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One-sided band-limited approximations
of some radial functions

Felipe Gonçalves, Michael Kelly* and Jose Madrid

Abstract. We construct majorants and minorants of a Gaussian function in Euclidean
space that have Fourier transforms supported in a box. The majorants that we con-
struct are shown to be extremal and our minorants are shown to be asymptotically ex-
tremal as the sides of the box become uniformly large. We then adapt the Distribution
and Gaussian Subordination methods of [12] to the multidimensional setting to obtain
majorants and minorants for a class of radial functions. Periodic analogues of the main
results are proven and applications to Hilbert-type inequalities are given.
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1 Introduction

In this paper we address a class of problems that have come to be known as
Beurling-Selberg extremal problems. The most well-known example of such a
problem is due to Selberg himself [39, 45, 51]. Given an interval I ⊂ R and
δ > 0, Selberg constructed an integrable function M(x) that satisfies

(i) M̂(ξ) = 0 if |ξ | > δ where M̂(ξ) is the Fourier transform (see §2) of
M(x),

(ii) M(x) ≥ χI (x) for each x ∈ R, and

(iii) M(x) has the smallest integral1 among all functions satisfying (i) and (ii).

Received 26 August 2014.
*Corresponding author.

1This was shown by Selberg in the case when δLength(I) ∈ Z. If δLength(I) �∈ Z, then the
minimal integral was found by BF Logan ([37], unpublished) and Littmann [36].
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The key constraint (which is common in Beurling-Selberg problems) is condi-
tion (ii), that M(x) majorizes the characteristic function of I . Such problems
are sometimes called one-sided approximation problems.

Most work on these sorts of problems have been focused on solving Selberg’s
problem but with χI (x) replaced by a different single variable function, such as
e−λ|x|. Such problems are considered in [5, 6, 11, 12, 13, 14, 34, 35, 36, 51].
Some work has also been done in the several variables setting. Shortly after his
construction of his function M(x), Selberg was able to construct majorants and
minorants of the characteristic function of a box whose Fourier transforms are
supported in a (possibly different) box. His majorant can be shown to be extremal
for certain configurations of boxes, and it is unknown if the minorant is ever ex-
tremal for any given configuration of boxes. Nevertheless, such approximations
have proven to be useful in applications [1, 2, 17, 20, 25, 26, 27, 31] because
the best known approximations are asymptotically extremal as the Fourier sup-
port becomes uniformly large. We will use Selberg’s method of constructing
minorants in what follows (see Proposition 6).

We first study the Beurling-Selberg problem for multivariate Gaussian func-
tions.2 We then generalize the Gaussian subordination and distribution method,
originally developed in [12], to higher dimensions and apply the method to study
the Beurling-Selberg problem for a class of radial functions. We conclude our
investigations with some applications to Hilbert-type inequalities and adapt the
construction to periodic functions.

To state the first of our main results we will use the following notation (see
§2 for additional information). For c > 0, let gc(t) = e−cπ t2

and for a, λ ∈ �

(where � = (0, ∞)d) let

x ∈ Rd �→ Gλ(x) =
d∏

j=1

gλ j (x j ) = exp

⎧⎨
⎩−

d∑
j=1

λ jπx 2
j

⎫⎬
⎭ .

and let

Q(a) =
d∏

j=1

[−a j , a j].

Our first result is a solution to the Beurling-Selberg extremal problem of de-
termining optimal majorants of the Gaussian function Gλ(x) that have Fourier
transform supported in Q(a).

Theorem 1. Let a, λ ∈ �. If F : Rd → R is an integrable function that satisfies

2This problem, for a single variable, was solved in [12].

Bull Braz Math Soc, Vol. 46, N. 4, 2015
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(i) F(x) ≥ Gλ(x) for each x ∈ Rd , and

(ii) F̂(ξ) = 0 for each ξ �∈ Q(a),

then ∫
Rd

F(x)dx ≥
d∏

j=1

λ
− 1

2
j �(0; ia2

j /λ j ). (1.1)

where �(v; τ) is Jacobi’s theta function (see §2). Moreover, equality holds if
F(z) = Mλ,a(z) where Mλ,a(z) is defined by (3.3).

This theorem is essentially a corollary of Theorem 3 of [12]. The proof
simply uses the product structure and positivity of Gλ(x) in conjunction with
Theorem 3 of [12]. It would be interesting to determine the analogue of the
above theorem for minorants of Gλ(x) (i.e. the high dimensional analogue of
Theorem 2 of [12]) where the extremal functions cannot be obtained by a tensor
product of lower dimensional extremal functions.

In our second result we address this problem by constructing minorants of the
Gaussian function Gλ(x) that have Fourier transform supported in Q(a) and that
are asymptotically extremal as a becomes uniformly large in each coordinate.

Theorem 2. Let a, λ ∈ �. If F : Rd → R is an integrable function that satisfies

(i) F(x) ≤ Gλ(x) for each x ∈ Rd , and

(ii) F̂(ξ) = 0 for each ξ �∈ Q(a),

then ∫
Rd

F(x)dx ≤
d∏

j=1

λ
− 1

2
j �

(
1
2 ; ia2

j /λ j

)
. (1.2)

Furthermore, there exists a positive constant γ0 = γ0(d) such that if γ :=
min{a2

j /λ j : 1 ≤ j ≤ d} ≥ γ0, then

d∏
j=1

λ
− 1

2
j �

(
1
2 ; ia2

j /λ j

) ≤ (1 + 5de−πγ )

∫
Rd

Lλ,a (x)dx (1.3)

where Lλ,a (x) is defined by (3.2).

Remark 3. For a fixed a, if λ is large enough then the right hand side (RHS)
of (1.3) would be negative and the inequality would not hold, but this is not true
for large values of γ . In fact, this happens because the zero function would be a
better minorant.

Bull Braz Math Soc, Vol. 46, N. 4, 2015
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Remark 4. Inequality (1.3) implies that if λ is fixed and a is large, then∫
Rd Lλ,a(x)dx approximates exponentially fast the optimal answer. In this

sense, we say that Lλ,a(x) is asymptotically optimal with respect to the type.

Our next set of results (which are too lengthy to state here) are Theorems 9,
10, and 11. See §4 for the statements of the theorems. These theorems gen-
eralize the so-called distribution and Gaussian subordination methods of [12].
The main idea behind these methods goes back to the paper of Graham and
Vaaler [24]. We will describe a “watered down” version of the approach here.
Let us begin with the inequality

Gλ(x) ≤ Fλ(x)

where Fλ(x) is defined by (3.3). The idea is to integrate the free parameter λ in
the function Gλ(x) with respect to a (positive) measure ν on � = (0, ∞)d to
obtain a pair of new functions of x :

g(x) =
∫

�

Gλ(x)dν(λ) ≤
∫

�

Fλ(x)dν(λ) = f (x).

The process simultaneously produces a function g(x) and a majorant f (x) hav-
ing f̂ (ξ) supported in Q(a). The difference of the functions in L1−norm is
similarly obtained by integrating against ν. The method that we present allows
us to produce majorants and minorants for g(x) equal to the one of the follow-
ing functions (among others):

g(x) = e−α|x|r , for α > 0 and 0 < r < 2,

g(x) = (|x |2 + α2)−β, for α > 0 and β > 0,

g(x) = − log

( |x |2 + α2

|x |2 + β2

)
, for 0 < α < β, and

g(x) = |x |σ , for σ ∈ (0, ∞) \ 2Z+

where |x | is the Euclidean norm of x (see §2). In §5.2, we will discuss the full
class of functions for which our method produces majorants and minorants.

One dimensional extremal functions have proven to be useful in several prob-
lems in analytic number theory [4, 7, 9, 10, 12, 15, 21, 22, 24, 26, 39, 40, 44, 45,
51]. The most well known examples make use of Selberg’s extremal functions
for the characteristic function of the interval. These include sharp forms of the
large sieve and the Erdös-Turán inequality. Recent activity include estimates of
quantities related to the Riemann zeta function. These include estimates of the
zeta function on vertical lines in the critical strip and estimates of the pair cor-
relation of the zeros of the zeta function. It would be interesting to see similar
applications in the multidimensional setting.

Bull Braz Math Soc, Vol. 46, N. 4, 2015
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Organization of the paper

In §2 we introduce notation and gather the necessary background material for
the remainder of the paper. Then in §3 we will discuss and prove Theorems 1
and 2. Next, in §4 we present and prove a generalization of the distribution
method introduced in [12] as well as a generalization of their Gaussian subor-
dination result. In §5.1 we study periodic analogues of Theorems 1, 2, 9, 10,
and 11. We conclude with some applications to Hilbert-type inequalities §5.3
and some final remarks in §6

2 Preliminaries

Let us first have a word about our notation. Throughout this manuscript vectors
in Rd will be denoted by lowercase letters such as x = (x1, . . . , xd), and the
Euclidean norm of x is given by

|x | = {
x 2

1 + · · · + x 2
d

}1/2
.

We will write Td = Rd/Zd , � = (0, ∞)d and for each a ∈ � we let

Q(a) = {x ∈ Rd : |x j | ≤ a j }. (2.1)

The vector u = (1, . . . , 1) ∈ � will be called the unitary vector and we will use
the notation Q(R) = Q(Ru) whenever R > 0 is a positive real number.

Now we will introduce some notation that is not standard, but convenient for
our purposes. Given vectors x , y ∈ Rd we will write x y = (x1 y1, . . . , xd yd) and
if y j �= 0 for each j , then we will write x/y = (x1/y1, . . . , xd/yd). We say that
x < y (x ≤ y) if x j < y j ∀ j (x j ≤ y j ∀ j ). We will always denote the inner
product of x , y ∈ Rd by a central dot, that is, x · y.

One of the main objects of study in this paper is the Fourier transform.
Given an integrable function F(x) on Rd , we define the Fourier transform of
F(x) by

F̂ (ξ) =
∫
Rd

e(x · ξ)F(x)dx

where ξ ∈ Rd and e(θ) = e−2π iθ . We extend the definition in the usual way
to tempered distributions (see for instance [49]). We will mainly be consider-
ing functions whose Fourier transforms are supported in a bounded subset of
Rd . Such functions are called band-limited. It is well-known that band-limited
functions can be extended to an entire functions onCd satisfying an exponential
growth condition. An entire function F : Cd → C is said to be of exponential

Bull Braz Math Soc, Vol. 46, N. 4, 2015
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type if there exists a number τ ≥ 0 such that for every ε > 0 there exists a
constant Cε > 0 such that

|F(z)| ≤ Cεe(τ+ε)|z|.

If F(z) satisfies such a growth estimate, then F(z) is said to be of exponential
type at most τ .

There is a refinement of the definition of exponential type due to Stein [46,
49]. Given an origin symmetric convex body K with supporting function

H (z) = HK (z) = sup
ξ∈K

z · ξ, (2.2)

an entire function F : Cd → C is said to be of exponential type with respect to
K if

|F(z)| ≤ Cεe(1+ε)H (z).

This is the natural generalization of exponential type used by Stein in his gen-
eralization of the Paley-Wiener theorem [46, 49]. The Paley-Wiener theorem
has another generalization to higher dimensions that is formulated for certain
tempered distributions. In this formulation, it is not necessary that the body K
be symmetric. We will now state this generalization of the Paley-Wiener than
which can be found in [29], Theorem 7.3.1.

Theorem 5 (Paley-Wiener-Schwartz). Let K be a convex compact subset of
R

d with supporting function H (x) given by (2.2). If F is a tempered distribu-
tion such that the support of F̂ is contained in K , then F : Cd → C is an entire
function and exist N, C > 0 such that

|F(x + iy)| ≤ C(1 + |x + iy|)N e2π H (y).

for every x + iy ∈ Cd .
Conversely, every entire function F : Cd → C satisfying an estimate of this

form defines a tempered distribution with Fourier transform supported on K .

We will now define and compile some results about Gaussians and theta func-
tions that we will need in the sequel. Given a positive real number δ > 0 the
Gaussian gδ : R → R is defined by

gδ(t) = e−δπ t2
,

and its Fourier transform is given by ĝδ(ξ) = δ−1/2g1/δ(ξ).

Bull Braz Math Soc, Vol. 46, N. 4, 2015
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For a τ = σ + it with t > 0, if q = eπ iτ , then Jacobi’s theta function (see
[16]) is defined by

�(v; τ) =
∑
n∈Z

e(nv)qn2
. (2.3)

These functions are related through the Poisson summation formula by∑
m∈Z

gδ(v + m) =
∑
n∈Z

e(nv)ĝδ(n) = δ−1/2�(v; iδ−1). (2.4)

The one dimensional case of Theorems 1 and 2 are proven in [12]. There it
is proved that the functions

lδ(z) =
(cos π z

π

)2
{ ∑

k∈Z

gδ

(
k + 1

2

)
(
z − k − 1

2

)2 +
∑
k∈Z

g′
δ

(
k + 1

2

)(
z − k − 1

2

)}
(2.5)

and

mδ(z) =
(sin π z

π

)2
{∑

k∈Z

gδ(k)

(z − k)2
+

∑
k∈Z

g′
δ(k)

(z − k)

}
(2.6)

are entire functions of exponential type at most 2π and they satisfy

lδ(x) ≤ gδ(x) ≤ mδ(x) (2.7)

for all real x . Moreover,∫ ∞

−∞
mδ(x)dx = δ

− 1
2 �(0; i/δ) (2.8)

and ∫ ∞

−∞
lδ(x)dx = δ

− 1
2 �

(
1
2 ; i/δ

)
. (2.9)

In view of (2.4), (2.8), and (2.9), the functions lδ(z) and mδ(z) are the best
one-sided L1−approximations of gδ having exponential type at most 2π .

3 The Multidimensional Gaussian Function

In this section we will prove Theorem 1 and 2. To construct a minorant of the
Gaussian, we begin with the functions mδ(z) and lδ(z) defined by (2.5) and (2.6)
and use Selberg’s bootstrapping technique to obtain multidimensional minorants.
The majorant is constructed by taking mδ(z) tensored with itself d-times.

Bull Braz Math Soc, Vol. 46, N. 4, 2015
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For every λ = (λ1, . . . , λn) ∈ � we define the function Gλ : Rd → R by

Gλ(x) =
d∏

j=1

gλ j (x j ) =
d∏

j=1

e−λ jπx2
j . (3.1)

The following proposition is due to Selberg, but it was never published [50].
We called it Selberg’s bootstrapping method because it enables us to construct
a minorant for a tensor product of functions provided that we have majorants and
minorants of each component at our disposal. The method has been used in one
form or the other in [2, 20, 25, 26, 27].

Proposition 6. Let d > 0 be natural number and f j : R → (0, ∞) be functions
for every j = 1, . . . , d. Let l j , m j : R→ R be real-valued functions such that

l j (x) ≤ f j (x) ≤ m j (x)

for every x and j . Then

−(d − 1)

d∏
k=1

mk(xk) +
d∑

k=1

lk(xk)

d∏
j=1
j �=k

m j (x j ) ≤
d∏

k=1

fk(xk).

This proposition is easily deduced from the following inequality.

Lemma 7. If β1, . . . , βd ≥ 1, then

d∑
k=1

d∏
j=1
j �=k

β j ≤ 1 + (d − 1)

d∏
k=1

βk.

Proof. We give a proof by induction, starting with the inductive step since the
base case is simple.

Suppose that the claim is true for d = 1, . . . , L. Let β1, . . . , βL, βL+1 be a
sequence of real numbers not less than one and write β j = 1 + ε j . We obtain

L+1∑
k=1

L+1∏
j=1
j �=k

β j =
L∏

j=1

β j + (1 + εL+1)

L∑
k=1

L∏
j=1
j �=k

β j

≤
L∏

j=1

β j + (1 + εL+1)

{
1 + (L − 1)

L∏
j=1

β j

}

Bull Braz Math Soc, Vol. 46, N. 4, 2015
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= 1 + εL+1 +
L∏

j=1

β j + (L − 1)

L+1∏
j=1

β j

≤ 1 + εL+1

L∏
j=1

β j +
L∏

j=1

β j + (L − 1)

L+1∏
j=1

β j

= 1 + L
L+1∏
j=1

β j �

Now we can define our candidates for majorant and minorant of Gλ(x). For a
given λ ∈ � define the functions

z ∈ Cd �→ Lλ(z) = −(d − 1)

d∏
j=1

mλ j (z j ) +
d∑

k=1

lλk (zk)

d∏
j=1
j �=k

mλ j (z j ) (3.2)

and

z ∈ Cd �→ Mλ(z) =
d∏

j=1

mλ j (z j ). (3.3)

It follows from Proposition 6 and (2.7) that

Lλ(x) ≤ Gλ(x) ≤ Mλ(x) for all x ∈ Rd . (3.4)

Moreover, since lδ(x) and mδ(x) have exponential type at most 2π , we con-
clude that the Fourier transforms of Lλ(x) and Mλ(x) are supported on Q. We
modify Lλ(z) and Mλ(z) to have exponential type with respect to Q(a) in the
following way. Given a, λ ∈ � we define the functions

Lλ,a (z) = Lλ/a2 (az) (3.5)

and
Mλ,a (z) = Mλ/a2 (az). (3.6)

By (3.4) we obtain

Lλ,a (x) ≤ Gλ(x) ≤ Mλ,a(x) for all x ∈ Rd (3.7)

and using the scaling properties of the Fourier transform, we conclude that
Lλ,a(x) and Mλ,a(x) have exponential type with respect to Q(a). By formula
(2.6), we have mδ(k) = gδ(k) for all integers k, hence we obtain

Mλ,a (k/a) = Gλ(k/a) (3.8)

for all k ∈ Zd (recall that k/a = (k1/a1, . . . , kd/ad )).
We are now in a position to prove Theorems 1 and 2.

Bull Braz Math Soc, Vol. 46, N. 4, 2015
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Proof of Theorem 1. It follows from (3.4) and (3.6) that the function Mλ,a(x)

is majorant of Gλ(x) of exponential type with respect to Q(a). Define α =
a1 · · ·ad . Using definition (3.3) and (3.6) we obtain∫

Rd
Mλ,a(x)dx = α−1

∫
Rd

Mλ/a2 (x)dx

= α−1
d∏

j=1

∫
Rd

mλ j /a2
j
(x j )dx j

=
d∏

j=1

λ
− 1

2
j �(0; ia2

j /λ j ),

where the first equality is due to a change of variables, the second one due to the
product structure and the third one due to (2.8).

Now we will prove that (3.6) is extremal. Suppose that F(z) is an entire
majorant of Gλ(x) of exponential type with respect to Q(a) and integrable on
R

d (and therefore absolutely integrable on Rd). By the Poisson summation for-
mula we have ∫

Rd
F(x)dx = α−1

∑
k∈Zd

F(k/a)

≥ α−1
∑
k∈Zd

Gλ(k/a)

=
d∏

j=1

λ
− 1

2
j �(0; ia2

j /λ j ) (3.9)

because Mλ,a(x) majorizes Gλ, and the rightmost equality is given by (2.4). �
To prove Theorem 2 we will need the following lemma.

Lemma 8. For all t > 0 we have

1 − 4q/(1 − q)2 <
�

(
1
2 ; it

)
�(0; it)

< e−2q, (3.10)

where q = e−π t .

Bull Braz Math Soc, Vol. 46, N. 4, 2015



�

�

“main” — 2015/11/18 — 11:57 — page 573 — #11
�

�

�

�

�

�

ONE-SIDED BAND-LIMITED APPROXIMATIONS OF SOME RADIAL FUNCTIONS 573

Proof of Theorem 2. Suppose that F(z) is an entire minorant of exponen-
tial type with respect to Q(a) and absolutely integrable on Rd . Recalling that
u = (1, . . . , 1) and applying the Poisson summation formula, we obtain∫

Rd
F(x)dx = α−1

∑
k∈Zd

F(k/a + u/2a)

≤ α−1
∑
k∈Zd

Gλ(k/a + u/2a)

=
d∏

j=1

λ
− 1

2
j �

(
1
2 ; ia2

j /λ j

)
.

where the last equality is given by (2.4). This proves (1.2). By construction,
Lλ,a(z) is an entire minorant of exponential type with respect to Q(a). Using
definitions (3.2) and (3.5) we conclude that∫

Rd
Lλ,a(x)dx =

{ d∑
j=1

�
(

1
2 ; ia2

j /λ j

)
�(0; ia2

j /λ j )
− (d − 1)

}

×
d∏

j=1

�(0; ia2
j /λ j )λ

− 1
2

j . (3.11)

Thus, to deduce (1.3), we only need to prove that

(1 + 5de−πγ )

{ d∑
j=1

�
(

1
2 ; ia2

j /λ j

)
�(0; ia2

j /λ j )
− (d − 1)

}
≥

d∏
j=1

�
(

1
2 ; ia2

j /λ j

)
�(0; ia2

j /λ j )
. (3.12)

for large γ (recall that γ = min{λ j/a2
j }). If we let q j = e−πa2

j/λ j and γ sufficient
large such that (1 − e−πγ )2 > 4/5, we can use Lemma 8 to obtain

d∑
j=1

�
(

1
2 ; ia2

j /λ j
)

�(0; ia2
j /λ j )

− (d − 1) ≥ 1 − 4
d∑

j=1

q j/(1 − q j )
2

≥ 1 − 5
d∑

j=1

q j . (3.13)

Applying Lemma 8 for a sufficient large γ we obtain

d∏
j=1

�
(

1
2 ; ia2

j /λ j

)
�(0; ia2

j /λ j )
≤ exp

{
− 2

d∑
j=1

q j

}
≤ 1 −

d∑
j=1

q j . (3.14)

Bull Braz Math Soc, Vol. 46, N. 4, 2015
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where the last inequality holds, say, if
∑d

j=1 q j < log 2. Write β = ∑d
j=1 q j

and note that
1 − β ≤ (1 − 5β)(1 + 5β)

if β is sufficiently small, for instance if β ∈ [0, 1/25). If γ is sufficiently large
such that

∑d
j=1 q j < 1/25 we obtain

1 −
d∑

j=1

q j ≤ (
1 − 5

d∑
j=1

q j
)(

1 + 5
d∑

j=1

q j
)

<
(
1 − 5

d∑
j=1

q j
)
(1 + 5de−πγ ). (3.15)

By (3.13), (3.14) and (3.15) we conclude that there exists an γ0 = γ0(d) > 0
such that if γ ≥ γ0, then (3.12) holds. �

Proof of Lemma 8. Recall that e(v) = e2π iv and q = eπ iτ . By Theorem 1.3
of chapter 10 of [48] the Theta function has the following product representation

�(v; τ) =
∞∏

n=1

(
1 − q2n)(1 + q2n−1e(v)

)(
1 + q2n−1e(−v)

)
. (3.16)

It follows from (3.16) that

�
(

1
2 ; it

)
�(0; it)

=
∞∏

n=1

(
1 − q2n−1

1 + q2n−1

)2

= exp

{
2

∞∑
n=0

log

(
1 − 2q2n+1

1 + q2n+1

)}
.

Using the inequality log(1 − x) ≥ −x/(1 − x) for all x ∈ [0, 1) we obtain

�
(

1
2 ; it

)
�(0; it)

≥ exp

{
− 4

∞∑
n=0

q2n+1

1 − q2n+1

}

≥ exp

{
− 4

1 − q

∞∑
n=0

q2n+1

}

= exp

{
− 4q

(1 − q)(1 − q2)

}
> e−4q/(1−q)2

> 1 − 4q/(1 − q)2

and this proves the left hand side (LHS) inequality in (3.10). The (RHS) inequal-
ity in (3.10) is deduced by a similar argument using the inequality log(1 − x) ≤
−x for all x ∈ [0, 1). �
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4 Gaussian Subordination Method

In this section we adapt the distribution method developed in [12] to the several
variables setting, and we apply the Gaussian subordination method to the ma-
jorant and minorant for the multidimensional Gaussian defined in the previous
section. This method allow us to extend the class of functions for which we can
solve the corresponding Beurling-Selberg extremal problems. The central idea
is to integrate the functions Gλ(x), Lλ,a (z) and Mλ,a(z), in a distributional sense,
with respect to a non-negative measure ν defined on � = (0, ∞)d .

We begin with a generalization of the distribution method developed in [12]
for existence of majorants and minorants, we will deal with extremality later.

Theorem 9 (Distribution Method – (Existence)). Let K ⊂ R
d be a compact

convex set, � be a measurable space of parameters, and for each λ ∈ � let
G(x; λ) ∈ L1(Rd) be a real-valued function. For each λ let F(z; λ) be a entire
function defined for z ∈ Cd of exponential type with respect to K . Let ν be a
non-negative measure on � that satisfies∫

�

∫
Rd

|F(x; λ) − G(x; λ)|dxdν(λ) < ∞. (4.1)

and ∫
�

∫
Rd

|Ĝ(x; λ)ϕ(x)|dxdν(λ) < ∞ (4.2)

for all ϕ ∈ S(Rd ) supported in K c.
Let G ∈ S′(Rd) be a real-valued continuous function and

Ĝ(ϕ) =
∫
Rd

∫
�

Ĝ(x; λ)dν(λ)ϕ(x)dx (4.3)

for all ϕ ∈ S(Rd ) supported in K c.

(i) If G(x; λ) ≤ F(x; λ) for each x ∈ Rd and λ ∈ �, then there exists a real
entire majorantM(x) for G(x) of exponential type with respect to K and∫

Rd
{M(x) − G(x)}dx

is equal to the quantity at (4.1).

(ii) If F(x; λ) ≤ G(x; λ) for each x ∈ Rd and λ ∈ �, then there exists a real
entire minorant L(x) for G(x) of exponential type with respect to K and∫

Rd
{G(x) − L(x)}dx

is equal to the quantity at (4.1).
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With the exception of Theorem 9, � will always stand for (0, ∞)d . For a
given a ∈ � define Gd+(a) as the set of ordered pairs (G, ν) where G : Rd → R

is a continuous function and ν is a non-negative Borel measure in � such that

(C1) G ∈ S′(Rd) is a tempered distribution.

(C2) For all ϕ ∈ S(Rd) supported in Q(a)c we have∫
Rd

∫
�

|Ĝλ(x)ϕ(x)|dν(λ)dx < ∞.

(C3) For all ϕ ∈ S(Rd) supported in Q(a)c we have∫
Rd
G(x)ϕ̂(x) =

∫
Rd

∫
�

Ĝλ(x)dν(λ)ϕ(x)dx . (4.4)

(C4+) The following integrability condition holds∫
�

d∏
k=1

λ
− 1

2
k

{ d∏
j=1

�(0; ia2
j /λ j ) − 1

}
dν(λ) < ∞. (4.5)

In a analogous way, we define the class Gd−(a) replacing condition (C4+) by

(C4-) The following integrability condition holds∫
�

{
1 −

( d∑
j=1

�
(

1
2 ; ia2

j /λ j

)
�(0; ia2

j /λ j )
− (d − 1)

) d∏
j=1

�(0; ia2
j /λ j )

}

×
d∏

j=1

λ
− 1

2
j dν(λ) < ∞.

(4.6)

Theorem 10 offers a optimal resolution of the Majorization Problem for the
class functions Gd+(a) and the Theorem 11 offers asymptotically optimal reso-
lution of the Minorization Problem for the class of functionsGd−(a).

Theorem 10 (Gaussian Subordination – Majorant). For a given a ∈ �, let
(G, ν) ∈ Gd+(a). Then there exists an extremal majorantMa(z) of exponential
type with respect to Q(a) for G(x). Furthermore,Ma(x) interpolates G(x) on
Z

d/a and satisfies∫
Rd
M(x) − G(x)dx =

∫
�

d∏
k=1

λ
− 1

2
k

{ d∏
j=1

�(0; ia2
j /λ j ) − 1

}
dν(λ). (4.7)
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Theorem 11 (Gaussian Subordination – Minorant). For a given a ∈ �, let
(G, ν) ∈ Gd−(a). Then, if F(z) is a real entire minorant of G(x) of exponential
type with respect to Q(a), we have∫

Rd
G(x) −F(x)dx ≥

∫
�

d∏
j=1

λ
− 1

2
k

{
1 −

d∏
j=1

�
(

1
2 ; ia2

j /λ j
)}

dν(λ). (4.8)

Furthermore, there exists a family of minorants {La(z) : a ∈ �} where La(z)
is of exponential type with respect to Q(a) such that∫

Rd
G(x) − La(x)dx

is equal to the (LHS) of (4.6). Also

lim
a↑∞

∫
Rd
G(x) − La(x)dx = 0, (4.9)

where a ↑ ∞ means a j ↑ ∞ for each j .

Corollary 12. Under the hypothesis of Theorem 11, suppose also that exists
an R > 0 such that supp(ν) ⊂ � ∩ Q(R), G ∈ L1(Rd) and∫

Rd
G(x)dx =

∫
�

d∏
j=1

λ
− 1

2
j dν(λ) < ∞.

Then, there exists a constant α0 > 0 such that, if α := min{a j} ≥ α0 and if
F(x) is a real entire minorant of G(x) of exponential type with respect to Q(a),
then ∫

Rd
F(x)dx ≤ (1 + 5de−πα2/R)

∫
Rd
La(x)dx .

Proof of Corollary 12. By a direct application of Theorem 2 we obtain∫
Rd
F(x)dx ≤

∫
�R

d∏
j=1

�
(

1
2 ; ia2

j /λ j
)
λ

− 1
2

j dν(λ).

If we choose γ0 > 0, as in Theorem 2 and define α0 = Rγ0, we can use
inequality (1.3) to conclude that

d∏
j=1

�
(

1
2 ; ia2

j /λ j
)
λ

− 1
2

j ≤ (1 + 5de−πα2/R)

∫
Rd

Lλ,a (x)dx .

for all λ ∈ � ∩ Q(R), if each a j ≥ α0. If we integrate this last inequality with
respect to dν(λ) we obtain the desired result. �
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4.1 Proofs of Theorems 9, 10 and 11

Proof of Theorem 9. We follow the proof of Theorem 14 from [12] proving
only the majorant case, since the minorant case is nearly identical. Let

D(x; λ) = F(x; λ) − G(x; λ) ≥ 0.

By condition (4.1) and Fubini’s theorem the function

D(x) =
∫

�

D(x; λ)dν(λ) ≥ 0,

is defined for almost all x ∈ Rd and D ∈ L1(Rd). The Fourier transform of
D(x) is a continuous function given by

D̂(ξ) =
∫

�

D̂(ξ; λ)dν(λ), (4.10)

and, due to (4.2), for almost every ξ �∈ K we have the alternative representation

D̂(ξ) = −
∫

�

Ĝ(ξ; λ)dν(λ). (4.11)

Let M be the tempered distribution given by

M(ϕ) =
∫
Rd

{D(x) + G(x)}ϕ(x)dx .

Now for any ϕ ∈ S(Rd ) supported in K c, we have by combining (4.3) and (4.11)

M̂(ϕ) = D̂(ϕ) + Ĝ(ϕ) = 0. (4.12)

Hence M̂ is supported on K , in the distributional sense. By the Theorem 5,
it follows that the distribution M is identified with a analytic function M :
Cd → C of exponential type with respect to K and that

M(ϕ) =
∫
Rd
M(x)ϕ(x)dx (4.13)

for every ϕ ∈ S(Rd). It then follows from the definition of M and (4.13) that
for almost every x ∈ Rd

M(x) = D(x) + G(x),

which impliesM(x) ≥ G(x) for all x ∈ Rd since G(x) is continuous, and∫
Rd

{M(x) − G(x)}dx =
∫

�

∫
Rd

{F(x; λ) − G(x; λ)}dxdν(λ) < ∞. �
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Now we turn to the proof of Theorem 10.

Proof of Theorem 10. We follow the proof of Theorem 14 from [12], skipping
some parts but including changes needed for higher dimensions.

By conditions (C1), (C2), (C3) and (C4+) we are at the position of ap-
plying Theorem 9 for the functions Mλ,a(z) defined at the previous section.
Let Ma(z) be the majorant given by Theorem 9 part (i), for K = Q(a),
Gλ(x) = G(x; λ) and F(z; λ) = Mλ,a (z). First, we show that Ma(n/a) =
G(n/a) for each n ∈ Zd and then we will conclude that Ma(z) is extremal. Let
D(x) :=: Ma(x) − G(x), by Theorem 9 we know that D ∈ L1(Rd). Define
α = a1a2 . . .ad and

P(x) = 1

α

∑
n∈Zd

D((x + n)/a).

It follows from Fubini’s theorem that P(x) is defined almost everywhere, is
integrable on Td = R

d/Zd and P̂(k) = D̂(ak) for all k ∈ Zd . Therefore, we
have the following identity

P ∗ FR(x) =
∑
n∈Zd

|n j |≤R

d∏
j=1

(
1 − |n j |

R + 1

)
D̂(an)e(x · n) (4.14)

for each positive integer R and x ∈ Rd , where

FR(x) =
d∏

j=1

1

R + 1

(
sin π(R + 1)x j

sin πx j

)2

=
∑
n∈Zd

|n j |≤R

d∏
j=1

(
1 − |n j |

R + 1

)
e(x · n) (4.15)

is the product of one-dimensional Fejér kernels. From (4.11) and (4.14) we have

P ∗ FR(0) = D̂(0) −
∑
n �=0

|n j |≤R

d∏
j=1

(
1 − |n j |

R + 1

)∫
�

Ĝλ(an)dν(λ)

= D̂(0) −
∫

�

{ ∑
n �=0

|n j |≤R

d∏
j=1

(
1 − |n j |

R + 1

)
Ĝλ(an)

}
dν(λ).
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Since P ∗ FR is a non-negative function and the term in the brackets above
is positive we may apply Fatou’s lemma to obtain

D̂(0) ≥ lim inf
R→∞

P ∗ FR(0)

+
∫

�

lim inf
R→∞

{ ∑
n �=0

|n j |≤R

d∏
j=1

(
1 − |ni |

R + 1

)
Ĝλ(an)

}
dν(λ)

= lim inf
R→∞ P ∗ FR(0) +

∫
�

∑
n �=0

Ĝλ(an)dν(λ). (4.16)

From the Poisson Summation formula and the fact that Mλ,a(n/a) =
Gλ(n/a) for all n ∈ Zd , we have

M̂λ,a(0) − Ĝλ(0) =
∑
n∈Zd

n �=0

Ĝλ(an).

By (4.10) we conclude that second term on the (RHS) of (4.16) is equal to
D̂(0). This implies that

lim inf
R→∞ P ∗ FR(0) ≤ 0 =⇒ lim inf

R→∞ P ∗ FR(0) = 0.

Using this fact with the definition of P(x), we have

lim inf
R→∞ P ∗ FR(0) = lim inf

R→∞

∫
1
2 Q

P(−y)FR(y)dy

= lim inf
R→∞

∫
1
2 Q

∑
n∈Zd /a

1

α
D((n − y)/a)FR(y)dy

= lim inf
R→∞

∑
n∈Zd /a

∫
1
2 Q

1

α
D((n − y)/a)FR(y)dy

≥
∑
n∈Zd

lim inf
R→∞

∫
1
2 Q

1

α
D((n − y)/a)FR(y)dy

=
∑
n∈Zd

1

α
D(n/a),

where we have used the positivity of D(x) and FR(x), Fubini’s theorem and
Fatou’s lemma. The last equality is due to Féjer’s theorem for the continuity
of D(x) at the lattice points Zd/a (see Section 3.3 of [23]). Recalling that
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D(x) ≥ 0 for each x ∈ Rd , it implies that D(n/a) = 0 which in turn im-
pliesMa(n/a) = G(n/a) for each n ∈ Zd .

To conclude, note that if F(z) is an real entire majorant of exponential type
with respect to Q(a) such thatF −G ∈ L1(Rd) thenF −Ma ∈ L1(Rd). Thus,
the following Poisson summation formula holds pointwise∫

Rd
{F(x) −Ma(x)}dx = 1

α

∑
n∈Zd

{F((n + y)/a) −Ma((n + y)/a)}

for every y ∈ Rd . If we take y = 0 and use that Ma(z) interpolates G(x) at
the lattice Zd/a we conclude that Ma(z) is extremal, and this concludes the
theorem. �

Before we turn to the proof of Theorem 11, we need a technical lemma, we
present the proof of that later.

Lemma 13. The functions

φa : λ ∈ � �→
{ d∑

j=1

�
(

1
2 ; ia2

j /λ j

)
�(0; ia2

j /λ j )
− (d − 1)

} d∏
j=1

�(0; ia2
j /λ j )

indexed by a ∈ � satisfy

(i) φa(λ) ≤ φb(λ) if a j ≤ b j for all j ∈ {1, . . . , d}
(ii) For all λ ∈ �, we have

lim
a↑∞ φa(λ) = 1

where a ↑ ∞ means that a j ↑ ∞ for all j.

Proof of Theorem 11. First we prove (4.8) and then we conclude with a proof
of (4.9).

Let F(z) be a real entire minorant of G(x) with exponential type with respect
to Q(a). We can assume that D(x) = G(x) − F(x) ∈ L1(Rd) otherwise (4.8)
is trivial. Define α = a1 . . .ad . By Fubini’s theorem the function

P(x) = 1

α

∑
n∈Zd

D((x + n)/a)

is defined almost everywhere, integrable over 1
2 Q and P̂(n) = D̂(an) for all

n ∈ Zd . Let FR(x) be the multidimensional Féjer kernel as defined in (4.15),
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hence we have the following equality

P ∗ FR(x) =
∑
n∈Zd

|n j |≤R

d∏
j=1

(
1 − |n j |

R

)
D̂(an)e(x · n). (4.17)

By condition (C3) we obtain

D̂(0) = P ∗ FR(u/2)

−
∑
n �=0

|n j |≤R

d∏
j=1

(
1 − |n j |

R + 1

)∫
�

Ĝλ(an)dν(λ)(−1)u·n

= P ∗ FR(u/2)

+
∫

�

{
−

∑
n �=0

|n j |≤R

d∏
j=1

(
1 − |n j |

R + 1

)
Ĝλ(an)(−1)u·n

}
dν(λ).

Since x �→ Ĝλ(x) is a product of radially decreasing functions we easily see
that the term in the brackets is positive, thus we can apply Fatou’s lemma to
obtain

D̂(0) ≥ lim inf
R→∞ P ∗ FR(u/2)

+
∫

�

lim inf
R→∞

{
−

∑
n �=0

|n j |≤R

d∏
j=1

(
1 − |ni |

R + 1

)
Ĝλ(an)(−1)u·n

}
dν(λ)

= lim inf
R→∞ P ∗ FR(u/2) +

∫
�

−
∑
n �=0

Ĝλ(an)(−1)u·ndν(λ). (4.18)

Using the properties of the Fourier transform of Gλ(x) and the definition of
the Theta Function (2.3), we find that the term inside the integral in (4.18) is
equal to

d∏
j=1

λ
− 1

2
j −

d∏
j=1

�
(

1
2 ; ia2

j /λ j
)
λ

− 1
2

j .

This proves the lower bound estimate (4.8), since P ∗ FR is a non-negative
function.

Now, we turn to the proof of the L1 convergence (4.9). By conditions (C1),
(C2), (C3) and (C4-) we are at the position of applying Theorem 9 for the func-
tions Lλ,a(z) defined at the previous section. Let La(z) be the minorant given

Bull Braz Math Soc, Vol. 46, N. 4, 2015



�

�

“main” — 2015/11/18 — 11:57 — page 583 — #21
�

�

�

�

�

�

ONE-SIDED BAND-LIMITED APPROXIMATIONS OF SOME RADIAL FUNCTIONS 583

by Theorem 9 part (ii), for

K = Q(a), Gλ(x) = G(x; λ) and F(z; λ) = Lλ,a(z).

We obtain∫
Rd
Gλ(x) − La(x)dx =

∫
�

∫
Rd

Gλ(x) − Lλ,a (x)dxdν(λ)

=
∫

�

{
1 −

{ d∑
j=1

�
(

1
2 ; ia2

j /λ j

)
�(0; ia2

j /λ j )
− (d − 1)

} d∏
j=1

�(0; ia2
j /λ j )

}
(4.19)

×
d∏

j=1

λ
− 1

2
j dν(λ).

Using Lemma 13 we see that the functions inside the integral form a decreas-
ing sequence (indexed by a ∈ �) converging to zero as a ↑ ∞. Therefore,
by the monotone convergence theorem, the integral goes to 0 and the proof
is complete. �

Proof of Lemma 13. To see that the functions

φa : λ ∈ � �→
{ d∑

j=1

�
(

1
2 ; ia2

j /λ j

)
�(0; ia2

j /λ j )
− (d − 1)

} d∏
j=1

�(0; ia2
j /λ j ) (4.20)

form an increasing sequence of functions indexed by a ∈ � as each a j ↑ ∞, is
enough to prove that for every λ ∈ � and k ∈ {1, . . . , d}

∂

∂ak
φa(λ) ≥ 0.

For all t > 0 denote

u j (t) = �(0; it2/λ j ) and v j (t) = �
(

1
2 ; it2/λ j

)
,

we can use the Leibniz rule to obtain

∂

∂ak
φa(λ) =

(
v′

k(ak) +
{ d∑

j=1
j �=k

v j (a j )

u j (a j )
− (d − 1)

}
u′

k(ak)

) d∏
j=1
j �=k

u j (a j ). (4.21)

Using the summation formula (2.3), we see that the functions t �→ (u j (t)−1)

is a sum of positive decreasing functions that decreases to 0 as t ↑ ∞, thus u j (t)
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is a decreasing function that decreases to 1 as t ↑ ∞. Analogously, using the
product formula (3.16), each v j (t) is a product of positive increasing functions
that increases to 1 as t ↑ ∞, thus v j (t) is a positive increasing function that
increases to 1 as t ↑ ∞. Therefore, the term inside the parenthesis in (4.21) is
positive, which implies that ∂

∂ak
φa(λ) > 0, and this proves item (i).

Since

φa(λ) =
{ d∑

j=1

v j (a j )

u j (a j )
− (d − 1)

} d∏
j=1

u j (a j ),

we see that φa(λ) converges to 1, for every λ ∈ �, as each a j ↑ ∞ and this
proofs item (ii). �

5 Further Results

In this section we will use the machinery of the previous section to construct
one-sided approximations by trigonometric polynomials. After, as in Part III
of [12], we will give some examples of functions that our method is applicable
and then we present some Hilbert-type inequalities that arise from the construc-
tions of section §4.

5.1 Periodic Analogues

In this subsection we find the best approximations by trigonometric polynomials
for functions that are, in some sense, subordinate to Theta functions. The proofs
of the theorems in this section are almost identical to the proofs of the previous
sections, and thus we state the theorems without proof.

Definition 14. Let a = (a1, a2, . . . , ad) ∈ Zd+ (i.e a j ≥ 1 ∀ j ), we will say that
the degree of a trigonometric Polynomial P(x) is less than a (degree P < a) if

P(x) =
∑

−a<n<a

P̂(n)e(n · x).

The problems we are interested to solve have the following general form

Periodic Majorization Problem. Fix an a ∈ Zd+ (called the degree) and a
Lebesgue measurable real periodic function g : Td → R. Determine the value
of

inf
∫
Td

|F(x) − g(x)|dx , (5.1)

where the infimum is taken over functions F : Td → R satisfing
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(i) F(x) is a real trigonometric polynomial.

(ii) Degree of F(x) is less than a.

(iii) F(x) ≥ g(x) for every x ∈ Td .

If the infimum is achieved, then identify the extremal functions F(z). Similarly
there exist the minorant problem

Periodic Minorization Problem. Solve the previous problem with condition
(iii) replaced by the condition

(iv) F(x) ≤ g(x) for every x ∈ Td .

Now we define for every λ ∈ �, the periodization of the Gaussian function
Gλ(x) by

fλ(x) :=
∑
n∈Zd

Gλ(x + n) =
∑
n∈Zd

d∏
j=1

e−λ j π(x j +n j )
2 =

d∏
j=1

�(x j ; i/λ j )λ
− 1

2
j .

Theorem 15 (Existence). For a given a = (a1, a2, . . . , ad) ∈ Zd+, let � be a
measurable space of parameters, and for each λ ∈ �, let Rλ(x) be a real trigo-
nometric polynomial with degree less than a. Let ν be a non-negative measure
in � that satisfies ∫

�

∫
Td

|Rλ(x) − fλ(x)|dxdν(λ) < ∞. (5.2)

Suppose that g : Td → R is a continuous periodic function such that

ĝ(k) =
∫

�

Ĝλ(k)dν(λ), (5.3)

for all k ∈ Zd such that |k j | ≥ a j for some j ∈ {1, 2, . . . , d}. Then

(i) if fλ(x) ≤ Rλ(x) for each x ∈ Td and λ ∈ �, then there exist a trigono-
metric polynomial ma(x) with degree ma < a, such that of ma(x) ≥ g(x)

for all x ∈ Td and ∫
Td

ma(x) − g(x)dx

is equal to the (LHS) of (5.2).
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(ii) if Rλ(x) ≤ fλ(x) for each x ∈ Td and λ ∈ �, then there exist a trigono-
metric polynomial la(x) with degree la < a, such that la(x) ≤ g(x) in
T

d , and ∫
Td

g(x) − la(x)dx ,

is equal to (LHS) of (5.2).

Before we state the main theorems of this section we need some definitions.
The functions Mλ,a(x) and Lλ,a (x), defined in (3.3) and (3.2), belong to L1(Rd),
thus, by the Plancharel-Pólya theorem (see [41]) and the periodic Fourier inver-
sion formula, their respective periodizations are trigonometric polynomials of
degree less than a, that is

mλ,a(x) :=
∑
n∈Zd

Mλ,a(x + n) =
∑

−a<n<a

M̂λ,a(n)e2π in·x (5.4)

and

lλ,a (x) :=
∑
n∈Zd

Lλ,a (x + n) =
∑

−a<n<a

L̂λ,a (n)e2π in·x (5.5)

holds for each x ∈ T
d . The following theorem offers a resolution to the Ma-

jorization Problem for a specific class of functions.

Theorem 16 (Gaussian Subordination – Periodic Majorant). Let a ∈ Zd+ and
ν be non-negative Borel measure on � that satisfies

∫
�

d∏
j=1

λ
− 1

2
k

{ d∏
j=1

�(0; ia2
j /λ j ) − 1

}
dν(λ) < ∞. (5.6)

Let g : Td → R be a continuous periodic function such that

ĝ(k) =
∫

�

Ĝλ(k)dν(λ), (5.7)

for all k ∈ Zd such that |k j | ≥ a j for some j ∈ {1, 2, . . . , d}. Then for every
real trigonometric polynomial P(x), with degree P < a and P(x) ≥ g(x) for
all x ∈ Td , we have

∫
Td

P(x) − g(x)dx ≥
∫

�

d∏
j=1

λ
− 1

2
k

{ d∏
j=1

�(0; ia2
j /λ j ) − 1

}
dν(λ). (5.8)
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Moreover, there exists a real trigonometric polynomial ma, with degree ma <

a, such that ma(x) is a majorant of g(x) that interpolates g(x) on the lattice
Z

d/a and equality at (5.8) holds.

Theorem 17 (Gaussian Subordination – Periodic Minorant). Let a ∈ Z
d+

and ν be non-negative Borel measure on � such that

∫
�

{
1 −

{ d∑
j=1

�
(

1
2 ; ia2

j /λ j

)
�(0; ia2

j /λ j )
− (d − 1)

} d∏
j=1

�(0; ia2
j /λ j )

}

×
d∏

j=1

λ
− 1

2
j dν(λ) < ∞.

(5.9)

Let g : Td → R be continuous periodic function such that

ĝ(k) =
∫

�

Ĝλ(k)dν(λ) (5.10)

for all k ∈ Zd such that |k j | ≥ a j for some j ∈ {1, 2, . . . , d}. Then, if P(z) is
a real trigonometric polynomial with degree less than a that minorizes g(x), we
have∫

Td
g(x) − P(x)dx ≥

∫
�

d∏
j=1

λ
− 1

2
k

{
1 −

d∏
j=1

�
(

1
2 ; ia2

j /λ j

)}
dν(λ). (5.11)

Furthermore, there exists a family of trigonometric polynomial minorants
{la(x) : a ∈ Zd+} with degree la < a, such that the integral∫

Td
g(x) − la(x)dx

is equal to the quantity in (5.9), and

lim
a↑∞

∫
Td

g(x) − la(x)dx = 0, (5.12)

where a ↑ ∞ means a j ↑ ∞ for every j .

Corollary 18. Under the hypothesis of Theorem 17, suppose also that there
exist an R > 0 such that supp(ν) ⊂ � ∩ Q(R), and

∫
Td

g(x)dx =
∫

�

d∏
j=1

λ
− 1

2
j dν(λ) < ∞.
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Then, there exist a constant α0 > 0, such that if α := min{a j } ≥ α0 and if
P(x) is a trigonometric polynomial with degree P < a that minorizes g(x),
we have ∫

Td
P(x)dx ≤ (1 + 5de−α2/R)

∫
Td

la(x)dx .

5.2 The Class of Contemplated Functions

We define the class

Gd =
⋂
a∈�

Gd
−(a) ∩Gd

+(a).

This is the class of pairs such that Theorems 10 and 11 are applicable for every
a ∈ �. In this subsection we present conditions for a pair (G, ν) belong to
this class.

Some interesting properties arise when ν is concentrated in the diagonal. For
every η ∈ [0, 1] we define �η = {λ ∈ � : ηλ j ≤ λk∀ j, k} and we note that
�0 = � and �1 = {λ ∈ � : λ j = λk∀ j, k} is the diagonal.

Proposition 19. Let (G, ν) be a pair that satisfies conditions (C1), (C2) and
(C3) for every a ∈ �. Suppose that supp(ν) ⊂ �η for some η ∈ (0, 1] and
ν(�η \ Q(R)) < ∞ for every R > 0. Then (G, ν) ∈ Gd .

Proof. We only prove that condition (C4-) holds, the condition (C4+) is anal-
ogous. Given an a ∈ �, define the function

φa : λ ∈ � �→
( d∑

j=1

�
(

1
2 ; ia2

j /λ j

)
�(0; ia2

j /λ j )
− (d − 1)

) d∏
j=1

�(0; ia2
j /λ j ).

By (2.3) and the Poisson summation formula, we have the following estimates

1 − �
(

1
2; i/t

) ∼ 2e−π/t as t → 0, (5.13)

�
(

1
2 ; i/t

) ∼ 2t
1
2 e−π t/4 as t → ∞ (5.14)

and

�(0; i/t) − 1 ∼ 2e−π/t as t → 0, (5.15)

�(0; i/t) ∼ t
1
2 as t → ∞ (5.16)
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where the symbol ∼ means that the quotient converges to 1. Using the (LHS)
inequality of Lemma 8 we conclude that exists an R > 0 and a C > 0 such that

φa(λ) ≥ 1 − C
d∑

j=1

e−πa2
j/λ j

for every λ ∈ � ∩ Q(R). Choose l ∈ {1, . . . , d} such that al ≤ a j for every j .
If λ ∈ �η ∩ Q(R) we have

{
1 − φa(λ)

} d∏
j=1

λ
− 1

2
j ≤ C

( d∑
j=1

e−πa2
j/λ j

) d∏
j=1

λ
− 1

2
j ≤ dCe−πa2

l η/λl

d∏
j=1

λ
− 1

2
j

≤ dC
d∏

j=1

e−πa2
l η2/(dλ j )

d∏
j=1

λ
− 1

2
j = dCĜλ(βu),

where β = alηd− 1
2 and u = (1, . . . , 1).

By estimates (5.13)-(5.16) we see that the functions �
(

1
2 ; i/t

)
t− 1

2 and

�(0; i/t)t− 1
2 are bounded for t ∈ [ηR, ∞), and thus, we conclude that the

function

λ ∈ � �→ φa(λ)

d∏
j=1

λ
− 1

2
j

is bounded on �η \ Q(R), since it is a finite sum of products of these theta
functions.

Since η > 0, we obtain that the function

λ ∈ � �→ {
1 − φa(λ)

} d∏
j=1

λ
− 1

2
j

is bounded in �η \ Q(R), let say by C ′ . Therefore, we have

∫
�η

{
1 − φa(λ)

} d∏
j=1

λ
− 1

2
j dν(λ)

≤ dC
∫

�η∩Q(b)

Ĝλ(βu)dν(λ) + C ′ν(�η \ Q(b)) < ∞,

which is finite by condition (C3) and the hypotheses of this lemma. Thus ν

satisfies condition (C4-) and this concludes the proof. �
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Proposition 20. Let ν be a probability measure on � with supp(ν) ⊂ �η for
some η ∈ (0, 1]. Define the function

G(x) =
∫

�

Gλ(x)dν(λ) (5.17)

for all x ∈ Rd . Then (G, ν) ∈ Gd .

Proof. Is easy to see that G is a bounded, continuous and radially decreasing
function, thusG satisfies conditions (C1). Note that for every x �= 0, the function

λ ∈ � �→ Ĝλ(x)

is bounded on �η and this bound can be taken uniform for x outside any neigh-
borhood of the origin. Thus condition (C2) holds, and using Fubini’s theo-
rem, condition (C3) also holds. We conclude, by Proposition 19, that (G, ν) ∈
Gd . �

Due to a clasical result of Schoenberg (see [43]), a radial function G(x) =
G(|x |) admits the representation (5.17) for a probability ν supported on the di-
agonal �1 if and only if the radial extension to Rn of G(r) is positive definite,
for all n > 0. And this occurs if and only if the function G(r1/2) is completely
monotone. As consequence of this fact and Proposition 20 the following multi-
dimensional versions of the functions in Section 11 of [12] are contemplated

Example 1.

g(x) = e−α|x|r ∈ Gd, α > 0 and 0 < r < 2.

Example 2.

g(x) = (|x |2 + α2)−β ∈ Gd, α > 0 and β > 0.

Example 3.

g(x) = − log

( |x |2 + α2

|x |2 + β2

)
∈ Gd, for 0 < α < β.

The following example is a high dimensional analogue of Corollary 21 [12].

Example 4. Given a σ ∈ (0, ∞) \ 2Z+ consider the measure νσ , that is sup-
ported on the diagonal �1 and defined on a Borel set E ⊂ � by

νσ (E) = C(σ )

∫
P(E∩�1)

t− σ
2 −1dt (5.18)
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where P : �1 → R is the projection P(tu) = t for all t ≥ 0 and

C(σ ) = π− σ
2
/
�

(
− σ

2

)
.

where �(z) is the classical Gamma function. Define on Rd the function

Gσ (x) = |x |σ for σ ∈ (0, ∞) \ 2Z+

we claim that (Gσ , νσ ) ∈ Gd . To see this, first we note that Lemma 18 of [12]
has a trivial generalization to the several variable setting, that is, for every
function ϕ ∈ S(Rd) that is zero on a neighborhood of the origin, we have∫

Rd
ϕ̂(x)|x |σdx = A(d, σ )

∫
Rd

ϕ(x)|x |−d−σdx ,

where

A(d, σ ) = π−σ−d/2�

(
d + σ

2

)/
�

(
− σ

2

)
.

Secondly, note that
A(d, σ )

|x |d+σ
=

∫
�

Ĝλ(x)dνσ (λ).

Hence, by Proposition 19 the pair (Gσ , νσ ) belongs to Gd .

5.2.1 The Periodic Case

Given a pair (G, ν) ∈ Gd , suppose that G ∈ L1(Rd) and the periodization

x ∈ Td �→
∑
n∈Z

G(n + x)

is equal almost everywhere to a continuous function g(x). We easily see that the
pair (g, ν) is contemplated by the Theorems 16 and 17 for every degree a ∈ Zd+.
Thus, the period method contemplates the following functions

Example 5.

g(x) =
d∏

j=1

�(x j ; i/λ j )

=
d∏

j=1

λ

1
2
j

∑
n∈Zd

Gλ(n + x), for all λ ∈ �. (5.19)
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Example 6.

g(x) =
∑
n∈Zd

e−α|n+x|r , for all α > 0 and 0 < r < 2. (5.20)

However, we cannot use this construction for the case of the functions
Gσ (x) = |x |σ of Example 4. The next proposition tell us that if the Fourier
coefficients of G decay sufficiently fast, then the periodization of G via Poisson
summation formula is contemplated by the periodic method.

Proposition 21. Let (G, ν) ∈ Gd . Suppose that exist constants C > 0 and
δ > d/2 such that ∫

�

Ĝλ(x)dν(λ) ≤ C|x |−δ

if |x | ≥ 1. Define the function

x �→ lim
N→∞

∑
n∈Zd

0<|n|<N

∫
�

Ĝλ(n)dν(λ)e(n · x),

where the limit is taken in L2(Td ), and suppose this can be identified with a
continuous function g(x). Then the pair (g, ν) satisfies all the conditions of
Theorems 16 and 17 for every a ∈ Zd+.

With this last proposition we see that the following example is contemplated
by the periodic method of subsection 5.1.

Example 7.
gσ (x) =

∑
n∈Zd

n �=0

|n|−d−σ e(n · x), for all σ > 0. (5.21)

5.3 Hilbert-Type Inequalities

Given an a ∈ � and x ∈ Rd define the norm

|x |a = max{|x j/a j | : j = 1, . . . , d}.
Given an a ∈ � we say that a sequence {ξk}k∈Z of vectors in Rd is a-separated
if |ξk − ξl |a ≥ 1 for all l �= k. We have the following proposition

Proposition 22. Let (G, ν) ∈ Gd , a ∈ � and {ξk}k∈Z an a-separated sequence
of vectors. Then for every finite sequence of complex numbers {w−N , . . . , w0,
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. . . , wN }, we have

−A(a, d, ν)

N∑
n=−N

|wn |2 ≤
N∑

n,m=−N
n �=m

wnwmĜ(ξn − ξm)

≤ B(a, d, ν)

N∑
n=−N

|wn|2 (5.22)

where A(a, d, ν) is equal to the quantity (4.6) and B(a, d, ν) is equal to the
quantity (4.5). Furthermore the constant B(a, d, ν) is sharp.

Remark. For ξ �= 0 we write

Ĝ(ξ) =
∫

�

Ĝλ(ξ)dν(λ).

Proof. To prove inequality in (5.22), define the function D = Ma − G where
Ma is given by Theorem 10. Since Ma if of exponential type with respect to
Q(a) we obtain

N∑
n,m=−N

wnwmD̂(ξn − ξm) = B(a, d, ν)

N∑
n=−N

|wn |2−]
N∑

n,m=−N
n �=m

wnwmĜ(ξn − ξm).

But the (LHS) of this last equality is positive since D(x) is a non-negative
function. In an analogous way we can prove the (LHS) inequality of (5.22).

For the sharpness of the (RHS) inequality in (5.22) suppose that we could
change B(a, d, ν) by some other constant B ′. Consider the sequence wn = 1
for all n ∈ Z and let the sequence {ξn} be an enumeration of the points in the set
J (R) = Q(Ra) ∩ aZd where R ∈ Z+. We obtain

−
∑

ξ,ξ ′∈J (R)

D̂(ξ − ξ ′) =
∑

ξ,ξ ′∈J (R)

ξ �=ξ ′

Ĝ(ξ − ξ ′) − (2R + 1)dD̂(0)

≤ (2R + 1)d(B ′ − D̂(0)).

On the other hand we have

∑
ξ,ξ ′∈J (R)

D̂(ξ − ξ ′) =
∑

|n j |≤2R

{ d∏
j=1

(2R + 1 − |n j |)
}
D̂(an).
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Hence, we conclude that

B ′ − D̂(0) ≥ −
∑

|n j |≤2R

d∏
j=1

(
1 − |n j |

2R + 1

)
D̂(an)− = F2R ∗ P(0),

where F2R(x) is the Féjer’s Kernel defined in (4.15) and

P(x) = 1

α

∑
n∈Zd

D((n + x)/a),

with α = a1 . . .ad . Replying the arguments of the Theorem 10 we would con-
clude that

lim inf
R→∞ F2R ∗ P(0) = 0

and this implies that B ′ ≥ D̂(0), since D̂(0) = B(a, d, ν) this concludes the
proof. �

The next corollary is a generalization of Corollary 22 of [12] in the multidi-
mensional setting and is a direct application of Proposition 22 for Example 4.
Below | · | stands for the Euclidean norm in Rd .

Corollary 23. Let σ > 0, a ∈ � and {ξk}k∈Z an a-separated sequence of
vectors. Then for every finite sequence of complex numbers {w−N , . . . , w0,

. . . , wN }, we have

−A(a, d, σ )

N∑
n=−N

|wn |2 ≤
N∑

n,m=−N
n �=m

wnwm

|ξn − ξm |d+σ

≤ B(a, d, σ )

N∑
n=−N

|wn |2, (5.23)

where

A(a, d, σ ) = −
d∑

j=1

∑
n∈Zd \0

(−1)n j

|an|d+σ
+ (d − 1)

∑
n∈Zd \0

1

|an|d+σ

and

B(a, d, σ ) =
∑

n∈Zd \0

1

|an|d+σ
.

Furthermore, the constant B(a, d, σ ) is sharp.

Bull Braz Math Soc, Vol. 46, N. 4, 2015



�

�

“main” — 2015/11/18 — 11:57 — page 595 — #33
�

�

�

�

�

�

ONE-SIDED BAND-LIMITED APPROXIMATIONS OF SOME RADIAL FUNCTIONS 595

6 Concluding Remarks

We mentioned in the introduction that Selberg generalized his construction of
majorizing and minorizing the characteristic function of an interval, to majorizing
and minorizing the characteristic function of a box by functions whose Fourier
transforms are supported in a (possiblydifferent) box. Another way to generalize
Selberg’s original construction to the several variables setting is to consider
majorizing and minorizing the characteristic function of a ball by functions whose
Fourier transforms are supported in a (possibly different) ball. This problem was
considered by Holt and Vaaler [28] and their methods were recently extended by
Carneiro and Littmann [7].

As far as we know, almost nothing is known about the Beurling-Selberg ex-
tremal problem in higher dimensions when the Fourier transform is supported on
a fixed symmetric convex body K . The following question (perhaps the simplest
Beurling-Selberg extremal problem in higher dimensions) is open:

Let K be a symmetric convex body in Rd . Determine the value of

η(K ) = inf
∫

K
F(x)dx

where the infimum is taken over continuous integrable functions
F : Rd → R that satisfy (i) F(0) ≥ 1, (ii) F(x) ≥ 0 for all x ∈ Rd ,
and (iii) F̂(ξ) = 0 if ξ �∈ K .

In one dimension, the solution to this problem is the Fejer kernel for R. So the
solution to the above problem can be thought of as an analogue of the Fejer
kernel for K .

It is conjectured [30] by the third named author and Jeffrey Vaaler, that
η(K ) = 2d/vold(K ). Vaaler [50] has shown that this conjecture is true if K
is an extremal body. That is, if K achieves equality in Minkowski’s convex
body theorem, then the conjecture in [30] is true. For example, the regular
hexagon in R2 is an extremal body. The only other body K for which the con-
jecture is known to hold is the Euclidean ball.
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