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On the decay rate of the Gauss curvature
for isometric immersions

Cleopatra Christoforou* and Marshall Slemrod

Abstract. We address the problem of global embedding of a two dimensional
Riemannian manifold with negative Gauss curvature into three dimensional Euclidean
space. A theorem of Efimov states that if the curvature decays too slowly to zero
then global smooth immersion is impossible. On the other hand a theorem of J.-X.
Hong shows that if decay is sufficiently rapid (roughly like t−(2+δ) for δ > 0) then global
smooth immersion can be accomplished. Here we present recent results on applying the
method of compensated compactness to achieve a non-smooth global immersion with
rough data and we give an emphasis on the role of decay rate of the Gauss curvature.
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1 Introduction

This article serves as a survey of recent applications [2, 1, 3, 4] of the method
of compensated compactness to prove the global isometric immersion of a two
dimensional Riemannian manifold with slowly decaying negative Gauss cur-
vature into three dimensional Euclidean space. The immersion will lie in the
Sobolev space W 2,∞

loc and hence will be locally in C1,1, cf. Evans [9, Chapter 5].
This means that the immersion is smooth enough so that the Gauss curvature is
well defined. The main difference in these results [2, 1, 3, 4] is the rate of the
Gauss curvature considered in each work and as it is mentioned later the case of
the slower decay rate t−(2+δ) of Hong [13] is the one promoted here.
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256 CLEOPATRA CHRISTOFOROU and MARSHALL SLEMROD

The analysis of isometric immersions of two dimensional Riemannian mani-
folds with negative Gauss curvature intoR3 has a long history going back to the
classical result of Hilbert of 1901 [12]. The story is well documented in the recent
monograph of Han and Hong [11] and we borrow freely from their discussion.
Specifically Hilbert proved that the hyperbolic plane cannot be isometrically im-
mersed intoR3. In that case the Gauss curvature is a negative constant. Hilbert’s
result was generalized in 1963 by Efimov [8] to complete manifolds where the
negative Gauss curvature has a slow rate of decay. Efimov’s result [8] reads

Theorem 1.1 (Han and Hong [11, Theorem 10.0.1]). Let (M, g) be a complete
negative curved smooth Riemannian manifoldwith Gauss curvature K satisfying

lim sup
p→∞

∣∣∣∣D

(
1√|K |

)
(p)

∣∣∣∣ <
1

2

√√
41 − 5,

for p ∈ M with D denoting the gradient. Then (M, g) admits no C3 isometric
immersion into R3.

Consider for example the case given by Han and Hong [11, Ex. 10.1.10], in
which a negatively curved manifold has the metric in geodesic polar coordinates
given by

g = dρ2 + B2(ρ)dθ 2, ρ > 0, θ ∈ [0, 2π ]

where B is defined by ∂ρρ B = −K B with B(0) = 0, ∂ρ B(0) = 1, and the Gauss
curvature K = K (ρ) is a negative smooth even function satisfying

K = −a2/(ρ2 − 1),

if |ρ| ≥ 2 for a positive constant a. We see ρ2 |K (ρ)| decreases as ρ increases
when |ρ| ≥ 2 but the decay rate as measured by

D(1/
√|K |) = 1

a
∂ρ

√
(ρ2 − 1) = ρ

a
√

ρ2 − 1

has the limit 1/a as ρ → ∞. Hence in this case Theorem 1.1 asserts there is no
C3 isometric immersion if a is sufficiently large.

Since K in the above is O(ρ−2), a natural next step would be to try the case
when K is O(ρ−2−δ) as ρ → ∞. In fact this is the content of the theorem of
Hong [13]:

Theorem 1.2 (Han and Hong [11, Theorem 10.2.2]). For a complete simply
connected two dimensional Riemannian manifold (M, g) with negative Gauss
curvature K with metric g = dt2 + B2(x , t)dx 2. Assume for some constant
δ > 0
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(i) t2+δ |K | is decreasing in |t |, |t | > T ;

(ii) ∂ i
x ln |K |, for i = 1, 2 and t∂t∂x ln |K | are bounded;

(iii) K is periodic in x with period 2π .

Then (M, g) admits a smooth isometric immersion in R3.

Now, the question raised is whether one can capture such a result in the setting
of non-smooth immersions. A search for “corrugated immersions” that ask the
data to be “rough” and not in C1 is the issue pursued in the recent articles [2, 1,
3, 4]. In particular, we focus our discussion on data in L∞ for which the method
of compensated compactness has been successfully applied.

2 An Exposition on Non-Smooth Immersions

In two papers Chen, Slemrod and Wang [2] and Cao, Huang and Wang [1]
have used the method of compensated compactness to establish global isometric
immersions into R3 for two dimensional Riemannian manifolds for rough data.
In the examples considered the Gauss curvature was negative and decayed at
least as t−4 where initial data was given at t = 0. Needless to say that leaves
open the question as whether the compensated compactness method will work
for a slower rate of decay. Certainly based on the paper of Hong [13] we expect
the result to be true for decay of order t−2−δ/2 where δ is between 0 and 4.
This is the decay rate considered in [4] in the context of non-smooth immersions.
To be precise, the Gauss curvature is chosen to be

K = − C

(1 + |t |)2+ δ
2

, C > 0 (2.1)

as taken in Hong [13] and δ ∈ (0, 4).
The proof of Hong is a careful study of the hyperbolic system of two balance

laws (the two Codazzi equations) and one closure relation (the Gauss equation)
and requires two separate steps. The first step is to establish existence of smooth
solutions to the balance laws for small, smooth data prescribed at a large enough
time t = T1. The reason for this part is that is only after large time that the
decay of the Gauss curvature may be exploited to obtain the relevant C1 a priori
estimates. The second part of the proof is rather standard and simply asks for
the initial data at t = 0 to be sufficiently small and smooth to enable us to get a
solution up to t = T1. Here no reference is given in Han and Hong but a standard
existence, uniqueness theorem for quasi-linear hyperbolic systems will suffice.
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Such a theorem may be found in Janenko and Rozdestvenskii [14, Chapter 1,
Sect. 8] where the growth in C1 of solutions is governed by a coupled pair of
ordinary differential equations, one which is of Ricatti type. Hence just as in the
classical theory of ordinary differential equations small data allows for a longer
time of existence.

Now, in [4] as compliment to Hong’s result we reconsider the first part of
Hong’s program and show that in fact that rough L∞ data suffices at the initial
time t = T1 and that the method of compensated compactness will yield exis-
tence of weak solutions to the Gauss-Codazzi system for t > T1. Of course one
may wonder how to reach time t = T1 from t = 0 by avoiding the classical
smooth solution existence, uniqueness theorem and establishing a new global
result in the non-smooth case. The answer for this step is to use the local exis-
tence result of weak solutions of Dafermos and Hsiao [6] to reach time t = T1.
Nevertheless we believe that the new application of the compensated compact-
ness method is appealing and is of independent interest and in this survey we
promote this analysis of [4] with the slow decay rate of Hong.

It should be mentioned that for discontinuous data of bounded variation,
isometric immersions have been established using a different method in [3],
the so-called random choice method of Glimm [10], but again with decay rate
at least as t−4. Both methods, the compensated compactness and the random
choice, were introduced and developed in the context of the theory of hyper-
bolic balance laws. An exposition of the current state of the theory of systems
of balance laws can be found in the book [5].

In [4] there are two main ideas that will be used in the analysis. The first fol-
lowing Hong is to write the Gauss-Codazzi system in Rozhdestvenskii-Poznyak
form and prove the global existence of entropy admissible weak solutions for
this system via a viscous approximate scheme for which we adopt the compen-
sated compactness framework. Secondly, having obtained a weak solution for
this form of the Gauss-Codazzi equations we have to be sure that a version of the
fundamental theorem of surface theory (see for example do Carmo [7] as well
as Han and Hong [11]) applies to yield the non-smooth immersion. Fortunately
such a result exists and has been given by S. Mardare [15]. Thus we will obtain
a global W 2,∞

loc immersion which hence implies a C1,1 regularity locally.
It should be noted that the relevant Gauss-Codazzi system can be written

as a linearly degenerate system or what is termed “weakly non-linear quasi-
linear” system in the monograph of Janenko and Rozdestvenskii [14] and is
discussed in Chap. 4, Sec. 4 of that book. They note that such systems possess
the property that uniform boundedness of solutions on 0 ≤ t ≤ T and strict
hyperbolicity imply uniform boundedness of first derivatives on 0 ≤ t ≤ T if
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these derivatives are initially bounded. Thus it appears that the crucial estimates
will be a uniform bound on the dependent variables and in addition proof that the
strict hyperbolicity is not lost. It was this path that was followed by Hong [13].

The paper is organized as follows: In Section 3 we set up the isometric immer-
sion problem, present Mardare’s theorem on non-smooth immersions and write
the Gauss-Codazzi system for geodesically complete Riemannian manifolds. In
Section 4 we give a viscous approximation scheme for resolving the relevant
Gauss-Codazzi system and in Section 5 we state the main result of [4] for the
slow decay rate (2.1) under consideration. Finally Section 6 pursues the issue as
to whether the decay rate of the Gauss curvature can be further reduced.

3 Set Up of the Problem

Let � ⊂ R
2 be an open set. Consider a map y : � → R

3 having the tangent
plane of the surface y(�) ⊂ R

3 at y(x1, x2) spanned by the vectors {∂1y, ∂2y}.
Then, the corresponding metric is

ds2 = (∂1y · ∂1y)(dx1)
2 + 2(∂1y · ∂2y)dx1 dx2 + (∂2y · ∂1y)(dx2)

2 . (3.1)

The isometric immersion problem is an inverse problem: Given (gi j ) i, j = 1, 2
functions in �, with g12 = g21, find a map y : � → R

3 so that

∂1y · ∂1y = g11, ∂1y · ∂2y = g12, ∂2y · ∂2y = g22 (3.2)

with a linearly independent set {∂1y, ∂2y} in R3. Hence, the isometric immer-
sion problem is fully nonlinear in the three unknownsbeing the three components
of the map y.

We recall that a two dimensional manifold (M, g) parametrized by � with
associated metric g = (gi j ) admits two fundamental forms: the first fundamen-
tal form I forM on � is

I
.= g11(dx1)

2 + 2g12dx1dx2 + g22(dx2)
2 (3.3)

and the second fundamental form I I is

I I
.= −dn · dy = h11(dx1)

2 + 2h12dx1 dx2 + h22(dx2)
2 (3.4)

with n being the unit normal vector toM. By equating the cross-partial deriva-
tives of y, the isometric immersion problem as stated above reduces to the Gauss-
Codazzi system

∂1 M − ∂2 L = �
(2)
22 L − 2�

(2)
12 M + �

(2)
11 N

∂1N − ∂2 M = −�
(1)
22 L + 2�

(1)
12 M − �

(1)
11 N

(3.5)
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with the condition
L N − M2 = K , (3.6)

where

L = h11√|g| , M = h12√|g| , N = h22√|g| (3.7)

and |g| .= det(gi j ) = g11g22 − g2
12. The Gauss curvature K = K (x1, x2) is

given by

K (x1, x2) = R1212

|g| , (3.8)

where Ri jkl is the curvature tensor

Ri jkl = glm

(
∂k�

(m)
i j − ∂ j�

(m)
ik + �

(n)
i j �

(m)
nk − �

(n)
ik �

(m)
nj

)
, (3.9)

and �
(k)
i j is the Christoffel symbol

�
(k)
i j

.= 1

2
gkl

(
∂ j gil + ∂i g jl − ∂l gi j

)
. (3.10)

Here, the indices i, j, k, l = 1, 2, (∂1, ∂2) = (∂x1 , ∂x2) and the summation
convention is used. Also, (gkl ) is the inverse of (gi j ).

The fundamental theorem of surface theory states that given forms I and
I I with (gi j ) being positive definite and smooth coefficients, (gi j ) and (hi j )

that satisfy the Gauss-Codazzi system (3.5)-(3.7), then there exists a surface
embedded into R3 with first and second fundamental forms I and I I . This
result has been extended by S. Mardare [15] when (hi j ) ∈ L∞

loc(�) for given
(gi j ) ∈ W 1,∞

loc (�) and then, the surface immersed is C1,1(�) locally. Thus, the
isometric immersion problemreduces to solving the Gauss-Codazzi system(3.5)-
(3.7) for (hi j ) ∈ L∞

loc(�) with a given positive definite metric (gi j ) ∈ W 1,∞
loc (�)

and then, immediately, we recover the immersion surface y(�), which is C1,1

locally.
Now let us recall the following definition.

Definition 3.1. (M, g) is a geodesically complete Riemannian manifold if
and only if every geodesic can be extended indefinitely.

Under the assumption that our two dimensional manifold is geodesically com-
plete and simply connected we can simplify the structure of our metric. This is
actually the structure used in [13, 4]. The exact result is as follows and is essen-
tially due to Hadamard but we use the presentation given in Han and Hong [11].
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Lemma 3.2 (Han and Hong [11, Lemma 10.2.1]). Let (M, g)be a geodesically
complete simply connected smooth two dimensional Riemannian manifold with
non-positive Gauss curvature. Then there exists a global geodesic coordinate
system (x , t) in M with metric

g = dt2 + B2(x , t)dx 2 (3.11)

where B is a smooth function satisfying B(x , 0) = 1 and ∂t B(x , 0) = 0 for
x ∈ R.

A direct substitution of (3.11) in (3.5) then yields that L, M, N satisfy the
Gauss-Codazzi system in the form

∂t L − ∂x M = L∂t ln B − M∂x ln B + N B∂t B,

∂t M − ∂x N = −M∂t ln B,
(3.12)

with
L N − M2 = K B2, (3.13)

where ∂t t B = −K B defines the Gauss curvature K in terms of the metric.
In [4], we work with the scaled variables

l = L

B2
√|K |, m = M

B
√|K | , n = N√|K | (3.14)

that satisfy the system

∂t l − 1

B
∂x m + (l − n)∂t ln B + l

2
∂t ln |K | − m

2B
∂x ln |K | = 0,

∂tm − 1

B
∂x n + 2m∂t ln B + m

2
∂t ln |K | − n

2
∂x ln |K | = 0,

(3.15)

with
ln − m2 = −1. (3.16)

The eigenvalues associated with system (3.15) are

λ1 = m − 1

lB
, λ2 = m + 1

lB
(3.17)

and we see that each characteristic field is linear degenerate. System (3.15) is
strictly hyperbolic if λ1 < λ2, or equivalently if l is finite.

Bull Braz Math Soc, Vol. 47, N. 1, 2016



�

�

“main” — 2016/2/27 — 19:43 — page 262 — #8
�

�

�

�

�

�

262 CLEOPATRA CHRISTOFOROU and MARSHALL SLEMROD

4 The Approximate Scheme

As we will be dealing with non-smooth data a natural approach is embed our
initial value problem in viscous approximating system with viscosity μ > 0 and
attempt to recover our solution as limit for μ → 0+. Therefore, consider the
viscous approximations (lμ, mμ, nμ) that satisfy system

∂t l
μ − 1

B
∂x mμ + (lμ − nμ)∂t ln B + lμ

2
∂t ln |K | − mμ

2B
∂x ln |K | = μ∂xx lμ,

∂t m
μ − 1

B
∂x nμ + 2mμ∂t ln B + mμ

2
∂t ln |K | − nμ

2
∂x ln |K | = μ∂xx mμ,

(4.1)

with
lμnμ − (mμ)2 = −1. (4.2)

Here μ > 0 is a constant “viscosity”. Let (u, v) be the Riemann invariants
given by

u = −mμ

lμ
+ 1

lμ
, v = −mμ

lμ
− 1

lμ
(4.3)

It is straightforward to compute the viscous equations of (u, v):

∂tu + v

B
∂x u + v(1 + u2)∂t ln B − (u − v)

4

(
∂t ln |K | + u

B
∂x ln |K |

)

= μ

(v − u)

{
((∂x u)2 − (∂xv)2) − 2u

v − u
(∂xu − ∂xv)2 − u∂xx u

}
, (4.4)

∂tv + u

B
∂xv + u(1 + v2)∂t ln B − (v − u)

4

(
∂t ln |K | + v

B
∂x ln |K |

)

= μ

(v − u)

{
((∂x u)2 − (∂xv)2) − 2v

v − u
(∂xu − ∂xv)2 + v∂xxv

}
. (4.5)

Now strict hyperbolicity in the (u, v) variables is equivalent to u 	= v and the
system is uniformly strictly hyperbolic if v − u is uniformly bounded away
from zero.

5 A C1,1 Isometric Immersion

We consider a special class of metrics of the form (3.11) just to keep our ideas
simple and clear. Of course the method could be generalized beyond this case
at the cost of greater complications.

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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Choose the Gauss curvature K to be given by (2.1) and set h
.= B > 0 and

k∗ .= |K |. Furthermore assume that k∗ , h are taken to be independent of x .
Then h and k∗ satisfy

∂t t h = k∗h, h(0) = 1, ∂t h(0) = 0. (5.1)

Consider the domain � = [T1, T2] × R
3 with T1 sufficiently large and any

value T2 > T1. The corrugated immersion contructed below is over this domain.
If one would like to see a global immersion, then using the local existence result
of [6] one can reach time t = T1 from t = 0 starting at t = 0 with small BV
data depending on the size of T1.

The main result of [4] is:

Theorem 5.1. Let (M, g) be a geodesically complete simply connected and
smooth two dimensional Riemannian manifold with non-positive Gauss curva-
ture K and a metric of the form (3.11). Assume that h

.= B and k∗ = |K |
are independent of x satisfying (5.1) and k∗ is given by (2.1). There exists
y ∈ W 2,∞

loc (�) satisfying the embedding equations.

Proof. The heart of the matter is to establish uniform L∞ bounds on the so-
lutions to the viscous system (4.1)-(4.2). Under the choice of curvature (2.1)
and a careful analysis, we can derive the so called sign-switch property when
0 < δ < 4 as well as crucial estimates on h and ∂th. Combining these with
a comparison argument, we establish an invariant region for (u, v) and hence
apriori L∞ estimates for the viscous approximations (lμ, mμ, nμ). It should be
mentioned that the proof of the invariant region of (u, v) is motivated by the one
given in Han-Hong [11]. The advantage of the one given in [4] is its relative
simplicity and the precise estimates for (u, v) from above, below (respectively).
Next, we show a crucial H −1

loc estimate which is needed to apply the method of
compensated compactness following a standard argument say as given in the
paper of Cao, Huang and Wang [1] and use the entropy, entropy flux pair

η = −mμ2 + 1

lμ
, q = mμ3 − mμ

hlμ2 . (5.2)

Having these, we observe that the compensated compactness framework as
described in Theorem 4.1 of [2] is applicable. This implies that there exists
a subsequence, still labeled (lμ, mμ, nμ) that converges weak* in L∞(�) to
(l̃, m̃, ñ) as μ → 0 and the limit (l̃, m̃, ñ) is a bounded weak solution of the
Gauss-Codazzi system in the domain �. By applying Mardare’s theorem [15],
we conclude the result.

All the details of the proof can be found in [4]. �
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6 A Weaker Decay Rate

Immediate inspection of our proofs in [4] raise a natural question of whether
we can produce k∗ , h with weaker decay than given by (2.1) and still satisfy the
strict hyperbolicity condition as well as k∗ , sk∗ ∈ L1[0, ∞). In fact the answer
is yes for the example:

k∗ = 1

(3 + t)2(ln(3 + t))p
, t > 0, p > 1. (6.1)

In other words, for this special choice, it is shown that the preservation of strict
hyperbolicity is retained. Hence any lack of non-smooth embedding must be due
to lack of L∞ bounds on two of the three components on the second fundamental
form (the third component is a priori bounded). For the details, we refer the
reader to [4, Section 7].

A summary of our observations is given in the following theorem.

Theorem 6.1. Assume that h and k∗ are independent of x satisfying (5.1) and
k∗ is as given by (6.1). Then if T1 is sufficiently large, then there is an invariant
region for (u, v) to remain away from zero for all times t > T1. Hence strict
hyperbolicity of (3.15)-(3.16) would not be lost.
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