult. Theoretically justified
error analysis for upwind finite volume schemes of higher order, which would
also indicate the higher order convergence rate, remains an open problem. See
for example [5], [6], [7], [8], [25].

Therefore in this paper we apply the higher order finite volume schemes with
limiters to a linear convection dominated stationary diffusion equations like (1.2)
in multi dimensions on partially unstructured grids. We can show that we gain
h

1
2 in the error estimate for the term, which refers to the discretization of the

convective term, compared to first order schemes.

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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Let us briefly mention some related results. In [15] a convection diffusion
equation like (1.2) with ε = 1 and general elliptic part is considered. They
prove error estimates of the form ||v −uh ||L2 ≤ ch for finite volume schemes of
first order. Further results for elliptic and parabolic equations for finite volume
schemes are obtained in [2], [11] and the results of an interesting benchmark
problem are published in [12]. Lube considered in [21] discretizations of (1.2)
and proved

||v − uh || ≤ cεhk(ε
1
2 + h

1
2 )

for the streamline diffusion method. Here k is the degree of the local polynomi-
als. A-priori error estimates of the type (1.3), e.g. with the ε|| · ||H 1,2 + || · ||L2-
norm are also known for the streamline diffusion shock capturing method ap-
plied to the linear transport equation with h

3
2 , cf. [16].

For dominating diffusion problems there are error estimates for first order
schemes (cf. [15] for stationary case), which show ||v − uh ||L2 ≤ ch. In [13],
[22] convergence for a first order combined finite volume-finite element method
in the non-stationary case was proved.

For second order TVD Rung-Kutta Discontinuous Galerkin methods with
piecewise polynomials of order k in space a priori error estimates of the form
||u − uh||L2 ≤ chk+ 1

2 for smooth solutions u of (1.1) have been proved in [27].
More advanced results for (also hybridized) Discontinuous Galerkin methods
can be found e.g. in [9], [26]. For further finite element approximations of
convection diffusion problems we refer to [3], [24].

In this paper we omit all the proofs – they can be found in [20].

2 The problem

Consider the following boundary value problem

Lv := −ε�v + div(bv) + cv = f in � , (2.1)

v = 0 on ∂� (2.2)

where � is a convex polygonal domain inR2 and b(x), c(x), f (x) are functions
which are sufficiently smooth on � and such that 0 < c0 ≤ c(x) ≤ c1, div b = 0
in �. Moreover we suppose that the diffusion parameter ε is a positive constant,
0 < ε ≤ 1.

We consider that � = ⋃
j T j , where Tj ∈ Th are open triangles, h :=

sup j diam(Tj), 0 < h < h0. Furthemore, all boundary triangles are mirrored
by the boundary of � to get a corresponding ghost triangles. The set of all ghost
triangles will be denoted by TG , TG ∩ Th = ∅.

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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476 D. KRÖNER and M. ROKYTA

Notation 2.1. We denote by

(i) |Tj |: the volume of triangle T j; T j ∈ Th ∪TG

(ii) x j : the center of gravity of T j (i.e., x j is the center of the inscribed circle
to the triangle T j)

(iii) x j : intersection of the perpendicular bisectors of T j (i.e., x j is the center
of the circumscribed circle to the triangle Tj)

(iv) v j := v(x j )

(v) Nj : the set of the numbers of the neighboring triangles to T j , T j ∈ Th

(xi) Tj� := Tj ∪ T�

(xii) S j�, � ∈ Nj : the joint edge of T j and T� with length |S j�|, where T j ∈ Th ,
T� ∈ Th ∪TG

(xiii) x j�: the midpoint of S j�

(ix) d j� := |x� − x j |
(x) d j� := |x� − x j |

(xi) γ j� := |S j�|
d j�

; γ := min γ j�;

(xii) n j�: the outward unit normal to T j ∈ Th in the direction of T�, � ∈ Nj .

We assume that there exists an η > 0 such that all angles of all triangles
Tj ∈ Th are less than π

2 − η. Therefore, both x j and x j lie strictly inside of Tj

for all j and there is a constant cη > 0 independent of h such that γ > cη.
Moreover we assume that Th = TR ∪TS, such that TR ∩ TS = ∅, where

TR = {Tj ∈ Th; Tj is equalsided and T� is equalsided ∀� ∈ Nj } , (2.3)

and

TS = {Tj ∈ Th; Tj is not equalsided or ∃� ∈ N j s.t. T� is not equalsided} . (2.4)

The triangles in TR and TS are called regular and singular, respectively.
We also assume that the triangulation is locally irregular in the sense of Hein-

rich (cf. [14, par. 2.2.2, p. 27]), i.e. that the set TS consists of the finite number
of strips of triangles, each being of the width of O(h).

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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Assumption 2.2. For the solution v of (2.1) and (2.2) we assume v ∈ W 2,2(�)

and that v can be extended onto a small strip ωd of the width of O(h) outside of
� such that we have v(x�) = −v(x j ) if T� ⊂ ωd is the mirrored ghost triangle
to T j . For the continuation vd of v we assume

||vd ||W 2,2(�d ) ≤ c||v||W 2,2(�),

where the constant c is independent of v and �d := � ∪ ωd .

In the context of the locally irregular grid we will also use the following result
(cf. [14, p. 189] and the references there):

Theorem 2.3. Let � be a convex polygonal domain in R2 and ωh ⊂ � be
the strip of the width of O(h), 0 < h < h0. Then there is a constant c > 0
independent of h such that for all v ∈ W j+1,2(�), j = 0, 1, 2, we have

‖v‖W j,2(ωh) ≤ ch
1
2 ‖v‖W j+1,2(�) , j = 0, 1, 2 . (2.5)

We split the set E of the edges S j� = Tj ∩ T�, with Tj, T� ∈ Th, into three
parts, E = ER ∪ ES ∪ EM , where

ER := {S j�; S j� �⊂ ∂�; both Tj and T� are regular} ,

ES := {S j�; S j� �⊂ ∂�; both Tj and T� are singular} , (2.6)

EM := {S j�; S j� �⊂ ∂�; Tj and T� are of different type (regular, singular)} .

and call them regular, singular and mixed edges, respectively. We also denote by

EB := {S j�; S j� ⊂ ∂�; } (2.7)

and call them the boundary edges.
Furthermore we denote

Nj I := {� | T� is neighboring triangle to Tj, and T� ⊂ �} ,

and

Nj R := {� | T� is neighboring triangle to Tj, and T� ∈ TR} ,

Nj S := {� | T� is neighboring triangle to Tj, and T� ∈ TS} .

Nj G := {� | T� is neighboring triangle to Tj, and T� ∈ TG} ,

3 The scheme

Let ch(x) := c j , fh (x) := f j for x ∈ Tj ∈ Th , be piecewise constant approxi-
mants of c, f , respectively, defined by

c j := 1

|Tj|
∫

Tj

c , f j := 1

|Tj |
∫

Tj

f . (3.1)

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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478 D. KRÖNER and M. ROKYTA

Let uh(x) = u j for x ∈ Tj ∈ Th ∪ TG, be a piecewise constant solution of the
discrete problem

(Lhuh) j = f j , if Tj ∈ Th , (3.2)

u� = −u j , if S j� ⊂ ∂�, and T� ∈ TG is the ghost triangle

to Tj ⊂ �, (3.3)

where the discrete operator is given by

(Lhuh) j := − ε

|Tj |
∑
�∈N j

(u� − u j )γ j� + 1

|Tj|
∑
�∈N j

g j�(U j�,U�j ) + c j u j . (3.4)

The first term in (3.4) approximates the value of the diffusion term −ε�v

in x j , while
∑

�∈N j

g j�

(U j�,U�j

)
approximates the values of the convective term

div(bv) along S j�. Here, g j� stands for an upwind finite volume flux, and,

U j� = U j�(u j , u�), U�j = U�j (u�, u j ) (3.5)

will be defined more precisely later. A particular scheme of the type (3.2)-(3.5)
is then chosen by the particular choice of functionsU j� and g j�.

Example 3.1 (General numerical flux). In general, we suppose that the upwind
finite volume flux g j�(u, v) is a Lipschitz continuous function, i.e., we suppose
that there is a constant c > 0 such that

|g j�(u, v) − g j�(u
′, v′)| ≤ c h

(|u − u′| + |v − v′|) . (3.6)

Furthermore we suppose that g j� satisfies the following three basic properties:

g j�(u, u) = u
∫

S j�

bn j� ds , (3.7)

g j�(u, v) = −g�j (v, u) , (3.8)
∂

∂u
g j�(u, v) ≥ 0 ≥ ∂

∂v
g j�(u, v) , (3.9)

which are referred to as consistency, conservativity, and monotonicity of the
numerical flux g j�, respectively. (See [18] or [19] for more discussion on general
upwind finite volume numerical fluxes.) Moreover, due to (3.7) and divb(x) = 0,
we have that (cf. (3.13)):

∑
�∈N j

g j�(u, u) = 0 for all j . (3.10)

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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Example 3.2 (First order Engquist-Osher scheme). As a particular example
of the numerical flux we choose the Engquist-Osher type upwind finite volume
flux g j� defined by

g j�(u, v) := b+
j� u + b−

j� v , b±
j� :=

∫
S j�

(bn j�)
± ds . (3.11)

It can be easily shown that this particular numerical flux satisfies (3.6)-(3.10).
The easiest choice of U j� in (3.5), namely

U j� := u j , U�j := u� , (3.12)

used together with (3.11) in (3.4) defines a first order numerical scheme.

Remark 3.3. Due to the properties of b we have for all Tj ∈ Th

∑
�∈N j

(b+
j� + b−

j�) =
∑
�∈N j

b j� =
∑
�∈N j

∫
S j�

bn j� ds

=
∫

∂Tj

bn j� ds =
∫

Tj

div b dx = 0 ,

(3.13)

and, for all S j� ∈ E,

b�j = −b j� , b+
�j = −b−

j� , b−
�j = −b+

j� . (3.14)

Example 3.4 (Higher order scheme using MUSCL type reconstruction). Let
Tk, T�, Tm be all neighboring triangles to Tj with centers of gravity xk , x�, xm ,
x j , respectively. Let w ∈ L∞(�) with w|Tj ∈ C0(Tj) and wi := w(xi ) for
i = k, �, m, j , respectively. Let

Rw
k be a plane passing through (x�, w�), (xm, wm), (x j, w j ) ,

Rw
� be a plane passing through (xk, wk), (xm, wm), (x j , w j ) ,

Rw
m be a plane passing through (xk, wk), (x�, w�), (x j, w j ) .

Define an index i by

|∇ Rw
i | = min

{|∇ Rw
k |, |∇ Rw

� |, |∇ Rw
m |} (3.15)

and put
Gw

j := ∇ Rw
i . (3.16)

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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If w j ≥ max{wk, w�, wm} or w j ≤ min{wk, w�, wm}, we say that w j is a local
extremum. Let the coefficients α j = αw

j ∈ {0, 1} be such that

αw
j =

{
0 if w j is the local extremum,
1 otherwise.

(3.17)

Then define
Lw

j (x) := w j + αw
j Gw

j (x − x j ) . (3.18)

Finally, the higher order MUSCL type Engquist-Osher scheme is defined by
(3.4) with the numerical flux (3.11) and

U j� := Lu
j (x j�) , U�j := Lu

� (x j�) . (3.19)

It can be shown that, on the regular grid, the reconstruction operator Lu
j defined

by (3.18) has the following properties.

Lemma 3.1. For all T j ∈ TR we have

(a) |Lu
j (x�) − u j | ≤ |u j − u�| for all � ∈ Nj , (3.20)

(b) |Lu
j (x j�) − u j | ≤ 1

2
|u j − u�| for all � ∈ Nj , (3.21)

(c) (u� − Lu
j (x�))(u j − u�) ≤ 0 for all � ∈ Nj . (3.22)

4 Main result

We will use the scheme (3.2)-(3.4) with the following definition of the numeri-
cal flux:

• If S j� ∈ ER we use the higher order flux using MUSCL type reconstruc-
tion, i.e. we set (cf. (3.11), (3.18)-(3.19))

g j�(U j�,U�j) := b+
j�Lu

j (x j�) + b−
j�Lu

� (x j�) . (4.1)

• If S j� ∈ EM or S j� ∈ ES we use the first order flux, i.e. we set (cf. (3.11),
(3.12))

g j�(U j�,U�j ) := b+
j�u j + b−

j�u� . (4.2)

• If S j� ∈ EB we use

g j�(U j�,U�j ) := b+
j�u j + b−

j�u� (4.3)

where in this case u� is the value in the ghost cell of the cell Tj satisfying
u� = −u j (cf. (3.3)).

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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The main result of this paper is formulated in the following theorem.

Theorem 4.1. Let uh(x) = u j for x ∈ Tj ∈ Th , be a piecewise constant numer-
ical solution of the discrete problem (3.2)-(3.4) with a numerical flux satisfying
(3.11), (3.18)-(3.19), (4.1)-(4.3) and let the Assumption 2.2 hold. We define

zh := Ihv − uh (4.4)

where
Ihv(x) := v(x j ) = v j if x ∈ Tj ∈ Th . (4.5)

Then, defining

‖zh‖2
ε := εγ

∑
E∪EB

(z j − z�)
2 + c0

∑
Tj∈Th

z2
j |Tj | , (4.6)

we have the following error estimate for any δ > 0:

‖zh‖2
ε ≤ c

(
εh2 + h4−2δ + h3

ε

)
‖v‖2

2,2 + c
h4

ε

∑
T j ∈TR

R2
j |Tj | . (4.7)

If, moreover, v ∈ W 3,2(�), we have

‖zh‖2
ε ≤ c

(
εh3 + h4−2δ + h3

ε

)
‖v‖2

3,2 + c
h4

ε

∑
T j ∈TR

R2
j |Tj | . (4.8)

Here, R j := 1
|Tj |

∑
�∈N j

(u� − u j )γ j�.

Remark 4.2.

• It follows from Lemma 8.2 that the sum
∑

T j ∈TR
R2

j |Tj| is of the same

order in ε as ‖v‖2
2,2(�), cf. (8.2) and (8.4).

• Note that if T� is the mirrored ghost triangle to Tj, we have v(x�) =
−v(x j ) (see Assumption 2.2), and also u� = −u j (see (3.3)). Therefore,

z� = v� − u� = −v j + u j = −z j , (4.9)

if T� is the mirrored ghost triangle to Tj .

• In the case when the first order scheme is used in the whole domain we
get (for comparison) the following result:

‖zh‖2
ε ≤ c

(
εh2 + h4−2δ + h2

ε

)
‖v‖2

2,2 . (4.10)

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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For the higher order MUSCL type scheme we thus gain h1/2 inside the
estimate of the norm of ‖zh‖ε for the term corresponding (as it shows) to
the convective part of the equation, compared to the first order scheme:
compare h3

ε
to h2

ε
in the estimate of the norm of ‖zh‖2

ε .

• For the particular numerical calculation for which ε ≈ h, we get, using
(4.10) and (4.7), the error estimates of the order O(

√
h) and O(h) in the

cases of first order and higher order scheme, respectively. If ε ≈ √
h, we

get in the corresponding cases the error estimates of the order O(h3/4) and
O(h5/4), respectively.

5 The energy estimate

We prove the discrete energy estimate for the higher order scheme.

Lemma 5.1. Let uh be the numerical solution defined by the scheme (3.2)-
(3.4) with a numerical flux satisfying (3.11), (3.18)-(3.19), (4.1)-(4.3) and let
Assumption 2.2 hold. Then there is a constant c > 0 such that for all ε > 0 and
all h > 0

εγ
∑
E∪EB

(u j − u�)
2 + c0

∑
Tj∈Th

u2
j |Tj | ≤ c

∑
Tj ∈Th

f 2
j |Tj |. (5.1)

6 The basic strategy in proving the main result

The main technical step in the whole proof is to consider the term (Lh(Ihv) −
Lhuh, zh ) := ∑

j (Lh(Ihv) − Lhuh) j |Tj |z j in the following form.

Lemma 6.1.

(Lh(Ihv) − Lhuh, zh) = (�H , zh) + (�K , zh ) + (�N , zh ) , (6.1)

where

�H j = − ε

|Tj |
∑
�∈N j

|S j�|
(v� − v j

d j�

− 1

|S j�|
∫

S j�

∂nv
)

,

�K j = 1

|Tj|
∑
�∈N j

(
g j�(V j�,V�j ) −

∫
S j�

n j�bv
)

,

�N j = 1

|Tj|
∫

Tj

c(v j − v)

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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whereV j� = U j�(v j , v�),V�j = U�j (v�, v j ), and

(�A, zh) :=
∑

j

�Aj z j |Tj |, for A = H, K , N.

In what follows, we split the sums in (6.1) into two parts,
∑

j

=
∑

Tj ∈TR

+
∑

Tj ∈TS

.

In the “regular” part of the sum we have regular triangles and the higher order
approximation, in the “singular” part of the sum (“on the strips”) we have general
triangles and the first order approximation. We thus get

(Lh(Ihv) − Lhuh, zh) = (�H , zh )R + (�H , zh )S + (�K , zh)R

+ (�K , zh )S + (�N , zh )R + (�N , zh)S

and will proceed by estimating the terms on the right-hand side both from above
and from below.

7 The estimates from above

7.1 The estimate of (�N , zh ) from above

For the estimate of (�N , zh) (approximating the zero-order term) from above
we obtain the following results.

Lemma 7.1. We have on the regular triangles
∑

Tj ∈TR

|�N j |2|Tj | ≤ ch4||v||22,2,R , (7.1)

(�N , zh )R ≤ ch4‖v‖2
2,2,R + c0

8

∑
Tj ∈TR

z2
j |Tj | (7.2)

where ‖v‖2
2,2,R := ∑

Tj∈TR
‖v‖2

W 2,2(Tj )
.

Lemma 7.2. We have on singular triangles
∑

Tj∈TS

|� j |2|Tj | ≤ ch4−2δ||v||22,2,S (7.3)

(�N , zh)S ≤ ch4−2δ‖v‖2
2,2,S + c0

8

∑
Tj∈TS

z2
j |Tj | (7.4)

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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for any δ > 0, where ‖v‖2
2,2,S := ∑

Tj∈TS
‖v‖2

W 2,2(Tj )
.

Putting the results of Lemmata 7.1, 7.2 together, we obtain

Lemma 7.3. We have (on the whole domain)

(�N , zh ) ≤ ch4−2δ‖v‖2
2,2 + c0

8

∑
Tj ∈Th

z2
j |Tj| . (7.5)

7.2 The estimates of (�H , zh) from above

For the estimate of (�H , zh ) (approximating the diffusion part) from above we
obtain the following result.

Lemma 7.4. For v ∈ W 2,2(�) we have

(�H , zh ) ≤ c ε h ‖v‖2,2

( ∑
E∪EB

(z j − z�)
)1/2

(7.6)

≤ c ε h2 ‖v‖2
2,2 + εγ

8

∑
E∪EB

(z j − z�)
2 . (7.7)

If moreover v ∈ W 3,2(�), we have

(�H , zh) ≤ c ε h3 ‖v‖2
3,2 + εγ

8

∑
E∪EB

(z j − z�)
2 . (7.8)

7.3 The estimates of (�K , zh ) from above

For (�K , zh) (approximating the convective term) we obtain the following
lemma.

Lemma 7.5. We have

(�K , zh )R ≤ c
h3

ε
‖v‖2

2,2 + εγ

8

∑
E∪EB

(z j − z�)
2. (7.9)

7.4 The final estimate from above

Putting together the estimates (7.5), (7.7), (7.8), (7.9), we get the following
result.
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Theorem 7.1 (Estimate from above). Under the assumptions of Theorem 4.1
there exists a constant c > 0 independent of ε such that for v ∈ W 2,2(�) we
have

(Lh Ihv − Lhuh, zh ) ≤ c
(
εh2 + h4−2δ + h3

ε

)
‖v‖2

2,2

+ εγ

4

∑
E∪EB

(z j − z�)
2 + c0

8

∑
Tj∈Th

z2
j |Tj| .

(7.10)

If moreover v ∈ W 3,2(�), we have

(Lh Ihv − Lhuh, zh ) ≤ c
(
εh3 + h4−2δ + h3

ε

)
‖v‖2

3,2

+ εγ

4

∑
E∪EB

(z j − z�)
2 + c0

8

∑
Tj ∈Th

z2
j |Tj| .

(7.11)

8 The estimates from below

In this part of the paper we will prove an estimate from below.

Theorem 8.1 (Estimate from below). Under the assumptions of Theorem 4.1
there exists a constant c > 0 independent of ε such that for v ∈ W 2,2(�) we
have

(Lh Ihv − Lhuh, zh) ≥ εγ

2

∑
E

(z� − z j )
2 + 2εγ

∑
EB

z2
j

+ c0

∑
j

z2
j |Tj | + 1

2

∑
EM ∪ES

(b+
j� − b−

j�)(z j − z�)
2

− c
h4

ε
‖v‖2

W 2,2(�)
− c

h4

ε

∑
TR

R2
j |Tj |

(8.1)

where γ = min γ j� and R j := 1
|Tj |

∑
�∈N j

(u� − u j )γ j�.

Lemma 8.1. Let R j = 1
|Tj |

∑
�∈N j

(u� − u j )γ j� for T j ∈ TR. Then there is a
constant c > 0 independent of ε and h, such that

∑
TR

R2
j |Tj | ≤ c

ε3
‖ f ‖2

L2(�)
. (8.2)
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Remark 8.2. The terms

‖v‖2
W 2,2(�)

and
∑
TR

R2
j |Tj | (8.3)

contained on the right-hand side of the estimate (8.1) depend of course on ε. As
we will see in the following Lemma, the sum

∑
TR

R2
j |Tj | is of the same order

in ε as is the norm ‖v‖2
W 2,2(�)

.

Lemma 8.2. Let v ∈ W 2,2(�) be the solution of (2.1)-(2.2). Then

‖v‖2
W 2,2(�)

≤ c

ε3
‖ f ‖2

L2(�)
, (8.4)

9 The final estimate

Putting together the estimates (7.10), (8.1) and using the definition of ‖zh‖ε (see
(4.6)), we obtain the main estimates (4.7) and (4.8) of Theorem 4.1. The result
for the first order scheme (4.10) can be obtained using only the parts of the
estimates (7.10), (8.1) which corresponds to the first order parts of the scheme.
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