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Abstract. For an algebra A, a coalgebra C and a lax entwining structure (A,C, ψ), in
this paper we introduce the notions of lax C-Galois extension with normal basis and lax
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preserve coequalizers.
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Introduction

The modern notion of Galois extension asssociated to a Hopf algebra H was
introduced by Kreimer and Takeuchi [19] in the following way: let H be a Hopf
algebra and A be a right H -comodule algebra with coaction ρA(a) = a(0)⊗a(1),
then the extension B ↪→ A, being B = AcoH = {a ∈ A ; ρA(a) = a ⊗ 1H }
the subalgebra of coinvariant elements, is H -Galois if the canonical morphism
γA : A⊗B A → A⊗ H , defined by γA(a ⊗b) = ab(0)⊗b(1), is an isomorphism.
This definition has its origin in the approach to Galois theory of groups acting
on commutative rings developed by Chase, Harrison and Rosenberg and in the
extension of this theory to coactions of a Hopf algebra H acting on a commu-
tative k-algebra A over a commutative ring k developed in 1969 by Chase and
Sweedler [11]. An interesting class of H -Galois extensions has been provided
by those for which there exists a convolution invertible right H -comodule mor-
phism h : H → A called the cleaving morphism. These extensions were called
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cleft and it is well known that, using the notion of normal basis introduced by
Kreimer and Takeuchi in [19], Doi and Takeuchi proved in [16] that B ↪→ A
is a cleft extension if and only if it is H -Galois with normal basis, i.e., the H -
Galois extension B ↪→ A is isomorphic to B ⊗ H as left B-module and right
H -comodule.

In [18] the result obtained by Doi and Takeuchi was generalized to H -Galois
extensions for Hopf algebras living in a symmetric monoidal closed category
C and in [7] Brzeziński proved that if A is an algebra, C is a coalgebra and
(A,C, ψ) is an entwining structure such that A is an entwined module, the
existence of a convolution invertible C-comodule morphism h : C → A is
equivalent to the properties that A is a Galois extension by the coalgebra C
(see [6] for the definition) and A is isomorphic to the tensor product of the
coinvariant subalgebra B with C as left B-modules and right C-comodules.

A more general result was proved in [2] for weak Galois extensions associated
to the weak entwining structures introduced by Caenepeel and De Groot in [8].
In [1] the notion of weak cleft extension was introduced and Theorem 2.11
of [2] states that for a weak entwining structure (A,C, ψ) such that A is an
entwined module, if the functor A ⊗ − preserves coequalizers, the algebra A
is a weak C-cleft extension of the coinvariant subalgebra if and only if it is a
weak C-Galois extension and the normal basis property, defined in [2], holds.
Since Galois extensions associated to weak Hopf algebras are examples of weak
Galois extensions, the characterization of weak cleft extensions in terms of weak
Galois extensions satisfying the normal basis condition can be applied to them.

The main motivation of this paper is to extend the previous results to the
theory of lax and partial weak entwining structures. These notions were defined
by Caenepeel and Janssen in [9] and [10] with the aim of to introduce a theory of
partial actions and coactions of Hopf algebras and then to obtain a Hopf-Galois
theory in this setting. The notion of a partial group action on an algebra A over a
commutative ring k has been introduced by Exel [17] in the context of operator
algebras and the algebraic interest of these structures comes from the results
proved in [13] by Dokuchaev, Exel and Piccione, in [14] by Dokuchaev and Exel
and in [15] where a generalization of Galois theory over commutative rings to
partial group actions was given by Dokuchaev, Ferrero and Paques.

The paper is organized as follows: In section one we review some of the
standard facts about weak, partial and lax entwining structures proving that it
is possible to obtain non trivial examples of lax entwining structures working
with lax comodule algebras associated to a groupoid algebra. In particular, if
the groupoid algebra is a group algebra we have examples of partial entwining
structures. In the second section we have compiled the basic facts about Galois
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extensions in a lax setting and we introduce the notion of lax Galois extension
with normal basis. Section 3 is devoted to study the notion of cleft extension
in a lax context and contains the main theorem of this paper, i.e., under the
mild assumption that the functor A ⊗ − preserves coequalizers, there exists an
equivalence between the notions of lax Galois extension with normal basis and
lax cleft extension. As a consequence, using that every partial or weak entwining
structure is lax, when we particularize this result to the weak case we obtain
Theorem 2.11 of [2] and in the partial case we obtain the characterization of
partial cleft extensions as partial Galois extensions with normal basis. Finally,
it is important to emphasize that the main motivation for the definition of lax
cleft extension introduced in this section comes from the following fact: if A
is an algebra, C is a coalgebra and (A,C, ψ) is a lax entwining structure such
that A is a lax entwined module with coaction ρA, the existence of a comodule
morphism h : C → A satisfying that there exists a morphism h−1 : C → A
with convolution h−1 ∧ h = e, being e = (A ⊗ εC) ◦ ψ ◦ (C ⊗ ηA), implies
that (A,C, ψ) is a weak entwining structure. As a consequence, the notion
of partial cleft extension introduced in [5] is a classical cleft extension for an
entwining structure.

1 Weak Hopf algebras and lax entwining structures

Throughout the paper C denotes a strict monoidal category with tensor product
⊗ and base object K . Given objects A, B, D and a morphism f : B → D,
we write A ⊗ f for idA ⊗ f and f ⊗ A for f ⊗ idA where idA is the identity
morphism for the object A. Also we assume that there exists coequalizers and
equalizers. The existence of equalizers guarantees that every idempotent splits,
i.e., for every morphism ∇ : Y → Y , such that ∇ = ∇ ◦ ∇, there exist an
object Z and morphisms i : Z → Y and p : Y → Z satisfying ∇ = i ◦ p and
p ◦ i = idZ .

A braided monoidal category C means a monoidal category in which there
is, for all M and N in C, some natural isomorphism cM,N : M ⊗ N → N ⊗
M , called the braiding, satisfying the Hexagon Axiom. If the braiding satisfies
cN,M ◦ cM,N = idM⊗N , the category C will be called symmetric.

As for prerequisites, the reader is expected to be familiar with the notions of
algebra (monoid), coalgebra (comonoid), module and comodule in the monoidal
setting. Given an algebra A and a coalgebra D, we let ηA : K → A, μA :
A ⊗ A → A, εD : D → K , and δD : D → D ⊗ D denote the unity, the
product, the counity, and the coproduct respectively. Also, for two morphism
f, g : D → A, the symbol ∧ denotes the usual convolution product in the
category C, i.e., f ∧ g = μA ◦ ( f ⊗ g) ◦ δD.

Bull Braz Math Soc, Vol. 45, N. 1, 2014
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If the category C is symmetric and A, B are algebras in C, the object
A ⊗ B is an algebra in C where ηA⊗B = ηA ⊗ ηB and μA⊗B = (μA ⊗ μB) ◦
(A ⊗ cB,A ⊗ B). In a dual way when D, E are coalgebras in C, D ⊗ E is a
coalgebra inC where εD⊗E = εD ⊗εE and δD⊗E = (D ⊗cD,E ⊗ E)◦ (δD ⊗δE).
Finally, Aop denotes the algebra with the opposite product μAop = μA ◦ cA,A

and Dcop is the coalgebra with the coopposite coproduct δDcop = cD,D ◦ δD.

Definition 1.1. A lax entwining structure on C consists of a triple (A,C, ψ),
where A is an algebra, C a coalgebra, and ψ : C ⊗ A → A ⊗ C a morphism
(the entwining morphism) satisfying the relations

ψ ◦ (C ⊗ μA) = (μA ⊗ C) ◦ (A ⊗ ψ) ◦ (ψ ⊗ A), (1)

(A ⊗ εC) ◦ ψ = μA ◦ (e ⊗ A), (2)

(∇A⊗C ⊗ C) ◦ (A ⊗ δC) ◦ ψ = (ψ ⊗ C) ◦ (C ⊗ ψ) ◦ (δC ⊗ A), (3)

ψ ◦ (C ⊗ ηA) = ∇A⊗C ◦ (e ⊗ C) ◦ δC, (4)

where e : C → A is the morphism defined by e = (A ⊗ εC) ◦ψ ◦ (C ⊗ ηA) and
∇A⊗C : A ⊗ C → A ⊗ C is the idempotent morphism

∇A⊗C = (μA ⊗ C) ◦ (A ⊗ ψ) ◦ (A ⊗ C ⊗ ηA). (5)

Then, by (1), we have
∇A⊗C ◦ψ = ψ (6)

and the morphism e satisfies the equality

e ∧ e = e. (7)

Indeed:

e ∧ e = ((μA ◦ (e ⊗ A))⊗ εC) ◦ (C ⊗ ψ) ◦ (δC ⊗ ηA)

= (A ⊗ εC) ◦ ∇A⊗C ◦ (e ⊗ C) ◦ δC = e

where the first equality follows by (2), the second one by the definition of the
idempotent morphism ∇A⊗C , and the third one by (4).

On the other hand, if ψ satisfies the equality

(A ⊗ εC) ◦ψ = εC ⊗ A, (8)

the morphism e defined previously is e = εC ⊗ ηA and, as a consequence, the
identity (4) is irrelevant. In this case the entwining structure is called partial.

Bull Braz Math Soc, Vol. 45, N. 1, 2014
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If the morphism ψ satisfies the conditions (1), (2) and

(A ⊗ δC) ◦ ψ = (ψ ⊗ C) ◦ (C ⊗ ψ) ◦ (δC ⊗ A), (9)

ψ ◦ (C ⊗ ηA) = (e ⊗ C) ◦ δC , (10)

the triple (A,C, ψ) is called a weak entwining structure. Finally, if the condi-
tions (1), (8), (9), and

ψ ◦ (C ⊗ ηA) = ηA ⊗ C, (11)

hold, we recover the classical notion of entwining structure.
Obviously every partial or weak entwining structure is a lax entwining struc-

ture. Lax entwining structures have been introduced by Caenepeel and Janssen
in [9] as a generalization of weak entwining structures defined in [8]. The notion
of partial entwining structures arise in the context of partial group actions (see
[9], [10] and [15]) and has its origins in the pioneering work of Exel [17] were
partial actions were considered in the context of operator algebras.

Lemma 1.2. Let (A,C, ψ) be a lax entwining structure and let

	A⊗C : A ⊗ C → A ⊗ C

be the morphism

	A⊗C = (μA ⊗ C) ◦ (A ⊗ ((e ⊗ C) ◦ δC)).

Then

(i) 	A⊗C = (((A ⊗ εC) ◦ ∇A⊗C )⊗ C) ◦ (A ⊗ δC).

(ii) The morphism	A⊗C is idempotent.

(iii) ∇A⊗C = 	A⊗C ◦ ∇A⊗C = ∇A⊗C ◦	A⊗C .

(iv) 	A⊗C ◦ ψ = ψ .

Proof. The equality (i) is a consequence of the definition of ∇A⊗C . Secondly,
the morphism 	A⊗C is idempotent because using the equality (7), the associa-
tivity of the product defined in A and the co-associativity of δC , we have:

	A⊗C ◦	A⊗C = (μA ⊗ C) ◦ (A ⊗ (e ∧ e)⊗ C) ◦ (A ⊗ δC) = 	A⊗C .
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The proof for (iii) is the following:

∇A⊗C ◦	A⊗C

= (μA ⊗ C) ◦ (A ⊗ (μA ◦ (e ⊗ A)) ⊗ C) ◦ (A ⊗ C ⊗ ψ) ◦ (A ⊗ δC ⊗ ηA)

= (μA ⊗ εC ⊗ C) ◦ (A ⊗ ψ ⊗ C) ◦ (A ⊗ C ⊗ ψ) ◦ (A ⊗ δC ⊗ ηA)

= (μA ⊗ εC ⊗ C) ◦ (A ⊗ ∇A⊗C ⊗ C) ◦ (A ⊗ A ⊗ δC ) ◦ (A ⊗ (ψ ◦ (C ⊗ ηA)))

= 	A⊗C ◦ ∇A⊗C ,

where the first equality follows by the associativity of μA, the second one by (2),
the third one by (3) and the fourth one by (i) and the associativity of μA.

Moreover, by (4)

∇A⊗C ◦	A⊗C

= (μA ⊗ C) ◦ (A ⊗ (μA ◦ (e ⊗ A)) ⊗ C) ◦ (A ⊗ C ⊗ψ) ◦ (A ⊗ δC ⊗ ηA)

= (μA ⊗ C) ◦ (A ⊗ (∇A⊗C ◦ (e ⊗ C) ◦ δC ))

= ∇A⊗C .

Finally, (iv) holds because by (6) and the previous identities we have

	A⊗C ◦ ψ = 	A⊗C ◦ ∇A⊗C ◦ ψ = ∇A⊗C ◦ ψ = ψ. �

Remark 1.3. Notice that if (A,C, ψ) is a partial entwining structure the mor-
phism	A⊗C is the identity of A ⊗ C.

Theorem 1.4. A lax entwining structure (A,C, ψ) is a weak entwining structure
if and only if	A⊗C = ∇A⊗C . Moreover, if (A,C, ψ) is partial and weak then it
is an entwining structure.

Proof. Trivially, if the entwining structure is weak we obtain that 	A⊗C =
∇A⊗C . Conversely, if (A,C, ψ) is lax and 	A⊗C = ∇A⊗C , by (3) and (6) we
have

(ψ ⊗ C) ◦ (C ⊗ ψ) ◦ (δC ⊗ A)

= (	A⊗C ⊗ C) ◦ (A ⊗ δC) ◦ ψ
= (A ⊗ δC) ◦	A⊗C ◦ ψ
= (A ⊗ δC) ◦ ψ

and (9) holds. Moreover, 	A⊗C = ∇A⊗C and (7) gives ∇A⊗C ◦ (e ⊗ C) ◦ δC =
(e ⊗ C) ◦ δC and (10) follows from (4). Thus, the entwining structure is weak.

Finally, if (A,C, ψ) is partial and weak, trivially, we have (11) and (A,C, ψ)
is an entwining structure. �

Bull Braz Math Soc, Vol. 45, N. 1, 2014
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A way to construct examples of lax entwining structures that are not partial
or weak, is to work with lax comodule algebras associated to a weak bialgebra
or a weak Hopf algebra in a symmetric monoidal category C. The notions of
weak bialgebra and weak Hopf algebra in a symmetric monoidal setting are a
generalization of the ones defined by Böhm, Nill and Szlachányi in [4]. The
definition is the following:

Definition 1.5. A weak bialgebra in a symmetric monoidal category C with
symmetry isomorphism c, is an object in C with an algebra structure (H, ηH,

μH ) and a coalgebra structure (H, εH , δH ) satisfying:

(i) δH ◦ μH = (μH ⊗ μH ) ◦ (H ⊗ cH,H ⊗ H ) ◦ (δH ⊗ δH ).

(ii) εH ◦ μH ◦ (μH ⊗ H ) = ((εH ◦ μH )⊗ (εH ◦ μH )) ◦ (H ⊗ δH ⊗ H )

= ((εH ◦ μH ) ⊗ (εH ◦ μH )) ◦ (H ⊗ (cH,H ◦ δH )⊗ H ).

(iii) (δH ⊗ H ) ◦ δH ◦ ηH = (H ⊗ μH ⊗ H ) ◦ ((δH ◦ ηH )⊗ (δH ◦ ηH ))

= (H ⊗ (μH ◦ cH,H )⊗ H ) ◦ ((δH ◦ ηH )⊗ (δH ◦ ηH )).

If moreover, the following conditions hold,

(iv) There exists a morphism λH : H → H in C (called the antipode of H )
satisfying:

(iv-1) idH ∧ λH = ((εH ◦ μH )⊗ H ) ◦ (H ⊗ cH,H ) ◦ ((δH ◦ ηH )⊗ H ),

(iv-2) λH ∧ idH = (H ⊗ (εH ◦ μH )) ◦ (cH,H ⊗ H ) ◦ (H ⊗ (δH ◦ ηH )),

(iv-3) λH ∧ idH ∧ λH = λH ,

the weak bialgebra H is a weak Hopf algebra in the symmetric monoidal
category C.

As a consequence of this definition it is an easy exercise to prove that a weak
Hopf algebra is a Hopf algebra if an only if the morphism δH (coproduct) is
unit-preserving (i.e. ηH ⊗ ηH = δH ◦ ηH ) and if and only if the counit is a
homomorphism of algebras (i.e. εH ◦ μH = εH ⊗ εH ).

If H is a weak bialgebra it is possible to define the endomorphisms of H ,�L
H

(target morphism),�R
H (source morphism), by

�L
H = ((εH ◦ μH )⊗ H ) ◦ (H ⊗ cH,H ) ◦ ((δH ◦ ηH )⊗ H ),

�R
H = (H ⊗ (εH ◦ μH )) ◦ (cH,H ⊗ H ) ◦ (H ⊗ (δH ◦ ηH )),

Bull Braz Math Soc, Vol. 45, N. 1, 2014
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and �
L
H , �

R
H by

�
L
H = (H ⊗ (εH ◦ μH )) ◦ ((δH ◦ ηH )⊗ H ),

�
R
H = ((εH ◦ μH )⊗ H ) ◦ (H ⊗ (δH ◦ ηH )).

It is straightforward to show that they are idempotent (Proposition 2.9 of [3]),
and if H is a weak Hopf algebra the antipode is antimultiplicative, anticomul-
tiplicative and leaves the unit and the counit invariant (see Proposition 2.20
of [3]).

Let H = (H, ηH , μH , εH , δH , λH ) be a weak Hopf algebra in C such that
the antipode is an isomorphism. Then

H op = (H, ηH , μH ◦ cH,H , εH , δH , λ
−1
H ) and

H cop = (H, ηH , μH , εH , cH,H ◦ δH , λ
−1
H )

are weak Hopf algebras in C. Therefore (H op)cop = (H, ηH , μH ◦ cH,H ,

εH , cH,H ◦ δH , λH ) and (H cop)op = (H, ηH, μH ◦ cH,H , εH , cH,H ◦ δH , λH )

are weak Hopf algebras in C. Moreover the weak Hopf algebras H , (H op)cop

and (H cop)op are isomorphic. The isomorphisms are λH : (H op)cop → H

and λH : H → (H cop)op. Finally, note that �
L
H = �R

H op = �L
H cop and

�
R
H = �R

H cop = �L
H op .

Definition 1.6. Let H be a weak bialgebra in a symmetric monoidal category
C and let τH,H : H ⊗ H → H ⊗ H be the morphism defined by τH,H =
(μH ⊗ H ) ◦ (H ⊗ cH,H ) ◦ (δH ⊗ H ). An algebra A is said to be a lax right
H -comodule algebra if the exists a morphism ρA : A → A ⊗ H called the
coaction such that

ρA ◦ μA = μA⊗H ◦ (ρA ⊗ ρA), (12)

(ρA ⊗ H ) ◦ ρA = (μA ⊗ τH,H ) ◦ (A ⊗ cH,A ⊗ H ) ◦ (ρA ⊗ (ρA ◦ ηA)), (13)

(A ⊗�L
H ) ◦ ρA = ((μA ◦ cA,A)⊗�L

H ) ◦ (A ⊗ (ρA ◦ ηA)), (14)

ρA ◦ ηA = (A ⊗ μH ) ◦ (((A ⊗�L
H ) ◦ ρA)⊗ H ) ◦ ρA ◦ ηA. (15)

Note that if H is a bialgebra, we have �L
H = ηH ⊗ εH and condition (14)

is equivalent to

(A ⊗ εH ) ◦ ρA = ((μA ◦ cA,A)⊗ εH ) ◦ (A ⊗ (ρA ◦ ηA)), (16)

and the equality (15) is

ρA ◦ ηA = ((A ⊗ εH ) ◦ ρA)⊗ H ) ◦ ρA ◦ ηA. (17)

Bull Braz Math Soc, Vol. 45, N. 1, 2014
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Then, if C is a category of modules over a commutative ring with unit and
H is a bialgebra in C, this definition is the one introduced by Caenepeel and
Janssen in Proposition 2.5 of [10]. Following [10] we will say that a bialgebra
H , in a symmetric monoidal category C, coacts partially on an algebra A or that
A is a right partial H -comodule algebra if there exists a morphism ρA : A →
A ⊗ H such that (12), (13) and

(A ⊗ εH ) ◦ ρA = idA (18)

hold. Then, in this setting, (16) and (17) are trivial.
In the following Proposition we prove that every lax H -comodule algebra over

a weak bialgebra H in a symmetric monoidal category C provides an example
of a lax entwining structure.

Proposition 1.7. Let H be a weak bialgebra in a symmetric monoidal category
C. Let A be a lax right H -comodule algebra with coaction ρA : A → A ⊗ H .
Under these conditions the triple (A, H, ψ = (A⊗μH )◦(cH,A⊗H )◦(H⊗ρA) :
H ⊗ A → A ⊗ H ) is a lax entwining structure.

Moreover, if H is a bialgebra and A is a right partial H -comodule algebra,
the previous triple is a partial entwining structure.

Proof. First note that by (12), the naturality of the braiding and the associativity of
the product in H we have

ψ ◦ (H ⊗ μA)

= (A ⊗ μH ) ◦ (μA⊗H ⊗ H ) ◦ (cH,A ⊗ cH,A ⊗ H ) ◦ (H ⊗ ρA ⊗ ρA)

= (μA ⊗ H ) ◦ (A ⊗ ψ) ◦ (ψ ⊗ A)

and then (1) holds.
The proof for (2) is the following:

μA ◦ (e ⊗ A)

= (μA ⊗ εH ) ◦ (A ⊗ cH,A) ◦ ((ψ ◦ (H ⊗ ηA))⊗ A)

= (A ⊗ (εH ◦ μH )) ◦ (cH,A ⊗ H ) ◦ (H ⊗ (μA ◦ cA,A)⊗ H ) ◦
(H ⊗ A ⊗ (ρA ◦ ηA))

= (A ⊗ (εH ◦ μH )) ◦ (cH,A ⊗ H ) ◦ (H ⊗ (μA ◦ cA,A)⊗�L
H ) ◦

(H ⊗ A ⊗ (ρA ◦ ηA))

= (A ⊗ (εH ◦ μH )) ◦ (cA,H ⊗�L
H ) ◦ (H ⊗ ρA)

= (A ⊗ εH ) ◦ ψ,
Bull Braz Math Soc, Vol. 45, N. 1, 2014
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where the first and the second equalities follow by the naturality of c and the
definition of ψ , the third and the fifth ones by εH ◦μH = εH ◦μH ◦ (H ⊗�L

H )

and the fourth one by (14).
On the other hand, by (13) and the naturality of c we obtain (3). Indeed:

(ψ ⊗ H ) ◦ (H ⊗ ψ) ◦ (δH ⊗ A)

= (A ⊗ (μH⊗H ◦ (δH ⊗ H ⊗ H ))) ◦ (cH,A ⊗ H ⊗ H )

◦(H ⊗ ((ρA ⊗ H ) ◦ ρA))

= (A ⊗ (μH⊗H ◦ (δH ⊗ H ⊗ H ))) ◦ (cH,A ⊗ H ⊗ H ) ◦
(H ⊗ ((μA ⊗ τH,H ) ◦ (A ⊗ cH,A ⊗ H ) ◦ (ρA ⊗ (ρA ◦ ηA))))

= (A ⊗ ((μH ⊗ H ) ◦ (H ⊗ cH,H ) ◦ ((δH ◦ μH )⊗ H ))) ◦
(cH,A ⊗ H ⊗ H ) ◦ (H ⊗ ((μA ⊗ H ⊗ H ) ◦ (A ⊗ cH,A ⊗ H ) ◦
(ρA ⊗ (ρA ◦ ηA))))

= (μA⊗H ⊗ H ) ◦ (A ⊗ H ⊗ A ⊗ cH,H ) ◦ (A ⊗ H ⊗ cH,A ⊗ H ) ◦
(A ⊗ δH ⊗ (ρA ◦ ηA)) ◦ ψ

= (∇A⊗H ⊗ H ) ◦ (A ⊗ δH ) ◦ ψ.
The proof for (4) follows by

∇A⊗H ◦ (e ⊗ H ) ◦ δH

= (((A ⊗ εH ) ◦ ψ)⊗ μH ) ◦ (H ⊗ cH,A ⊗ H ) ◦ (δH ⊗ (ρA ◦ ηA))

= (A ⊗ ((εH ⊗ H ) ◦ μH⊗H ◦ (δH ⊗ H ⊗ H ))) ◦
(cH,A ⊗ H ⊗ H ) ◦ (H ⊗ ((ρA ⊗ H ) ◦ ρA ◦ ηA))

= (A ⊗ μH ) ◦ (cH,A ⊗ H ) ◦ (H ⊗ ((A ⊗ (μH ◦ (�L
H ⊗ H ))) ◦

(ρA ⊗ H ) ◦ ρA ◦ ηA))

= ψ ◦ (H ⊗ ηA),

where the first equality is a consequence of (2), the second one follows by the
naturality of c, the third one by the identity ((εH ◦ μH ) ⊗ H ) ◦ (H ⊗ cH,H ) ◦
(δH ⊗ H ) = μH ◦ (H ⊗�L

H ) as well as the associativity of the product in H ,
and the fourth one by (15).

Finally, if H is a bialgebra and A a right partial H comodule algebra it is
immediate to obtain (8), and then (A, H, ψ) is a partial entwining structure. �

Example 1.8. As group algebras and their duals are the natural examples of
Hopf algebras, groupoid algebras and their duals provide examples of weak
Hopf algebras. Recall that a groupoid G is simply a small category in which
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every morphism is an isomorphism. In this example, we consider groupoids
with a finite number of morphisms. The set of objects of G will be denoted by
G0 and the set of morphisms by G1. The identity morphism on x ∈ G0 will also
be denoted by idx and for a morphism σ : x → y in G1, we write s(σ ) and t (σ ),
respectively for the source and the target of σ . Finally, E(x) denotes the set of
endomorphisms of x ∈ G0.

Let G be a groupoid, and R a commutative ring with unit. The groupoid
algebra is the direct sum

RG =
⊕
σ∈G1

Rσ

with the product of two morphisms being equal to their composition if the lat-
ter is defined and 0 otherwise, i.e. στ = σ ◦ τ if s(σ ) = t (τ ) and στ =
0 if s(σ ) 	= t (τ ). The unit element is 1RG = ∑

x∈G0
idx . The algebra RG

is a cocommutative weak Hopf algebra, with coproduct δRG, counit εRG and
antipode λRG given by the formulas:

δRG(σ ) = σ ⊗ σ, εRG(σ ) = 1R, λRG(σ ) = σ −̇1.

For the weak Hopf algebra RG the target and source morphisms are respec-
tively,

�L
RG(σ ) = idt (σ ), �R

RG(σ ) = ids(σ ).

Let G a groupoid with 2 ≤ |G0| and such that there exists an x ∈ G0 with
nx = |E(x)| invertible in R. Define for an R-algebra A the R-linear morphism
ρA : A → A ⊗ RG by

ρA(a) = 1

nx
a ⊗ h (19)

where h = ∑
σ∈E (x) σ and the unadorned tensor product denotes the tensor

product over R. Then, A with the coaction ρA is an example of lax right RG-
comodule algebra. To show that ρA satisfies (12), (13), (14) and (15), first we
prove that

τRG,RG(h ⊗ h) = h ⊗ h. (20)

Indeed, using the fact that σh = h for all σ ∈ E(x) we have

τRG,RG(h ⊗ h) = ((μRG ⊗ RG) ◦ (RG ⊗ cRG,RG))
( ∑
σ∈E (x)

σ ⊗ σ ⊗ h

)

= (μRG ⊗ RG)
( ∑
σ∈E (x)

σ ⊗ h ⊗ σ

)
=

∑
σ∈E (x)

σh ⊗ σ =
∑
σ∈E (x)

h ⊗ σ

= h ⊗
∑
σ∈E (x)

σ = h ⊗ h.

Bull Braz Math Soc, Vol. 45, N. 1, 2014



�

�

“main” — 2014/3/12 — 14:02 — page 144 — #12
�

�

�

�

�

�

144 J.N. ALONSO ÁLVAREZ et al.

For ρA condition (12) follows by:

(μA⊗RG ◦ (ρA ⊗ ρA))(a ⊗ b) = μA⊗RG

(
1

n2
x

∑
σ,τ∈E (x)

a ⊗ σ ⊗ b ⊗ τ

)

= 1

n2
x

∑
σ,τ∈E (x)

ab ⊗ στ = 1

n2
x

ab ⊗
∑
σ∈E (x)

σh

= 1

n2
x

ab ⊗ nxh = 1

nx
ab ⊗ h = ρA(ab).

Condition (13) is checked by applying (20):

((μA ⊗ τRG,RG) ◦ (A ⊗ cRG,A ⊗ H ) ◦ (ρA ⊗ (ρA ◦ ηA)))(a)

= ((μA ⊗ τRG,RG) ◦ (A ⊗ cRG,A ⊗ H ))
( 1

n2
x

a ⊗ h ⊗ 1A ⊗ h
)

= 1

n2
x

a ⊗ τRG,RG(h ⊗ h) = 1

n2
x

a ⊗ h ⊗ h = (ρA ⊗ RG) ◦ ρA(a).

Condition (14) is proven by the properties of the target morphism:

(((μA ◦ cA,A)⊗�L
RG) ◦ (A ⊗ (ρA ◦ ηA)))(a)

= ((μA ◦ cA,A)⊗�L
RG)

( 1

nx
a ⊗ 1A ⊗ h

)

= 1

nx
a ⊗�L

RG(h) = (A ⊗�L
RG) ◦ ρA(a).

Finally, condition (15) is verified using the identity�L
RG(h) = nx idx :

((A ⊗ μRG) ◦ (((A ⊗�L
RG) ◦ ρA)⊗ RG) ◦ ρA)(1A)

= (A ⊗ μH )

(
1

n2
x

1A ⊗�L
RG(h)⊗ h

)
= 1

n2
x

1A ⊗ nxidx h

= 1

nx
1A ⊗ h = ρA(1A).
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Then, as a consequence of Proposition 1.7 we obtain an example of a lax
entwining structure where ψ : RG ⊗ A → A ⊗ RG is defined by

ψ

( n∑
i=1

riσi ⊗ ai

)
= 1

nx

n∑
i=1

ri ai ⊗ σi h (21)

and

e(σ ) = ((A ⊗ εRG) ◦ ψ)(σ ⊗ 1A) =
{

0 if s(σ ) 	= x
1A if s(σ ) = x .

This lax entwining structure is not partial because if ω ∈ G1 and s(ω) 	= x
we have

e(ω) = 0 	= 1A = (εRG ⊗ A)(ω ⊗ 1A).

Finally, note that ρA satisfies the identity ((A ⊗ εRG) ◦ ρA)(a) = a for all
a ∈ A because:

(A ⊗ εRG) ◦ ρA(a) = 1

nx
a ⊗

∑
σ∈E (x)

εRG(σ ) = 1

nx
a ⊗ nx 1R = a.

If G is a finite group and G is the groupoid associated to G, RG is the group
algebra of G denoted by RG which is a cocommutative Hopf algebra. In this
case, for an R-algebra A, the coaction defined in (19) is

ρA(a) = 1

|G| a ⊗ h, (22)

where h = ∑
g∈G g and the entwining morphism is

ψ

( n∑
i=1

ri gi ⊗ ai

)
= 1

|G|
n∑

i=1

ri ai ⊗ gih = 1

|G|
n∑

i=1

ri ai ⊗ h. (23)

Then, in this particular case, we have

((A ⊗ εRG) ◦ ψ)(g ⊗ a) = (A ⊗ εRG)
( 1

|G| a ⊗ gh
)

= (A ⊗ εRG)
( 1

|G| a ⊗ h
)

= 1

|G| a ⊗ |G|1R = a = (εRG ⊗ A)(g ⊗ a)

and therefore (A, RG, ψ) is a partial entwining structure.
By the following Theorem these partial entwining structures can be used to

provide examples of lax entwining structures that are not partial.
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Theorem 1.9. Let (A,C, ψ) be a lax entwining structure and let d : K → A
be a morphism such that μA ◦ (d ⊗ d) = d and μA ◦ (d ⊗ A) = μA ◦ (A ⊗ d).
If fd denotes the morphism fd = μA ◦ (d ⊗ A) : A → A and ( fd ⊗ C) ◦ ψ =
ψ ◦ (C ⊗ fd ), the triple (A,C, ψ fd = ( fd ⊗C)◦ψ) is a lax entwining structure.
Moreover, if (A,C, ψ) is partial and fd 	= idA, (A,C, ψ fd ) is lax and not
partial.

Proof. First note that fd is an idempotent morphism because by the associativ-
ity of the product μA we have:

fd ◦ fd = μA ◦ ((μA ◦ (d ⊗ d))⊗ A) = fd .

Also, it is easy to show that fd ◦ ηA = d and

fd ◦ μA = μA ◦ ( fd ⊗ fd ) = μA ◦ ( fd ⊗ A) = μA ◦ (A ⊗ fd ). (24)

Then, by the conditions of this Theorem and the equalities (24), and (1)
we obtain

ψ fd ◦ (C ⊗ μA) = ψ ◦ (C ⊗ (μA ◦ ( fd ⊗ fd )))

= (μA ⊗ C) ◦ (A ⊗ ψ) ◦ (ψ ⊗ A) ◦ (C ⊗ fd ⊗ fd )

= (μA ⊗ C) ◦ (A ⊗ ψ fd ) ◦ (ψ fd ⊗ A).

Therefore, (1) holds for (A,C, ψ fd ).
On the other hand, e fd = (A ⊗ εC) ◦ ψ fd ◦ (C ⊗ ηA) = fd ◦ e and, as a

consequence, using the associativity of μA and (2) we have:

μA ◦ (e fd ⊗ A) = fd ◦ μA ◦ (e ⊗ A) = (A ⊗ εC) ◦ ψ fd .

Then, (2) holds for (A,C, ψ fd ).
Moreover, by the idempotent character of fd and (3) we have

(ψ fd ⊗ C) ◦ (C ⊗ ψ fd ) ◦ (δC ⊗ A) = ( fd ⊗ C ⊗ C) ◦ (ψ ⊗ C)◦
(C ⊗ ψ) ◦ (δC ⊗ A) = ((( fd ⊗ C) ◦ ∇A⊗C )⊗ C) ◦ (A ⊗ δC) ◦ ψ

= (∇ fd
A⊗C ⊗ C) ◦ (A ⊗ δC) ◦ ψ fd

and then (3) holds for (A,C, ψ fd ) because by (24),

∇ fd
A⊗C = ∇A⊗C ◦ ( fd ⊗ C) = ( fd ⊗ C) ◦ ∇A⊗C = ( fd ⊗ C) ◦ ∇A⊗C ◦ ( fd ⊗ C).
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Finally, by (4) and using that ( fd ⊗ C) ◦∇A⊗C = ( fd ⊗C) ◦∇A⊗C ◦ ( fd ⊗C)
we obtain

ψ fd ◦ (C ⊗ ηA) = ( fd ⊗ C) ◦ ∇A⊗C ◦ (e ⊗ C) ◦ δC

= ( fd ⊗ C) ◦ ∇A⊗C ◦ (( fd ◦ e)⊗ C) ◦ δC = ∇ fd
A⊗C ◦ (e fd ⊗ C) ◦ δC

and (4) holds for (A,C, ψ fd ).
If (A,C, ψ) is partial and fd 	= idA , (A,C, ψ fd ) is lax and not partial

because:
(A ⊗ εC) ◦ ψ fd = εC ⊗ fd . �

Example 1.10. Let (A, RG, ψ) be the lax entwining structure defined in exam-
ple 1.8 in the groupoid setting. If d is a central idempotent element in A, the
morphism fd : A → A defined by fd (a) = da satisfies the conditions of the
previous Theorem and, as a consequence, (A, RG, ψ fd) is lax entwining struc-
ture where

ψ fd

( n∑
i=1

riσi ⊗ ai

)
= 1

nx

n∑
i=1

ri dai ⊗ σi h. (25)

The result proved by Connell in [12] assures that if R is a completely re-
ducible associative ring with unit and H is a finite group such that |H | is invert-
ible in R, there exist a set of elements in RH , {e1, . . . , en}, such that

(i) ei 	= 0 is a central idempotent, 1 ≤ i ≤ n.

(ii) If i 	= j then ei e j = 0.

(iii) 1RH = ∑n
i=1 ei .

(iv) The element ei cannot be written as ei = e′
i + e′′

i where e′
i and e′′

i are
central idempotents such that e′

i , e′′
i 	= 0 and e′

i e
′′
i = 0, 1 ≤ i ≤ n.

Then for all ek the morphism

ψ fek

( n∑
i=1

ri gi ⊗ hi

)
= 1

|G|
n∑

i=1

ri ekhi ⊗ h. (26)

induces a lax entwining structure (RH, RG, ψ f ek
), for every finite group G with

|G| invertible in R, that is not partial.
In the final part of this section we will study the dual notion of lax right

H -comodule algebra.
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Definition 1.11. Let H be a weak bialgebra in a symmetric monoidal categoryC.
An algebra A is said to be a lax left H -module algebra if there exists a morphism
ϕA : H ⊗ A → A called the action such that

μA ◦ (ϕA ⊗ ϕA) ◦ (H ⊗ cH,A ⊗ A) ◦ (δH ⊗ A ⊗ A) = ϕA ◦ (H ⊗ μA), (27)

ϕA◦(H ⊗ϕA) = μA◦((ϕA◦(H ⊗ηA))⊗(ϕA◦(μH ⊗ A)))◦(δH ⊗H ⊗ A), (28)

μA ◦ (A ⊗ (ϕA ◦ (�L
H ⊗ ηA))) = ϕA ◦ cA,H ◦ (A ⊗�

L
H ), (29)

ϕA ◦ (H ⊗ ηA) = ϕA ◦ (H ⊗ ϕA) ◦ ((cH,H ◦ (H ⊗�
L
H ) ◦ δH )⊗ ηA). (30)

Note that if H is a bialgebra we have �
L
H = ηH ⊗ εH and condition (29)

is equivalent to

ϕA ◦ (ηH ⊗ A) = μA ◦ (A ⊗ (ϕA ◦ (ηH ⊗ ηA))), (31)

and the equality (30) is

ϕA ◦ (H ⊗ ηA) = ϕA ◦ (ηH ⊗ (ϕA ◦ (H ⊗ ηA))). (32)

Then, if C is a category of modules over a commutative ring with unit and
H is a bialgebra in C, this definition includes the one introduced by Caenepeel
and Janssen in Proposition 4.4 of [10]. We will say that a bialgebra H , in a
symmetric monoidal category C, acts partially on an algebra A or that A is a
left partial H -module algebra if there exists a morphism ϕA : H ⊗ A → A
such that (27), (28) and

ϕA ◦ (ηH ⊗ A) = idA (33)

hold. Then, in this setting, (31) and (32) are trivial.
If we work with finite weak Hopf algebras in C it is possible to obtain a

relation between right lax comodule algebras and left module algebras. First,
we recall some definitions and results about finite objects and finite weak Hopf
algebras in C.

Definition 1.12. An object P in C is said to be finite if there exists P∗ ∈ C
such that

(P ⊗ −, P∗ ⊗ −, αP , βP)

is an adjoint pair.
If (P ⊗−, P∗ ⊗−, αP , βP) is an adjoint pair then (P∗ ⊗−, P ⊗−, αP∗, βP∗)

with αP∗ = (cP,P∗ ⊗ −) ◦ αP and βP∗ = βP ◦ (cP∗,P ⊗ −) is an adjoint pair.
Thus, if P is a finite object, P∗ is finite with adjunction (P∗ ⊗ −, P ⊗ −, αP∗,
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βP∗), αP∗ = (cP,P∗ ⊗ −) ◦ αP and βP∗ = βP ◦ (cP∗,P ⊗ −). As a consequence,
when P is finite, P∗∗ = P. If f : M → N is a morphism between finite objects
we denote by f ∗ : N∗ → M∗ the dual morphism defined by

f ∗ = (M∗ ⊗ βN (K )) ◦ (((M∗ ⊗ f ) ◦ αM(K ))⊗ N∗).

Let H be a finite weak Hopf algebra in C. We define

H ∗ = (H ∗, ηH ∗, μH ∗, εH ∗, δH ∗, λH ∗)

where

ηH ∗ = (H ∗ ⊗ εH ) ◦ αH (K ),

μH ∗ = (H ∗ ⊗ βH (K )) ◦ (H ∗ ⊗ H ⊗ βH (K )⊗ H ∗)
◦(H ∗ ⊗ δH ⊗ H ∗ ⊗ H ∗) ◦ (αH (K )⊗ H ∗ ⊗ H ∗),

εH ∗ = βH (K ) ◦ (ηH ⊗ H ∗),

δH ∗ = (H ∗ ⊗ H ∗ ⊗ βH (K )) ◦ (H ∗ ⊗ H ∗ ⊗ μH ⊗ H ∗)
◦(H ∗ ⊗ αH (K )⊗ H ⊗ H ∗) ◦ (αH (K )⊗ H ∗),

λH ∗ = λ∗
H .

Then, H ∗ is a weak Hopf algebra.

Theorem 1.13. Let A be an algebra in C and let H be a finite weak bialgebra
in C. Then, A is a left lax H -module algebra if and only if Aop is a right lax
H ∗cop-comodule algebra.

Proof. First, assume that A is a left lax H -module algebra with actionϕA. Define
the coaction ρAop : A → A ⊗ H ∗ by

ρAop = cH ∗,A ◦ (H ∗ ⊗ ϕA) ◦ (αH (K )⊗ A). (34)

Then, (Aop, ρAop ) is a right lax H ∗cop-comodule algebra. To prove the previous
assertion, we have to obtain that (Aop, ρA) satisfies (12), (13), (14) and (15) for
the weak Hopf algebra H ∗cop. Indeed:

(μAop ⊗ μH ∗cop ) ◦ (A ⊗ cH ∗,A ⊗ A) ◦ (ρAop ⊗ ρAop )

= ((μA ◦ cA,A ◦ (ϕA ⊗ ϕA))⊗ H ∗) ◦ (H ⊗ A ⊗ H ⊗ cH ∗,A)

◦(H ⊗ A ⊗ H ⊗ μH ∗ ⊗ A) ◦ (cA,H ⊗ cH ∗,H ⊗ H ∗ ⊗ A)

◦(A ⊗ αH ∗(K )⊗ αH ∗(K )⊗ A)
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= ((μA ◦ (ϕA ⊗ ϕA) ◦ (H ⊗ cH,A ⊗ A) ◦ (δH ⊗ A ⊗ A)) ⊗ H ∗)
◦(H ⊗ A ⊗ cH ∗,A) ◦ (H ⊗ cH ∗,A ⊗ A) ◦ (αH ∗(K )⊗ cA,A)

= ((ϕA ◦ (H ⊗ μAop ))⊗ H ∗) ◦ (cA,H ⊗ cH ∗,A) ◦ (A ⊗ αH ∗(K )⊗ A)

= ρAop ◦ μAop ,

where the first and the fourth equalities follow by the naturality of c, the second
one by

(H ⊗ H ⊗ μH ∗cop ) ◦ (H ⊗ cH ∗,H ⊗ H ∗) ◦ (αH ∗(K )⊗ αH ∗(K ))

= ((cH,H ◦ δH )⊗ H ∗) ◦ αH ∗(K )

as well as the naturality of c and the third one by (27).

(μAop ⊗ τH ∗cop,H ∗cop ) ◦ (A ⊗ cH ∗,A ⊗ H ∗) ◦ (ρAop ⊗ (ηAop ◦ ρAop ))

= ((μA ◦ ((ϕA ◦ (H ⊗ ηA))⊗ ϕA) ◦ (H ⊗ cA,H ) ◦
(cA,H ⊗ H ))⊗ τH ∗cop,H ∗cop ) ◦ (A ⊗ ((H ⊗ αH ∗(K )⊗ H ∗) ◦ αH ∗(K )))

= ((μA ◦ ((ϕA ◦ (H ⊗ ηA))⊗ ϕA) ◦ (H ⊗ μH ⊗ A) ◦ (δH ⊗ H ⊗ A)

◦(H ⊗ cA,H ))⊗ H ∗ ⊗ H ∗) ◦ (cA,H ⊗ cH ∗,H ⊗ H ∗)
◦(A ⊗ αH ∗(K )⊗ αH ∗(K ))

= ((ϕA ◦ (H ⊗ (ϕA ◦ cA,H )))⊗ H ∗ ⊗ H ∗) ◦
(cA,H ⊗ cH ∗,H ⊗ H ) ◦ (A ⊗ αH ∗(K )⊗ αH ∗(K ))

= ((ϕA ◦ (H ⊗ ϕA))⊗ H ∗ ⊗ H ∗) ◦ (H ⊗ H ⊗ cH ∗,A ⊗ H ∗) ◦
(H ⊗ cH ∗,H ⊗ cH ∗,H ) ◦ (αH ∗(K )⊗ αH ∗(K )⊗ A)

= (ρAop ⊗ H ∗cop) ◦ ρAop ,

where the first, the fourth and the fifth equalities follow by the naturality of c,
the second one by

(H ⊗ H ⊗ τH ∗cop,H ∗cop ) ◦ (H ⊗ αH ∗(K )⊗ H ∗) ◦ αH ∗(K )

= (((H ⊗ μH ) ◦ (δH ⊗ H ))⊗ H ∗ ⊗ H ∗) ◦ (H ⊗ cH ∗,H ⊗ H ∗)
◦(αH ∗(K )⊗ αH ∗(K ))

and the third one by (28).

((μAop ◦ cA,A)⊗�L
H ∗cop) ◦ (A ⊗ (ρAop ◦ ηAcop ))

= (μA ◦ (A ⊗ (ϕA ◦ (�L
H ⊗ ηA)))⊗ H ∗) ◦ (A ⊗ αH ∗(K ))

= ((ϕA ◦ cA,H ◦ (A ⊗�
L
H ))⊗ H ∗) ◦ (A ⊗ αH ∗(K ))
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= (ϕA ⊗ H ) ◦ (�L
H ⊗ H ) ◦ (αH ∗(K )⊗ A)

= (A ⊗�L
H ∗cop ) ◦ ρAop ,

where the first and the fourth equalities follow by

�L
H ∗cop = �

L∗
H (35)

the second one by (29) and the third one by the naturality of c.

(A ⊗ (μH ∗cop ◦ (�L
H ∗cop ⊗ H ∗))) ◦ (ρAop ⊗ H ∗) ◦ ρAop ◦ ηAop

= ((ϕA ◦ (H ⊗ ϕA) ◦ ((cH,H ◦ (H ⊗�
L
H ) ◦ δH )⊗ ηA))⊗ H ∗) ◦ αH ∗(K )

= ((ϕA ◦ (H ⊗ ηA))⊗ H ∗) ◦ αH ∗(K )

= ρAop ◦ ηAop ,

where the first equality follows by the naturality of c, the properties of αH and
βH and by (35). The second one is a consequence of (30) and the last one
follows by the naturality of c.

Conversely, if Aop is a right lax H ∗cop-comodule algebra then A with the
action defined by

ϕA = (A ⊗ βH (K )) ◦ (cH,A ⊗ H ∗) ◦ (H ⊗ ρAop ) : H ⊗ A → A

is a left lax H -module algebra. The proof is dual to the previous one and we
leave the details to the reader. �

Remark 1.14. Obviously, the previous Theorem remains valid if we change the
weak bialgebra by a usual bialgebra or the lax structure by a partial one. In this
case we obtain as a corollary Theorem 4.7 of [10].

On the other hand, Theorem 1.13 admits an equivalent formulation in the
following way: Let A be an algebra in C and let H be a finite weak bialgebra
in C. Then, A is a right lax H -comodule algebra if and only if Aop is a left lax
H ∗op-module algebra.

Example 1.15. Let G be a groupoid with G1 finite. Then RG is free of a finite
rank as a R-module, hence R(G) = (RG)∗ = H om R(RG, R) is a commutative
weak bialgebra. As R-module

R(G) =
⊕
σ∈G1

R fσ
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with fσ (τ ) = δσ,τ . Then, for all f ∈ R(G) we have

g =
∑
σ∈G1

g(σ ) fσ .

The algebra structure is given by the formulas fσ fτ = δσ,τ fσ and 1R(G) =∑
σ∈G1

fσ . The coalgebra structure is

δR(G)( fσ ) =
∑
τρ=σ

fτ ⊗ fρ =
∑
ρ∈G1

fσρ−1 ⊗ fρ, εR(G)( fσ ) = δσ,idt (σ) .

Also R(G) is a weak Hopf algebra where the antipode is given by

λR(G)( fσ ) = fσ−1 .

As a consequence we have an adjoint pair RG ⊗ − � R(G)⊗ − where the
morphisms αR(G)(R) and βR(G)(R) are defined by

αR(G)(R)(1R) =
∑
σ∈G1

fσ ⊗ σ, βR(G)(R)(τ ⊗ f ) = f (τ )

respectively. Then, if A is an R-algebra and ρA the coaction defined in (19),
Aop is a left lax R(G)op-module algebra with action ϕAop : R(G) ⊗ A → A
defined by

ϕAop ( f ⊗ a) = n−1
x

( ∑
σ∈E (x)

f (σ )

)
a. (36)

2 Entwined modules for lax entwining structures and Galois objects

Definition 2.1. Let (A,C, ψ) be a lax entwining structure. We denote by
MC

A(ψ) the category whose objects are triples (M, φM , ρM), where (M, φM)

is a right A-module, ρM : M → M ⊗ C is a morphism satisfying

(M ⊗ εC) ◦ ρM = idM , (37)

(ρM ⊗ H ) ◦ ρM = (∇M⊗C ⊗ C) ◦ (M ⊗ δC) ◦ ρM , (38)

where ∇M⊗C : M ⊗ C → M ⊗ C is the idempotent defined by

∇M⊗C = (φM ⊗ C) ◦ (M ⊗ (ψ ◦ (C ⊗ ηA))),

and the usual entwined module condition

ρM ◦ φM = (φM ⊗ C) ◦ (M ⊗ ψ) ◦ (ρM ⊗ A). (39)
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The objects in MC
A(ψ) will be called right-right lax entwined modules (or just

entwined modules if no confusion is likely) and the morphisms in MC
A(ψ) are

morphisms f : M → N of A-modules (i.e. f ◦ φM = φN ◦ ( f ⊗ A)) such that
( f ⊗ C) ◦ ρM = ρN ◦ f .

Note that the identities (37) and (38) imply that

∇M⊗C ◦ ρM = ρM (40)

and, if M is a lax entwined module, by (37), the following identity

φM ◦ (M ⊗ e) ◦ ρM = idM (41)

holds.
Also, it follows easily that if A is a lax right H -comodule algebra for a weak

bialgebra in a symmetric monoidal categoryC, then A is a lax entwining module
for the entwining structure defined in Theorem 1.7. Moreover, in the particular
case presented in Example 1.8 the additional condition (A ⊗ εH ) ◦ ρA = idA

holds.
Finally, for a partial entwining structure, the category of partial entwined

modules is defined as in the lax setting.

In the following definition we introduce the category of weak comodules for
a coalgebra C to explain the meaning of condition (38).

Definition 2.2. Let C be a coalgebra. With W (MC) we denote the category
whose objects are triples (M,∇M⊗C , ρM) such that:

(i) M is an object in C,

(ii) ∇M⊗C : M ⊗ C → M ⊗ C is an idempotent morphism in C,

(iii) ρM : M → M ⊗ C is a coaction satisfying (37), (38).

The morphisms in W (MC) are defined in the following way: we say that

f : (M,∇M⊗C , ρM) → (N,∇N⊗C , ρN)

is a morphism inW (MC) if f : M → N is a morphism in C and the identities

ρN ◦ f = ∇N⊗C ◦ ( f ⊗ C) ◦ ρM , (42)

∇N⊗C ◦ ( f ⊗ C) ◦ ∇M⊗C = ∇N⊗C ◦ ( f ⊗ C) (43)

hold.
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It is easy to show that W (MC) is a category. We call it the category of
right weak C-comodules. In a similar form it is possible to define the cat-
egory of left weak C-comodules and also by duality the corresponding weak
categories of modules. Note that if (M, ρM) is a right C-comodule we have
that (M,∇M⊗C = idM⊗C , ρM) is a right weak C-comodule. Also, every right
C-comodule morphism f : (M, ρM) → (N, ρN ) is a morphism in W (MC)

between the objects (M,∇M⊗C = idM⊗C , ρM) and (N,∇N⊗C = idN⊗C , ρN).
Finally, notice that if (A,C, ψ) is a lax entwining structure and (M, φM , ρM) is
a lax entwined module, then the triple

(M,∇M⊗C = (φM ⊗ C) ◦ (M ⊗ (ψ ◦ (C ⊗ ηA))), ρM)

is an object in W (MC) and if f : (M, φM , ρM) → (N, φN , ρN ) is a morphism
inMC

A(ψ) we obtain that

f : (M,∇M⊗C , ρM) → (N,∇N⊗C , ρN)

is a morphism of weak right C-comodules because

∇N⊗C ◦ ( f ⊗ C) = ( f ⊗ C) ◦ ∇M⊗C .

Proposition 2.3. Let (A,C, ψ) be a lax entwining structure such that there exists
a morphism ρA : A → A ⊗ C satisfying that (A, μA, ρA) belongs to MC

A(ψ).
If for all (M, φM , ρM) ∈ MC

A(ψ), we denote by MC the equalizer of ρM and
ζM = (φM ⊗ C) ◦ (M ⊗ (ρA ◦ ηA)) and by iM the injection of MC in M, we have
the following:

(i) The triple (AC , ηAC , μAC ) is an algebra in C, where ηAC : K → AC and
μAC : AC ⊗ AC → AC are the factorizations of ηA and μA ◦ (iA ⊗ iA)

respectively, through the equalizer iA.

(ii) The pair (MC , φMC ) is a right AC -module, where φMC : MC ⊗ AC → MC

is the factorization of φM ◦ (iM ⊗ iA) through the equalizer iM .

Proof. The proof is an easy consequence of the identity (39) and we leave the
details to the reader (see [1] for weak entwining structures). �

Example 2.4. Let (A, RG, ψ) the lax entwining structure introduced in exam-
ple 1.8. In this setting for all a ∈ A we have ζA(a) = ρA(a) and then ARG = A.

2.5. If the conditions of Proposition 2.3 hold, it is obvious that (A, ϕA = μA ◦
(iA ⊗ A)) is a left AC -module and (A, φA = μA ◦(A⊗iA )) is a right AC -module.
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If with qA,A we denote the coequalizer morphism of A ⊗ ϕA and φA ⊗ A we
have the coequalizer diagram

�
� �

A ⊗ ϕA

φA ⊗ A

qA,A
A ⊗ AC ⊗ A A ⊗ A A ⊗AC A

2.6. Let (A,C, ψ) be a lax entwining structure such that there exists a mor-
phism ρA : A → A ⊗ C satisfying that (A, μA, ρA) belongs to MC

A(ψ). As a
consequence of the idempotent character of ∇A⊗C , there exist an object A�C
and morphisms iA⊗C : A�C → A ⊗ C and pA⊗C : A ⊗ C → A�C satis-
fying ∇A⊗C = iA⊗C ◦ pA⊗C and pA⊗C ◦ iA⊗C = idA�C . The object A�C is
a lax entwined module with action φA�C = pA⊗C ◦ (μA ⊗ C) ◦ (A ⊗ ψ) ◦
(iA⊗C ⊗ A) and morphism ρA�C = (pA⊗C ⊗ C) ◦ (A ⊗ δC) ◦ iA⊗C . Indeed,
trivially

φA�C ◦ (A�C ⊗ ηA) = pA⊗C ◦ ∇A⊗C ◦ iA⊗C = idA�C .

Moreover, by the identities (1) and

∇A⊗C ◦ (μA ⊗ C) ◦ (A ⊗ ψ) = (μA ⊗ C) ◦ (A ⊗ ψ) (44)

we obtain easily φA�C ◦ (φA�C ⊗ A) = φA�C ◦ (A�C ⊗μA) and then A�C is
a right A-module with action φA�C . On the other hand, by

(μA ⊗ C) ◦ (A ⊗ ψ) ◦ (∇A⊗C ⊗ A) = (μA ⊗ C) ◦ (A ⊗ ψ) (45)

and (3) we have

(∇A�C⊗C ⊗ C) ◦ (A�C ⊗ δC) ◦ ρA�C

= (pA⊗C ⊗ C ⊗ C) ◦ (((μA ⊗ C) ◦ (A ⊗ ψ))⊗ C ⊗ C) ◦
(∇A⊗C ⊗ (((ψ ◦ (C ⊗ ηA))⊗ C) ◦ δC))⊗ (A ⊗ δC) ◦ iA⊗C

= pA⊗C ◦ (μA ⊗ C ⊗ C ⊗ C) ◦ (A ⊗ ((ψ ⊗ C ⊗ C) ◦ (C ⊗ ψ ⊗ C) ◦
(δC ⊗ ηA ⊗ C) ◦ δC)) ◦ iA⊗C

= pA⊗C ◦ (μA ⊗ C ⊗ C ⊗ C) ◦ (A ⊗ ((∇A⊗C ⊗ C) ◦ (A ⊗ δC) ◦
(ψ ◦ (C ⊗ ηA))⊗ C)) ◦ (A ⊗ δC) ◦ iA⊗C

= (ρA�C ⊗ C) ◦ ρA�C
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and then (38) holds. Finally, using (3) and (45), we obtain (39) for ρA�C and
φA�C .

Let tA : A ⊗ A → A ⊗ C be the morphism defined by tA = (μA ⊗ C) ◦
(A ⊗ ρA). Then, by the same proof that we can find in 1.5 of [1] for weak
entwining structures, we obtain that ∇A⊗C ◦ tA = tA, and therefore, there exists
a unique morphism rA : A ⊗ A → A�C such that iA⊗C ◦ rA = tA. On the
other hand, the morphism rA satisfies rA ◦ (A ⊗ ϕA) = rA ◦ (φA ⊗ A) and, as a
consequence, there exists a unique morphism (called the canonical morphism)

γA : A ⊗AC A → A�C (46)

such that γA ◦ qA,A = rA .
Suppose that − ⊗ A preserves coequalizers. Then A ⊗AC A is a right A-

module being the action φA⊗AC A : (A ⊗AC A) ⊗ A → A ⊗AC A the factoriza-
tion of qA,A ◦ (A ⊗ μA) through the coequalizer qA,A ⊗ A, i.e., φA⊗AC A is the
unique morphism such that φA⊗AC A ◦ (qA,A ⊗ A) = qA,A ◦ (A ⊗ μA). Also,
there exists a morphism ρA⊗AC A : A ⊗AC A → (A ⊗AC A) ⊗ C defined by the
factorization of (qA,A ⊗ C) ◦ (A ⊗ ρA) through the coequalizer qA,A , or equiv-
alently, ρA⊗AC A is the unique morphism such that ρA⊗AC A ◦ qA,A = (qA,A ⊗
C) ◦ (A ⊗ ρA). The triple (A ⊗AC A, φA⊗AC A, ρA⊗AC A) is a lax entwining mod-
ule because composing with the coequalizer qA,A , using the entwined module
condition of A and the properties of φA⊗AC A, we have

(ρA⊗AC A ⊗ C) ◦ ρA⊗AC A ◦ qA,A

= (qA,A ⊗ C ⊗ C) ◦ (A ⊗ ((ρA ⊗ C) ◦ ρA))

= (qA,A ⊗ C ⊗ C) ◦ (A ⊗ ((∇A⊗C ⊗ C) ◦ (A ⊗ δC) ◦ ρA))

= ((qA,A ◦ (A ⊗ μA))⊗ C ⊗ C) ◦
(A ⊗ (A ⊗ (((ψ ◦ (C ⊗ ηA))⊗ C) ◦ δC))) ◦ (A ⊗ ρA)

= (φA⊗AC A ⊗ C ⊗ C) ◦ (qA,A ⊗ (((ψ ◦ (C ⊗ ηA))⊗ C) ◦ δC)) ◦ (A ⊗ ρA)

= (∇(A⊗AC A)⊗C ⊗ C) ◦ (qA,A ⊗ δC) ◦ (A ⊗ ρA)

= (∇(A⊗AC A)⊗C ⊗ C) ◦ (A ⊗AC A ⊗ δC) ◦ ρA⊗AC A ◦ qA,A,

i.e., (38) holds. Moreover, composing with the coequalizer qA,A ⊗ A and by
similar arguments to the previous ones we obtain

ρA⊗AC A ◦ φA⊗AC A ◦ (qA,A ⊗ A)

= (qA,A ⊗ C) ◦ (A ⊗ (ρA ◦μA))

= (qA,A ⊗ C) ◦ (A ⊗ ((μA ⊗ C) ◦ (A ⊗ ψ) ◦ (ρA ⊗ A)))

= (φA⊗AC A ⊗ C) ◦ ((A ⊗AC A)⊗ ψ) ◦ (ρA⊗AC A ⊗ A) ◦ (qA,A ⊗ A),
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i.e., (39) holds.
As a consequence, using the entwined module structures defined in the pre-

vious paragraphs, it is easy to show (see for example the similar proof in the
weak setting contained in 1.5 of [2]) that γA is morphism of right A-modules.
Moreover, γA satisfies the identity (γA ⊗ C) ◦ ρA⊗AC A = ρA�C ◦ γA. Indeed,
composing with the coequalizer qA,A , applying (38) and

∇A⊗C ◦ (μA ⊗ C) ◦ (A ⊗ ρA) = (μA ⊗ C) ◦ (A ⊗ ρA) (47)

we have

(γA ⊗ C) ◦ ρA⊗AC A ◦ qA,A

= ((pA⊗C ◦ (μA ⊗ C)) ⊗ A) ◦ (A ⊗ ((ρA ⊗ C) ◦ ρA))

= ((pA⊗C ◦ (μA ⊗ C)) ⊗ A) ◦ (A ⊗ ((∇A⊗C ⊗ C) ◦ (A ⊗ δC) ◦ ρA))

= (pA⊗C ⊗ C) ◦ (μA ⊗ δC) ◦ (A ⊗ ρA)

= (pA⊗C ⊗ C) ◦ (A ⊗ δC) ◦ ∇A⊗C ◦ (μA ⊗ C) ◦ (A ⊗ ρA)

= ρA�C ◦ γA ◦ qA,A.

Therefore, γA is a morphism of lax entwined modules.
Finally, if A ⊗ − preserves coequalizers, then γA is a morphism of left A-

modules being ϕA⊗AC A : A ⊗ (A ⊗AC A) → A ⊗AC A the factorization of
qA,A ◦ (μA ⊗ A) through the coequalizer A ⊗ qA,A , i.e. ϕA⊗AC A is the unique
morphism such that ϕA⊗AC A ◦ (A ⊗ qA,A) = qA,A ◦ (μA ⊗ A), and ϕA�C :
A ⊗ A�C → A�C is defined by ϕA�C = pA⊗C ◦ (μA ⊗ C) ◦ (A ⊗ iA⊗C ) (see
1.5 of [2] for the proof).

Definition 2.5. Let (A,C, ψ) be a lax entwining structure such that there exists
a morphism ρA : A → A ⊗ C such that (A, μA, ρA) belongs toMC

A(ψ). We say
that AC ↪→ A is a lax C-Galois extension if the canonical morphism γA defined
in (46) is an isomorphism.

Notice that in (2.6)we obtain that γA satisfies the identity (γA⊗C)◦ρA⊗AC A =
ρA�C ◦γA and, if the functor −⊗ A preserves coequalizers, γA is a morphism of
right A-modules and, as a consequence, is a morphism of lax entwined modules.
Moreover, if A ⊗ − preserves coequalizers γ is a morphism of left A-modules.
For example, if C is symmetric closed we have these properties.

Using the fact that every partial entwining structure is a lax entwining structure
we define the notion of partial C-Galois extension in a similar way.

Theorem 2.6. Let (A,C, ψ) be a lax entwining structure such that there exists
a morphism ρA : A → A ⊗ C satisfying that (A, μA, ρA) belongs to MC

A(ψ).
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Suppose that AC ↪→ A is a lax C-Galois extension such that the functor − ⊗ A
preserves coequalizers. Then,

ψ = iA⊗C ◦ γA ◦ φA⊗AC A ◦ ((γ−1
A ◦ pA⊗C ◦ (ηA ⊗ C)) ⊗ A). (48)

Proof. Composing with the coequalizer qA,A ⊗ A we obtain

iA⊗C ◦ γA ◦ φA⊗AC A ◦ (qA,A ⊗ A)

= ∇A⊗C ◦ (μA ⊗ C) ◦ (A ⊗ (ρA ◦ μA))

= (μA ⊗ C) ◦ (μA ⊗ ψ) ◦ (A ⊗ ρA ⊗ A)

= (μA ⊗ C) ◦ (A ⊗ ψ) ◦ ((∇A⊗C ◦ (μA ⊗ C) ◦ (A ⊗ ρA))⊗ A)

= (μA ⊗ C) ◦ (A ⊗ ψ) ◦ ((iA⊗C ◦ γA)⊗ A) ◦ (qA,A ⊗ A),

where the first equality follows the properties of the action and the canonical
morphism, the second one by (44) and the entwined module condition (39) for
A, the third one by (44) and the fourth one by the properties of the canonical
morphism.

Therefore,

iA⊗C ◦ γA ◦ φA⊗AC A = (μA ⊗ C) ◦ (A ⊗ ψ) ◦ ((iA⊗C ◦ γA)⊗ A) (49)

and, as a consequence of this identity, we have

iA⊗C ◦ γA ◦ φA⊗AC A ◦ ((γ−1
A ◦ pA⊗C ◦ (ηA ⊗ C)) ⊗ A)

= (μA ⊗ C) ◦ (A ⊗ ψ) ◦ ((∇A⊗C ◦ (ηA ⊗ C)) ⊗ A)

= (μA ⊗ C) ◦ (A ⊗ ψ) ◦ ((ψ ◦ (C ⊗ ηA))⊗ A) = ψ. �

2.9. Let (M, φM , ρM) be a lax entwined module for a lax entwining structure
(A,C, ψ). The morphism	M⊗C : M ⊗ C → M ⊗ C defined by

	M⊗C = (φM ⊗ C) ◦ (M ⊗ ((e ⊗ C) ◦ δC))

is idempotent because by (7) we have

	M⊗C ◦	M⊗C = (φM ⊗ C) ◦ (M ⊗ (((e ∧ e)⊗ C) ◦ δC)) = 	M⊗C .

Then, there exist an object M ×C and morphisms jM⊗C : M ×C → M ⊗C and
qM⊗C : M ⊗C → M ×C satisfying	M⊗C = jM⊗C ◦qM⊗C and qM⊗C ◦ jM⊗C =
idM×C .
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If there exists a morphism ρA : A → A ⊗ C satisfying that (A, μA, ρA)

belongs toMC
A(ψ), for the morphism tA defined in 2.6 we obtain

	A⊗C ◦ tA = tA. (50)

Indeed, by (40) and (iii) of Lemma 1.2 we have

	A⊗C ◦ tA

= (μA ⊗ C) ◦ (A ⊗ (	A⊗C ◦ ρA))

= (μA ⊗ C) ◦ (A ⊗ (	A⊗C ◦ ∇A⊗C ◦ ρA))

= (μA ⊗ C) ◦ (A ⊗ (∇A⊗C ◦ ρA))

= tA.

Therefore, there exists a unique morphism r ′
A = qA⊗C ◦ tA : A ⊗ A →

A × C such that jA⊗C ◦ r ′
A = tA. On the other hand, the morphism r ′

A satisfies
r ′

A ◦ (A ⊗ ϕA) = r ′
A ◦ (φA ⊗ A) and, as a consequence, there exists a unique

morphism (called the second canonical morphism)

βA : A ⊗AC A → A × C (51)

such that βA ◦ qA,A = r ′
A.

Let

�1 = qA⊗C ◦ iA⊗C : A�C → A × C and

�2 = pA⊗C ◦ jA⊗C : A × C → A�C

be the morphisms defined using the injections and the projections associated
to the idempotents ∇A⊗C and 	A⊗C . Then,

�1 ◦ γA ◦ qA,A = qA⊗C ◦ ∇A⊗C ◦ tA = qA⊗C ◦ tA = r ′
A = βA ◦ qA,A,

�2 ◦ βA ◦ qA,A = pA⊗C ◦	A⊗C ◦ tA = pA⊗C ◦ tA = rA = γA ◦ qA,A

and, as a consequence we obtain the following relations between the canonical
morphism and the second canonical morphism

�1 ◦ γA = βA, �2 ◦ βA = γA. (52)

As in Theorem 2.6 if the functor − ⊗ A preserves coequalizers and βA is an
isomorphism it it possible to obtain an expression of ψ involving βA and its
inverse. To prove this assertion, first we obtain the identity

jA⊗C ◦ βA ◦ φA⊗AC A = (μA ⊗ C) ◦ (A ⊗ ψ) ◦ (( jA⊗C ◦ βA)⊗ A). (53)
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Indeed, composing with the coequalizer qA,A ⊗ A we have

jA⊗C ◦ βA ◦ φA⊗AC A ◦ (qA,A ⊗ A)

= 	A⊗C ◦ (μA ⊗ C) ◦ (A ⊗ (ρA ◦ μA))

= (μA ⊗ C) ◦ (μA ⊗ (	A⊗C ◦ψ)) ◦ (A ⊗ ρA ⊗ A)

= (μA ⊗ C) ◦ (μA ⊗ ψ) ◦ (A ⊗ ρA ⊗ A)

= (μA ⊗ C) ◦ (A ⊗ ψ) ◦ ((	A⊗C ◦ (μA ⊗ C) ◦ (A ⊗ ρA))⊗ A)

= (μA ⊗ C) ◦ (A ⊗ ψ) ◦ (( jA⊗C ◦ βA)⊗ A) ◦ (qA,A ⊗ A),

where the first equality follows by the properties φA⊗AC A and βA, the second
one by the entwined module condition for A, the associativity of the product
μA as well as the left A-linearity of 	A⊗C being ϕA⊗C = μA ⊗ C, i.e.

(μA ⊗ C) ◦ (A ⊗ ∇A⊗C ) = ∇A⊗C ◦ (μA ⊗ C). (54)

The third one follows by (iv) of Lemma 1.2, the fourth one by (50) and finally,
the fifth one by the properties of βA. Therefore (53) holds and then applying this
identity, the equalities (2), (3) and (i) and (iv) of Lemma 1.2, we obtain

jA⊗C ◦ βA ◦ φA⊗AC A ◦ ((β−1
A ◦ qA⊗C ◦ (ηA ⊗ C)) ⊗ A)

= (μA ⊗ C) ◦ (A ⊗ ψ) ◦ ((	A⊗C ◦ (ηA ⊗ C)) ⊗ A)

= (μA ⊗ C) ◦ (e ⊗ ψ) ◦ (δC ⊗ A)

= (((A ⊗ εC) ◦ ψ)⊗ C) ◦ (C ⊗ ψ) ◦ (δC ⊗ A)

= (((A ⊗ εC) ◦ ∇A⊗C )⊗ C) ◦ (A ⊗ δC) ◦ ψ
= 	A⊗C ◦ ψ
= ψ.

The following Theorem clarify the implications of assuming the isomor-
phism condition for βA.

Theorem 2.7. Let (A,C, ψ) be a lax entwining structure such that there exists
a morphism ρA : A → A ⊗ C satisfying that (A, μA, ρA) belongs to MC

A(ψ).
Suppose that the functor −⊗ A preserves coequalizers. Then if βA is an isomor-
phism, the canonical morphism γA is an isomorphism and (A,C, ψ) is a weak
entwining structure.

Proof. If βA is an isomorphism, γA is an isomorphism with inverse γ−1
A =

β−1
A ◦�1 where �1 is the morphism defined in 2.9. Indeed,

γA ◦β−1
A ◦�1 = �2 ◦βA ◦β−1

A ◦�1 = �2 ◦�1 = pA⊗C ◦	A⊗C ◦ iA⊗C = idA�C
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where the last equality follows by (iii) of Lemmma 1.2. On the other hand,
composing with the coequalizer qA,A , we have

β−1
A ◦�1 ◦ γA ◦ qA,A = β−1

A ◦ qA⊗C ◦ ∇A⊗C ◦ (μA ⊗ C) ◦ (A ⊗ ρA)

= β−1
A ◦ qA⊗C ◦ (μA ⊗ C) ◦ (A ⊗ ρA)

= β−1
A ◦ r ′

A = β−1
A ◦ βA ◦ qA,A = qA,A

and therefore β−1
A ◦�1 ◦ γA = idA⊗AC A.

Finally, if γA and βA are isomorphisms by (48) and the similar equality
obtained in 2.9 we have

ψ = iA⊗C ◦ γA ◦ φA⊗AC A ◦ ((γ−1
A ◦ pA⊗C ◦ (ηA ⊗ C)) ⊗ A)

= jA⊗C ◦ βA ◦ φA⊗AC A ◦ ((β−1
A ◦ qA⊗C ◦ (ηA ⊗ C)) ⊗ A).

Then, composing with C ⊗ ηA we prove that

ψ ◦ (C ⊗ ηA) = ∇A⊗C ◦ (ηA ⊗ C) = 	A⊗C ◦ (ηA ⊗ C),

and therefore,
ψ ◦ (C ⊗ ηA) = (e ⊗ C) ◦ δC ,

i.e., (A,C, ψ) is a weak entwining structure (see Theorem 1.4). �

Example 2.8. Let (A, RG, ψ) the lax entwining structure introduced in example
1.8. Then, it is easy to show that

βA(a ⊗ARG b) = nxγA(a ⊗ARG b)

and then, βA is an isomorphism if and only if γA is an isomorphism. As a
consequence, by Theorem 2.7, γA and βA are not isomorphisms.

Lemma 2.9. Let (A,C, ψ) be a lax entwining structure such that there exists a
morphism ρA : A → A ⊗ C satisfying that (A, μA, ρA) belongs toMC

A(ψ). Let
σ : A → AC ⊗ C be a morphism of left AC -modules for the actions ϕAC ⊗C =
μAC ⊗ C and ϕA = μA ◦ (iA ⊗ A). Then, there exists an unique morphism
mσ : A ⊗AC A → A such that

mσ ◦ qA,A = μA ◦ (A ⊗ ((i A
C ⊗ εC) ◦ σ)).

Moreover, if A ⊗ − preserves coequalizers, mσ is a left A-module morphism.

Proof. The proof is similar to the one developed in Lemma 1.9 of [2]. �
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Definition 2.10. Let AC ↪→ A be a lax C-Galois extension. We will say that
AC ↪→ A satisfies the normal basis property (or AC ↪→ A is a lax C-Galois
extension with normal basis) if there exists an idempotent morphism of left AC -
modules �A : AC ⊗ C → AC ⊗ C, for the action ϕAC ⊗C = μAC ⊗ C, and an
isomorphism bA : AC � C → A, where AC � C is the image of �A, satisfying
the following conditions:

(i) bA is an isomorphism of of left AC -modules, where ϕAC�C = rAC ⊗C ◦
(μAC ⊗ C) ◦ (AC ⊗ sAC ⊗C), and sAC ⊗C : AC � C → AC ⊗ C, rAC ⊗C :
AC ⊗ C → AC � C are the morphisms such that sAC ⊗C ◦ rAC ⊗C = �A,
rAC ⊗C ◦ sAC ⊗C = idAC�C .

(ii) If ωA = bA ◦ rAC ⊗C : AC ⊗ C → A and ω′
A = sAC ⊗C ◦ b−1

A : A →
AC ⊗ C, the following equalities hold

�A = (((AC ⊗ εC) ◦ ω′
A)⊗ C) ◦ ρA ◦ ωA, (55)

ρA ◦ ωA = ∇A⊗C ◦ (ωA ⊗ C) ◦ (AC ⊗ δC). (56)

(iii) If f = ωA ◦ (ηAC ⊗C) and f ′ = mω′
A
◦γ−1

A ◦ pA⊗C ◦ (ηA ⊗C) the equality

f ′ ∧ f = μA ◦ (A ⊗ ( f ′ ∧ f )) ◦ ψ ◦ (C ⊗ ηA) (57)

holds where mω′
A

is the morphism introduced in Lemma 2.9.

Observe that ωA and ω′
A are morphisms of left AC -modules and then we can

apply Lemma 2.9 for σ = ω′
A. Moreover, ϕAC�C is a well defined structure of

left AC -module because �A is a morphism of left AC -modules. Also, we have a
commutative diagram

�
�

�
�

��� �
�

���

�
�

�
��� �

�
���

AC ⊗ C AC ⊗ C

A

AC � C

ωA ω′
A

rAC ⊗C sAC ⊗C

�A

Also, notice that equality (56) says that ωA is a morphism in W (MC) be-
tween the objects (AC ⊗ C,∇AC ⊗C⊗C = idAC ⊗C⊗C , ρAC ⊗C = AC ⊗ δC) and
(A,∇A⊗C , ρA)
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This definition is a generalization of the one introduced in [2] for weak en-
twining structures. In this setting (A, ρA) is a right C-comodule and�A and bA

are morphisms of right C-comodules. As a consequence, ωA and ω′
A are also

morphisms of right C-comodules and the equalities (55) and (56) hold trivially.
Moreover, in the weak setting (57) holds (see the proof of Theorem 2.11 of [2] ).

Note that if C is a category of modules over a commutative ring, this notion
of normal basis in the lax setting says that A is a direct summand of AC ⊗ C
in the category of left AC -modules and as well as the image of an idempotent
morphism that satisfies some identities closely related with the right C-comodule
condition.

Finally, if AC ↪→ A is a partial C-Galois extension, the definition of partial
C-Galois extension with normal basis is the one obtaining when we replace in
Definition 2.10 lax by partial.

3 The characterization of lax C -Galois extensions with normal basis

In this section, for a lax entwinig structure, we introduce the notion of lax
C-cleft extension A and we obtain a characterization of C-Galois extensions
with normal basis in as lax C-cleft extensions.

Definition 3.1. Let (A,C, ψ) be a lax entwining structure. By RegW R(C, A)
we denote the set of morphisms h ∈ H omC(C, A) such that there exists a
morphism h−1 ∈ H omC(C, A), called the left weak inverse of h, satisfying
h−1 ∧ h = e.

Remark 3.2. Suppose that (A,C, ψ) be a lax entwining structure such that
there exists a morphism ρA : A → A ⊗ C satisfying that (A, μA, ρA) belongs
toMC

A(ψ). Then if h ∈ H omC(C, A) is a morphism such that

ρA ◦ h = ∇A⊗C ◦ (h ⊗ C) ◦ δC, (58)

i.e. h is a morphism in W (MC) between the objects (C,∇C⊗C = idC⊗C ,

ρC = δC) and (A,∇A⊗C , ρA), by the entwined module condition for A, it is
easy to show that

h ∧ e = h. (59)

Moreover, if h ∈ RegW R(C, A), it is possible to obtain an explicit expression
for ψ as

ψ = (μA ⊗ C) ◦ (A ⊗ (ρA ◦ μA) ◦ (((h−1 ⊗ h) ◦ δC)⊗ A). (60)
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Indeed,

ψ

= 	A⊗C ◦ ψ
= (((A ⊗ εC) ◦ ∇A⊗C )⊗ C) ◦ (A ⊗ δC) ◦ ψ
= ((A ⊗ εC)⊗ C) ◦ (ψ ⊗ C) ◦ (C ⊗ ψ) ◦ (δC ⊗ A)

= ((μA ◦ (e ⊗ A))⊗ C) ◦ (C ⊗ ψ) ◦ (δC ⊗ A)

= ((μA ◦ ((h−1 ∧ h) ⊗ A))⊗ C) ◦ (C ⊗ ψ) ◦ (δC ⊗ A)

= (μA ⊗ C) ◦ (A ⊗ (((μA ◦ (h ⊗ A))⊗ C) ◦ (C ⊗ ψ))) ◦
(h−1 ⊗ δC ⊗ A) ◦ (δC ⊗ A)

= (μA ⊗ C) ◦ (A ⊗ ((μA ⊗ C) ◦ (A ⊗ ψ))) ◦
(h−1 ⊗ (∇A⊗C ◦ (h ⊗ C) ◦ δC)⊗ A) ◦ (δC ⊗ A)

= (μA ⊗ C) ◦ (A ⊗ ((μA ⊗ C) ◦ (A ⊗ ψ))) ◦
(h−1 ⊗ (ρA ◦ h) ⊗ A) ◦ (δC ⊗ A)

= (μA ⊗ C) ◦ (A ⊗ (ρA ◦ μA)) ◦ (((h−1 ⊗ h) ◦ δC)⊗ A),

where the first equality follows by (iv) of Lemma 1.2, the second one by (i) of
Lemma 1.2, the third one by (3) and the fourth one by (2). To obtain the fifth
one we used that h ∈ RegW R(C, A), while the sixth one is a consequence of the
associativity of μA and the coassociativity of δC . The seventh one follows by
(45), the eighth one by (58) and finally the ninth one by the entwined module
condition for A.

Notice that if we replace the equality (58) by

ρA ◦ h = (h ⊗ C) ◦ δC ,

that is, if we assume that h is a right C-comodule morphism, we can obtain the
same explicit expression for ψ and then, composing with C ⊗ ηA, we have

ψ ◦ (C ⊗ ηA) = (μA ⊗ C) ◦ (A ⊗ ρA) ◦ (h−1 ⊗ h) ◦ δC = (e ⊗ C) ◦ δC,

or, equivalently, (A,C, ψ) is a weak entwining structure.

Example 3.3. Let R be a commutative ring, G = {gi | i = 0, . . . , n} a finite
group with g0 the identity element and A a R-algebra. Following [10], a left
partial action of G on A consists of a set of idempotents {egi | i = 0, . . . , n} ⊂ A,
and a set of isomorphisms αgi : eg−1

i
A → egi A such that eg0 = 1A, αg0 =

Bull Braz Math Soc, Vol. 45, N. 1, 2014
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idA and

egiαgi g j (eg−1
j g−1

i
a) = αgi (eg−1

i
αg j (eg−1

j
a)), (61)

αgi (eg−1
i

ab) = αgi(eg−1
i

a)αgi (eg−1
i

b), (62)

αgi (eg−1
i
) = egi (63)

for all gi , g j in G and a, b in A.
By Proposition4.9 of [10] we know that there exists a bijective correspondence

between left partial G-actions and structures of left partial RG-module algebra
over A. Then, A with the partial action

ϕA(gi ⊗ a) = αgi (eg−1
i

a)

is a left partial RG-module algebra. Therefore, Aop with the coaction defined
in (34) is a partial right R(G)cop-comodule algebra. In this case

ρAop (a) =
∑
gi∈G

ϕA(gi ⊗ a)⊗ fgi

where { fgi | i = 0, . . . , n} is the dual basis of {gi | i = 0, . . . , n} and, as a
consequence, ρAop is the coaction determined by the grouplike element

∑
gi∈G

fgi

(see Proposition 6.3 of [5]).
Then if we assume as in [5] that a plausible definition of cleft extension in the

partial setting involves the existence of a convolution invertible right colinear
morphism from R(G)cop to A, by the arguments presented in the previous remark,
we obtain that the partial entwining structure associated to ρAop , i.e.

(Aop, R(G)cop, ψ = (A ⊗ μR(G)cop ) ◦ (cR(G),A ⊗ R(G)) ◦ (R(G)⊗ ρAop )),

is weak. Therefore, by Theorem 1.4 we prove that (Aop, R(G)cop, ψ) is an
entwining structure and, as a consequence, ϕA ◦ (RG ⊗ ηA) = εRG ⊗ ηA, or
equivalently, (A, ϕA) is a usual left RG-module algebra.

Motivated for this problem, in the following definition we introduce a new
notion of cleft extension in a lax setting.

Definition 3.4. Let (A,C, ψ) be a lax entwining structure such that there exists
a morphism ρA : A → A ⊗ C satisfying that (A, μA, ρA) belongs to MC

A(ψ).
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We will say that AC ↪→ A is a lax C-cleft extension if there exists a morphism
h : C → A in RegW R(C, A), called the cleaving morphism, satisfying the
equality (58) and

μA ◦ (A ⊗ h−1) ◦ ∇A⊗C = μA ◦ (A ⊗ h−1), (64)

ψ ◦ (C ⊗ h−1) ◦ δC = ζA ◦ h−1, (65)

where ζA is the morphism defined in Proposition 2.3.
This definition is a generalization of the one introduced for the weak ent-

wining setting in [1] and the one used by Brzeziński in [7] for entwining struc-
tures. Notice that, while in the case of a cleft extension for a weak entwin-
ing structure h is required to be a right comodule morphism (A is a right
C-comodule), here this condition is replaced by (58). Also, in this definition
appears a new condition (64) that, in the weak setting, is a consequence of
∇A⊗C = 	A⊗C and

e ∧ h−1 = h−1. (66)

Finally, as in the previous definitions, the notion of partial C-cleft extension
is introduced in a similar way.

Lemma 3.5. Let AC ↪→ A be a lax C-cleft extension with cleaving morphism
h. Then, for the left inverse of h the equality (66) holds.

Proof. Check

e ∧ h−1 = (A ⊗ εC) ◦ ψ ◦ (C ⊗ h−1) ◦ δC = (A ⊗ εC) ◦ ζA ◦ h−1 = h−1

where the first equality follows by (2), the second on by (65) and the last one
by the identity idA = (A ⊗ εC) ◦ ρA. �

Remark 3.6. In the conditions of the previous Lemma, the inverse of the
cleaving morphism can be obtained as

h−1 = e ∧ h−1 = μA ◦ (A ⊗ h−1) ◦ ∇A⊗C ◦ (e ⊗ A) ◦ δC

= μA ◦ (A ⊗ h−1) ◦ ψ ◦ (C ⊗ ηA)

where the second equality follows by (64) and the last one by (4). Then, as a
consequence, the following identity

φM ◦ (M ⊗ h−1) ◦ ∇M⊗C = φM ◦ (M ⊗ h−1) (67)

holds for any lax entwined module M .
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In the followig proposition we give a characterization of lax C-cleft exten-
sions.

Proposition 3.7. Let (A,C, ψ) be a lax entwining structure such that there exists
a morphism ρA : A → A ⊗ C such that (A, μA, ρA) belongs to MC

A(ψ). Let
h ∈ RegW R(C, A) satisfying the equalities (58) and (64). Then the following
assertions are equivalent:

(i) For every lax entwined module the morphism

gM = φM ◦ (M ⊗ h−1) ◦ ρM : M → M

factors through the equalizer of ρM and ζM, that is, if iM : MC → M is
the equalizer morphism defined in Proposition 2.3, there exists an unique
morphism pM : M → MC such that iM ◦ pM = gM.

(ii) The morphism

gA = μA ◦ (A ⊗ h−1) ◦ ρA : A → A

factors through the equalizer of ρA and ζA, that is, if iA : AC → A is
the equalizer morphism defined in Proposition 2.3, there exists an unique
morphism pA : A → AC such that iA ◦ pA = gA.

(iii) AC ↪→ A is a lax C-cleft extension with cleaving morphism h.

Proof. (i) ⇒ (ii) Just consider M = A.
(ii) ⇒ (iii) To prove this assertion, first we show that

gA ◦ h = h ∧ h−1. (68)

Indeed, by (58) and (64) we have

h ∧ h−1 = μA ◦ (A ⊗ h−1) ◦ ∇A⊗C ◦ (h ⊗ C) ◦ δC = gA ◦ h.

Then,

ψ ◦ (C ⊗ h−1) ◦ δC

= (μA ⊗ C) ◦ (h−1 ⊗ (ρA ◦ (h ∧ h−1))) ◦ δC

= (μA ⊗ C) ◦ (h−1 ⊗ (ρA ◦ gA ◦ h))) ◦ δC

= (μA ⊗ C) ◦ (h−1 ⊗ (ζA ◦ gA ◦ h))) ◦ δC

= ζA ◦ (h−1 ∧ (gA ◦ h))

= ζA ◦ (h−1 ∧ (h ∧ h−1))

= ζA ◦ (e ∧ h−1)

= ζA ◦ h−1,
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where the first equality follows by (60) and the coassocitivity of δC and the
second one by (68). To obtain the third one we used that gA factors through
iA and the fourth one follows by the associativity of μA. The fifth equality is a
consequence of (68) and the sixth one follows by the associativity of the convo-
lution product as well as the condition h ∈ RegW R(C, A). Finally, the last one
follows by (66).

Therefore, AC ↪→ A is a lax C-cleft extension with cleaving morphism h.
(iii) ⇒ (i) Let M be a lax entwined module and assume that AC ↪→ A is a lax

C-cleft extension with cleaving morphism h. Then

ρM ◦ gM

= (φM ⊗ C) ◦ (M ⊗ ψ) ◦ (ρM ⊗ h−1) ◦ ρM

= (φM ⊗ C) ◦ (M ⊗ ψ) ◦ (∇M⊗C ⊗ h−1) ◦ (M ⊗ δC) ◦ ρM

= (φM ⊗ C) ◦ (M ⊗ (ψ ◦ (C ⊗ h−1) ◦ δC)) ◦ ρM

= (φM ⊗ C) ◦ (M ⊗ (ζA ◦ h−1)) ◦ ρM

= ζM ◦ gM ,

where the first equality follows by the entwined module condition for M , the
second one by (38), the third one by

(φM ⊗ C) ◦ (M ⊗ ψ) ◦ (∇M⊗C ⊗ A) = (φM ⊗ C) ◦ (M ⊗ ψ), (69)

the fourth one by (65) and the last one by the right A-module condition for M .
Therefore, gM factors through the equalizer of ρM and ζM . �

Lemma 3.8. Let AC ↪→ A be a lax C-cleft extension with cleaving morphism
h. Then for all lax entwined module M the following equality holds.

pM ◦ φM ◦ (iM ⊗ A) = φMC ◦ (MC ⊗ pA). (70)

Proof. To prove this equality check

iM ◦ pM ◦ φM ◦ (iM ⊗ A)

= φM ◦ (φM ⊗ h−1) ◦ (M ⊗ ψ) ◦ ((ρM ◦ iM )⊗ A)

= φM ◦ (M ⊗ (μA ◦ (A ⊗ h−1) ◦ ψ)) ◦ ((ρM ◦ iM )⊗ A)

= φM ◦ (iM ⊗ (μA ◦ (μA ⊗ h−1) ◦ (A ⊗ ψ) ◦ ((ρA ◦ ηA)⊗ A)))

= φM ◦ (iM ⊗ gA)
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= φM ◦ (iM ⊗ (iA ◦ pA))

= iM ◦ φMC ◦ (MC ⊗ pA),

where the first equality follows by the entwined module condition for M , the
second one by the A-module condition for M , the third one is a consequence of
ρM ◦ iM = ζM ◦ iM , the A-module condition for M as well as the associativity
of μA. In the fourth one we use the entwined module condition for A and the
unit properties. The fifth one follows by the factorization properties of gA and
finally, the last one, by (ii) of Proposition 2.3.

Therefore (70) holds because iM is an equalizer. �
If AC ↪→ A is a lax C-cleft extension, in the following Proposition, for all

lax entwined module M , we obtain an idempotent morphism satisfying suitable
conditions.

Proposition 3.9. Let AC ↪→ A be a lax C-cleft extension with cleaving
morphism h. Let M be a lax entwined module. Define:

ωM = φM ◦ (iM ⊗ h) : MC ⊗ C → M

and
ω′

M = (pM ⊗ C) ◦ ρM : M → MC ⊗ C.

Then, the following assertions hold:

(i) The morphisms ωM and ω′
M satisfy the equality

ωM ◦ ω′
M = idM (71)

and ωM is a morphism in W (MC) between the objects

(MC ⊗ C,∇MC ⊗C⊗C = idMC ⊗C⊗C , ρMC ⊗C = MC ⊗ δC)

and (M,∇M⊗C , ρM), i.e.

ρM ◦ ωM = ∇M⊗C ◦ (ωM ⊗ C) ◦ (MC ⊗ δC). (72)

As a consequence �M = ω′
M ◦ ωM : MC ⊗ C → MC ⊗ C is an idem-

potent morphism and

�M = (((MC ⊗ εC) ◦ ω′
M)⊗ C) ◦ ρM ◦ ωM . (73)
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(ii) In the particular case of M = A, we have that ωA = μA ◦ (iA ⊗ h) and
ω′

A = (pA ⊗ C) ◦ ρA are morphism of left AC -modules for the actions
ϕAC ⊗C = μAC ⊗ C and ϕA = μA ◦ (iA ⊗ A).

Proof. The equality (71) holds because:

ωM ◦ ω′
M

= φM ◦ ((φM ◦ (M ⊗ h−1) ◦ ρM)⊗ h) ◦ ρM

= φM ◦ ((φM ◦ (M ⊗ h−1) ◦ ∇M⊗C)⊗ h) ◦ (M ⊗ δC) ◦ ρM

= φM ◦ (φM ⊗ A) ◦ (M ⊗ ((h−1 ⊗ h) ◦ δC)) ◦ ρM

= φM ◦ (M ⊗ e) ◦ ρM

= idM ,

where the first equality follows by definition, the second one by (38), the third
one by (67), the fourth one by the A-module condition for M and finally, the
fifth one by (41).

On the other hand,

ρM ◦ ωM

= (φM ⊗ C) ◦ (M ⊗ ψ) ◦ ((ρM ◦ iM )⊗ H )

= (φM ⊗ C) ◦ (iM ⊗ ((μA ⊗ C) ◦ (A ⊗ ψ) ◦ ((ρA ⊗ ηA)⊗ h)))

= (φM ⊗ C) ◦ (iM ⊗ (ρA ◦ h))

= (φM ⊗ C) ◦ (iM ⊗ (∇A⊗C ◦ (h ⊗ C) ◦ δC))

= ∇M⊗C ◦ (ωM ⊗ C) ◦ (MC ⊗ δC),

where the first equality follows by the entwined module condition for M , the
second one by the properties of the equalizer morphism iM as well as the A-
module condition for M , the third one the entwined module condition for A, the
fourth one by (58) and the last one by

∇M⊗C ◦ (φM ⊗ C) = (φM ⊗ C) ◦ (M ⊗ ∇A⊗C ). (74)

Therefore, (72) holds. Finally, the identity (73) is a trivial consequence of
idM = (M ⊗ εC) ◦ ρM .

In the particular case of M = A we obtain that ωA and ω′
A are morphisms

of left AC modules because by (i) of Proposition 2.3 and the associativity of
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μA we have

ωA ◦ ϕAC ⊗C

= μA ◦ ((iA ◦ μAC )⊗ h)

= μA ◦ ((μA ◦ (iA ⊗ iA)⊗ h)

= ϕA ◦ (AC ⊗ ωA)

and by the entwined module condition for A, the properties of iA and (70)
we obtain

ω′
A ◦ ϕA

= ((pA ◦ μA)⊗ C) ◦ (A ⊗ ψ) ◦ ((ρA ◦ iA)⊗ A)

= ((pA ◦ μA)⊗ C) ◦ (iA ⊗ ((μA ⊗ C) ◦ (A ⊗ ψ) ◦ ((ρA ◦ ηA)⊗ A)))

= ((pA ◦ μA)⊗ C) ◦ (iA ⊗ ρA)

= ϕAC ⊗C ◦ (AC ⊗ ω′
A).

Remark 3.10. Note that in the conditions of the previous Proposition we have
an isomorphism bM : MC � C → M where MC � C denotes the image of
the idempotent �M . If we denote by sMC ⊗C and rMC ⊗C the injection and the
projection associated to �M , we have that bM = ωM ◦ sMC ⊗C and therefore
b−1

M = rMC ⊗C ◦ ω′
M .

In the case M = A, the idempotent�A is a left AC -module morphism and bA

is also a left AC -module morphism for ϕAC�C = rAC ⊗C ◦ϕAC ⊗C ◦ (AC ⊗sAC ⊗C).
Finally, note that if ω′

M is a morphism in W (MC) between the objects
(M,∇M⊗C, ρM) and (MC ⊗ C, idMC ⊗C⊗C , ρMC ⊗C = MC ⊗ δC) we obtain that
∇M⊗C = idM⊗C and then (M, ρM) is right C-comodule. On the other hand,
if ∇M⊗C = idM⊗C , we have that (M, ρM) is right C-comodule and ω′

M is a
morphism of right C-comodules.

Now we can prove the main theorem of this section.

Theorem 3.11. Let (A,C, ψ) be a lax entwining structure such that there
exists a morphism ρA : A → A ⊗ C such that (A, μA, ρA) belongs to MC

A(ψ).
Consider the following assertions:

(i) AC ↪→ A is a lax C-cleft extension.

(ii) AC ↪→ A is a lax C-Galois extension with normal basis.

Then (i) ⇒ (ii). If A ⊗ − preserves coequalizers (ii) ⇒ (i).
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Proof. (i) ⇒ (ii) Let AC ↪→ A be a lax C-cleft extension and take

γ ′
A = qA,A ◦ (μA ⊗ A) ◦ (A ⊗ h−1 ⊗ h) ◦ (A ⊗ δC) ◦ iA⊗C : A�C → A ⊗AC A

Then γA ◦ γ ′
A = idA�C because

iA⊗C ◦ γA ◦ γ ′
A

= tA ◦ (μA ⊗ A) ◦ (A ⊗ h−1 ⊗ h) ◦ (A ⊗ δC) ◦ iA⊗C

= (μA ⊗ C) ◦ (A ⊗ μA ⊗ C) ◦ (A ⊗ h−1 ⊗ (∇A⊗C ◦
(h ⊗ C) ◦ δC)) ◦ (A ⊗ δC) ◦ iA⊗C

= ∇A⊗C ◦	A⊗C ◦ iA⊗C

= iA⊗C ,

where the first equality follows by the properties of γA, the second one by (58)
and the associativity of μA , the third one by (54) and the last one by (iii) of
Lemma 1.2.

On the other hand, γ ′
A ◦ γA = idA⊗AC A because

γ ′
A ◦ γA ◦ qA,A

= qA,A ◦ (μA ⊗ A) ◦ (A ⊗ h−1 ⊗ h) ◦ (A ⊗ δC) ◦ tA

= qA,A ◦ (μA ⊗ A) ◦ (A ⊗ (μA ◦ (A ⊗ h−1) ◦ ∇A⊗C )⊗ h) ◦
(A ⊗ A ⊗ δC) ◦ (A ⊗ ρA)

= qA,A ◦ (μA ⊗ A) ◦ (A ⊗ gA ⊗ h) ◦ (A ⊗ ρA)

= qA,A ◦ (A ⊗ (μA ◦ (gA ⊗ h) ◦ ρA))

= qA,A ◦ (A ⊗ (μA ◦ ((μA ◦ (A ⊗ h−1) ◦ ∇A⊗C )⊗ h) ◦ (A ⊗ δC) ◦ ρA))

= qA,A ◦ (A ⊗ (μA ◦ (A ⊗ e) ◦ ρA))

= qA,A,

where the first equality follows by the properties of γA, the second and the sixth
ones by the associativity of μA and (64), the third and the fifth ones by (38), the
fourth one by the properties of qA,A and finally, the last one by (41).

Therefore γA is an isomorphism with inverse γ−1
A = γ ′

A and, as a conse-
quence, AC ↪→ A is a lax C-Galois extension. Finally, by (i) of Proposition 3.9
and Remark 3.10 we obtain that AC ↪→ A satisfies the normal basis condi-
tion because in this setting (see (ii) of Proposition 3.9) we have that ωA =
μA ◦ (iA ⊗ h), ω′

A = (pA ⊗ C) ◦ ρA and then

f = ωA ◦ (ηAC ⊗ C) = μA ◦ ((iA ◦ ηAC )⊗ h) = h
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and

f ′

= mω′
A
◦ γ−1

A ◦ pA⊗C ◦ (ηA ⊗ C)

= mω′
A
◦ qA,A ◦ (μA ⊗ A) ◦ (A ⊗ h−1 ⊗ h) ◦ (A ⊗ δC) ◦ ∇A⊗C ◦ (ηA ⊗ C)

= μA ◦ (A ⊗ (h−1 ∧ (gA ◦ h))) ◦ ∇A⊗C ◦ (ηA ⊗ C)

= μA ◦ (A ⊗ (h−1 ∧ (h ∧ h−1))) ◦ ∇A⊗C ◦ (ηA ⊗ C)

= μA ◦ (A ⊗ ((h−1 ∧ h) ∧ h−1)) ◦ ∇A⊗C ◦ (ηA ⊗ C)

= μA ◦ (A ⊗ (e ∧ h−1)) ◦ ∇A⊗C ◦ (ηA ⊗ C)

= μA ◦ (A ⊗ h−1) ◦ ∇A⊗C ◦ (ηA ⊗ C)

= μA ◦ (A ⊗ h−1) ◦ (ηA ⊗ C)

= h−1,

where the first and the second equalities follow by definition, the third one by
Lemma 2.9 (σ = ω′

A) and the associativity of μA , the fourth one by (68), the
fifth one by the associativity of the convolution product, the sixth one by the
properties of h−1, the seventh one by (66), the eighth one by (64) and finally the
last one by the unit properties.

Therefore,

f ′ ∧ f = e = μA ◦ (A ⊗ ( f ′ ∧ f )) ◦ ψ ◦ (C ⊗ ηA).

(ii) ⇒ (i) Let AC ↪→ A be a weak C-Galois extension satisfying the normal
basis condition and suppose that A⊗− preserves coequalizers. Take h = f and
and h−1 = f ′.

Then by (56) we obtain (58). The proof for (64) is the following:

μA ◦ (A ⊗ h−1) ◦ ∇A⊗C

= mω′
A
◦ ϕA⊗AC A ◦ (A ⊗ (γ−1

A ◦ pA⊗C ◦ (ηA ⊗ C))) ◦ ∇A⊗C

= mω′
A
◦ γ−1

A ◦ ϕA�C ◦ (A ⊗ (pA⊗C ◦ (ηA ⊗ C))) ◦ ∇A⊗C

= mω′
A
◦ γ−1

A ◦ pA⊗C ◦ (μA ⊗ C) ◦ (A ⊗ (∇A⊗C ◦ (ηA ⊗ C))) ◦ ∇A⊗C

= mω′
A
◦ γ−1

A ◦ pA⊗C

= mω′
A
◦ γ−1

A ◦ pA⊗C ◦ (μA ⊗ C) ◦ (A ⊗ (∇A⊗C ◦ (ηA ⊗ C)))

= mω′
A
◦ γ−1

A ◦ ϕA�C ◦ (A ⊗ (pA⊗C ◦ (ηA ⊗ C)))

= mω′
A
◦ ϕA⊗AC A ◦ (A ⊗ (γ−1

A ◦ pA⊗C ◦ (ηA ⊗ C)))

= μA ◦ (A ⊗ h−1),
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where in the first equality we used that mω′
A

is a morphism of left A-modules, the

second one by the same property for γ−1
A , the third one is a consequence of the

definition of ϕA�C and the fourth one follows by (54). The fifth, sixth, seventh
and eighth ones follow by the same arguments.

To show that h−1 ∧ h = e we need some preliminary steps. First we prove
that

μA ◦ (A ⊗ h−1) ◦ ρA = (iA ⊗ εC) ◦ ω′
A. (75)

Indeed, by the same arguments used in the proof of (64) we have

μA ◦ (A ⊗ h−1) ◦ ρA

= mω′
A
◦ ϕA⊗AC A ◦ (A ⊗ (γ−1

A ◦ pA⊗C ◦ (ηA ⊗ C))) ◦ ρA

= mω′
A
◦ γ−1

A ◦ ϕA�C ◦ (A ⊗ (pA⊗C ◦ (ηA ⊗ C))) ◦ ρA

= mω′
A
◦ γ−1

A ◦ pA⊗C ◦ (μA ⊗ C) ◦ (A ⊗ (∇A⊗C ◦ (ηA ⊗ C))) ◦ ρA

= mω′
A
◦ γ−1

A ◦ pA⊗C ◦ ρA

and by Lemma 2.9,

mω′
A
◦ γ−1

A ◦ pA⊗C ◦ ρA

= mω′
A
◦ γ−1

A ◦ pA⊗C ◦ (μA ⊗ C) ◦ (ηA ⊗ ρA)

= mω′
A
◦ γ−1

A ◦ rA ◦ (ηA ⊗ A)

= mω′
A
◦ qA,A ◦ (ηA ⊗ A)

= μA ◦ (ηA ⊗ ((iA ⊗ εC) ◦ ω′
A))

= (iA ⊗ εC) ◦ ω′
A.

Therefore (75) holds.
On the other hand, the identity

μA ◦ (A ⊗ (h−1 ∧ h)) ◦ ρA = idA (76)

also holds. To prove it compute:

μA ◦ (A ⊗ (h−1 ∧ h)) ◦ ρA

= μA ◦ ((μA ◦ (A ⊗ h−1) ◦ ∇A⊗C )⊗ h) ◦ (A ⊗ δC) ◦ ρA

= μA ◦ ((μA ◦ (A ⊗ h−1) ◦ ρA)⊗ h) ◦ ρA

= μA ◦ ◦(((iA ⊗ εC) ◦ ω′
A)⊗ h) ◦ ρA

= ωA ◦ (((AC ⊗ εC) ◦ ω′
A)⊗ C) ◦ ρA

= ωA ◦�A ◦ ω′
A

= idA,
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where the first equality follows by the associativity of μA and (64), the second
one by (38) and the third one by (75). In the fourth one we used the definition of
h and the left AC -module condition for the morphism ωA. The fifth one follows
by (55) and the last one by the properties of the idempotent�A .

Then we have,

μA ◦ (A ⊗ (h−1 ∧ h)) ◦ ρA = idA = μA ◦ (A ⊗ e) ◦ ρA

and as a consequence

μA ◦ (A ⊗ (h−1 ∧ h)) ◦ iA⊗C ◦ γA ◦ qA,A = μA ◦ (A ⊗ e) ◦ iA⊗C ◦ γA ◦ qA,A

or, equivalently,

μA ◦ (A ⊗ (h−1 ∧ h)) ◦ iA⊗C = μA ◦ (A ⊗ e) ◦ iA⊗C .

Therefore,

μA ◦ (A ⊗ (h−1 ∧ h)) ◦ ∇A⊗C = μA ◦ (A ⊗ e) ◦ ∇A⊗C

and composing with ηA ⊗ C we obtain

μA ◦ (A ⊗ (h−1 ∧ h)) ◦ψ ◦ (C ⊗ ηA) = μA ◦ (A ⊗ e) ◦ ψ ◦ (C ⊗ ηA).

Thus, by (57) we prove that h−1 ∧ h = e, i.e. h ∈ RegW R(C, A), because

μA ◦ (A ⊗ e) ◦ ψ ◦ (C ⊗ ηA) = e.

To finish the proof it remains to prove (65). First, note that by (58) and the
equality h−1 ∧ h = e it is possible to obtain an explicit formula for ψ as
in (60). Also by (75), (58) and (64) we have

(iA ⊗ εC) ◦�A ◦ (ηAC ⊗ C) = μA ◦ (A ⊗ h−1) ◦ ρA ◦ h = h ∧ h−1. (77)

Then, (65) holds because

ψ ◦ (C ⊗ h−1) ◦ δC

= (μA ⊗ C) ◦ (h−1 ⊗ (ρA ◦ (h ∧ h−1))) ◦ δC

= (μA ⊗ C) ◦ (h−1 ⊗ (((ρA ◦ iA)⊗ εC) ◦�A ◦ (ηAC ⊗ C))) ◦ δC

= (μA ⊗ C) ◦ (h−1 ⊗ (((ζA ◦ iA)⊗ εC) ◦�A ◦ (ηAC ⊗ C))) ◦ δC

= ζA ◦ (h−1 ∧ (μA ◦ (A ⊗ h−1) ◦ ρA ◦ h))

= ζA ◦ (h−1 ∧ (μA ◦ (A ⊗ h−1) ◦ ∇A⊗C ◦ (h ⊗ C) ◦ δC))

= ζA ◦ (h−1 ∧ (h ∧ h−1))

= ζA ◦ ((h−1 ∧ h) ∧ h−1)

= ζA ◦ (e ∧ h−1)

= ζA ◦ h−1.
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Finally, a trivial consequence of the previous Theorem is the following
Corollary.

Corollary 3.12. Let (A,C, ψ) be a partial entwining structure such that there
exists a morphism ρA : A → A ⊗ C such that (A, μA, ρA) belongs to MC

A(ψ).
Consider the following assertions:

(i) AC ↪→ A is a partial C-cleft extension.

(ii) AC ↪→ A is a partial C-Galois extension with normal basis.

Then (i) ⇒ (ii). If A ⊗ − preserves coequalizers, (ii) ⇒ (i).
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