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Abstract. In this contribution, we summarize recent results [8, 9] on the stability
analysis of periodic wavetrains for the sine-Gordon and general nonlinear Klein-Gordon
equations. Stability is considered both from the point of view of spectral analysis of
the linearized problem and from the point of view of the formal modulation theory
of Whitham [12]. The connection between these two approaches is made through a
modulational instability index [9], which arises from a detailed analysis of the Floquet
spectrum of the linearized perturbation equation around the wave near the origin. We
analyze waves of both subluminal and superluminal propagation velocities, as well as
waves of both librational and rotational types. Our general results imply in particular
that for the sine-Gordon case only subluminal rotational waves are spectrally stable. Our
proof of this fact corrects a frequently cited one given by Scott [11].

Keywords: nonlinear Klein-Gordon equation, periodic wavetrains, spectral stability,
modulation theory.
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1 Introduction

1.1 Periodic traveling waves

In this paper we consider nonlinear Klein-Gordon equations of the form

utt − uxx + V ′(u) = 0, (1.1)
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where u is a scalar function of (x , t) ∈ R × [0, +∞) and the potential V is
a real periodic function. Such potentials generalize the case V (u) = − cos(u),
for which equation (1.1) becomes the well-known sine-Gordon equation [10]
in laboratory coordinates,

utt − uxx + sin(u) = 0. (1.2)

To facilitate the exposition we shall assume that V : R → R is a periodic
function of class C2 and that V has exactly two non-degenerate critical points
per period. Moreover, after an appropriate scaling we can also assume, with-
out loss of generality, that the potential V has fundamental period 2π , and
minu∈R V (u) = −1, while maxu∈R V (u) = 1. (The sine-Gordon potential
clearly satisfies these hypotheses.) While the above assumptions on V allow
for an easier exposition, many of our results also hold for more general periodic
V , and even the assumption of periodicity of V can be dropped in some cases
(see [9] for further information). Equation (1.1) has traveling wave solutions
of the form

u(x , t) = f (z), z := x − ct (1.3)

where c ∈ R is the wave speed. In what follows we shall assume that c �= ±1.
Substituting into (1.1) we readily see that the profile function f : R → R

satisfies the nonlinear ordinary differential equation

(c2 − 1) fzz + V ′( f ) = 0. (1.4)

Equation (1.4) can be integrated once to obtain

1

2
(c2 − 1) f 2

z = E − V ( f ), (1.5)

where E is an integration constant with the interpretation of total (kinetic plus
potential) energy. Periodic traveling waves of (1.1) can be classified according
to the values of E and c. The first dichotomy concerns the wave speed: if c2 < 1
then f is called a subluminal periodic traveling wave; if c2 > 1 then f is called a
superluminalperiodic traveling wave. The second dichotomy involves parameter
values of the energy E . We call solutions to the pendulum equation (1.5) whose
orbits in the phase plane lie outside the separatrix rotational waves. Solutions
whose orbits in the phase plane lie inside the separatrix are called librational
waves. It is easy to see that librational waves correspond to energies in the range
|E | < 1, for which f (z + T ) = f (z) for all z ∈ R and some fundamental
period T > 0. On the other hand, rotational waves correspond to energies with
either E > 1 (in the superluminal case), or E < −1 (in the subluminal case).

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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Rotational waves satisfy f (z + T ) = f (z) ± 2π for all z ∈ R. These waves
are also called kink trains (or antikink trains, depending on the sign of fz ) in the
literature. See Figure 1.

Figure 1: Phase portraits of equation (1.4) for c = 2 (left) and c = 1/2 (right),
where the potential is V (u) = −0.861

[
cos(u) + 1

3 sin(2u)
]
, which satisfies

the basic assumptions under consideration. The separatrices are the thicker red
curves. (Color online.)

1.2 Monotonicity of the period map

Some of our results require that a non-degeneracy condition is satisfied, namely,
that the energy is not a critical point of the period. Although this condition is
always satisfied for rotational waves, further assumptions on the potential need
to be verified in the librational case. A sufficient condition was introduced by
Chicone [3]. The precise statement for the waves under consideration goes as
follows (see Propositions 2.10 and 2.11 in [9] for the proof).

Proposition 1.1 ([9]). For rotational waves, the period T is a strictly monotone
function of the energy, and (c2 − 1)TE < 0. If also V is of class C3 and the
functions

N± : R → R,

N±( f ) := 6[V ( f ) ± 1]V ′′( f )2 − 3V ′( f )2V ′′( f )

− 2[V ( f ) ± 1]V ′( f )V ′′′( f ),

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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are both not identically zero and semidefinite (Chicone’s criterion [3]), then
TE �= 0 holds for all librational waves, and the sign of TE coincides with that of
N+ (resp., N−) for superluminal (resp., subluminal) waves.

Finally, it is to be observed that with a particular choice of origin for z, the
periodic wavetrain f = f (z; E, c) is uniquely determined and for each z is a C2

function of (E, c) in a four-component, non-connected, open set (see Lemma
2.8 in [9] for further details).

2 The stability problem. Floquet spectrum

2.1 Perturbation equations

Let us now consider a perturbation of the periodic traveling wave f = f (z).
Substituting u = f + v into the Klein-Gordon equation (1.1) written in the
galilean frame associated with the independent variables (z = x − ct, t) and
using the equation (1.4) satisfied by f , one finds that the perturbation v neces-
sarily satisfies the nonlinear equation

vt t − 2cvzt + (c2 − 1)vzz + V ′( f (z) + v) − V ′( f (z)) = 0. (2.1)

Specializing to perturbations of the form v(z, t) = w(z)eλt , where λ ∈ C, and
after linearizing around v = 0 we obtain the linear ODE

(c2 − 1)wzz − 2cλwz + (λ2 + V ′′( f (z)))w = 0, (2.2)

in which the complex growth rate λ appears as a (spectral) parameter. Roughly
speaking, a necessary condition for the stability of f is that there are no points
of spectrum with Re λ > 0 (which would imply the existence of a solution w

of (2.2) that lies in a Banach space X as a function of z, and grows exponentially
in time). Following Alexander, Gardner and Jones [1], the spectral problem (2.2)
with w ∈ X can be equivalently regarded as a first order system of the form

wz = A(z, λ)w, (2.3)

where w := (w, wz)
� ∈ Y (Y is a Banach space related to X), and

A(z, λ) :=
⎛
⎜⎝

0 1

−(λ2 + V ′′( f (z)))

c2 − 1

2cλ

c2 − 1

⎞
⎟⎠ . (2.4)

Note that the coefficient matrix A is periodic in z with period T . Clearly,
the definition of the spectrum depends upon the choice of the space X .

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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If X = L2(R;C) then the analysis corresponds to stability under localized
perturbations. It is well-known [4] that the L2(R) spectrum of a differential op-
erator with periodic coefficients is purely “continuous” (there are not isolated
eigenvalues).

2.2 Floquet characterization of the spectrum. The periodic Evans function

Let F(z, λ) denote the 2 × 2 identity-normalized fundamental solution matrix
for the differential equation (2.3), i.e., the unique solution of

Fz(z, λ) = A(z, λ)F(z, λ), with initial condition F(0, λ) = I, ∀λ ∈ C. (2.5)

The T -periodicity in z of the coefficient matrix A then implies that

F(z + T , λ) = F(z, λ)M(λ), ∀z ∈ R, where M(λ) := F(T , λ). (2.6)

The matrix M(λ) is called the monodromy matrix for the first-order system (2.3),
and its elements are entire functions of λ ∈ C (due to analyticity of A in λ ∈ C
and uniform convergence of Picard iterates for bounded z). Let μ(λ) denote
an eigenvalue of M(λ), and let w0(λ) ∈ C2 denote a corresponding (nonzero)
eigenvector. Then w(z, λ) := F(z, λ)w0(λ) is a nontrivial solution of the first-
order system (2.3) that satisfies

w(z + T , λ) = F(z + T , λ)w0(λ) = F(z, λ)M(λ)w0(λ) (by (2.6))

= μ(λ)F(z, λ)w0(λ) = μ(λ)w(z, λ), ∀z ∈ R.
(2.7)

Such solutions are called Floquet solutions, and the eigenvalue μ(λ) of the
monodromy matrix M(λ) is called a Floquet multiplier. If R(λ) denotes any
number (modulo 2π i) for which eR(λ) = μ(λ), then e−R(λ)z/T w(z, λ) is a T -
periodic function of z, or, equivalently (Bloch’s Theorem) w(z, λ) can be written
in the form

w(z, λ) = eR(λ)z/T z(z, λ), where z(z + T , λ) = z(z, λ), ∀z ∈ R. (2.8)

The quantity R(λ) is sometimes called a Floquet exponent. A further conse-
quence of Floquet theory is that if the first-order system (2.3) has a nontrivial
solution in L∞(R,C2), it is necessarily a linear superposition of Floquet so-
lutions corresponding to Floquet multipliers μ(λ) with |μ(λ)| = 1. Thus, one
can parametrize the spectrum according to values of μ = eiθ ∈ S1, or equiv-
alently θ ∈ R (mod 2π), by introducing the set σθ of complex numbers λ for

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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which there exists a nontrivial solution of the boundary-value problem (2.2)
with the condition (

w(T )

wz(T )

)
= eiθ

(
w(0)

wz(0)

)
, θ ∈ R. (2.9)

Obviously the sets σθ and σθ+2πn coincide for all n ∈ Z. The spectrum σ may
be defined as the union of these partial spectra as follows:

σ =
⋃

−π<θ≤π

σθ , (2.10)

and it is characterized in terms of the monodromy matrix through its determi-
nant (see [9], Proposition 3.4):

Proposition 2.1. λ ∈ σ if and only if there exists μ ∈ C with |μ| = 1 such that

D(λ, μ) := det(M(λ) − μI) = 0, (2.11)

that is, at least one of the Floquet multipliers lies on the unit circle.

Definition 2.2 (periodic Evans function; Gardner [4]). The periodic Evans
function is the restriction of D(λ, μ) to the unit circle S1 ⊂ C in the second
argument, which is to be regarded as a unitary parameter in this context. Thus,
for each θ ∈ R (mod 2π), D(λ, eiθ ) is an entire function of λ ∈ C whose
(isolated) zeros are particular points of the spectrum σ .

Each set σθ is characterized as the zero set of the (entire in λ) periodic Evans
function D(λ, eiθ ) and hence is purely discrete. The discrete partial spectrum
σθ can therefore be detected for fixed θ ∈ R by standard techniques based on
the use of the Argument Principle. However, the study of localized perturbations
requires considering all of the partial spectra σθ at once. The real angle param-
eter θ is typically a local coordinate for the spectrum σ as a real subvariety of
the complex λ-plane. This explains the intuition that the L2 spectrum is purely
“continuous”, and gives rise to the notion of curves of spectrum (see Proposi-
tion 3.7 in [9]).

We say that the periodic wave f is spectrally stable if there are no curves
of spectrum with Re λ > 0. Since equation (1.1) is a real Hamiltonian sys-
tem, this implies that σ is symmetric with respect to reflection in the real and
imaginary axes, i.e., if λ ∈ σ , then also λ∗ ∈ σ and −λ ∈ σ (and hence also
−λ∗ ∈ σ ). Thus, spectral stability reduces to the curve σ being confined to the
imaginary axis.

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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3 Analysis of the monodromy matrix

3.1 Series expansions

To study the behavior of the monodromy matrix near the origin we start with
the solutions at λ = 0. It can be proved (see Lemma 5.1 in [9]) that the two-
dimensional complex vector space of solutions to the first-order system (2.3) at
λ = 0 is spanned by

wz(z) :=
(

fz

fzz

)
and wE(z) :=

(
fE

fE z

)
. (3.1)

We use this information in a key way to prove the following:

Proposition 3.1 ([9]). The monodromy matrix M(0) is given by

M(0) =
(

1 −(c2 − 1)TEv2
0

0 1

)
. (3.2)

Here, v2
0 = fz(z0)

2 where z0 is such that V ′( f (z0)) = 0. In particular, M(0)

is not diagonalizable unless TE = 0.

The fundamental solution matrix F(z, λ) has a convergent Taylor expansion
about every point of the complex λ-plane. In particular, the series about the
origin has the form F(z, λ) = ∑∞

n=0 λnFn(z), z ∈ [0, T ], for some coeffi-
cient matrices {Fn(z)}∞

n=0 , and this series has an infinite radius of convergence.
Setting λ = 0 gives F0(z) = F(z, 0). By the method of variation of parameters,
one arrives at a hierarchy of ODEs for the elements of the expansion, and it is
possible to explicitly compute F1(z) and F2(z):

F1(z) = czF0(z)

c2 − 1
+ c[σ−, F0(z)]

c2 − 1
, σ− :=

(
0 0
1 0

)

F2(z) = 1

2

c2z2F0(z)

(c2 − 1)2
+ c2z[σ−, F0(z)]

(c2 − 1)2
− c2σ−F0(z)σ−

(c2 − 1)2

+ F0(z)

(c2 − 1)2

∫ z

0
F0(y)−1σ−F0(y) dy,

(3.3)

where [A, B] := AB − BA denotes the matrix commutator. Setting z = T
in the series formula for F(z, λ) gives the series for the monodromy matrix
M(λ), also an entire function of λ: M(λ) = ∑∞

n=0 λnMn, with Mn := Fn(T ).

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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From (3.3) we then obtain

M1 = qM(0) + c[σ−, M(0)]
c2 − 1

M2 = 1

2
q2M(0) + cq[σ−, M(0)]

c2 − 1
− c2σ−M(0)σ−

(c2 − 1)2

+ M(0)

(c2 − 1)2

∫ T

0
F0(y)−1σ−F0(y) dy,

(3.4)

where q := cT /(c2 − 1) ∈ R. (See [9], Section 5, for details.) With the
information at hand, taking the trace in the series and using Abel’s identity
one can obtain the expansions

det (M(λ)) = 1 + 2qλ + 2q2λ2 + O(λ3), (3.5)

tr (M(λ)) = 2 + 2qλ + (
q2 + κ

)
λ2 + O(λ3), (3.6)

as λ → 0, where

κ := M12(0)

(c2 − 1)2

∫ T

0
F11(y, 0)2 dy. (3.7)

3.2 The modulational stability index

Now we extract information about the behavior of the spectrum σ in a complex
neighborhood of the origin in the complex plane. We also compute expansions
of the Floquet multipliers near the origin, and of the function D(λ, μ) in a full
complex neighborhood of (λ, μ) = (0, 1). (For related constructions in other
problems, see [2, 7] for the generalized KdV equation, and [5] for the BBM
equation.) The Floquet multipliers are roots of D(λ, μ) = 0, that is

μ = μ±(λ) = 1

2

(
tr (M(λ)) ± (

(tr (M(λ)))2 − 4 det(M(λ))
)1/2

)
. (3.8)

To analyze the multipliers near λ = 0, we first calculate the quadratic discrimi-
nant with the help of the expansions (3.5) and (3.6). We obtain:

(tr (M(λ)))2 − 4 det(M(λ)) = 4κλ2 + O(λ3), λ → 0. (3.9)

Using (3.6), the first few terms in the Taylor series about λ = 0 of the (analytic)
Floquet multipliers are:

μ±(λ) = 1 + (
q ± κ1/2

)
λ + O(λ2), λ → 0. (3.10)

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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Noting that κ is proportional to the monodromy matrix element M12(0) by
strictly positive factors because F11(z, 0) is a differentiable function satisfy-
ing F11(0, 0) = 1, this formula motivates the definition of the “modulational”
instability index:

Definition 3.2. The modulational instability index is given by

γM := sgn (M12(0)) = sgn (−(c2 − 1)TE), (3.11)

with the understanding that γM := 0 if M12(0) = 0 (or equivalently, if TE = 0).
In particular, γM = 1 for rotational waves of any speed.

Lemma 3.3. The periodic Evans function D(λ, eiθ ) is analytic in the variables
(λ, θ) ∈ C

2 and has the following expansion in a neighborhood of (λ, θ) =
(0, 0):

D(λ, eiθ ) = −κλ2 + (iθ − qλ)2 + O(3), (3.12)

where O(3) denotes terms of order three or higher in (λ, θ).

Proof. This follows from the formula

D(λ, eiθ ) = e2iθ − tr (M(λ))eiθ + det(M(λ))

upon expanding the exponentials in power series about θ = 0, substituting the
expansions (3.5) and (3.6), and using the definition (3.7). �

The index γM determines the behavior of the spectrum near the origin (see
Lemma 6.12 in [9]).

Lemma 3.4. If γM = 1 but κ �= q2 > 0, then the equation D(λ, eiθ ) = 0 para-
metrically describes (for small real θ ) two smooth curves passing through the
origin tangent to the imaginary axis in a neighborhood of the origin the complex
λ-plane. If γM = −1 then the equation D(λ, eiθ ) = 0 instead parametrically
describes two distinct smooth curves that cross at the origin with tangent lines
making acute non-zero angles with the imaginary axis.

The presence of any spectrum σ that is not purely imaginary implies spectral
instability. The particular type of instability detected by the condition γM =
−1 is called a strong modulational instability, for which we give the following
formal definition.

Definition 3.5. A periodic traveling wave solution f of the Klein-Gordon equa-
tion (1.1) is said to be modulationally unstable (or, to have a modulational in-
stability) if for every neighborhood U of the origin λ = 0, (σ \ iR) ∩ U �= ∅.

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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Otherwise, f is said to be modulationally stable. The modulational instability
is strong if near the origin there is spectrum σ in the cone (Re λ)2 > δ(Im λ)2

for some δ > 0.

3.3 Relation to Whitham’s modulation theory

There is an important relationship between the modulational instability index
γM and the ellipticity/hyperbolicity of Whitham’s system of equations in for-
mal modulation theory (justifying, in this fashion, its name). Let us define the
classical action as

W (E, c) := (c2 − 1)

∫ T

0
fz(z; E, c)2 dz.

Theorem 3.6 ([9]). Suppose c2W 2
E + W WE E �= 0. Whitham’s system of mod-

ulation equations (cf. [12]) is hyperbolic (resp., elliptic) if and only if γM = 1
(resp., γM = −1), where γM is the modulational instability index.

If TE = 0, then simultaneously γM = 0 and the Whitham system is on the
borderline between the hyperbolic and elliptic cases with a double real charac-
teristic velocity. Theorem 3.6 analytically confirms, in the case of the Klein-
Gordon equation (1.1), the following well-accepted fact: if the Whitham mod-
ulation system is elliptic, then the underlying periodic traveling wave is spec-
trally unstable. This relationship has been explored in other contexts as well
(cf. [2, 6]).

4 Stability and instability results

4.1 Modulational instability

The first applications of the modulational instability index concern instability
results for librational waves.

Theorem 4.1 ([9]). Let V be a potential satisfying the assumptions above. A
librational periodic traveling wave solution of the Klein-Gordon equation (1.1)
for which (c2 − 1)TE > 0 holds is strongly modulationally unstable.

Since modulational instability implies spectral instability, we have the fol-
lowing:

Corollary 4.2 ([9]). All librational waves satisfying (c2 − 1)TE > 0 are spec-
trally unstable. In particular, all librational traveling wave solutions of the sine-
Gordon equation (1.2) are strongly modulationally unstable and hence spectrally
unstable.

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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4.2 (In)stability results for rotational waves

Since γM = 1 for rotational waves (see Proposition 1.1), the former are mod-
ulationally stable. This is inconclusive, however, for spectral stability. In the
generic case of κ �= q2 > 0, the spectrum σ is locally tangent to the imaginary
axis at the origin λ = 0, but these curves could fail to be confined to the imagi-
nary axis, or because there could be other parts of the spectrum σ with nonzero
real parts far from the origin. In other words, there could be other instabilities
which cannot be detected by γM. To conclude the spectral stability analysis we
proved the following result.

Theorem 4.3 ([9]). Under the assumptions on V above we have the following:
(i) all periodic traveling waves of the Klein-Gordon equation (1.1) of superlumi-
nal rotational type are spectrally unstable; and, (ii) all periodic traveling waves
of the Klein-Gordon equation (1.1) of subluminal rotational type are spectrally
stable.

The proofs of statements (i) and (ii) are quite different. The proof of (i) is
based on the introduction of a spectrum-detecting function G : C → R defined
in terms of the Floquet multipliers: G(λ) := log |μ+(λ)| log |μ−(λ)|. The proof
of (ii) involves a direct calculation of σ using energy estimates. For details, see
Section 7 in [9]. Theorem 4.3 generalizes the spectral stability results for the
sine-Gordon equation obtained in [8]:

Corollary 4.4 ([11, 8]). Periodic wavetrains for the sine-Gordon equation (1.2)
of librational type, as well as superluminal rotational waves, are spectrally un-
stable. Subluminal rotational sine-Gordon periodic waves are spectrally stable.

It was Scott [11] who first analyzed the spectral stability of sine-Gordon wave-
trains. Although Scott’s conclusion turned out to be correct, his proof was not.
The results in [8] provided the first completely rigorous proof of Scott’s observa-
tions, which have been long accepted as fact in the nonlinear wave propagation
literature. For extensions of these and other stability results to more complicated
potentials, the reader is referred to [9].
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