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Characterizations and integral formulae
for generalized m-quasi-Einstein metrics
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Abstract. The aim of this paper is to present some structural equations for generalized
m-quasi-Einstein metrics (M", g, V f, 1), which was defined recently by Catino in
[11]. In addition, supposing that M" is an Einstein manifold we shall show that it is a
space form with a well defined potential f. Finally, we shall derive a formula for the
Laplacian of its scalar curvature which will give some integral formulae for such a class
of compact manifolds that permit to obtain some rigidity results.
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1 Introduction and statement of the main results

In recent years, much attention has been given to classification of Riemannian
manifolds admitting an Einstein-like structure, which are natural generalization
of the classical Ricci solitons. For instance, Catino in [11] introduced a class
of special Riemannian metrics which naturally generalizes the Einstein condi-
tion. More precisely, he defined that a complete Riemannian manifold (M", g),
n > 2, is a generalized quasi-Einstein metric if there exist three smooth func-
tions f, A and p on M, such that

Ric+ V*f — udf @ df = Ag, (1.1)

where Ric denotes the Ricci tensor of (M", g), while V? and ® stand for the
Hessian and the tensorial product, respectively.
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As a particular case of (1.1) we shall consider the following.

Definition 1. We say that (M", g) is a generalized m-quasi-Einstein metric if
there exist two smooth functions f and A on M satisfying

1
Ric+V*f — df df = Ag, (1.2)
m

where 0 < m < o0 is an integer. The tensor Ric; = Ric + V2f — jldf Rdf
is called Bakry-Emery Ricci tensor.

In particular, we have

1
Ric(V £,V )+ (Vo; VLV = IVFI* 4+ AV fI2 (1.3)

where (, ) and | | stand for the metric g and its associated norm, respectively.
Moreover, if R stands for the scalar curvature of (M", g), then taking trace of
both members of equation (1.2) we deduce

R+Af—;|Vf|2=An. (1.4)

Thereby we derive

1
(VA VR) +(Vf,VAf) = m(Vf, VIVF?) +n(Vr, V). (1.5)

One notices that combining equations (1.2) and (1.4) we infer

Af

2 1 2 . R
Vof — g= (df@df— [V 1] g)—(Rlc— g). (1.6)
n n n

1
m

It is important to point out that if m = oo and X is constant, equation (1.2)
reduces to one associated to a gradient Ricci soliton, for a good survey in this
subject we recommend the work due to Cao in [8], as well as if A is only con-
stant and m is a positive integer, it corresponds to m-quasi-Einstein metrics that
are exactly those n-dimensional manifolds which are the base of an (n + m)-
dimensional Einstein warped product, for more details see [5, 9, 10, 14]. The
1-quasi-Einstein metrics satisfying Ae~/ +Ae~/ = 0 are more commonly called
static metrics, for more details see [12]. Static metrics have been studied exten-
sively for their connection to scalar curvature, the positive mass theorem and
general relativity, see e.g. [1, 2, 12]. In [14] it was given some classification for
m-quasi-Einstein metrics where the base has non-empty boundary. Moreover,
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GENERALIZED m-QUASI-EINSTEIN METRICS 327

they have proved a characterization for m-quasi-Einstein metric when the base
is locally conformally flat. In addition, considering m = oo in equation (1.2) we
obtain the almost Ricci soliton equation, for more details see [4, 16]. We also
point out that, Catino [11] has proved that around any regular point of f a gen-
eralized m-quasi Einstein metric (M", g, VT, A) with harmonic Weyl tensor
and W(Vf,..., Vf)=0islocally a warped product with (n — 1)-dimensional
Einstein fibers.

A generalized m-quasi-Einstein manifold (M " g, Vf, A) will be called
trivial if the potential function f is constant. Otherwise, it will be called non-
trivial.

We observe that the triviality definition implies that M" is an Einstein mani-
fold, but the converse is not true. Meanwhile, we shall show in Theorem 1 that
when (M", g, V£, A), n > 3, is Einstein, but not trivial, it will be isometric to
a space form with a well defined potential f. Introducing the functionu = e~ "
on M we immediately have Vu = _:z V f, moreover the next relation, which
can be found in [9], is true

V- arear = " v 1.7)
. "V .

In particular, Vu is a conformal vector field, i.e. éﬁw g = p g, for some smooth
function p defined on M, if and only if M" is an Einstein manifold. Hence, on
a surface M2, Vu is always a conformal vector field.

Before to announce our main result we present a family of nontrivial examples
on a space form. Let us start with a standard sphere (8", gg), where g is its
canonical metric.

Example 1. On the standard unit sphere (S", go), n > 2, we consider the
following function

hy
f=—m1n<r— ) (1.8)

n

where 7 is a real parameter lying in (1/n, 400) and 4, is some height function
with respect to a fixed unit vector v € S" C R, here we are considering S"
as a hypersurface in R"*! and h, : S* — R is given by h,(x) = (x, v). Taking
into account that V2h, = —h,go and u = e =1 — };” , we deduce from (1.7)
that
5 1 T—u
Vif— df @df =—m g0- (1.9
m u
Since the Ricci tensor of (S", gg) is given by Ric = (n — 1) gy, it is enough to
considerA = (n—1)—m T;“ in order to build a desired non trivial such structure
on (§", go)-
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We now present a similar example as before on the Euclidean space (R”, go),
where g is its canonical metric.

Example 2. On the Euclidean space (R", go), n > 2, we consider the following
function
f=-mln(r + |x]?), (1.10)

where 7 is a positive real parameter and |x| is the Euclidean norm of x. Taking
: 7

into account that V?|x|?> = 2gpand u = e~ » = 17 + |x|?, we deduce from (1.7)
that

5 _1 __2m
Vof mdf®df— ugo. (1.11)

Since the Ricci tensor of (R, go) is flat, it is enough to consider A = —2"" in
order to obtain a desired non trivial structure on (R", gg).
On the other hand, concerning to hyperbolic space we have the following.

Example 3. Regarding the hyperbolic space H*(—1) C R™!' : (x, x)o = —1,
x; > 0, where R™! is the Euclidean space R"*! endowed with the inner product
(x,x)o = —x{ + x5 + -+ + x,,,. We now follow the argument used on S".
First, we fixe a vector v € H"(—1) C R™' and we consider a hight function
h, : H*(—1) — R given by h,(x) = (x, v)o. In this case, we have V?h, =
h,go. Then, taking

W=en=T+hy, T>—1 (1.12)
we have from (1.7)
1 —
Vif— df@df=-m" ' g. (1.13)
m u
Reasoning as in the spherical case it is enough to consider A = —(n—1)—m "™ *

in order to build a non trivial such structure on (H", g¢).

Now we announce the main theorem.

Theorem 1. Let (M " g, Vf, A) be a non trivial generalized m-quasi-Einstein
metric with n > 3. Suppose that either (M", g) is an Einstein manifold or Vu
is a conformal vector field. Then one the following statements holds:

(1) M" is isometric to a standard sphere S" (r). Moreover, f is, up to constant,
given by (1.8).

(2) M" isisometric to a Euclidean space R". Moreover, f is, up to change of
coordinates, given by (1.10).
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GENERALIZED m-QUASI-EINSTEIN METRICS 329

(3) M" isisometricto a hyperbolic space H", provided u has only one critical
point. Moreover, f is, up to constant, given according to (1.12).

As a consequence of this theorem we obtain the following corollary.

Corollary 1. Let (M", g, Vf, A), n > 3, be a compact non trivial general-
ized m-quasi-Einstein metric such that [,, Ric(Vu, Vu)du > ";1 [y (Aw)?dp,
where du stands for the Riemannian measure associated to g. Then M" is
isometric to a standard sphere S"(r). Moreover, the potential f is the same
of identity (1.8).

Before to announce the next results we point out that they are generalizations
of ones found in [15] and [3] for Ricci solitons, [4] for almost Ricci solitons and
[9] for quasi-Einstein metrics. First, we have the following theorem.

Theorem 2. Let (M", g, Vf, A) be a compact generalized m-quasi-Einstein
metric. Then M" is trivial provided:

(1) [y Ric(VEVfrdu < 2 [, IVfPAfdpn — (n=2) [,,(VA, Vf)du.
(2) R>=AnorR < An.

Now, if (M", g, Vf, A) is a generalized m-quasi-Einstein metric and m is
finite, we shall present conditions in order to obtain V f = 0.

Theorem 3. Let (M", g, Vf, A) be a complete generalized m-quasi-Einstein
metric with m finite. Then V f = 0, if one of the following conditions holds:

(1) M" is non compact, nk > R and |V f| € L"(M™). In particular, M" is an
Einstein manifold.

(2) (M", g)is Einstein and V f is a conformal vector filed.

2 Preliminaries

In this section we shall present some preliminaries which will be useful for the
establishment of the desired results. The first one is a general lemma for a vector
field X € X(M") on a Riemannian manifold M".

Lemma 1. Let (M", g) be a Riemannian manifold and X € X(M"). Then the
following statements hold:

() If (X"®X") = pg for some smooth function p : M — R, then p = |X|* =
0. In particular, the unique solution of the equationdf Q@ df = pgis f
constant.
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(2) If M" is compact and X is a conformal vector field, then

/ |X|?div Xdu = 0.
M

In particular, if X = Vf is a gradient conformal vector field, then
S IV FRAfdp = 0.

Proof. Since (X "®X b) is adegenerate (0, 2) tensor the first statement is trivial.
Taking into account that X is a conformal vector field we have é[ xg = pg,
where p = rlld iv X. From which we obtain

| X’ div X = n(VxX, X). 2.1
On the other hand, since div (| X|*X) = |X|?div X 4+ 2(Vx X, X), one has
2
div (1XPx) =" 71X Pdiv x. 2.2)
n
which allows us to complete the proof of the lemma. U

The following formulae from [15] will be useful: on a Riemannian manifold
(M", g) we have

1
div (Lxg)(X) = 2A|X|2 — |VX|*> 4+ Ric (X, X) + Dxdiv X, (2.3)

div (Ly;g)(Z) = 2Ric(Z,V f) +2Dzdiv V, (2.4)
or on (1, 1)-tensorial notation
divV?f = Ric (V) + VAf (2.5)
and |
2A IVfI? = |V2f|* + Dy divV f + Ric(V f, V f). (2.6)

Taking into account thatdiv(Al)(X) = (VA, X), where A is a smooth function
on M" and X € X(M), equation (2.3) allows us to deduce the following lemma.

Lemma?2. Let (M", g, V f, A) be a generalized m-quasi-Einsteinmetric. Then
we have

1 i 2
M 2AIVfI2 =|V2fI? = Ric(Vf,V )+ mIVfIZAf —(n=2)(VA, V).

(2) ;vze =""1Ric(Vf) + ;(R —(n—=DMNVf+®m—1)Vai

2
3) V(R+IVfPP=2(n—DHa)=22Vf+ o VsV (IVfP= ANV
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Proof. Since Ric + V?>f — jld f ® df = Lg we use the second contracted

Bianchi identity
VR = 2div Ric

as well as the next identity
divdf @df)=AfVf+VyVf

and (2.5) to deduce

2 2
VR42Ric(Vf)+2VAf — " AfVf— " Vg, Vf=2VA
m m ’

In particular one deduces

(VR,Vf)+2Ric(Vf,Vf)+2(VAL V)
2 2
—AFIVEP = (VesVEVE) =2(VA, V).
m m
Next using (1.5) and (2.6) jointly with the last identity we conclude

1 . 2 ,
2A|Vfl2 = |V2fIP = Ric(V£, V) + mIVflzdlv vVf
—(n =2)(VA, V),

2.7

(2.8)

(2.9)

(2.10)

2.11)

which finishes the first statement of the lemma. On the other hand, substituting
Af =—R+n+ ;lVflz and remembering that V|V f|? = 2VyV f we use

once more (2.9) to write

1 1
2VR = —Ric(Vf)—-V <—R + An + |Vf|2)
m
1 1
+ AfVf+ Vg Vf+Va
m m
1 1
= —Ric(Vf)+ VR— Vy,/Vf+ AfVf—(n—1Vhi.
m ’ m
Of which we deduce

1 1 1
LVR=Ric(Vf) = AfVf+ VoVf+@—DVi.
m m X

We now use the fundamental equation to write

Vy Vf=AVf+ ’711|Vf|2Vf — Ric(Vf).
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In particular, combining (2.12) and (2.13) we obtain
1 m—1 . 1 1 5
VR = Ric(Vf) + <A+ IV f] —Af)Vf+(n—1)w
2 m m m
m—1_ 1
= RicVf)+ (R—(n—DAMN)Vf+(n—1)VAa,
m m
which gives the second assertion.

Finally, noticing that éVR + ;VlVfl2 = éVR + Vy sV f we use the last
equation and (2.13) to write

1 1 5 m—1_. 1
VR + V|Vf|© = RicVf)+ (R—(n—-DM)Vf+m-1)VA
2 2 m m

1
+ AV f + " IV fI’V f — Ric(V f).
Thus, using equation (1.4) once more, we achieve

V(R+ |VfI>?=2(n—1r) =20V f

° (IVFP+R—(n =DMV f = Ric(V[)}

l

= i{(|Vf|2+R—nA+A)Vf—Ric(Vf)}
2 2 1 2 .

= {(IVfI + |Vf] —Af+A)Vf—ch(Vf)}
m m

2 2
= VeV H VP - ANV,

which concludes the proof of the lemma. U

It is convenient to point out that for m = oo and XA constant, assertion (2) of
the last lemma is a generalization of the classical Hamilton equation [13] for a
gradient Ricci soliton: R + |V f|> — 2Af = C, where C is constant, as well as
for the following relation: V(R + |V f|?> —2(n — 1)A) = 2AV f, that was proved
in [4] for an almost Ricci soliton. Choosing Z € X(M), we deduce from the
first assertion of Lemma 2 the following identity

1

(VR, Z) = m_lRic(Vf, Z)+ 1(R—(n—l))»)(Vf,Z)
2 m m

(2.14)
+(n—1)(VA, Z).

. . . L f
We now present the main result of this section. Taking in account that u = e~ »
we have the following lemma.
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Lemma 3. Let (M", g, Vf, M), n > 3, be a generalized m-quasi-Einstein
metric. If, in addition M" is Einstein, then we have

V(- B g 2.15
v n(n—l)u m)& .15

where ¢ is constant.

Proof. Since M" is Einstein and n > 3 we have Ric = fg with R constant.
In particular, it follows from (1.7) that

5 1 /R
Vu = u—ulg. (2.16)

m n

Whence, using (2.5) we deduce
. 1 R
Ric(Vu) +VAu= V < u— Au) . 2.17)
m n
Therefore we infer

R R 1
Vu+ VAu = Vu— V(Qu). (2.18)
n m

nm
On the other hand, in accordance with (1.2) and (1.7) we deduce

R n
Au= u— Au. (2.19)
m m

We now compare (2.18) and (2.19) to obtain

m-+n—1
V) = R ) V. (2.20)
nn—1)
Therefore we deduce Au = R (’r'l’(jl'ﬁ)l)u — ¢, where ¢ is constant. Next we use

this value of Au in (2.16) to complete the proof of the lemma. U

3 Proofs of the main results
3.1 Proof of Theorem 1

Proof. First of all, we notice that (1.7) gives that M" is Einstein if and only if
Vu is a conformal vector field. Since f is not constant and we are supposing that
Vu is a non trivial conformal vector field, which enables us to write éLVug =
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Viu = An“ g, we deduce that M" is Einstein. Moreover, using (1.2) and (1.7) we

deduce
. Au
Ric =({X2+m g.
nu

Since n > 3, we have from Schur’s Lemma that R = nA +m Au “ is constant.
On the other hand, from Lemma 3 we have

V2 R +c
u=|\-— u
nn—1) m &

where c is constant. Therefore, we are in position to apply Theorem 2 due to
Tashiro [17] to deduce that M" is a space form.

If R is positive, we may assume that M" is isometric to a unit standard sphere
S". Since R = n(n — 1) we deduce from Lemma 3 that Au + nu = kn, where
k is constant. Then, up to constant, « is a first eigenfunction of the Laplacian of
S". Therefore, we have u = h,(x) = (x, v) + k, where v is a linear combination
of unit vectors in R"*!. Hence, f is, up to constant, given by (1.8).

Next, if R = 0 we have from (2.20) that ¢ is not zero. In this case M"
is isometric to a Euclidean space R". Using once more Lemma 3 we obtain
Au = k, where k is constant. Since # must be positive, up change of coordinates,
we deduce that u(x) = |x|*> + 7, with 7 > 0.

Finally, if R < 0, it follows from Theorem 2 of [17] that M" is isometric
to a hyperbolic space, since we have only one critical point for . Now let us
suppose that M" is isometric to H"(—1). We can use the same argument due
to Tashiro [17] to conclude that, up to constant, u = h, + 7, T > —1, with
v € H"(—1), since in this case (x, v)g = — coshn(x, v), where n(x, v) is the
time-like angle between x and v, which is exactly the geodesic distance between
them. Therefore, we complete the proof of the theorem. U

3.2 Proof of Corollary 1
Proof. On integrating Bochner’s formula we obtain

| 2

In particular, from our assumption we conclude that

A 2
J,

“ol du=o0. 3.2)
n
Whence, we deduce that Vu is a non trivial conformal vector field. Then, for
n > 3, we can apply Theorem 1 to conclude the proof of the corollary. U

2 Au
Veu — g
n

—1
dp=" /(Au)zdu—/ Ric(Vu, Viydu. (3.1)
n M M

Viu —
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3.3 Proof of Theorem 2

Proof. First we integrate the identity derived in Lemma 2 and we use Stokes’
formula to infer

f V2 fPdn = / Ric (VL. V Pdu — ° f IV FRAfdp
M M m Jm (3.3)

+(n—2) [,,(VA, V)du.

On the other hand, since we are assuming that the right hand of above identity
is less than or equal to zero, we obtain V2 f = 0. Therefore, A f = 0, which
implies by Hopf’s theorem that f is constant and we finish the establishment of
the first assertion.

Proceeding one notices that for m = o0, using equation (1.4) the result
follows. On the other hand, for m finite, considering once more the auxiliary
function u = e‘hfz, as we already saw Au = " (R — An). Since M" is com-
pact, u > 0 and (R —nX) > 0 (< 0), we can use once more Hopf’s theorem
to deduce that u is constant and so is f. From which we complete the proof
of the theorem. ]

3.4 Proof of Theorem 3

Proof. Taking into account identity (1.4) we obtain
mdivVf = |Vf>+mmxr—R). (3.4)

By one hand mdiv V f > 0, since (nA — R) > 0. On the other hand, if |V f| €
L'(M™"), we may invoke Proposition 1 in [7], which is a generalization of a result
due to Yau [18] for subharmonic functions, to derive that div V f = 0. Next, we
may use equation (3.4) to conclude that V f = 0, as well as nA = R. Therefore,
f is constant and M" is an Einstein manifold, which gives the first assertion.
Now let us suppose that (M", g) is an Einstein manifold, in particular a surface
has this propriety. If V f is a conformal vector field with conformal factor p,
here we can have a Killing vector field, then V2 f = pg, where p = rlld ivVf.
Since Ric = f g we deduce from equation (1.6) that

1
L df®df) = IV fIg. (3.5)

But, using that m is finite, we can apply Lemma 1 to conclude that V f = 0,
which completes the proof of the theorem. U
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4 Integral formulae for generalized m-quasi-Einstein metrics

In this section we shall introduce some integral formulae for a compact gen-
eralized m-quasi-Einstein metric. Before, we present the next result which is a
natural extension of one obtained for an almost Ricci soliton in [4], as well as a
similar one in [16].

Lemma4. Let (M ", g, VFf, A) be a generalized m-quasi-Einsteinmetric. Then
we have

Vif— Afg

1
AR = —
2 n

2
—{m+n}(Af)2—n(Vf,VA)+(Vf,VR)
nm 2

m—2 1 .
+{ }(Vf,VAf)+ div (VysVf)+ (n— DAL+ AAS.
2m m

Proof. Initially by using assertion (2) of Lemma 2 to compute the divergence
of VR we obtain

AR+ A|VF]? —=2(n — 1)Axr = 2div (AV )

2
+ VAV IR = ANV + (VSR = ANAS +div (VoY .

We now use |V? f — Ar;f gl* =|V2f?— ! (Af)?* with Bochner’s formula to write

1 . 2 Af : 1 2
2AR = —Ric(Vf,Vf)—|V>f — o8 —n(Af) — (VAL Vf)

2
+(n—DAA+div(AVf) + . (Vv/VE VL)

1
+ NVFP—anAr— (VALY ) +div (Ve V)

Next, we invoke equation (1.4) to write (VAf, Vf) = (V(nk + ;1|Vf|2 —
R), V f). Then the last relation becomes

Af 2 m +
VZ
f 8

"AR = —Ric(VEVS) - T AN 4 (= DA
2 nm

- <v ( LR+ M> , Vf> + 2 (Ve VAV
m m
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+div (WY f) + ;{mef (VAL V f) +div (va-Vf)}

Af

= —(Ric(VEVE)+(n—D(VAL,VF)) — |V f — o8

m-+n )
= AN+ (= DALLAS + (VR V)

1 :
+ |IVIPAf — (VALY f) +div (e, V1.
On the other hand, using (2.14) we can write

Ric(Vf,V )+ (n— 1)V, Vf)

1 | . 1 5 4.1
= (VR Vf)+ Ric(V V)= (R—n—-DMIVF.
2 m m
Therefore, we compare the last two equations to obtain

2
V2 f— AR 4 (1 — )AL+ AAS
nm

1 1 Af
AR = (VR,Vf)— 8
2 2 n

1
+
m

e,

— Ric(V£, V) + (Af + R —nA)|Vf]? +A|Vf|2}

1
¥ {_ (VAL V f) +div (Vv,fo>}
m

Af

m +
Vif—""g
n

_ Lwrvp- T AL 4+ (= DAL+ AAS
2 nm

1
+ AV VAV (VALY F) +div (Vo V)]

2
= YR == A o ST A 4 = DAk aAS
2 n nm
1 1 n
+ (VR,Vf)+ (Vf,VAf)— (VA,VSf)
2 2 2
1 1

— (VAf, Vf) + div (vaVf)
m m

We now group terms to arrive at the desired result, hence we complete the
proof of the lemma. O
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As a consequence of this lemma we obtain the following integral formulae.

Theorem 4. Let (M " g, Vf, A) be a compact orientable generalized m-quasi-
Einstein metric. Then we have

(W) [y IV2f = gPdu+ "7 [, (Af)dp
= [, (VL VRYdu — "5 [, (Vf VA)dpu.
2 [y (Ric(Vf, V) +(Vf VR))du
=3 [,(ANXu+ "3 [, (Vf, VAdu.
(3) M" is trivial, provided [,,(VR,V f)du < "3* [, (Vf, VA)dp.

@) [, IV2f =Y glPdu="2 [, (V£ VRYdw =22 [ IV fPAfdp.

Proof. Since M" is compact we use Lemma 4 and Stokes’ formula to infer

A
/ vir- Mol au = —<m+n)f(Af)2du
M nm M
_<m_2)/(Af)2du—n/(V)»,Vf)dﬂ
2m M 2 M

n
—/(V)»,Vf)du+/ (Vf,VR)d .
M

M

2

Therefore, we obtain

L

:/ vV /. VR)du—n+2/ (Vf, Vadu,
M 2 Ju

2 2
+ ”2+ (Af)2> du
n

Vif— Afg
n

4.2)

which gives the first statement.
Next, we integrate Bochner’s formula to get

/Ric(Vf,Vf)du-l—/ |V2f|2du+/(Vf,VAf)d,u:O. 4.3)
M M M

J
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n M nJm
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we use Stokes’ formula once more to deduce

Af
Vif— 8

/ Ric (VF, Vf)d,u-l—/ ap="""1 / (Af)dp. (4.4)
M M n M

Now, comparing (4.2) with (4.4) we obtain

+2

/ (Ric (V£.V f)+(V f. VR))dp = 3/(Af)2du+n
M 2 M 2

f (V £, Vi)dp,
M

that was to be proved.
On the other hand, if [,,(VR, Vf)du < ";2 [,(V £, VA)du, in particular
this occurs if R and A are both constant, we deduce from the first assertion

Jorwer=4
M

Vif—""g
n
which implies that f must be constant, so M" is trivial.
Finally, from (1.4) we can write

2

dp+ "2 f (Af)dp =0, (4.5)
27’[ M

fo, VAydu = 1f<Vf,V<R+Af— 1|Vf|2)>du.
M n Jy m

Hence, by using equation (4.2) we infer

e

Vif— g
n
+2
_ f (VYR 4" f Af)Pdu+"

2 n+

2 2
+ (Af)" )du

2n
+2

nm

[ 19599 fPran.
M
Therefore, after cancelations and using Stokes’ formula, we deduce
Af n—2 n+2
[ = ean =", [ wrvman-""" [ vreagdn
M n 2n  Ju 2nm Sy

which completes the proof of the theorem. U

Now we remember that for a conformal vector field X on a compact Rieman-
nian manifold M" we have fM LyRdp = fM(X, VR)du = 0, seee.g. [6]. On
the other hand, from Lemma 1 we also have [, |X|*divXdu = 0. Hence, using
the last item of the above theorem we deduce that the converse of those two
results are true for a gradient vector field. More exactly, we have the following
corollary.

Corollary 2. Let (M " g, Vf, A) be a compact orientable generalized m-quasi-
Einstein metric with m finite. Then we have:
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() Ifn =3, [,,(Vf,VRYdu = 0and [, |VfI?Afdu =0, then V f is a
conformal vector field.

() Ifn=2and [,, IV fI*?Afdu =0, then f is constant.

Proof. For the first statement we use the last item of Theorem 4 to deduce
Vif = Anf ‘g, which gives that V f is conformal. Next, we notice that forn = 2,
it is enough to suppose fM |V fI?Afdu = 0 to conclude that V f is conformal.
But, using Theorem 3 we conclude that f is constant, which completes the proof
of the corollary. U
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