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An overview of some recent results on the Euler
system of isentropic gas dynamics
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Abstract. This overview is concerned with the well-posedness problem for the isen-
tropic compressible Euler equations of gas dynamics. The results we present are in line
with the program of investigating the efficiency of different selection criteria proposed in
the literature in order to weed out non-physical solutions to more-dimensional systems
of conservation laws and they build upon the method of convex integration developed
by De Lellis and Székelyhidi for the incompressible Euler equations. Mainly following
[5], we investigate the role of the maximal dissipation criterion proposed by Dafermos
in [6]: we prove how, for specific pressure laws, some non-standard (i.e. constructed via
convex integration methods) solutions to the Riemann problem for the isentropic Euler
system in two space dimensions have greater energy dissipation rate than the classical
self-similar solution emanating from the same Riemann data. We therefore show that
the maximal dissipation criterion proposed by Dafermos does not favour in general the
self-similar solutions.

Keywords: hyperbolic systems of conservation laws, Riemann problem, admissible
solutions, entropy rate criterion, ill-posedness, convex integration.
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1 Introduction

We consider the isentropic compressible Euler system of gas dynamics in 2 space
dimensions (cf. [8] or [15] or [1]). It is obtained as a simplification of the full
compressible Euler equations, by assuming the entropy to be constant. The state
of the gas is described through the state vector

V = (ρ, v)
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whose components are the density ρ and the velocity v. The system consists of
3 equations which correspond to balance statements for mass and linear momen-
tum. The corresponding Cauchy problems reads as⎧⎪⎪⎨

⎪⎪⎩
∂tρ + divx(ρv) = 0
∂t (ρv)+ divx (ρv ⊗ v)+ ∇x [p(ρ)] = 0
ρ(·, 0) = ρ0

v(·, 0) = v0 ,

(1.1)

with t ∈ R+, x ∈ R2. The pressure p is a function of the density ρ determined
from the constitutive thermodynamic relations of the gas under consideration and
it is assumed to satisfy p′ > 0 (under this assumption the system is hyperbolic).
We will work with pressure laws p(ρ) = ργ with constant γ ≥ 1.

Our aim is to discuss the issue of uniqueness of weak solutions to the Cauchy
problem (1.1). The theory of the Cauchy problem for hyperbolic systems of
conservation laws is typically confronted with two major challenges. First, it
is well-known that classical solutions develop discontinuities, even starting out
from smooth initial data. In the literature this behaviour is known as breakdown
of classical solutions. Therefore, it becomes imperative to introduce the notion
of weak solution. However, weak solutions fail to be unique. In order to restore
uniqueness restrictions need to be imposed in hope of singling out a unique
physical solution. When dealing with systems coming from Physics, as in our
case, the second law of Thermodynamics naturally induces such restrictions, such
admissibility criteria by stipulating that weak solutions are admissible/entropy
solutions if they satisfy some entropy inequalities (see (2.3)for the specific case of
the compressible Euler system). Finally, a third important challenge then arises:
do entropy inequalities really serve as selection criteria? Are admissible solutions
unique? Or at least, do there exist efficient criteria restoring uniqueness? This
is a central problem to set down a complete theory for the Cauchy problem.
It has deserved a lot of attention, but positive answers were found only for
scalar conservation laws or for systems in one space dimensions (under smallness
assumptions on the initial data): for a complete account of the existing literature
we refer the reader to [8] and [15]. When dealing with systems of conservation
laws in more than one space dimension, it is still an intriguing mathematical
problem to develop a theory of well-posedness for the Cauchy problem which
includes the formation and evolution of shock waves.

In 2006, Elling [12] studied numerically a particular case of initial data for
the two dimensional non-isentropic Euler equations. His results show that the
numerical method does not always converge to the physical solution. Moreover,
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they suggest that entropy solutions (in the weak entropy inequality sense) to the
multi-dimensional Euler equations are not always unique.

In a groundbreaking paper [10], De Lellis-Székelyhidi give an example in
favour of the conjecture that entropy/admissible solutions to the multi-dimen-
sional compressible Euler equations are in general not unique. The non-unique-
ness result by De Lellis-Székelyhidi is a byproduct of their analysis of the in-
compressible Euler equations based on its formulation as a differential inclusion
(see [9] and [11]) combined with convex integration methods: they exploit the
result for the incompressible Euler equations to exhibit bounded initial density
and bounded compactly supported initial velocity for which admissible solutions
of (1.1) are not unique (in more than one space dimension). However the initial
data constructed in [10] are very irregular. The result by De Lellis and Széke-
lyhidi is improved by the author in [2] where it is proven that non-uniqueness
still holds in the case of regular initial density (see also [4] for further general-
izations). Non–unique solutions constructed via convex integration are referred
to as non–standard or oscillatory solutions. Moreover in [3], using the Riemann
problem as a building block, the authors show that, in the two dimensional case,
the entropy inequality (see (2.3)) does not single out unique weak solutions even
under very strong assumptions on the initial data ((ρ0, v0) ∈ W 1,∞(R2)):

Theorem 1.1 (Chiodaroli, De Lellis, Kreml). There are Lipschitz initial data
(ρ0, v0) for which there are infinitely many bounded admissible solutions (ρ, v)
of (1.1) onR2 ×[0,∞[ with inf ρ > 0. These solutions are all locally Lipschitz
on a finite interval on which they all coincide with the unique classical solution.

This is proven by constructing infinitely many entropy weak solutions in for-
ward time to a Riemann problem for (1.1) whose Riemann data can be generated,
backwards in time, by a classical compression wave: the Lipschitz initial data
of Theorem 1.1 will be provided by the values of the compression wave at some
finite negative time. It is clear now that the infinitely many admissible solutions
constructed in Theorem 1.1 all coincide with the unique classical solution (com-
pression wave) on a finite time interval whereas non-uniqueness arises after the
first blow-up time.

This series of negative results concerning the entropy inequality as selection
criterion for system (1.1) motivated the authors to explore other admissibility
criteria which could work in favour of uniqueness, in particular we investigated
an alternative criterion which has been proposed by Dafermos in [6] under the
name entropy rate admissibility criterion. The ideas developed in [3] enabled us
to prove in [5] the following theorem:

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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Theorem 1.2 (Chiodaroli, Kreml). Let p(ρ) = ργ , 1 ≤ γ < 3. There exist
Riemann data for which the self-similar solution to (1.1) emanating from these
data is not entropy rate admissible.

This result does not exclude that the entropy rate admissibility criterion could
still select a unique solution, but surely prevents the self-similar solution to be
the selected one. Moreover, since Theorem 1.2 is proven using non-standard
solutions as competitors, with respect to Dafermos’ criterion, for the self-similar
solution, we can affirm that the entropy rate criterion cannot, at least in our
setting, rule out oscillatory solutions obtained via convex integration. In the rest
of the paper we will further explain this result.

2 Entropy criteria

2.1 Entropy inequality

We recall here the usual definitions of weak and admissible solutions to (1.1) in
the two–dimensional case.

Definition 2.1. By a weak solution of (1.1) on R2 × [0,∞[ we mean a pair
(ρ, v) ∈ L∞(R2 × [0,∞[) such that the following identities hold for every test
functionsψ ∈ C∞

c (R
2 × [0,∞[), φ ∈ C∞

c (R
2 × [0,∞[):∫ ∞

0

∫
R2

[ρ∂tψ + ρv · ∇xψ] dxdt +
∫
R2
ρ0(x)ψ(x , 0)dx = 0 (2.1)

∫ ∞

0

∫
R2

[ρv · ∂tφ + ρv ⊗ v : Dxφ + p(ρ)divxφ]

+
∫
R2
ρ0(x)v0(x) · φ(x , 0)dx = 0.

(2.2)

Definition 2.2. A bounded weak solution (ρ, v) of (1.1) is admissible if it satis-
fies the following inequality for every nonnegative test function ϕ ∈ C∞

c (R
2 ×

[0,∞[):∫ ∞

0

∫
R2

[(
ρε(ρ)+ ρ

|v|2
2

)
∂tϕ +

(
ρε(ρ)+ ρ

|v|2
2

+ p(ρ)

)
v · ∇xϕ

]

+
∫
R2

(
ρ0(x)ε(ρ0(x))+ ρ0(x)

∣∣v0(x)
∣∣2

2

)
ϕ(x , 0) dx ≥ 0 .

(2.3)

Note that (2.3) is rather a weak form of energy balance.

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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2.2 Entropy rate admissibility criterion

An alternative criterion to the entropy inequality has been proposed by Dafermos
in [6] under the name of entropy rate admissibility criterion. In order to formulate
this criterion for the specific system (1.1) we define the total energy of the
solutions (ρ, v) to (1.1) as

E[ρ, v](t) =
∫
R2

(
ρε(ρ)+ ρ

|v|2
2

)
dx . (2.4)

Let us remark that in Dafermos’ terminology E[ρ, v](t) is called “total entropy”
(see [6]). However, since in the context of system (1.1) the physical energy plays
the role of the mathematical entropy, it is more convenient to call E[ρ, v](t) total
energy. The right derivative of E[ρ, v](t) defines the energy dissipation rate of
(ρ, v) at time t :

D[ρ, v](t) = d+E[ρ, v](t)
dt

. (2.5)

Since our solutions will have piecewise constant values of ρ and |v|2 and it is
easy to see that the total energy of any solution we construct is infinite, we shall
restrict the infinite domain R2 to a finite box (−L, L)2 and denote

EL[ρ, v](t) =
∫
(−L ,L)2

(
ρε(ρ)+ ρ

|v|2
2

)
dx (2.6)

DL [ρ, v](t) = d+EL[ρ, v](t)
dt

. (2.7)

The problem of infinite energy of solutions may be solved also by restricting
to a periodic domain and constructing (locally in time) periodic solutions. This
procedure is carefully described in [5].

Using the concept of energy dissipation rate, Dafermos in [6] introduces a new
selection criterion for weak solutions which goes under the name of entropy rate
admissibility criterion. We recall here the definition of entropy rate admissible
solutions.

Definition 2.3 (Entropy rate admissible solution). A weak solution (ρ, v) of
(1.1) is entropy rate admissible if there exists L∗ > 0 such that there is no
other weak solution (ρ, v) with the property that for some τ ≥ 0, (ρ, v)(x , t) =
(ρ, v)(x , t) on R2 × [0, τ ] and DL[ρ, v](τ ) < DL[ρ, v](τ ) for all L ≥ L∗.

In other words, we call entropy rate admissible the solution(s) dissipatingmost
total energy.

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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3 Background literature and main results

The investigation of the entropy rate admissibility criterion initiated with the
paper [6] of Dafermos where he puts it forward and moreover proves that for a
single equation the entropy rate criterion is equivalent to the viscosity criterion
in the class of piecewise smooth solutions. Later on, following the approach of
Dafermos, Hsiao in [14] proves, in the class of piecewise smooth solutions, the
equivalence of the entropy rate criterion and the viscosity criterion for the one-
dimensional system of equations of nonisentropic gas dynamics in lagrangian
formulation with pressure laws p(ρ) = ργ for γ ≥ 5/3 while the same equiv-
alence is disproved for γ < 5/3. For further analysis on the relation between
entropy rate minimization and admissibility of solutions for a more general class
of evolutionary equations we refer to [7]. However, to our knowledge, up to some
time ago the entropy rate criterion had not been tested in the case of several space
variables and on broader class of solutions than the piecewise smooth ones.

Recently Feireisl in [13] extended the result of Chiodaroli [2] and obtained
infinitely many global admissible weak solutions of (1.1) none of which is en-
tropy rate admissible: this results seems in favour of the effectiveness of the
entropy rate criterion to rule out non-standard solutions (i.e. constructed by the
method of De Lellis and Székelyhidi). In [5] we have actually shown that for
specific initial data, and in the two–dimensional case, the oscillatory (non-
standard) solutions dissipate more energy than the self-similar solution which
may be believed to be the physical one. The results obtained in [3] hinge upon
some of the ideas devised in [3] combined with novel developments to deal with
the entropy rate criterion.

We refer also to the work [16], where Székelyhidi constructed irregular so-
lutions of the incompressible Euler equations with vortex-sheet initial data and
computed their dissipation rate.

We focus on the Riemann problem for the system (1.1),(2.3) in two-space
dimensions. Hence, we denote the space variable as x = (x1, x2) ∈ R

2 and
consider initial data in the form

(ρ0(x), v0(x)) :=
{
(ρ−, v−) if x2 < 0

(ρ+, v+) if x2 > 0,
(3.1)

where ρ±, v±1, v±2 are constants. Our concern has been to compare the en-
ergy dissipation rate of standard self-similar solutions associated to the Riemann
problem (1.1), (2.3), (3.1) with the energy dissipation rate of non-standard
solutions for the same problem obtained by the method developed in [3].

We obtained the following results.

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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Theorem 3.1. Let p(ρ) = ργ with γ ≥ 1. For every Riemann data (3.1) such
that the self-similar solution to the Riemann problem (1.1)-(2.3), (3.1) consists
of an admissible 1-shock and an admissible 3-shock, i.e. v−1 = v+1 and

v+2 − v−2 < −
√
(ρ− − ρ+)(p(ρ−)− p(ρ+))

ρ−ρ+
, (3.2)

there exist infinitely many admissible solutions to (1.1)-(2.3), (3.1).

Theorem 3.1 can be viewed as an extension of the results obtained together
with De Lellis in [3]. As a consequence of Theorem 3.1 and by a suitable choice
of initial data, we can prove the following main theorem.

Theorem 3.2. Let p(ρ) = ργ , 1 ≤ γ < 3. There exist Riemann data (3.1) for
which the self-similar solution to (1.1), (2.3) emanating from these data is not
entropy rate admissible.

Theorem 3.2 ensures that for 1 ≤ γ < 3 there exist initial Riemann data (3.1)
for which some of the infinitely many nonstandard solutions constructed as in
Theorem 3.1 dissipate more energy than the self-similar solution, suggesting in
particular that the Dafermos entropy rate admissibility criterion would not pick
the self-similar solution as the admissible one.

4 Strategies of proof

In this section we explain how to prove Theorem 3.1 and 3.2. For the complete
proofs we refer the reader to [5].

Both theorems stem from the framework introduced in [3] where the Riemann
problem constitutes the starting point for constructing non-unique admissible
non-standard solutions. In particular, in [3], the authors jointly with Camillo
De Lellis developed a method which allows to obtain infinitely many entropy
(oscillatory) solutions to a Riemann problem provided a suitable admissible
subsolution exists.

4.1 From subsolutions to solutions

We shall introduce the notion of fan subsolution and admissible fan subsolution
as in [3, Section 3].

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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Definition 4.1 (Fan partition). A fan partition of R2 × (0,∞) consists of
three open sets P−, P1, P+ of the following form

P− = {(x , t) : t > 0 and x2 < ν−t} (4.1)

P1 = {(x , t) : t > 0 and ν−t < x2 < ν+t} (4.2)

P+ = {(x , t) : t > 0 and x2 > ν+t}, (4.3)

where ν− < ν+ is an arbitrary couple of real numbers.

We denote by S2×2
0 the set of all symmetric 2 × 2 matrices with zero trace.

Definition 4.2 (Fan subsolution). A fan subsolution to the compressible Euler
equations (1.1) with initial data (3.1) is a triple (ρ, v, u) : R2 × (0,∞) →
(R+,R2, S2×2

0 ) of piecewise constant functions satisfying the following require-
ments.

(i) There is a fan partition P−, P1, P+ of R2 × (0,∞) such that

(ρ, v, u) = (ρ−, v−, u−)1P− + (ρ1, v1, u1)1P1 + (ρ+, v+, u+)1P+

where ρ1, v1, u1 are constants with ρ1 > 0 and u± = v± ⊗v± − 1
2 |v±|2Id;

(ii) There exists a positive constant C such that

v1 ⊗ v1 − u1 <
C

2
Id ; (4.4)

(iii) The triple (ρ, v, u) solves the following system in the sense of distributions:

∂tρ + divx(ρ v) = 0 (4.5)

∂t(ρ v)+ divx (ρ u)+ ∇x

(
p(ρ)+ 1

2

(
Cρ11P1 + ρ|v|21P+∪P−

)) = 0. (4.6)

Definition 4.3 (Admissible fan subsolution). A fan subsolution (ρ, v, u) is
said to be admissible if it satisfies the following inequality in the sense of distri-
butions

∂t (ρε(ρ)) + divx [(ρε(ρ)+ p(ρ)) v] + ∂t

(
ρ

|v|2
2

1P+∪P−

)
+ divx

(
ρ

|v|2
2
v1P+∪P−

)

+
[
∂t

(
ρ1

C

2
1P1

)
+ divx

(
ρ1 v

C

2
1P1

)]
≤ 0 . (4.7)

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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The strategy which lies behind Theorem 3.1, as well as behind Theorem 1.1 in
[3], consists in reducing the proof of the existence of infinitely many admissible
solutions to the Riemann problem for (1.1) to the proof of the existence of an
admissible fan subsolution as defined in Definition 4.3. This is the content of the
following Proposition which represents the key ingredient of [5] and is proven
in [3].

Proposition 4.1. Let p be any C1 function and (ρ±, v±) be such that there exists
at least one admissible fan subsolution (ρ, v, u) of (1.1) with initial data (3.1).
Then there are infinitely many bounded admissible solutions (ρ, v) to (1.1)-(2.3),
(3.1) such that ρ = ρ and |v|2 1P1 = C.

Roughly speaking, the infinitely many bounded admissible solutions (ρ, v)
of Proposition 4.1 are constructed by adding to the subsolution solutions to the
linearized pressureless incompressible Euler equations supported in P1. Such
solutions are given by the following Lemma, cf. [3, Lemma 3.7].

Lemma 4.2. Let (ṽ, ũ) ∈ R2 ×S2×2
0 and C0 > 0 be such that ṽ⊗ ṽ− ũ < C0

2 Id.
For any open set� ⊂ R

2 ×R there are infinitely many maps (v, u) ∈ L∞(R2 ×
R,R2 × S2×2

0 ) with the following property

(i) v and u vanish identically outside�;

(ii) divxv = 0 and ∂tv + divxu = 0;

(iii) (ṽ + v)⊗ (ṽ + v)− (ũ + u) = C0
2 Id a.e. on �.

Proposition 4.1 is then proved by applying Lemma 4.2 with� = P1, (ṽ, ũ) =
(v1, u1) and C0 = C. It is then a matter of easy computation to check that each
couple (ρ, v+v) is indeed an admissible weak solution to (1.1)–(2.3) with initial
data (3.1), for details see [3, Section 3.3]. The whole proof of Lemma 4.2 can
be found in [3, Section 4].

4.2 Concluding arguments

Thanks to Proposition 4.1, Theorem 3.1 amounts to showing the existence of a
fan admissible subsolution with appropriate initial data under the hypothesis that
(3.1) is such that the self-similar solution to the Riemann problem (1.1), (2.3),
(3.1) consists of an admissible 1−shock and an admissible 3-shock.

Indeed, a fan admissible sunsolution with initial data (3.1) is defined through a
the set of identities and inequalities which we recall here (see also [3, Section 5]).

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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We introduce the real numbers α, β, γ1, γ2, v−1, v−2, v+1, v+2 such that

v1 = (α, β), (4.8)

v− = (v−1, v−2) (4.9)

v+ = (v+1, v+2) (4.10)

u1 =
(
γ1 γ2

γ2 −γ1

)
. (4.11)

Then, Proposition 4.1 translates into the following set of algebraic identities
and inequalities.

Proposition 4.3. Let P−, P1, P+ be a fan partition as in Definition 4.1.
The constantsv1, v−, v+, u1, ρ−, ρ+, ρ1 as in (4.8)-(4.11) define an admissible

fan subsolution as in Definitions 4.2-4.3 if and only if the following identities
and inequalities hold:

• Rankine-Hugoniot conditions on the left interface:

ν−(ρ− − ρ1) = ρ−v−2 − ρ1β (4.12)

ν−(ρ−v−1 − ρ1α) = ρ−v−1v−2 − ρ1γ2 (4.13)

ν−(ρ−v−2 − ρ1β) = ρ−v2
−2 + ρ1γ1 + p(ρ−) − p(ρ1)− ρ1

C

2
; (4.14)

• Rankine-Hugoniot conditions on the right interface:

ν+(ρ1 − ρ+) = ρ1β − ρ+v+2 (4.15)

ν+(ρ1α − ρ+v+1)ρ1γ2 − ρ+v+1v+2 (4.16)

ν+(ρ1β − ρ+v+2) = −ρ1γ1 − ρ+v2
+2 + p(ρ1)− p(ρ+)+ ρ1

C

2
; (4.17)

• Subsolution condition:

α2 + β2 < C (4.18)(
C

2
− α2 + γ1

)(
C

2
− β2 − γ1

)
− (γ2 − αβ)2 > 0 ; (4.19)

• Admissibility condition on the left interface:

ν−(ρ−ε(ρ−)− ρ1ε(ρ1))+ ν−
(
ρ−

|v−|2
2

− ρ1
C

2

)
≤ [

(ρ−ε(ρ−)+ p(ρ−))v−2 − (ρ1ε(ρ1)+ p(ρ1))β
]

+
(
ρ−v−2

|v−|2
2

− ρ1β
C

2

)
;

(4.20)

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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• Admissibility condition on the right interface:

ν+(ρ1ε(ρ1)− ρ+ε(ρ+))+ ν+
(
ρ1

C

2
− ρ+

|v+|2
2

)
≤ [

(ρ1ε(ρ1)+ p(ρ1))β − (ρ+ε(ρ+)+ p(ρ+))v+2
]

+
(
ρ1β

C

2
− ρ+v+2

|v+|2
2

)
.

(4.21)

Theorem 3.2 is then a corollary of the following theorem, proven in [5] and
showing the existence of an admissible fan subsolution, combined with Propo-
sition 4.1.

Theorem 4.1. Let p(ρ) = ργ with γ ≥ 1. For every Riemann data (3.1) such
that v−1 = v+1 and

v+2 − v−2 < −
√
(ρ− − ρ+)(p(ρ−)− p(ρ+))

ρ−ρ+
, (4.22)

there exist ν−, ν+, v1, u1, ρ1,C such that (4.12)-(4.21) hold.

It remains to prove Theorem 3.2. This is obtained by showing that among the
infinitely many admissible solutions provided by Theorem 3.1 one has lower
energy dissipation rate than the self-similar solution emanating from the same
Riemann data, thus contradicting Definition 2.3. Let us remark that the Riemann
data allowing for the result of Theorem 3.2 are of the same type as the ones of
Theorem 3.1, i.e. they admit a forward in time self-similar solution consisting
of two shocks. We also underline that the self-similar solution depends in fact
only on one variable, specifically on x2.

Assume from now on for simplicity that v−1 = v+1 = 0 in (3.1). Let us denote
the self-similar solution emanating from the Riemann data as in Theorem 3.1.
The value of the dissipationrate DL[ρS, vS](t) has a specific form for the solution
(ρS, vS) consisting (by assumption) of two shocks of speeds ν1 and ν2. Denoting
the middle state (ρm, vm = (0, v)) and introducing the notation

E± := ρ±ε(ρ±)+ ρ±
v2±
2

(4.23)

Em := ρmε(ρm)+ ρm
v2

2
(4.24)

we have

DL[ρS, vS] = −2L (ν1(E− − Em)+ ν2(Em − E+)) . (4.25)

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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Now let us consider a solution (ρ, v) with the same initial data (3.1) but con-
structed by the method of convex integration starting from an admissible fan
subsolution using Proposition 4.1. We also assume, that the fan admissible sub-
solution (which exists by Theorem 4.1) has an underlying fan partition defined
by the speeds ν− and ν+. Although v is not constant in P1 we still have, by con-
struction (see Proposition 4.1), that |v|2 1P1 = C, in particular E1 := ρ1ε(ρ1)+
ρ1

C
2 is constant in P1. The dissipation rate for all solutions constructed from

a given subsolution hence depends only on the underlying subsolution and is
given by

DL[ρ, v] = −2L (ν−(E− − E1)+ ν+(E1 − E+)) . (4.26)

If, for a moment, we assume that the speeds of the self-similar solution and of
the subsolution coincide, i.e. ν− = ν1 and ν+ = ν2, it is clearly enough to
achieve E1 > Em in order to prove Theorem 3.2. Of course, as one can see
from [5, Section 4] this is not the case; nonetheless the proof works along the
same line: we can prove that there is still some freedom in the choice of the
parameters defining the underlying subsolution for (ρ, v) which allows to tune
them in such a way that Theorem 3.2 holds. For a complete and rigorous proof
we refer to [5, Section 5].
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