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Abstract. The aim of this paper is to present some structural equations for generalized
m-quasi-Einstein metrics (Mn , g, ∇ f, λ), which was defined recently by Catino in
[11]. In addition, supposing that Mn is an Einstein manifold we shall show that it is a
space form with a well defined potential f . Finally, we shall derive a formula for the
Laplacian of its scalar curvature which will give some integral formulae for such a class
of compact manifolds that permit to obtain some rigidity results.
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1 Introduction and statement of the main results

In recent years, much attention has been given to classification of Riemannian
manifolds admitting an Einstein-like structure, which are natural generalization
of the classical Ricci solitons. For instance, Catino in [11] introduced a class
of special Riemannian metrics which naturally generalizes the Einstein condi-
tion. More precisely, he defined that a complete Riemannian manifold (Mn, g),
n ≥ 2, is a generalized quasi-Einstein metric if there exist three smooth func-
tions f , λ and μ on M , such that

Ric + ∇2 f − μd f ⊗ d f = λg, (1.1)

where Ric denotes the Ricci tensor of (Mn, g), while ∇2 and ⊗ stand for the
Hessian and the tensorial product, respectively.
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As a particular case of (1.1) we shall consider the following.

Definition 1. We say that (Mn, g) is a generalized m-quasi-Einstein metric if
there exist two smooth functions f and λ on M satisfying

Ric + ∇2 f − 1

m
d f ⊗ d f = λg, (1.2)

where 0 < m ≤ ∞ is an integer. The tensor Ric f = Ric + ∇2 f − 1
m d f ⊗ d f

is called Bakry-Emery Ricci tensor.

In particular, we have

Ric(∇ f, ∇ f ) + 〈∇∇ f ∇ f, ∇ f 〉 = 1

m
|∇ f |4 + λ|∇ f |2, (1.3)

where 〈 , 〉 and | | stand for the metric g and its associated norm, respectively.
Moreover, if R stands for the scalar curvature of (Mn, g), then taking trace of

both members of equation (1.2) we deduce

R + � f − 1

m
|∇ f |2 = λn. (1.4)

Thereby we derive

〈∇ f, ∇ R〉 + 〈∇ f, ∇� f 〉 = 1

m
〈∇ f, ∇|∇ f |2〉 + n〈∇λ, ∇ f 〉. (1.5)

One notices that combining equations (1.2) and (1.4) we infer

∇2 f − � f

n
g = 1

m

(
d f ⊗ d f − 1

n
|∇ f |2g

)
−
(

Ric − R

n
g

)
. (1.6)

It is important to point out that if m = ∞ and λ is constant, equation (1.2)
reduces to one associated to a gradient Ricci soliton, for a good survey in this
subject we recommend the work due to Cao in [8], as well as if λ is only con-
stant and m is a positive integer, it corresponds to m-quasi-Einstein metrics that
are exactly those n-dimensional manifolds which are the base of an (n + m)-
dimensional Einstein warped product, for more details see [5, 9, 10, 14]. The
1-quasi-Einsteinmetrics satisfying�e− f +λe− f = 0 are more commonly called
static metrics, for more details see [12]. Static metrics have been studied exten-
sively for their connection to scalar curvature, the positive mass theorem and
general relativity, see e.g. [1, 2, 12]. In [14] it was given some classification for
m-quasi-Einstein metrics where the base has non-empty boundary. Moreover,
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they have proved a characterization for m-quasi-Einstein metric when the base
is locally conformally flat. In addition, considering m = ∞ in equation (1.2) we
obtain the almost Ricci soliton equation, for more details see [4, 16]. We also
point out that, Catino [11] has proved that around any regular point of f a gen-
eralized m-quasi Einstein metric

(
Mn, g, ∇ f, λ

)
with harmonic Weyl tensor

and W (∇ f, . . . , ∇ f ) = 0 is locally a warped product with (n − 1)-dimensional
Einstein fibers.

A generalized m-quasi-Einstein manifold
(
Mn, g, ∇ f, λ

)
will be called

trivial if the potential function f is constant. Otherwise, it will be called non-
trivial.

We observe that the triviality definition implies that Mn is an Einstein mani-
fold, but the converse is not true. Meanwhile, we shall show in Theorem 1 that
when (Mn, g, ∇ f, λ), n ≥ 3, is Einstein, but not trivial, it will be isometric to
a space form with a well defined potential f . Introducing the function u = e− f

m

on M we immediately have ∇u = − u
m ∇ f , moreover the next relation, which

can be found in [9], is true

∇2 f − 1

m
d f ⊗ d f = −m

u
∇2u. (1.7)

In particular, ∇u is a conformal vector field, i.e. 1
2L∇u g = ρ g, for some smooth

function ρ defined on M , if and only if Mn is an Einstein manifold. Hence, on
a surface M2, ∇u is always a conformal vector field.

Before to announce our main result we present a family of nontrivial examples
on a space form. Let us start with a standard sphere (Sn, g0), where g0 is its
canonical metric.

Example 1. On the standard unit sphere (Sn, g0), n ≥ 2, we consider the
following function

f = −m ln

(
τ − hv

n

)
, (1.8)

where τ is a real parameter lying in (1/n, +∞) and hv is some height function
with respect to a fixed unit vector v ∈ Sn ⊂ R

n+1, here we are considering Sn

as a hypersurface in Rn+1 and hv : Sn → R is given by hv(x) = 〈x , v〉. Taking
into account that ∇2hv = −hvg0 and u = e− f

m = τ − hv

n , we deduce from (1.7)
that

∇2 f − 1

m
d f ⊗ d f = −m

τ − u

u
g0. (1.9)

Since the Ricci tensor of (Sn, g0) is given by Ric = (n − 1)g0, it is enough to
consider λ = (n −1)−m τ−u

u in order to build a desired non trivial such structure
on (Sn, g0).

Bull Braz Math Soc, Vol. 45, N. 2, 2014
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We now present a similar example as before on the Euclidean space (Rn, g0),
where g0 is its canonical metric.

Example 2. On the Euclidean space (Rn, g0), n ≥ 2, we consider the following
function

f = −m ln
(
τ + |x |2), (1.10)

where τ is a positive real parameter and |x | is the Euclidean norm of x . Taking
into account that ∇2|x |2 = 2g0 and u = e− f

m = τ + |x |2, we deduce from (1.7)
that

∇2 f − 1

m
d f ⊗ d f = −2

m

u
g0. (1.11)

Since the Ricci tensor of (Rn, g0) is flat, it is enough to consider λ = −2 m
u in

order to obtain a desired non trivial structure on (Rn, g0).
On the other hand, concerning to hyperbolic space we have the following.

Example 3. Regarding the hyperbolic space Hn(−1) ⊂ R
n,1 : 〈x , x〉0 = −1,

x1 > 0, whereRn,1 is the Euclidean space Rn+1 endowed with the inner product
〈x , x〉0 = −x 2

1 + x 2
2 + · · · + x 2

n+1. We now follow the argument used on Sn .
First, we fixe a vector v ∈ H

n(−1) ⊂ R
n,1 and we consider a hight function

hv : Hn(−1) → R given by hv(x) = 〈x , v〉0. In this case, we have ∇2hv =
hvg0. Then, taking

u = e− f
m = τ + hv, τ > −1 (1.12)

we have from (1.7)

∇2 f − 1

m
d f ⊗ d f = −m

u − τ

u
g0. (1.13)

Reasoning as in the spherical case it is enough to consider λ = −(n −1)−m τ−u
u

in order to build a non trivial such structure on (Hn, g0).

Now we announce the main theorem.

Theorem 1. Let
(
Mn, g, ∇ f, λ

)
be a non trivial generalized m-quasi-Einstein

metric with n ≥ 3. Suppose that either (Mn, g) is an Einstein manifold or ∇u
is a conformal vector field. Then one the following statements holds:

(1) Mn is isometric to a standard sphereSn(r). Moreover, f is, up to constant,
given by (1.8).

(2) Mn is isometric to a Euclidean spaceRn. Moreover, f is, up to change of
coordinates, given by (1.10).

Bull Braz Math Soc, Vol. 45, N. 2, 2014
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(3) Mn is isometric to a hyperbolic spaceHn , provided u has only one critical
point. Moreover, f is, up to constant, given according to (1.12).

As a consequence of this theorem we obtain the following corollary.

Corollary 1. Let
(
Mn, g, ∇ f, λ

)
, n ≥ 3, be a compact non trivial general-

ized m-quasi-Einstein metric such that
∫

M Ric(∇u, ∇u)dμ ≥ n−1
n

∫
M(�u)2dμ,

where dμ stands for the Riemannian measure associated to g. Then Mn is
isometric to a standard sphere Sn(r). Moreover, the potential f is the same
of identity (1.8).

Before to announce the next results we point out that they are generalizations
of ones found in [15] and [3] for Ricci solitons, [4] for almost Ricci solitons and
[9] for quasi-Einstein metrics. First, we have the following theorem.

Theorem 2. Let
(
Mn, g, ∇ f, λ

)
be a compact generalized m-quasi-Einstein

metric. Then Mn is trivial provided:

(1)
∫

M Ric(∇ f, ∇ f )dμ ≤ 2
m

∫
M |∇ f |2� f dμ − (n − 2)

∫
M〈∇λ, ∇ f 〉dμ.

(2) R ≥ λn or R ≤ λn.

Now, if
(
Mn, g, ∇ f, λ

)
is a generalized m-quasi-Einstein metric and m is

finite, we shall present conditions in order to obtain ∇ f ≡ 0.

Theorem 3. Let
(
Mn, g, ∇ f, λ

)
be a complete generalized m-quasi-Einstein

metric with m finite. Then ∇ f ≡ 0, if one of the following conditions holds:

(1) Mn is non compact, nλ ≥ R and |∇ f | ∈ L1(Mn). In particular, Mn is an
Einstein manifold.

(2) (Mn, g) is Einstein and ∇ f is a conformal vector filed.

2 Preliminaries

In this section we shall present some preliminaries which will be useful for the
establishment of the desired results. The first one is a general lemma for a vector
field X ∈ X(Mn) on a Riemannian manifold Mn.

Lemma 1. Let (Mn, g) be a Riemannian manifold and X ∈ X(Mn). Then the
following statements hold:

(1) If
(

X �⊗X �
) = ρg for some smooth function ρ : M → R, then ρ = |X |2 =

0. In particular, the unique solution of the equation d f ⊗ d f = ρg is f
constant.

Bull Braz Math Soc, Vol. 45, N. 2, 2014
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(2) If Mn is compact and X is a conformal vector field, then∫
M

|X |2div Xdμ = 0.

In particular, if X = ∇ f is a gradient conformal vector field, then∫
M |∇ f |2� f dμ = 0.

Proof. Since
(

X �⊗X �
)

is a degenerate (0, 2) tensor the first statement is trivial.
Taking into account that X is a conformal vector field we have 1

2LX g = ρ g,
where ρ = 1

n div X . From which we obtain

|X |2div X = n〈∇X X, X〉. (2.1)

On the other hand, since div (|X |2 X) = |X |2div X + 2〈∇X X, X〉, one has

div
(|X |2 X

) = n + 2

n
|X |2div X, (2.2)

which allows us to complete the proof of the lemma. �
The following formulae from [15] will be useful: on a Riemannian manifold

(Mn, g) we have

div (LX g)(X) = 1

2
�|X |2 − |∇ X |2 + Ric (X, X) + DX div X, (2.3)

div (L∇ f g)(Z ) = 2Ric (Z , ∇ f ) + 2DZ div ∇ f, (2.4)

or on (1, 1)-tensorial notation

div ∇2 f = Ric (∇ f ) + ∇� f (2.5)

and
1

2
� |∇ f |2 = |∇2 f |2 + D∇ f div∇ f + Ric(∇ f, ∇ f ). (2.6)

Taking into account that div(λI)(X) = 〈∇λ, X〉, where λ is a smooth function
on Mn and X ∈ X(M), equation (2.3) allows us to deduce the following lemma.

Lemma 2. Let (Mn, g, ∇ f, λ) be a generalized m-quasi-Einsteinmetric. Then
we have

(1)
1

2
�|∇ f |2 = |∇2 f |2 − Ric(∇ f, ∇ f ) + 2

m
|∇ f |2� f − (n − 2)〈∇λ, ∇ f 〉.

(2)
1

2
∇ R = m−1

m Ric(∇ f ) + 1

m
(R − (n − 1)λ)∇ f + (n − 1)∇λ.

(3) ∇(R+ |∇ f |2− 2(n − 1)λ)= 2λ∇ f + 2

m
{∇∇ f ∇ f + (|∇ f |2− � f )∇ f }.

Bull Braz Math Soc, Vol. 45, N. 2, 2014
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Proof. Since Ric + ∇2 f − 1
m d f ⊗ d f = λg we use the second contracted

Bianchi identity
∇ R = 2div Ric (2.7)

as well as the next identity

div (d f ⊗ d f ) = � f ∇ f + ∇∇ f ∇ f (2.8)

and (2.5) to deduce

∇ R + 2Ric (∇ f ) + 2∇� f − 2

m
� f ∇ f − 2

m
∇∇ f ∇ f = 2∇λ. (2.9)

In particular one deduces

〈∇ R, ∇ f 〉 + 2Ric(∇ f, ∇ f ) + 2〈∇� f, ∇ f 〉

− 2

m
� f |∇ f |2 − 2

m
〈∇∇ f ∇ f, ∇ f 〉 = 2〈∇λ, ∇ f 〉.

(2.10)

Next using (1.5) and (2.6) jointly with the last identity we conclude

1

2
�|∇ f |2 = |∇2 f |2 − Ric(∇ f, ∇ f ) + 2

m
|∇ f |2div ∇ f

− (n − 2)〈∇λ, ∇ f 〉,
(2.11)

which finishes the first statement of the lemma. On the other hand, substituting
� f = −R + λn + 1

m |∇ f |2 and remembering that ∇|∇ f |2 = 2∇∇ f ∇ f we use
once more (2.9) to write

1

2
∇ R = −Ric(∇ f ) − ∇

(
−R + λn + 1

m
|∇ f |2

)

+ 1

m
� f ∇ f + 1

m
∇∇ f ∇ f + ∇λ

= −Ric(∇ f ) + ∇ R − 1

m
∇∇ f ∇ f + 1

m
� f ∇ f − (n − 1)∇λ.

Of which we deduce

1

2
∇ R = Ric(∇ f ) − 1

m
� f ∇ f + 1

m
∇∇ f ∇ f + (n − 1)∇λ. (2.12)

We now use the fundamental equation to write

∇∇ f ∇ f = λ∇ f + 1

m
|∇ f |2∇ f − Ric(∇ f ). (2.13)

Bull Braz Math Soc, Vol. 45, N. 2, 2014
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In particular, combining (2.12) and (2.13) we obtain

1

2
∇ R = m − 1

m
Ric(∇ f ) + 1

m

(
λ + 1

m
|∇ f |2 − � f

)
∇ f + (n − 1)∇λ

= m − 1

m
Ric(∇ f ) + 1

m
(R − (n − 1)λ)∇ f + (n − 1)∇λ,

which gives the second assertion.
Finally, noticing that 1

2∇ R + 1
2∇|∇ f |2 = 1

2∇ R + ∇∇ f ∇ f we use the last
equation and (2.13) to write

1

2
∇ R + 1

2
∇|∇ f |2 = m − 1

m
Ric(∇ f ) + 1

m
(R − (n − 1)λ)∇ f + (n − 1)∇λ

+ λ∇ f + 1

m
|∇ f |2∇ f − Ric(∇ f ).

Thus, using equation (1.4) once more, we achieve

∇(R + |∇ f |2 − 2(n − 1)λ) − 2λ∇ f

= 2

m

{
(|∇ f |2 + R − (n − 1)λ)∇ f − Ric(∇ f )

}
= 2

m

{
(|∇ f |2 + R − nλ + λ)∇ f − Ric(∇ f )

}
= 2

m

{
(|∇ f |2 + 1

m
|∇ f |2 − � f + λ)∇ f − Ric(∇ f )

}

= 2

m

{∇∇ f ∇ f + (|∇ f |2 − � f )∇ f
}
,

which concludes the proof of the lemma. �
It is convenient to point out that for m = ∞ and λ constant, assertion (2) of

the last lemma is a generalization of the classical Hamilton equation [13] for a
gradient Ricci soliton: R + |∇ f |2 − 2λ f = C, where C is constant, as well as
for the following relation: ∇(R +|∇ f |2 −2(n −1)λ) = 2λ∇ f , that was proved
in [4] for an almost Ricci soliton. Choosing Z ∈ X(M), we deduce from the
first assertion of Lemma 2 the following identity

1

2
〈∇ R, Z 〉 = m − 1

m
Ric(∇ f, Z ) + 1

m
(R − (n − 1)λ)〈∇ f, Z 〉

+ (n − 1)〈∇λ, Z 〉.
(2.14)

We now present the main result of this section. Taking in account that u = e− f
m

we have the following lemma.

Bull Braz Math Soc, Vol. 45, N. 2, 2014



�

�

“main” — 2014/5/14 — 12:11 — page 333 — #9
�

�

�

�

�

�

GENERALIZED m-QUASI-EINSTEIN METRICS 333

Lemma 3. Let (Mn, g, ∇ f, λ), n ≥ 3, be a generalized m-quasi-Einstein
metric. If, in addition Mn is Einstein, then we have

∇2u =
(

− R

n(n − 1)
u + c

m

)
g, (2.15)

where c is constant.

Proof. Since Mn is Einstein and n ≥ 3 we have Ric = R
n g with R constant.

In particular, it follows from (1.7) that

∇2u = 1

m

(
R

n
u − λu

)
g. (2.16)

Whence, using (2.5) we deduce

Ric (∇u) + ∇�u = 1

m
∇
(

R

n
u − λu

)
. (2.17)

Therefore we infer

R

n
∇u + ∇�u = R

nm
∇u − 1

m
∇(λu). (2.18)

On the other hand, in accordance with (1.2) and (1.7) we deduce

�u = R

m
u − n

m
λu. (2.19)

We now compare (2.18) and (2.19) to obtain

∇(λu) = R
(m + n − 1)

n(n − 1)
∇u. (2.20)

Therefore we deduce λu = R (m+n−1)

n(n−1)
u − c, where c is constant. Next we use

this value of λu in (2.16) to complete the proof of the lemma. �

3 Proofs of the main results

3.1 Proof of Theorem 1

Proof. First of all, we notice that (1.7) gives that Mn is Einstein if and only if
∇u is a conformal vector field. Since f is not constant and we are supposing that
∇u is a non trivial conformal vector field, which enables us to write 1

2L∇u g =
Bull Braz Math Soc, Vol. 45, N. 2, 2014
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∇2u = � u
n g, we deduce that Mn is Einstein. Moreover, using (1.2) and (1.7) we

deduce

Ric =
(

λ + m
� u

nu

)
g.

Since n ≥ 3, we have from Schur’s Lemma that R = nλ + m � u
u is constant.

On the other hand, from Lemma 3 we have

∇2u =
(

− R

n(n − 1)
u + c

m

)
g

where c is constant. Therefore, we are in position to apply Theorem 2 due to
Tashiro [17] to deduce that Mn is a space form.

If R is positive, we may assume that Mn is isometric to a unit standard sphere
Sn. Since R = n(n − 1) we deduce from Lemma 3 that �u + nu = kn, where
k is constant. Then, up to constant, u is a first eigenfunction of the Laplacian of
Sn. Therefore, we have u = hv(x) = 〈x , v〉+ k, where v is a linear combination
of unit vectors in Rn+1. Hence, f is, up to constant, given by (1.8).

Next, if R = 0 we have from (2.20) that c is not zero. In this case Mn

is isometric to a Euclidean space Rn. Using once more Lemma 3 we obtain
�u = k, where k is constant. Since u must be positive, up change of coordinates,
we deduce that u(x) = |x |2 + τ , with τ > 0.

Finally, if R < 0, it follows from Theorem 2 of [17] that Mn is isometric
to a hyperbolic space, since we have only one critical point for u. Now let us
suppose that Mn is isometric to Hn(−1). We can use the same argument due
to Tashiro [17] to conclude that, up to constant, u = hv + τ, τ > −1, with
v ∈ Hn(−1), since in this case 〈x , v〉0 = − cosh η(x , v), where η(x , v) is the
time-like angle between x and v, which is exactly the geodesic distance between
them. Therefore, we complete the proof of the theorem. �

3.2 Proof of Corollary 1

Proof. On integrating Bochner’s formula we obtain∫
M

∣∣∣∣∇2u − �u

n
g

∣∣∣∣
2

dμ = n − 1

n

∫
M

(�u)2dμ −
∫

M
Ric(∇u, ∇u)dμ. (3.1)

In particular, from our assumption we conclude that∫
M

∣∣∣∣∇2u − �u

n
g

∣∣∣∣
2

dμ = 0. (3.2)

Whence, we deduce that ∇u is a non trivial conformal vector field. Then, for
n ≥ 3, we can apply Theorem 1 to conclude the proof of the corollary. �

Bull Braz Math Soc, Vol. 45, N. 2, 2014
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3.3 Proof of Theorem 2

Proof. First we integrate the identity derived in Lemma 2 and we use Stokes’
formula to infer∫

M
|∇2 f |2dμ =

∫
M

Ric (∇ f, ∇ f )dμ − 2

m

∫
M

|∇ f |2� f dμ

+ (n − 2)
∫

M〈∇λ, ∇ f 〉dμ.

(3.3)

On the other hand, since we are assuming that the right hand of above identity
is less than or equal to zero, we obtain ∇2 f = 0. Therefore, � f = 0, which
implies by Hopf’s theorem that f is constant and we finish the establishment of
the first assertion.

Proceeding one notices that for m = ∞, using equation (1.4) the result
follows. On the other hand, for m finite, considering once more the auxiliary
function u = e− f

m , as we already saw �u = u
m (R − λn). Since Mn is com-

pact, u > 0 and (R − nλ) ≥ 0 (≤ 0), we can use once more Hopf’s theorem
to deduce that u is constant and so is f . From which we complete the proof
of the theorem. �

3.4 Proof of Theorem 3

Proof. Taking into account identity (1.4) we obtain

mdiv ∇ f = |∇ f |2 + m(nλ − R). (3.4)

By one hand mdiv ∇ f ≥ 0, since (nλ − R) ≥ 0. On the other hand, if |∇ f | ∈
L1(Mn), we may invoke Proposition 1 in [7], which is a generalization of a result
due to Yau [18] for subharmonic functions, to derive that div ∇ f = 0. Next, we
may use equation (3.4) to conclude that ∇ f ≡ 0, as well as nλ = R. Therefore,
f is constant and Mn is an Einstein manifold, which gives the first assertion.
Now let us suppose that (Mn, g) is an Einstein manifold, in particular a surface
has this propriety. If ∇ f is a conformal vector field with conformal factor ρ,
here we can have a Killing vector field, then ∇2 f = ρg, where ρ = 1

n div ∇ f .
Since Ric = R

n g we deduce from equation (1.6) that

1

m
(d f ⊗ d f ) = |∇ f |2g. (3.5)

But, using that m is finite, we can apply Lemma 1 to conclude that ∇ f ≡ 0,
which completes the proof of the theorem. �
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4 Integral formulae for generalized m-quasi-Einstein metrics

In this section we shall introduce some integral formulae for a compact gen-
eralized m-quasi-Einstein metric. Before, we present the next result which is a
natural extension of one obtained for an almost Ricci soliton in [4], as well as a
similar one in [16].

Lemma 4. Let
(
Mn, g, ∇ f, λ

)
be a generalized m-quasi-Einsteinmetric. Then

we have

1

2
�R = −

∣∣∣∣∇2 f − � f

n
g

∣∣∣∣
2

−
{

m + n

nm

}
(� f )2 − n

2
〈∇ f, ∇λ〉 + 〈∇ f, ∇ R〉

+
{

m − 2

2m

}
〈∇ f, ∇� f 〉 + 1

m
div

(∇∇ f ∇ f
)+ (n − 1)�λ + λ� f.

Proof. Initially by using assertion (2) of Lemma 2 to compute the divergence
of ∇ R we obtain

�R + �|∇ f |2 − 2(n − 1)�λ = 2div (λ∇ f )

+ 2

m

{
〈∇(|∇ f |2 − � f ), ∇ f 〉 + (|∇ f |2 − � f )� f + div (∇∇ f ∇ f )

}
.

We now use |∇2 f − � f
n g|2 = |∇2 f |2 − 1

n (� f )2 with Bochner’s formula to write

1

2
�R = − Ric (∇ f, ∇ f ) −

∣∣∣∣∇2 f − � f

n
g

∣∣∣∣
2

− 1

n
(� f )2 − 〈∇� f, ∇ f 〉

+ (n − 1)�λ + div (λ∇ f ) + 2

m
〈∇∇ f ∇ f, ∇ f 〉

+ 1

m

{
(|∇ f |2 − � f )� f − 〈∇� f, ∇ f 〉 + div (∇∇ f ∇ f )

}
.

Next, we invoke equation (1.4) to write 〈∇� f, ∇ f 〉 = 〈∇(nλ + 1
m |∇ f |2 −

R
)
, ∇ f 〉. Then the last relation becomes

1

2
�R = − Ric (∇ f, ∇ f ) −

∣∣∣∣∇2 f − � f

n
g

∣∣∣∣
2

− m + n

nm
(� f )2 + (n − 1)�λ

−
〈
∇
(

1

m
|∇ f |2 − R + λn

)
, ∇ f

〉
+ 2

m
〈∇∇ f ∇ f, ∇ f 〉
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+ div (λ∇ f ) + 1

m

{
|∇ f |2� f − 〈∇� f, ∇ f 〉 + div (∇∇ f ∇ f )

}

= − (Ric (∇ f, ∇ f ) + (n − 1)〈∇λ, ∇ f 〉) −
∣∣∣∣∇2 f − � f

n
g

∣∣∣∣
2

− m + n

nm
(� f )2 + (n − 1)�λ + λ� f + 〈∇ R, ∇ f 〉

+ 1

m

{
|∇ f |2� f − 〈∇� f, ∇ f 〉 + div (∇∇ f ∇ f )

}
.

On the other hand, using (2.14) we can write

Ric(∇ f, ∇ f ) + (n − 1)〈∇λ, ∇ f 〉
= 1

2
〈∇ R, ∇ f 〉 + 1

m
Ric(∇ f, ∇ f ) − 1

m
(R − (n − 1)λ)|∇ f |2. (4.1)

Therefore, we compare the last two equations to obtain

1

2
�R = 1

2
〈∇ R, ∇ f 〉−

∣∣∣∣∇2 f − � f

n
g

∣∣∣∣
2

− m + n

nm
(� f )2 + (n − 1)�λ + λ� f

+ 1

m

{
− Ric(∇ f, ∇ f ) + (

� f + R − nλ
)|∇ f |2 + λ|∇ f |2

}

+ 1

m

{
− 〈∇� f, ∇ f 〉 + div (∇∇ f ∇ f )

}

= 1

2
〈∇ R, ∇ f 〉−

∣∣∣∣∇2 f − � f

n
g

∣∣∣∣
2

− m + n

nm
(� f )2 + (n − 1)�λ + λ� f

+ 1

m

{
〈∇∇ f ∇ f, ∇ f 〉−〈∇� f, ∇ f 〉 + div (∇∇ f ∇ f )

}

= 1

2
〈∇ R, ∇ f 〉−

∣∣∣∣∇2 f − � f

n
g

∣∣∣∣
2

− m + n

nm
(� f )2 + (n − 1)�λ + λ� f

+ 1

2
〈∇ R, ∇ f 〉 + 1

2
〈∇ f, ∇� f 〉 − n

2
〈∇λ, ∇ f 〉

− 1

m
〈∇� f, ∇ f 〉 + 1

m
div (∇∇ f ∇ f ).

We now group terms to arrive at the desired result, hence we complete the
proof of the lemma. �
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As a consequence of this lemma we obtain the following integral formulae.

Theorem 4. Let
(
Mn, g, ∇ f, λ

)
be a compact orientable generalized m-quasi-

Einstein metric. Then we have

(1)
∫

M |∇2 f − � f
n g|2dμ + n+2

2n

∫
M(� f )2dμ

= ∫
M〈∇ f, ∇ R〉dμ − n+2

2

∫
M〈∇ f, ∇λ〉dμ.

(2)
∫

M

(
Ric (∇ f, ∇ f ) + 〈∇ f, ∇ R〉)dμ

= 3
2

∫
M(� f )2dμ + n+2

2

∫
M〈∇ f, ∇λ〉dμ.

(3) Mn is trivial, provided
∫

M〈∇ R, ∇ f 〉dμ ≤ n+2
2

∫
M 〈∇ f, ∇λ〉dμ.

(4)
∫

M |∇2 f − � f
n g|2dμ = n−2

2n

∫
M〈∇ f, ∇ R〉dμ − n+2

2nm

∫
M |∇ f |2� f dμ.

Proof. Since Mn is compact we use Lemma 4 and Stokes’ formula to infer∫
M

∣∣∣∣∇2 f − � f

n
g

∣∣∣∣
2

dμ = −
(m + n

nm

)∫
M

(� f )2dμ

−
(m − 2

2m

)∫
M

(� f )2dμ − n

2

∫
M

〈∇λ, ∇ f 〉dμ

−
∫

M
〈∇λ, ∇ f 〉dμ +

∫
M

〈∇ f, ∇ R〉dμ.

Therefore, we obtain∫
M

(∣∣∣∣∇2 f − � f

n
g

∣∣∣∣
2

+ n + 2

2n
(� f )2

)
dμ

=
∫

M
〈∇ f, ∇ R〉dμ − n + 2

2

∫
M

〈∇ f, ∇λ〉dμ,

(4.2)

which gives the first statement.
Next, we integrate Bochner’s formula to get∫

M
Ric (∇ f, ∇ f )dμ +

∫
M

|∇2 f |2dμ +
∫

M
〈∇ f, ∇� f 〉dμ = 0. (4.3)

Since ∫
M

∣∣∣∣∇2 f − � f

n
g

∣∣∣∣
2

dμ =
∫

M
|∇2 f |2dμ − 1

n

∫
M

(� f )2dμ
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we use Stokes’ formula once more to deduce∫
M

Ric (∇ f, ∇ f )dμ +
∫

M

∣∣∣∣∇2 f − � f

n
g

∣∣∣∣
2

dμ = n − 1

n

∫
M

(� f )2dμ. (4.4)

Now, comparing (4.2) with (4.4) we obtain∫
M

(
Ric (∇ f, ∇ f )+〈∇ f, ∇ R〉)dμ = 3

2

∫
M

(� f )2dμ+n + 2

2

∫
M

〈∇ f, ∇λ〉dμ,

that was to be proved.
On the other hand, if

∫
M〈∇ R, ∇ f 〉dμ ≤ n+2

2

∫
M〈∇ f, ∇λ〉dμ, in particular

this occurs if R and λ are both constant, we deduce from the first assertion∫
M

∣∣∣∣∇2 f − � f

n
g

∣∣∣∣
2

dμ + n + 2

2n

∫
M

(� f )2dμ = 0, (4.5)

which implies that f must be constant, so Mn is trivial.
Finally, from (1.4) we can write∫

M
〈∇ f, ∇λ〉dμ = 1

n

∫
M

〈∇ f, ∇
(

R + � f − 1

m
|∇ f |2

)
〉dμ.

Hence, by using equation (4.2) we infer∫
M

(∣∣∣∣∇2 f − � f

n
g

∣∣∣∣
2

+ n + 2

2n
(� f )2

)
dμ

= n − 2

2n

∫
M

〈∇ f, ∇ R〉dμ + n + 2

2n

∫
M

(� f )2dμ + n + 2

2nm

∫
M

〈∇ f, ∇|∇ f |2〉dμ.

Therefore, after cancelations and using Stokes’ formula, we deduce∫
M

|∇2 f − � f

n
g|2dμ = n − 2

2n

∫
M

〈∇ f, ∇ R〉dμ − n + 2

2nm

∫
M

|∇ f |2� f dμ,

which completes the proof of the theorem. �
Now we remember that for a conformal vector field X on a compact Rieman-

nian manifold Mn we have
∫

M LX Rdμ = ∫
M〈X, ∇ R〉dμ = 0, see e.g. [6]. On

the other hand, from Lemma 1 we also have
∫

M |X |2divXdμ = 0. Hence, using
the last item of the above theorem we deduce that the converse of those two
results are true for a gradient vector field. More exactly, we have the following
corollary.

Corollary 2. Let
(
Mn, g, ∇ f, λ

)
be a compact orientablegeneralized m-quasi-

Einstein metric with m finite. Then we have:
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(1) If n ≥ 3,
∫

M〈∇ f, ∇ R〉dμ = 0 and
∫

M |∇ f |2� f dμ = 0, then ∇ f is a
conformal vector field.

(2) If n = 2 and
∫

M |∇ f |2� f dμ = 0, then f is constant.

Proof. For the first statement we use the last item of Theorem 4 to deduce
∇2 f = � f

n g, which gives that ∇ f is conformal. Next, we notice that for n = 2,
it is enough to suppose

∫
M |∇ f |2� f dμ = 0 to conclude that ∇ f is conformal.

But, using Theorem 3 we conclude that f is constant, which completes the proof
of the corollary. �
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