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Algebraic spiral solutions of the
2d incompressible Euler equations
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Abstract. We construct a class of self-similar 2d incompressible Euler solutions that
have initial vorticity of mixed sign. The regions of positive and negative vorticity form
algebraic spirals.
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1 Main result

Theorem 1 ([11]). Consider the 2d incompressible Euler equations

Vi+V-(veV)+V =0, (D
V-v=0 onR?x]0, o[ (2)

with self-similar initial data (see Fig. 1 left)

wx, 1) o), 3)

where w = V x v is vorticity and (r, 0) are polar coordinates centered in x = (.
Given e > 0 and ju € 1%, oo, there is an Ny € IN so that a weak solution of (1)
and (3) exists for all initial data @ satisfying the following conditions:

1. Sufficiently high symmetry: @ is 21<,T -periodic for N > Nj.
2. Dominant sign: the Fourier coefficients satisfy
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& 0)] = € Y 1@ ()] . )
n#0

There are two choices of data: u, which determines the radial asymptotics of
initial vorticity, and @, which is the angular distribution of vorticity on the unit
circle (circle in Fig. 1 left). If the initial data is sufficiently symmetric, we can
solve the problem for “large” initial data, allowing for regions of zero vorticity (a
necessary prerequisite for studying evolution of vortex patches with non-regular
boundary [1, 3, 4]) and in particular for flows with a mix of positive and negative
vorticity (Fig. 1 left). In such initial data, vorticity of each sign would be in open

cones with apex in the origin (Fig. 1 left).

t>0 >0

Figure 1: Left: initial vorticity with mixed sign; center: rollup into algebraic
spirals; right: the spirals grow in time.

If®”(0) # 0, then there is a net rotation around the origin, so intuition suggests
the cone tips will curl up into spirals (Fig. 1 center), although their nature (e.g.
algebraic or logarithmic) is not obvious a priori. Indeed [11] proves:

Remark 1. In the solutions of Theorem 1, for any r > 0 the boundaries between
the regions of positive, zero and negative w are algebraic spirals, parametrized
by
x(0) = f(O)O* [Z?ﬁg] , O<inf f <supf <oo. (5)
Flows with spiral rollup are important in applications since they are ubiquituous
in physics [28], in trailing vortices at aircraft wings, flow past a sharp corner,
Mach reflections [2], turbulent eddies, detaching boundary layers, the Moore
singularity of vortex sheets [24], etc. But prior to our work the mathematically
rigorous construction of algebraic spiral flows was unsuccessful; see [12, 19, 23]
for various attempts and insights. Even numerical approximation is notoriously

difficult and unstable [13, 20, 21, 22].
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Since our initial data is self-similar, one would expect self-similar solutions
as well, and indeed [11] show:

Remark 2. The solutions of Theorem 1 have the form

w(x, 1) = z—lw((“g, D, vx,n)=t""ve"x, 1) ,
—% e
=(X) (6)
Yx, 1) =%, 1)
=y

Hence the solution looks the same at all times # > 0 except dilated (by a factor
t*) and scaled; ¢ N\ O is like zooming into the origin while t ' 0o is zooming
away. To understand the ¢ exponents, observe that w = V x v has dimensions
of inverse time so that the initial condition (3) relates length to time to the power
w. The quantities X, 1} v, o are dimensionless.

Finally, we control the asymptotic behaviour of the solutions:

Remark 3. The solutions of Theorem 1 satisfy

V= 0(1’1_L) and o= O(r_;i)
asr \y Oand asr /' oo, uniformly in¢ € [0, oo] ;

(N

v, w are continuous in X # 0.

The symmetry and dominant-sign assumptions will be relaxed in future work,
but cannot be expected to be fully removable, as simple arguments show. Con-
sider for example ;= 1 and @ = Ty 5} so that w (y;, y2) = Lj9.0[(y2), then the
Biot-Savart integral

x—y*

R [X =y

isundefinedineveryx € IR?. Moreover, when (4)isnotimposed, then dominance

can change from positive to negative vorticity, causing the spiral to flip from coun-

terclockwise to clockwise, with non-spiral borderline cases expected. Finally,

the numerical work of Pullin [21, 22] on self-similar vortex sheet shows compli-

cated bifurcation phenomena with limit points and non-uniqueness (which is our

main motivation [9]), a field of major recent activity ([7, 8, 14, 16, 17,25, 26, 27],
see also [29, 30, 31]).

Standard theorems [5, 6, 15, 18] cannot recover the existence results of Theo-
rem 1 because they either require much more regular initial data and/or assume
single-signed initial vorticity.

w(y)dy
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2 Coordinate changes

Before we demonstrate how algebraic vortex spirals arise and what obstacles are
overcome, it is convenient to perform several changes of coordinates. We make
use of

f=Vx-w & fdetxy = Vy- (adjxyw) . (8)

The divergence constraint (2) Vy - v = 0 is equivalent to
V=YY )

for a scalar stream function . Taking the curl of the Euler equations (1) yields
the vorticity formulation
0=0,w+vV-Vyw (10)

(6) reduces the problem to
0=q-Vio—& , v=Viy , o=A

where
q=vV—ux (11)

is the pseudo-velocity. Solutions of transport equations are more regular along
integral curves of the transport vector q, here called pseudo-streamlines; o has
constant sign on each of them, so they separate regions of positive, zero and
negative vorticity.

To study spirals converging to a common origin, it is convenient to make a
(conformal) change to log-polar coordinates

a=(0,0) , L=logr , r=IxX| , 60=«x

(see Fig. 2).

Nonlinear transport equations are awkward because the transport vector
changes with the solution. We map pseudo-streamlines to lines by further chang-
ing to coordinates b = (B, ¢) where dg || q (see Fig. 3). We calculate the
consequences first, before defining b completely later:

G Ve = Vet — %) - Vi
= (Vxy + pux*) x V

det Vb (Vi 4+ uVekTXY) x Vi (12)

1 v v . v v .
= (W kX XDy — (P + 1% x %9) )
Xﬂ X X¢
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Figure 2: a = (¢, 0) log-polar coordinates.

Figure 3: b = (B, ¢) coordinates (for i}o). Fixing ¢ picks the pseudo-streamline
(solid curve) with angle ¢ at infinity; g is the angle travelled along it around the
center, with 8 = 0 at spatial infinity while § — oo is approaching the center.

We want the coefficient of 4 to vanish, so if X5 x X4 # 0 (else the transform is
degenerate), then

0=1vp +pux xXs . (13)
Assume this holds. Then taking 9, yields
0= lbﬂq& + /,L(i X )\Zﬂ)(p
= Yy + n(Xy X X5 +X X Xgp)
v “ “ _ 14
= Vo + 1 — 2%p x Xy + (X x Xy)p) (1

1 M Y v v v v
< 2M(¢¢+ILXXX¢)/3 = Xg X Xy :detVbTx.
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Substituting this and (13) into (12) yields
1

q-Vi=-2n . L. 9. (15)
0g log(¥y + ux x Xg)
Y
With this, the vorticity equation (2) reduces to
0= §Pasid — (16)

which yields the surprisingly elegant solution

& = (s + HX X %) Q) (17)

where Q is an integration constant. The appearance of €2 is natural: we have a
choice of initial data that is also self-similar, hence constant along rays, which
are constant-¢ contours. (2 does not correspond exactly to w.)

The scalar constraint (13) fixes only “one half” of the coordinate transform.
To fix the other half, it is natural (given the spiral behaviour) to make g and ¢
angles (Fig. 3):

0=p+¢ (18)

where a = (¢, 0) are X log-polar coordinates (Fig. 2).

Using (for any homogeneous first-order operator d) X x 9X = 7290 = €936,
we solve the constraint (13) for

(19)
The solution-dependent change of coordinates b > a +> X is non-degenerate
(away from x = 0) iff

deta, = —¢, #0 where 9, = dy — g (20)

(9, is the partial derivative that would result from a further change to coordinates
(¥, ¢) where ¢ = ¢ and ¥ = 60 (see Fig. 4). Note 9, # 94, because 9, varies ¢
while holding 6 fixed, whereas 9, holds g fixed.) Then (combine X x 9x = ¢*/96,
(12), (19) and (20))

< (19 —2ILV . 21
dg log ¥,
By the same arguments (17) reduces to
1
>=Q@V, " . (22)
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Figure 4: (9, ¢) coordinates. 9, is a derivative in radial direction.

3 Background solution

The last remaining equation to be solved is the curl constraint Agyr = ¢, which
transforms by a lengthy but elementary calculation (see [10, section 3.3]) to

0=a¢(2¢5(1+(¢’3¢)2) Yo _ ‘”Wﬂﬁﬁ)” (wﬁw'%—wﬂww

1
1 v V_2p.
)"‘ PRLIA

298" " 29, 29,
- PR VR M ~ T (23)
=5@) =5@ =g

-~

=F

It is a 3rd order equation because the change of variables introduces into
the outer divergence the matrix adj X, which yields, via 7 = —1},3 /1, second
derivatives of 1}

Although the equation looks intimidating, we can identify some particular
solutions that are inherited from the x, # form. An important class are the sta-
tionary radial ones: w(f, X) = w(r). Then v is purely angular, hence orthogonal
to Vo, so that the vorticity equation O = v - Vo is trivially satisfied. The initial
condition (3) with @ = @y = const yields the special case

o =1 N2, 5ot
w = wor " w=(2— ) wor” . (24)
n
These solutions are not only stationary, but also self-similar in the sense (6):
. . | v IN-2, oot
=g r w:@— )ww#. (25)
n

(The solutions we obtain for @ # const are not stationary.)
Our particular solutions (25) are multiples of the background solution
v 1

o=, _ B (26)
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To see this, calculate
. aoy 1.+ _ o
F=et= = o =up o B=@nT @

and substitute into (26) to obtain (25). 1} = iﬁo solves (23) for
_2p—1
b

Qo (28)

To calculate the pseudo-streamlines of 1}0 for each ¢, substitute S @ 60— ¢
into (27):

Fep2O—¢) . (29)

This is the 7-6-relationship for an algebraic spiral. 7 — oo corresponds to
0 \{ ¢, so ¢ is the angle of the pseudo-streamline at infinity.

4 Birkhoff-Rott spirals

Kaden ([12], see also [23]) previously obtained algebraic vortex spirals by a
heuristic argument: consider the Birkhoff-Rott equation

dr’ )* (30)

L (1
L1, I)=W"= (2m-P'V'/ Z(@,T)—Z(t,T)

(where Z = x + iy parametrizes a curve on which vorticity is supported, with
W = v* — iv” the complex velocity) and seek self-similar solutions

2t, Ty =t"2(y) , y=t"%T, (31)

leading to

dy’ ) 3

Z(y) — Z(y")
Spirals observed in nature have almost circular spiral turns (as in Fig. 1 right),
with near-uniform distribution of circulation . We may approximate each by an
exact uniform vortex circle centered in the origin. Such circles induce W = 0 in

their interior, but for Z(y) outside we may replace the circle by a point vortex
of equal circulation in the origin without changing W. Accordingly, Kaden’s

) . 1
(1—2M)yzy+uzzw*:( _p.v./
2mi
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approximation is to replace the spiral half closer to the origin (y’ < y) by
such a point vortex and to neglect the other half:

A—20yZ, +u7=(" 1) (33)
4 271 7(y)

Substitute z(y) = #(y)e'?"), divide by e’? and separate real and imaginary part:

PR y L\
(I =2w)yy @, +ir6,) + pur = <2nir ) . (34)
Solution:
F(O) =Co* (35)

for some constant C.

We confirm Kaden’s heuristic argument, which produces algebraic spirals
from an approximation, by constructing exact solutions of the Euler equations.
Our argument is not meaningful for the background solution, since it does not
have “stratified” vorticity so that pseudo-streamlines are merely mathematical
imaginations, but once we perturb the background we have physically observable
spirals.

5 Linearization

We seek nontrivial solutions by linearizing the equation around the background
¥ = Yo, 2 = Qp: another lengthy but elementary calculation yields the Fréchet
derivative

IF

Y _ . pC 2 2 _ _
81/}[1//0,90]—61/32«(13%) + (uidg)”) (B +2u) — Qu 1)(@%8@) (36)

-

R =E

(for some constants ¢y, ¢;). Take the Fourier-transform in ¢ (dual variable n €
VAR

R = (ﬁ(in — ) +nu) (ﬁ(in —dg) — nu)(ﬁf)ﬂ +2w) , E=Qu-—-1)8in. 37

We observe the essential fact that the linearization decomposes (after Fourier
transform in ¢) into infinitely many ordinary differential operators. Reason: we
linearized around a function 1}0 (B, ¢) thatis constantin ¢ (see (26)), so thatonly
B appears in the variable coefficients.

It is also convenient that R is fully factored into 1st order operators. We invert
the linearized operator by first inverting R and then absorbing E as a perturbation.
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To that end it is convenient to exploit N >> 1: atn = 0 we have E = 0, we may
ignore 0 < |n| < N by symmetry, and for |n| > N >> 1 the operator R, which
contains two n, dominates E (only the un matter for “size”, not the in, as can
be seen from integral kernels of the 1st order factor inverses).

6 Nonlinearity, iteration

Having inverted the linearization, the full problem is solved by iteration (see [11]
for a detailed discussion of the difficult choice of correct function spaces).

A key difficulty of the nonlinear problem is the asymptotic behaviour as
B — oo. To solve the problem for nonconstant perturbations @ of the con-
stant @, we need to perturb the background solution iﬁ and hence the coordinate
transformation from B, ¢ to X, whose constant-¢ curves form algebraic spirals.
A perturbation that does not decay sufficiently fast towards the spiral center will
cause the curves to self-intersect (Fig. 5). This can easily happen since the spiral
turns are very densely packed. Self-intersection corresponds to a degenerate
coordinate transform b — X which would manifest itself in the equations (23)
as denominators and radicands reaching zero.

p=2 p = 2 (detail) p = 2.3 (detail)

Figure 5: The spiral R, > B + B~ !¢’ perturbed to B~'e’ (1 + ape'PP),
with o = 0.5, = 0.7. (The spiral center is not drawn, leaving a white spot in
the middle.) Integer frequency p: the perturbation is barely noticeable near the
center. Non-integer frequency p: physically unreasonable self-intersection.

Of the three derivatives 9, = d4 — dg and dg, dy in (23), one may appear
redundant, but our way of writing the equation actually makes a crucial choice:
we are separating terms by 8 decay; a 9, indicates an additional 87! as compared
to dg, d,. That is the key step in overcoming the decay problem.
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