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Abstract. In this note we extend to arbitrary dimensions a couple of results due re-
spectively to Mattei-Moussu and to Camara-Scardua in dimension 2. We also provide
examples of singular foliations having a Siegel-type singularity and answering a ques-
tion independently raised by Abate and by Genzmer.
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1 Introduction

This note concerns certain recently investigated aspects of higher dimensional
generalizations of Mattei-Moussu’s celebrated topological characterization of
integrable holomorphic foliations in dimension 2, cf. [13]. If F denotes a sin-
gular holomorphic foliation defined about the origin ofC2, then the fundamental
issue singled out in [13] is the fact that the existence of holomorphic first inte-
grals for F can be read off its topological dynamics. In particular, the existence
of these first integrals can be detected at the level of the topological dynamics of
the holonomy pseudogroup of F . An immediate consequence of their criterion
is that the existence of (non-constant) holomorphic first integrals for singular
foliations as above is a property invariant by topological conjugation.

One basic question concerning higher dimensional generalizations of Mattei-
Moussu’s result was to know whether a (local) 1-dimensional singular holo-
morphic foliation on (Cn, 0) topologically conjugate to another holomorphic
foliation possessing n − 1 independent holomorphic first integrals should pos-
sess n−1 independent holomorphic first integrals as well. This type of questions
recently began to be investigated in [5], [7] partly due to much recent progress
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in the study of the local dynamics of parabolic diffeomorphisms of (C2, 0), see
[1], [2], [3]. In fact, a high point in Mattei-Moussu’s argument is their proof that
a pseudogroup of holomorphic diffeomorphisms of (C, 0) having finite orbits
must itself be finite and the main theorem in [5] is an extension of this to (C2, 0)

under certain additional conditions. Similarly, in [7], the authors considered the
same question for foliations with Siegel singular points on (C3, 0) which is jus-
tified by the fact that these Siegel foliations are the fundamental building blocks
for the general case. Here it is convenient to remind the reader that a singular
point of a 1-dimensional holomorphic foliation is said to be of Siegel type (or
a Siegel singular point) if all the eigenvalues of the foliation at this singular
point are different from zero and, moreover, 0 ∈ C belongs to the convex
hull defined by these eigenvalues. By resorting to a celebrated result due to
M. Abate, Camara and Scardua affirmatively answered the question provided
that the associated holonomy maps have isolated fixed points.

Very recently, a general counterexample was found in [16]. More precisely
in [16] S. Pinheiro and the second author exhibited two topologically conjugate
foliations on (C3, 0) such that one admits two independent holomorphic first
integrals but not the other. It so became clear that extending Mattei-Moussu
theorem to higher dimensions is a subtle problem and it prompted to a deeper
analysis of the basic ingredients in the two-dimensional argument namely, the
nature of pseudogroups of (Cn, 0) having finite orbits and the corresponding
consequences for foliations having Siegel singular points. The purpose of this
Note is to contribute to the understanding of these questions by proposing an
elementary generalization of Mattei-Moussu result for pseudogroups of (Cn, 0),
which also yields a higher dimensional version of the main theorem in [7], and
by answering in the negative the general question for Siegel singular points
left open in [7].

To state our main results, let us work in the context of pseudogroups of
Diff (Cn, 0) (the reader may check Section 2 for definitions and terminology).
Our first result is a simple elaboration of the corresponding statement in [13]
that turns out to generalize the corresponding result in [7] since it dispenses
with the use of the deep theorem on the existence of parabolic domains due to
M. Abate [1] and valid only in dimension 2.

Theorem A. Let G ⊂ Diff (Cn, 0) be a finitely generated pseudogroup on a
small neighborhood of the origin in Cn. Given g ∈ G, let Dom (g) denote the
domain of definition of g as element of the pseudogroup in question. Suppose
that for every g ∈ G and p ∈ Dom (g) satisfying g(p) = p, one of the following
holds: either p is an isolated fixed point of g or g coincides with the identity on a
neighborhoodof p. Then the pseudogroup G has finite orbits on a neighborhood
of the origin if and only if G itself is finite.

Bull Braz Math Soc, Vol. 46, N. 3, 2015
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Remark. When G is a subgroup of Diff (C, 0) the assumption of Theorem A
is automatically verified so that the statement is reduced to Mattei-Moussu’s
corresponding result in [13]. On the other hand, it is proved in [13] that a sub-
group of Diff (C, 0) is not only finite but also cyclic. In full generality, the second
part of the statement cannot be generalized to higher dimensions since every finite
group embeds into a matrix group of sufficiently high dimension. In Section 2
the reader will find simple examples showing that, in fact, the group need not be
cyclic already in dimension 2 and even if the assumption of Theorem A about
“isolated fixed points” is satisfied.

A two-dimensional variant of Theorem A is proved in [7] by resorting to
Abate’s theorem in [1] (cf. Section 3 for a detailed comparison between the
statement in [7] and Theorem A). The authors of [7] then go ahead to apply their
result to the problem of “complete integrability” of differential equations. Our
Theorem A enables us to conduct a similar discussion in higher dimensions as it
will be seen in Section 3. In particular, in Section 3 we shall also state and prove
Theorem 5 which extends the main theorem in [7] to arbitrary dimensions.

For the time being, however, it suffices to consider the situation discussed
in [7] namely, F is a foliation on (C3, 0) having a Siegel singular point at the
origin and leaving invariant the three “coordinate axes”. Roughly speaking, the
question addressed by Camara-Scardua is to decide whether or not F admits
two independent holomorphic first integrals provided that the holonomy map
associated to a certain invariant axis has finite orbits (cf. Section 3 for accurate
statements). When a foliation as above admits two independent holomorphic
first integrals it is said to be completely integrable. Concerning the formula-
tion of the result in [7] about the existence of these first integrals, it is how-
ever convenient to mention an issue already pointed out by Y. Genzmer and
by M. Abate in their reviews for MathSciNet and for Zentralblatt, respectively.
Namely, whereas the methods of [7] clearly require the corresponding holon-
omy map to have isolated fixed points, the authors have failed to explicitly
mention this condition in the statement of their main theorem. The question
raised by Abate and by Genzmer concerns precisely the validity of Camara-
Scardua result when no assumption involving isolated fixed points is put for-
ward. In other words, the question is whether or not a Siegel singularity giv-
ing rise to a holonomy map with finite orbits must be completely integrable.
Though an affirmative answer to the latter question was generally expected,
Theorem B below shows that this is not the case.

Theorem B. Let F denote the foliation associated with the vector field

X = x(1 + x 2yz3)
∂

∂x
+ y(1 − x 2yz3)

∂

∂y
− z

∂

∂z

Bull Braz Math Soc, Vol. 46, N. 3, 2015
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which has a Siegel singular point at the origin. This foliation F does not have
two independent holomorphic first integrals (though it possesses one non-con-
stant holomorphic first integral). Besides the holonomy map associated with the
axis {x = y = 0} has finite orbits whereas it does not generate a finite subgroup
of Diff (C2, 0).

In the above example, the reader will note that the restriction of X to the
invariant plane {z = 0} yields the radial vector field x∂/∂x + y∂/∂y which
admits the meromorphic first integral y/x . This also answers in the negative
a refinement of the Abate-Genzmer question for Siegel singular point that had
been speculated by Mattei, namely whether the existence of a meromorphic
first integral on the transverse plane plus the assumption of finite orbits for
the holonomy map might force the holonomy map in question to have finite
order.

The simplest example of an element of Diff (C2, 0) having finite orbits is
obtained by setting F(x , y) = (x + f (y), y) with f (0) = 0. For exam-
ple, let f (y) = 2π iy. For this choice of f , the resulting diffeomorphism F
can be realized as the holonomy map of the foliation F associated with the
vector field

X = y
∂

∂x
+ z

∂

∂z

with respect to the invariant curve {x = y = 0}. The foliationF does not admit
two independent holomorphic first integrals whereas the following holds:

• The foliation F admits one non-constant holomorphic first integral,
namely the projection �2(x , y, z) = y.

• The holonomy map associated with the invariant axis {x = y = 0} has
finite orbits.

However the reader will also note that all the leaves of F are locally closed as
there follows easily from the explicit parameterizations (x0, y0, z0) �→ (y0t, y0,

z0et ) for the integral curves of X . Nonetheless the foliation F does not satisfy
the assumption of [7] (or more generally the assumption in our Theorem 5,
cf. Section 3) since the singular point is not of Siegel type (one of its eigenvalues
is equal to zero).

Before proceeding further, let us justify our claim that F does not admit two
independent holomorphic first integrals. For this, note first that �2(x , y, z) =
y is already non-constant holomorphic first integral for F . Next, consider the
restriction F{y=0} of F to the invariant plane given by {y = 0}. The restricted
foliation F{y=0} is associated with the integral curves of the vector field z∂/∂z

Bull Braz Math Soc, Vol. 46, N. 3, 2015
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so that it admits h(x , z) = x as holomorphic first integral. Now assume aiming
at a contradiction that F admits two independent holomorphic first integrals.
Then the invariance of {z = 0} by F has to be identifiable from the two first
integrals in question. Therefore at least one of these (non-constant) first integrals
should be divisible by z. Since �2 is not divisible by z, there must exist another
first integral g(x , y, z) having the form

g(x , y, z) = zg(x , y, z)

for some holomorphic function g(x , y, z). The function g(x , y, z) can be cho-
sen so as not to be divisible by y. In fact, if g(x , y, z) = yl g̃(x , y, z) for
l ≥ 1 and some holomorphic function g̃(x , y, z), then the alternative first
zg̃(x , y, z) can be considered in the place of the initial function g. From this,
we conclude that g(x , 0, z) is not identically zero. Since h, defined by
h(x , z) = x , is a holomorphic first integral for F{y=0} and g(x , 0, z) is not
identically zero, there follows that g(x , 0, z) = zg(x , 0, z) coincides with a holo-
morphic function of h, i.e. there is some holomorphic function H defined around
0 ∈ C such that g(x , 0, z) = H ◦ h(x , z) = H (x). In other words, the func-
tion g(x , 0, z) = zg(x , 0, z) cannot depend on z which clearly contradicts the
holomorphic nature of g(x , 0, z).

This short paper is organized as follows. Section 2 contains the proof of
Theorem A along with the relevant definitions. As mentioned, Theorem A is
a simple elaboration of the arguments in [13]. Section 3 contains a brief digres-
sion on Siegel singular points which enables us to state and prove Theorem 5
extending to higher dimensions the result in [7]. The proof of Theorem 5, in
turn, amounts to a simple combination of Theorem A and some useful results
due to P. Elizarov-Il’yashenko and to Reis, [8], [18] connecting the lineariza-
tion problem of these singular foliations to the same question for certain holon-
omy maps. Finally, in Section 4, a few interesting examples of local dynamics
of diffeomorphisms tangent to the identity will be provided. These local dif-
feomorphisms will also be realized as local holonomy maps of suitable folia-
tions and, by building on these examples, the proof of Theorem B will quickly
be derived.

2 Proof of Theorem A

In the sequel, G denotes a finitely generated subgroup of Diff (Cn, 0), where
Diff (Cn, 0) stands for the group of germs of local holomorphic diffeomor-
phisms of Cn fixing the origin. Assume that G is generated by the elements
h1, . . . , hk ∈ Diff (Cn, 0). A natural way to make sense of the local dynamics

Bull Braz Math Soc, Vol. 46, N. 3, 2015
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of G consists of choosing representatives for h1, . . . , hk as local diffeomor-
phisms fixing 0 ∈ C. These representatives are still denoted by h1, . . . , hk and,
once this choice is made, G itself can be identified to the pseudogroup gen-
erated by these local diffeomorphisms on a (sufficiently small) neighborhood
of the origin. It is then convenient to begin by briefly recalling the notion of
pseudogroup. For this, consider a small neighborhood V of the origin where
the local diffeomorphisms h1, . . . , hk , along with their inverses h−1

1 , . . . , h−1
k ,

are defined and one-to-one. The pseudogroup generated by h1, . . . , hk (or rather
by h1, . . . , hk, h−1

1 , . . . , h−1
k if there is any risk of confusion) on V is defined

as follows. Every element of G has the form F = Fs ◦ . . . ◦ F1 where each
Fi , i ∈ {1, . . . , s}, belongs to the set {h±1

i , i = 1, . . . , k}. The element F ∈ G
should be regarded as an one-to-one holomorphic map defined on a subset of V .
Indeed, denoting by DomV (h) the domain of definition of F = Fs ◦ . . . ◦ F1

as element of the pseudogroup in question, there follows that DomV (h) consists
of those points x ∈ V such that for every 1 ≤ l < s the point Fl ◦ . . . ◦ F1(x)

belongs to V . Since the origin is fixed by all the diffeomorphisms h1, . . . , hk ,
we conclude that every element F in this pseudogroup possesses a non-empty
open domain of definition. This domain of definition may however be discon-
nected. Whenever no misunderstanding is possible, the pseudogroup defined
above will also be denoted by G and we are allowed to shift back and forward
from G viewed as pseudogroup or as group of germs.

Let us continue with some definitions that will be useful throughout the
text. Suppose we are given local holomorphic diffeomorphisms h1, . . . , hk ,
h−1

1 , . . . , h−1
k fixing the origin of Cn . Let V be a neighborhood of the origin

where all these local diffeomorphisms are defined and one-to-one. From now
on, let G be viewed as the pseudogroup acting on V generated by these local
diffeomorphisms.

Definition 1. The VG-orbit OG
V (p) of a point p ∈ V is the set of points in V

obtained from p by taking its image through every element of G whose domain
of definition (as element of G) contains p. In other words,

OG
V (p) = {q ∈ V ; q = h(p), h ∈ G and p ∈ DomV (h)} .

Fixed h ∈ G, the Vh-orbit of p can be defined as the V〈h〉-orbit of p, where 〈h〉
denotes the subgroup of Diff (Cn, 0) generated by h.

We can now define “pseudogroups with finite orbits”. Note that neighbor-
hoods of the origin in Cn are always sufficiently small to ensure that h1, . . . , hk ,
h−1

1 , . . . , h−1
k are well-defined injective maps on V .

Bull Braz Math Soc, Vol. 46, N. 3, 2015
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Definition 2. A pseudogroup G ⊆ Diff (Cn, 0) is said to have finite orbits if
there exists a sufficiently small open neighborhood V of 0 ∈ Cn such that the set
OG

V (p) is finite for every p ∈ V . Analogously, h ∈ G is said to have finite orbits
if the pseudogroup 〈h〉 generated by h has finite orbits.

Fixed h ∈ G, the number of iterations of p by h is the cardinality of the set
{n ∈ Z ; p ∈ DomV (hn)}, where DomV (hn) stands for the domain of definition
of hn as element of the pseudogroup in question. The number of iterations of
p by h is denoted by μh

V (p) and belongs to N ∪ {∞}. The lemma below is
attributed to Lewowicz and can be found in [13].

Lemma 3 (Lewowicz). Let K be a compact connected neighborhood of 0 ∈ Rn

and h a homeomorphism from K onto h(K ) ⊆ R
n verifying h(0) = 0. Then

there exists a point p on the boundary ∂ K of K whose number of iterations in
K by h is infinite, i.e. p satisfies μh

K (p) = ∞. �
Fixed an open set V , note that the existence of points in V such that μh

K (p) =
∞ does not imply that p is a point with infinite orbit, i.e. there may exist
points p in V such that μh

V (p) = ∞ but #O〈h〉
V (p) < ∞, where # stands for

the cardinality of the set in question. These points are called periodic for h on
V . A local diffeomorphism is said to be periodic if there is k ∈ N∗ such that
f k coincides with the identity on a neighborhood of the origin. Clearly periodic
diffeomorphisms possess finite orbits. To prove Theorem A, we first need to
show the following.

Proposition 4. Suppose that G ⊆ Diff (Cn, 0) is a group satisfying the condi-
tion of isolated fixed points of Theorem A. Let h be an element of G and assume
that h has only finite orbits. Then h is periodic.

Assuming that Proposition 4 holds, Theorem A can be derived as follows:

Proof of Theorem A. We want to prove that G is finite (for example at the
level of germs). So, let us consider the homomorphism σ : G → G L(n,C)

assigning to an element h ∈ G its derivative D0h at the origin. The image σ(G)

of G is a finitely generated subgroup of G L(n,C) all of whose elements have
finite order. According to Schur’s theorem concerning the affirmative solution
of Burnside problem for linear groups, the group σ(G) must be finite, cf. [19].
Therefore, to conclude that G is itself finite, it suffices to check that σ is one-
to-one or, equivalently, that its kernel is reduced to the identity. Hence suppose
that h ∈ G lies in the kernel of σ , i.e. D0h coincides with the identity. To show
that h itself coincides with the identity, note that h must be periodic since it has

Bull Braz Math Soc, Vol. 46, N. 3, 2015
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finite orbits, cf. Proposition 4. Therefore h is conjugate to its linear part at the
origin (cf. [4]), i.e. it is conjugate to the identity map. Thus h coincides with the
identity on a neighborhood of the origin of Cn. Theorem A is proved. �

Before proving Proposition 4, let us make some comments concerning the
proof of Theorem A. When n = 1, Leau theorem immediately implies that the
above considered homomorphism σ is one-to-one so that G will be abelian and,
indeed, cyclic. This fact does not carry over higher dimensions since, as already
mentioned, every finite group can be realized as a matrix group and therefore as a
pseudogroup of Diff (Cn, 0) having finite orbits. Yet, in general, groups obtained
in this manner contain non-trivial elements with non-isolated fixed points. In any
event, since every finite subgroup of Diff (Cn, 0) is linearizable, de classification
of these finite subgroups is equivalent to the classification of all finite subgroups
of GL (n,C). In the 2-dimensional case, the situation is fully understood since
the classification of finite subgroups of GL (2,C), and hence of Diff (C2, 0), is
a well-known result going back to F. Klein, see [11].

Let us now prove Proposition 4. As already pointed out, the proof amounts
to a careful reading of the argument supplied in [13] for the case n = 1.

Proof of Proposition 4. Let h be a local diffeomorphims in Diff (Cn, 0)

whose periodic points are isolated unless the corresponding power of h coin-
cides with the identity on a neighborhood of the mentioned periodic point. Let
us assume that h is not periodic. To prove the statement, we are going to show
the existence of an open neighborhood U of 0 ∈ Cn such that the set of points
x ∈ U with infinite U〈h〉-orbit is uncountable and has the origin as an accu-
mulation point. It will then result that h cannot have finite orbits, thus proving
the proposition.

Let U be an arbitrarily small open neighborhood of 0 ∈ Cn contained in the
domains of definition of h, h−1. Suppose also that h, h−1 are one-to-one on U .
Consider ρ0 > 0 such that Dρ0 ⊆ U , where Dρ0 stands for the closed ball of
radius ρ0 centered at the origin. Following [13], we define the following sets

P = {x ∈ Dρ0 : μDρ0
(x) = ∞, #O〈h〉

Dρ0
(x) < ∞} ,

F = {x ∈ Dρ0 : μDρ0
(x) < ∞, #O〈h〉

Dρ0
(x) < ∞} ,

I = {x ∈ Dρ0 : μDρ0
(x) = ∞, #O〈h〉

Dρ0
(x) = ∞} .

In other words, P is the set of periodic points in Dρ0 for h, F denotes the set
of points leaving Dρ0 after finitely many iterations and I stands for the set
of non-periodic points with infinite orbit. Naturally, Dρ0 = P ∪ F ∪ I and

Bull Braz Math Soc, Vol. 46, N. 3, 2015
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Lewowicz’s lemma implies that

(P ∪ I) ∩ ∂ Dρ �= ∅ .

for every ρ ≤ ρ0. Thus, at least one between P and I is uncountable. In what
follows, the diffeomorphism h is supposed to be non-periodic. With this as-
sumption, our purpose is to show that I must be uncountable and the origin is
accumulation point of I.

For n ≥ 0, let An denote the domain of definition of hn viewed as an element
of the pseudogroup generated on Dρ0 . Clearly An+1 ⊆ An. Next, let Cn be the
connected (compact) component of An containing the origin and pose

C =
⋂
n∈N

Cn .

Note that C is the intersection of a decreasing sequence of compact connected
sets. Therefore C is non-empty and connected.

Claim. Without loss of generality, we can assume that C is a countable set.

Proof of the Claim. Suppose that C is uncountable. The reader is reminded
that our aim is to conclude that I is uncountable provided that h is not periodic.
Therefore we suppose for a contradiction that I is countable. Since I is count-
able so is I ∩ C. Consider now C ∩ P and note that this intersection must be
uncountable, since C ⊂ P ∪ I. Let

C ∩ P =
⋃
n∈N

Pn ,

where Pn is the set of points x ∈ C ∩ P of period n. Note that there exists a
certain n0 ∈ N such that Pn0 is infinite, otherwise all of the Pn would be finite
and C ∩ P would be countable. Being infinite, Pn0 has a non-trivial accumula-
tion point p in Cn0 . The map hn0 is holomorphic on an open neighborhood of
Cn0 and it is the identity on Pn0 ∩ Cn0 . Since p is not an isolated fixed point
of hn0 , it follows that hn0 coincides with the identity map on Cn0 , i.e. on the
connected component of the domain of definition of hn0 that contains the origin.
This contradicts the assumption of non-periodicity of h (modulo reducing the
neighborhood of the origin). Hence I is uncountable. Moreover the closure of
I contains the origin since, otherwise, there is a small disc D about the origin
such that D ∩ I = ∅. If this is the case, it suffices to repeat the above procedure
with C ∩ D to obtain a contradiction. �

Bull Braz Math Soc, Vol. 46, N. 3, 2015
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In view of the preceding, in the sequel C will be supposed to consist of count-
ably many points. The purpose is still to conclude that the set I is uncountable
(and the origin belongs to its closure). Since, in addition, C is connected, it must
be reduced to the origin itself. Then, for every ρ < ρ0, we have C ∩ ∂ Dρ = ∅.
Now note that, for a fixed ρ > 0, the sets

C1 ∩ ∂ Dρ, (C1 ∩ C2) ∩ ∂ Dρ, (C1 ∩ C2 ∩ C3) ∩ ∂ Dρ, . . .

form a decreasing sequence of compact sets. Hence the intersection⋂
n∈N

Cn ∩ ∂ Dρ

is non-empty, unless there exists n0 ∈ N, such that Cn0 ∩ ∂ Dρ = ∅. The latter
case must occur since C ∩ ∂ Dρ = ∅. However, the value of n0 for which the
mentioned intersection becomes empty may depend on ρ.

Fix ρ > 0 and let n0 be as above. Let K be a compact connected neigh-
borhood of Cn0 that does not intersect the other connected components of An0 ,
if they exist. The set K can be chosen so that ∂ K ∩ An0 = ∅. The inclu-
sion An+1 ⊆ An guarantees that ∂ K does not intersect An , for every n ≥ n0.
Therefore

∂ K ∩ P = ∅ .

In fact, if there were a periodic point x of Dρ0 on ∂ K , then x would belong to
every set An . In particular, it would belong to An0 , hence leading to a contra-
diction. Nonetheless, Lewowicz’s lemma guarantees the existence of a point x
on the boundary ∂ K of K such that the number of iterations in K is infinite,
i.e. such that μK (x) = ∞. Since K ⊆ Dρ ⊆ Dρ0 , it follows that

∂ K ∩ I �= ∅ .

By construction, it is clear that a compact set K satisfying the above conditions
is not unique. Indeed, for K as before, denote by Kε the compact connected
neighborhood of K whose boundary has distance to ∂ K equal to ε. Then, there
exists ε0 > 0 such that Kε satisfies the same properties as K for every 0 ≤ ε ≤ ε0

with respect to An0 . In particular,

∂ Kε ∩ I �= ∅
for all 0 ≤ ε ≤ ε0. Therefore I must be uncountable. Finally, it remains to
prove that 0 ∈ C

n is an accumulation point of I. This is, however, a simple
consequence of the fact that a compact set K ⊆ Dρ as above can be considered
for all ρ > 0. This completes the proof of Proposition 4. �
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3 Siegel singular points and an extension of a result by Camara-Scardua

We can now move on to state and prove Theorem 5 (see below). The proof of
this theorem follows from the combination of our Theorem A with the results in
[8] or in [18].

To begin with, let F be a singular 1-dimensional foliation on (Cn, 0) and let
X be a representative of F , i.e. X is a holomorphic vector field tangent to F
and whose singular set has codimension at least 2. Suppose that the origin is a
singular point of F and denote by λ1, . . . , λn the corresponding eigenvalues of
D X at the origin. Assume the following holds:

(1) F has an isolated singularity the origin.

(2) The singularity of F is of Siegel type.

(3) The eigenvalues λ1, . . . , λn are all different from zero and there exists a
straight line through the origin, in the complex plane, separating λ1 from
the remainder eigenvalues.

(4) Up to a change of coordinates, X = ∑n
i=1 λi xi (1 + fi (x))∂/∂xi , where

x = (x1, . . . , xn) and fi (0) = 0 for all i.

Note that condition (4) is equivalent to the existence of n invariant hyperplanes
through the origin. This condition, as well as condition (3), is always verified
when n = 3 provided that the singular point is of strict Siegel type cf. [6]. Here
the reader is reminded that, in dimension 3, the singular point is said to be of strict
Siegel type if 0 ∈ C is contained in the interior of the convex hull of {λ1, λ2, λ3}.

In general, the eigenvalues of a foliationF are nothing but the eigenvalues of
the differential of a representative vector field X for F . These eigenvalues are
therefore defined only up to a multiplicative constant and this definition allows
us to avoid passing through the choice of a representative vector field when
dealing with foliations belonging to the Siegel domain.

In any event, when it comes to problems of “complete integrability”, the rel-
evant Siegel singular points are not of strict Siegel type. Indeed, in the case
of strict Siegel singular point, the corresponding holonomy maps have a “hy-
perbolic part” i.e. they are partially hyperbolic and therefore cannot have finite
orbits. Similarly the corresponding foliation cannot be “completely integrable”.
In these cases, whereas conditions (3) and (4) may fail to hold, they are es-
sentially always satisfied in the cases of interest (at least in dimension 3). This
is due to the basic properties of the standard reduction procedure by means of
blow-up maps for singularities in dimension 3 (which is known to the expert to
hold in dimension 3 provided that natural topological conditions are satisfied).
However, to avoid making the discussion needlessly long, we shall proceed as
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in [7] and assume once and for all that, up to a rotation, there is an eigenvalue
λ1 lying in R+ whereas the remaining eigenvalues λ2, . . . , λn lie in R−. We can
now state Theorem 5.

Theorem 5. Let F be a singular foliation on (Cn, 0) possessing n invariant
pairwise transverse hyperplanes and denote by λ1, . . . , λn its eigenvalues.
Suppose also that λ1 ∈ R+ while λ2, . . . , λn are all negative reals. Denote
by h1 the local holonomy map associated to the axis x1 (corresponding to the
eigenvalue λ1) and suppose that h1 has isolated fixed points (in the sense of
Theorem A) and that it has finite orbits. Then F admits n − 1 independent holo-
morphic first integrals.

To prove Theorem 5, Theorem 6 below will be needed. The latter theorem
generalizes to higher dimensions a unpublished result of Mattei which, in turn,
improved on an earlier version appearing in [13].

Theorem 6 ([EI], [Re]). Let X and Y be two vector fields satisfying condi-
tions (1), (2), (3) and (4) above. Denote by hX (resp. hY ) the holonomy of X
(resp. Y ) relatively to the separatrix of X (resp. Y ) tangent to the eigenspace
associated to the first eigenvalue. Then hX and hY are analytically conjugate if
and only if the foliations associated to X and Y are analytically equivalent.

Remark 7. In the statement of both Theorem 5 and Theorem 6, the condi-
tion (4) concerning a special normal form for the vector field X is truly in-
dispensable. In particular, this condition ensures that the linear part of X is
diagonalizable. In general, when the linear part of X is allowed to have “Jordan
blocks” then further obstructions to topological equivalence are known to arise
as first pointed out by N. Ladis and by Camacho-Kuiper-Palis; see [6], [12] as
well as Naishul’s paper [15] for the non-linear case.

In our context, the following example was suggested by the referee. Con-
sider the vector fields Y1, Y2, Y3 defined on C5 with coordinates (x1, . . . , x5) as
follows:

Y1 = x1
∂

∂x1
+ x2

∂

∂x2
, Y2 = (x3 + x4)

∂

∂x3
+ x4

∂

∂x4
, and Y3 = x5

∂

∂x5
.

Now for a > 0 fixed, let X1 and X2 be the vector fields defined by

X1 = (a + 1)Y1 + aY2 − Y3 and X2 = aY1 + (a + 1)Y2 − Y3 .

The axis x5 is invariant by both vector fields X1 and X2. Moreover, the holon-
omy maps arising from this invariant axis are conjugate. Namely they are con-
jugate to the linear transformation having eigenvalue e2iπ a with multiplicity 4

Bull Braz Math Soc, Vol. 46, N. 3, 2015



�

�

“main” — 2015/9/1 — 13:55 — page 481 — #13
�

�

�

�

�

�

INTEGRABILITY AND FINITE ORBITS 481

and Jordan block decomposition 4 = 1 + 2 + 1. Yet, the 2 × 2 Jordan block is
associated to different eigenvalues, namely to a in the case of X1 and to a + 1
in the case of X2. Therefore a homeomorphism conjugating these holonomy
maps cannot be extended to the plane {x5 = 0}.

The proof of Theorem 6 can be found in either [8] or [18], a particularly
detailed exposition appears in [17]. With this theorem in hand, the proof of
Theorem 5 goes as follows.

Proof of Theorem 5. Consider a foliation F as in the statement of Theo-
rem 5. The local holonomy map h1 is defined on a suitable local section and
it can also be identified to a local diffeomorphism fixing the origin of Cn−1.
By assumption, all iterates of h have isolated fixed points. Therefore Theo-
rem A implies that the local orbits of h are finite if and only if h is periodic.
Naturally, we may assume this to be the case. Let then N be the period of h,
namely the smallest strictly positive integer for which hN coincides with the
identity on a neighborhood of the origin of Cn−1 (with the above mentioned
identifications). Denote also by T the derivative of h at the origin, which is
itself identified to a linear transformation of Cn−1. The fact that h is periodic
of period N ensures that T is also periodic with the same period N . In fact, h
and T are analytically conjugate as already mentioned (i.e. h is linearizable).
Next denote by FZ the foliation associated to the linear vector field

Z =
n∑

i=1

λi xi∂/∂xi .

It is immediate to check that the map T coincides with the holonomy map in-
duced by FZ with respect to the axis x1. Therefore Theorem 6 implies that the
foliations F and FZ are analytically equivalent. However, since FZ is induced
by a linear (diagonal) vector field, it becomes clear that the complete integra-
bility of FZ is equivalent to the periodic character of the holonomy map T .
Since F and FZ are analytically equivalent, we conclude from what precedes
that the condition of having a local holonomy h with finite orbits forces F to
be completely integrable. The converse is clear, since having F completely in-
tegrable ensures at once that the holonomy map h must be periodic. Theorem 5
is proved. �

Remark 8. Concerning the argument given in [7] for the analogous statement
in dimension 3, the authors have relied in Abate’s theorem to conclude that the
corresponding holonomy map must be of finite order. Abate’s theorem however
is no longer available once the dimension is 4 or larger.
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4 Examples of local dynamics and proof of Theorem B

This section is split in two paragraphs. First we shall describe the local dy-
namics of certain local diffeomorphisms fixing the origin of C2 that happen to
be tangent to the identity. These examples include families of diffeomorphisms
having finite orbits whereas the diffeomorphism itself has infinite order. In the
second paragraph we are going to prove Theorem B by showing that, in fact, the
holonomy map associated to the axis {x = y = 0} in the example described in
Theorem B falls in one of the previously discussed classes of diffeomorphisms.

4.1 Local diffeomorphisms

Recall that Diff1(C
2, 0) denotes the normal subgroup of Diff (C2, 0) consisting

of diffeomorphisms tangent to the identity. The simplest example of an element
of Diff1(C

2, 0) possessing finite orbits is obtained by setting F(x , y) = (x +
f (y), y), with f (0) = f ′(0) = 0. This case, however, can be set aside in
what follows since the foliation associated to the infinitesimal generator of F
is regular. In particular, it cannot be realized as the holonomy map of a Siegel
singular point as those considered in the context of Theorem 5 since it does not
leave the axis {x = 0} invariant. Some genuinely more interesting examples are
listed below.

Example 1. Linear vector fields.

Consider the vector field Y given by Y = x∂/∂x − λy∂/∂y where λ = n/m
with m, n ∈ N

∗. The foliation associated to Y will be denoted by F and it
should be noted that the holomorphic function (x , y) �→ xn ym is a first inte-
gral for F . Let φY denote the time-one map induced by Y . The local dynamics
of φY can easily be described as follows. The vector field Y can be projected
on the axis {y = 0} as the vector field x∂/∂x . Therefore the (real) integral
curves of Y coincide with the lifts in the corresponding leaves of F of the (real)
trajectories of x∂/∂x on {y = 0}. The latter trajectories are radial lines being
emanated from 0 ∈ {y = 0} � C so that the local dynamics of φY restricted
to {y = 0} is such that, whenever x0 �= 0, the sequence {φn

Y (x0)} marches off
a uniform neighborhood of 0 ∈ {y = 0} � C as n → ∞ and it converges to
0 ∈ {y = 0} � C as n → −∞. Consider now the orbit of a point (x0, y0),
x0y0 �= 0, by φY . Since this is simply the lift in the leaf of F through (x0, y0)

of the dynamics of x0 ∈ {y = 0} � C, it follows that φn
Y (x0, y0) leaves a fixed

neighborhood of (0, 0) ∈ C2 since the first coordinate increases to uniformly
large values provided that n → ∞. Similarly, when n → −∞, the first coordi-
nate of φn

Y (x0, y0) must converge to zero so that the second coordinate becomes
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“large” due to the first integral xn ym. Thus, fixed a (small) neighborhood U of
(0, 0) ∈ C2, every orbit of φY that is not contained in {x = 0}∪{y = 0} is bound
to intersect U at finitely many points.

Clearly the time-one map induced by Y is not tangent to the identity. How-
ever, examples of time-one maps tangent to the identity and satisfying the de-
sired conditions can be obtained, for example, by considering the vector field
X = xn ymY and taking the time-one map φX induced by X . Clearly the linear
part of X at (0, 0) equals zero so that φX must be tangent to the identity. Fur-
thermore, the multiplicative factor xn ym annihilates the dynamics of φX over the
coordinate axes so that only the orbits of points (x0, y0) with x0 y0 �= 0 have to
be considered. The leaf of F through (x0, y0) will be denoted by L and c ∈ C
will stand for the value of xn ym on L. The restriction of X to L is nothing but
the restriction of Y to L multiplied by the scalar c ∈ C. Therefore the real or-
bits of X in L coincide with the lift to L of the real orbits of the vector field
cx∂/∂x defined on {y = 0}. The geometric nature of the orbits of cx∂/∂x de-
pends on the argument of c ∈ C, i.e. setting c = |c|e2π iα , this geometry depends
on α ∈ [0, 2π). If α = π/2, then the orbits of cx∂/∂x are contained in circles
about the origin. After finitely many tours, these circles lift into the correspond-
ing leaf (i.e. the leaf on which x y equals c) as closed paths invariant by φX .
In addition for a “generic” choice of c satisfying α = π/2, the resulting time-
one map restricted to the corresponding invariant path will be conjugate to an
irrational rotation. Thus �X does not have finite orbits.

Let us now briefly discuss the slightly more general case where X = xa ybY
with a, b ∈ N∗. Setting d = am − bn, we can suppose without loss of general-
ity that d ≥ 1. Next, by considering the system⎧⎪⎪⎨⎪⎪⎩

dx

dt
= mxa+1yb

dy

dt
= −nx a yb+1 ,

we conclude that dy/dx = −ny/mx so that y = cx−n/m in ramified coor-
dinates. In turn, this yields dx/dt = cbmx 1+d/m. Since d ≥ 1 by construc-
tion, the orbits of the latter vector field defines the well-known “petals” asso-
ciated to Leau flower in the case of periodic linear part, cf. [14]. For exam-
ple, setting m = 1 to simplify, the orbits of the vector field x 1+d∂/∂x consists
of d + 1 “petals” in non-ramified coordinates.

In any event, the sequence of points consisting of the first coordinates of the
full orbits of φX either marches straight off a neighborhood of 0 ∈ {y = 0} � C

or it converges to (0, 0) (by construction this sequence is contained in {y =
Bull Braz Math Soc, Vol. 46, N. 3, 2015
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0}). Converging to (0, 0) will force the second coordinates of the points in the
φX -orbit to increase uniformly so that the orbit in question must leave a fixed
neighborhood of (0, 0) ∈ C2. Summarizing, we conclude:

Claim 1. Fixed a neighborhood U of (0, 0) ∈ C2 and given p = (x0, y0),
x0y0 �= 0, the set

U ∩
{ ∞⋃

n=−∞
φn

X (p)

}
is finite.

Example 2. Diffeomorphisms leaving the function (x , y) �→ x y invariant.

Here we are going to see two examples of diffeomorphisms having a nature
somehow similar to those discussed in Example 1 but having also the advantage
that they can easily be realized as the holonomy maps of foliations with Siegel
singular points. To begin with, let F ∈ Diff1(C

2, 0) be given by

F(x , y) = [
x(1 + x y f (x y)), y(1 + x y f (x y))−1

]
, (1)

where f (z) is a holomorphic function defined about 0 ∈ C and satisfying
f (0) �= 0. Note that F leaves the function (x , y) �→ x y invariant since the
product of its first and second components equals x y.

Next, consider an initial point (x0, y0) with x0 y0 = C �= 0. The orbit of
(x0, y0) under F is hence contained in the curve defined by {x y = C}. More-
over, for a point (x̃, ỹ) lying in {x y = C}, the value of F(x̃ , ỹ) takes on the
form

F(x̃ , ỹ) = [
x̃(1 + C f (C)) , ỹ(1 + C f (C))−1

]
.

In particular, those values of C for which |1 + C f (C)| = 1 give rise to a
rotation in the first coordinate. Therefore the lifts of these circles in the corre-
sponding leaves are loops. Besides for a generic choice of C satisfying
|1 + C f (C)| = 1 the dynamics induced on one of these invariant loops is
conjugate to an irrational rotation so that F does not have finite orbits.

Consider now the local diffeomorphism H which is given by

H (x , y) = [
x(1 + x2 y f (x 2y)), y(1 + x 2y f (x 2 y))−1

]
, (2)

where f is as above. For this local diffeomorphism, we have:

Lemma 9. The local diffeomorphism H given by Formula (2) possesses only
finite orbits.
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Proof. Again the product of its first and second components of H equals x y
so that H preserves the function (x , y) �→ x y. To check that H has finite orbits,
we proceed as follows. Fix an initial point (x0, y0) with x0 y0 = C �= 0 so that
the orbit of (x0, y0) under H is contained in the curve {x y = C}. Next note that,
if (x̃, ỹ) lies in {x y = C}, we have

H (x̃, ỹ) = [
x̃(1 + x̃C f (x̃C)) , ỹ(1 + x̃C f (x̃C))−1

]
.

The dynamics of the first component of H behaves now as the Leau flower
since it is given by x �→ x + x 2C f (xC), where C �= 0. Therefore, by resorting
to an argument totally analogous to the one employed in Example 1 for X =
x a ybY with d = am − bn �= 0, we conclude that all the orbits of H are finite
as desired. �

4.2 Singular foliations and holonomy

In this paragraph Theorem B will be proved and a couple of related examples
will also be provided.

Let us begin by pointing out a simple observation showing that every element
of Diff1(C

2, 0) that is the time-one map of a vector field can be realized as a
local holonomy map for some foliation on (C3, 0). Indeed, consider a singular
foliation F on (C3, 0) admitting a separatrix S through the origin and denote
by h the holonomy map associated to F , with respect to S. Assume that the
foliation is locally given by the vector field A(x , y, z)∂/∂x + B(x , y, z)∂/∂y +
C(x , y, z)∂/∂z. Assume furthermore that the separatrix S is given, in the same
coordinates, by {x = 0, y = 0}. Setting z = e2π it , the corresponding holonomy
map can be viewed as the time-one map associated to the differential equation⎧⎪⎪⎪⎨⎪⎪⎪⎩

dx

dt
= dx

dz

dz

dt
= 2π ie2π it A(x , y, e2π it)

C(x , y, e2π it )

dy

dt
= dy

dz

dz

dt
= 2π ie2π it B(x , y, e2π it)

C(x , y, e2π it )

.

In the particular case where A, B do not depend on z and C is reduced to
C(x , y, z) = z, the holonomy map of F with respect to S reduces to the time-
one map induced by a vector field on (C2, 0), namely by the vector field

2π i

[
A(x , y)

∂

∂x
+ B(x , y)

∂

∂y

]
.
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Considering a local diffeomorphism h possessing finite orbits and realizable
as time-one map of a vector field Y , then to find a vector field on (C3, 0) whose
foliation has h as holonomy map, it suffices to take Y and “join” the term
2π iz∂/∂z. Then the holonomy of the foliation associated to the vector field

X = Y + 2π iz
∂

∂z
,

with respect to the z-axis is nothing but h itself.
Note that the vector field X above corresponds to a saddle-node vector field of

codimension 2. This is equivalent to saying that its linear part admits exactly two
eigenvalues equal to zero and a non-zero eigenvalue associated to the direction
of the separatrix {x = y = 0}. The fact that the holonomy of {x = y = 0} has
finite orbits is a phenomenon without analogue for saddle-nodes in dimension 2.

Let us now consider an example of a foliation on (C3, 0) possessing only
eigenvalues different from zero, as in the case of Theorem B.

Example 3. Let F denote the foliation associated to the vector field

X = x(1 + x yz2)
∂

∂x
+ y(1 − x yz2)

∂

∂y
− z

∂

∂z
.

The z-axis corresponds to one of the separatrices of F . Taking z = e2π it , it
follows that the holonomy map h associated to F , with respect to the z-axis, is
given by the time-one map associated to the vector field⎧⎪⎪⎨⎪⎪⎩

dx

dt
= dx

dz

dz

dt
= −2π ix(1 + e4π it x y)

dy

dt
= dy

dz

dz

dt
= −2π iy(1 − e4π it x y)

. (3)

To solve this system of differential equations, we should consider the series
expansion of (x(t), y(t)) in terms of the initial condition. More precisely, if
(x(0), y(0)) = (x0, y0), then we should let x(t) = ∑

ai j (t)x i
0y j

0 and y(t) =∑
bi j (t)x i

0 y j
0 . Clearly a10(0) = b01(0) = 1 and ai j (0) = bi j (0) = 0 in the other

cases. Substituting the series expansion of x(t) and y(t) on (3) and comparing
the same powers on the initial conditions, it can be said that the system (3) in-
duces an infinite number of differential equations involving the functions ai j , bi j

and their derivatives. Each one of the differential equation takes on the form

a′
i j (t) = −2π i

[
ai j (t) +

∑
e4π it ap1q1(t)ap2q2(t)bp3q3(t)

]
b′

i j (t) = −2π i
[
bi j (t) +

∑
e4π it ap1q1(t)bp2q2(t)bp3q3(t)

]
Bull Braz Math Soc, Vol. 46, N. 3, 2015
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where p1 + p2 + p3 = i and q1 + q2 + q3 = j . In particular, the terms on
the sum in the right hand side of the equation above involves only coefficients
of the monomials x p

0 yq
0 of degree less than i + j and such that p ≤ i and

q ≤ j . Computing this holonomy map becomes much easier with the following
lemma:

Lemma 10. The holonomy map h preserves the function (x , y) �→ x y.

Proof. To check that the level sets of (x , y) �→ x y are preserved by h, con-
sider the derivative of the product x(t)y(t) with respect to t . This gives us

d

dt
(x y) = dx

dt
y + x

dy

dt

= − [
2π ix(1 + e4π it x y)

]
y − x

[
2π iy(1 − e4π it x y)

]
= −4π ix y .

Thus, by integrating the previous differential equation with respect to the
product x y, we obtain (x y)(t) = x0 y0e−4π it . Since the holonomy map cor-
responds to the time-one map of the system of differential equations (3) and
since e−4π it = 1 for all t ∈ Z, it follows that the orbits of h are contained in
the level sets of (x , y) �→ x y as desired. �

Lemma 10 implies that it suffices to determine the first coordinate of h. By
recovering the preceding non-autonomous system of differential equations, a
simple induction argument on the value of i + j shows that h has the form

h(x , y) = (x(1 + x y f (x y)), y(1 + x y f (x y))−1) , (4)

where f represents a holomorphic function of one complex variable such that
f (0) = 2π i (the expression for the second coordinate of h is obtained from
the first coordinate by means of Lemma 10). The resulting diffeomorphism h is
clearly non-periodic but it does have invariant sets given by “circles”. Besides
on some of these invariant “circles” the dynamics is conjugate to an irrational
rotation, cf. Example 2.

We are now ready to prove Theorem B.

Proof of Theorem B. Let thenF denote the foliation associated to the vector
field

X = x(1 + x 2yz3)
∂

∂x
+ y(1 − x 2yz3)

∂

∂y
− z

∂

∂z
.
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Again the z-axis corresponds to one of the separatrices of F . Taking z = e2π it ,
it follows that the holonomy map h associated to F , with respect to the z-axis,
is given by the time-one map associated to the vector field⎧⎪⎪⎨⎪⎪⎩

dx

dt
= dx

dz

dz

dt
= −2π ix(1 + e6π it x 2 y)

dy

dt
= dy

dz

dz

dt
= −2π iy(1 − e6π it x 2y)

. (5)

The same argument employed in Lemma 10 shows that the holonomy map h
in question preserves the level sets of the function (x , y) �→ x y. To solve the
corresponding system of equations, we consider again the series expansion of
(x(t), y(t)) in terms of the initial condition. Let then x(t) = ∑

ai j (t)x i
0 y j

0 and
y(t) = ∑

bi j (t)x i
0 y j

0 , where a10(0) = b01(0) = 1 and ai j (0) = bi j (0) = 0 in
the remaining cases. It can immediately be checked that the functions ai j , bi j

vanish identically for 2 ≤ i + j ≤ 3. As to the monomials of degree 4, it can
similar be checked that they all vanish identically except a31(t) and b22(t). In
fact, the latter functions satisfy⎧⎨⎩a′

31(t) = −2π i
[
a31(t) + e6π ia3

10(t)b01(t)
]

b′
22(t) = −2π i

[
b22(t) − e6π i a2

10(t)b
2
01(t)

] (6)

so that a31(t) = −2π ite−2π it whereas b22(t) = 2π ite−2π it . In particular,
a31(1) = −2π i and b22(1) = 2π i. By using induction on i + j (and keep-
ing in mind that h preserves the function (x , y) �→ x y), it can be shown that h
takes on the form

h(x , y) = (x(1 + x2y f (x 2 y)), y(1 + x 2y f (x 2 y))−1) (7)

with f (0) = 2π i. It follows from Lemma 9 that this diffeomorphism pos-
sesses finite orbits whereas it is clearly non-periodic. This finishes the proof of
Theorem B. �
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