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Abstract. For an algebra A, a coalgebra C and a lax entwining structure (A, C, ¥), in
this paper we introduce the notions of lax C-Galois extension with normal basis and lax
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Introduction

The modern notion of Galois extension asssociated to a Hopf algebra H was
introduced by Kreimer and Takeuchi [19] in the following way: let H be a Hopf
algebra and A be a right H -comodule algebra with coaction p4(a) = aq) ® a1,
then the extension B <> A, being B = A = {a € A; psla) = a® ly)
the subalgebra of coinvariant elements, is H-Galois if the canonical morphism
a1 AQp A — A® H,defined by y4(a ®b) = ab) ® b(y), is an isomorphism.
This definition has its origin in the approach to Galois theory of groups acting
on commutative rings developed by Chase, Harrison and Rosenberg and in the
extension of this theory to coactions of a Hopf algebra H acting on a commu-
tative k-algebra A over a commutative ring k developed in 1969 by Chase and
Sweedler [11]. An interesting class of H-Galois extensions has been provided
by those for which there exists a convolution invertible right H-comodule mor-
phism 4 : H — A called the cleaving morphism. These extensions were called
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134 JN. ALONSO ALVAREZ et al.

cleft and it is well known that, using the notion of normal basis introduced by
Kreimer and Takeuchi in [19], Doi and Takeuchi proved in [16] that B — A
is a cleft extension if and only if it is H-Galois with normal basis, i.e., the H -
Galois extension B < A is isomorphic to B ® H as left B-module and right
H -comodule.

In [18] the result obtained by Doi and Takeuchi was generalized to H-Galois
extensions for Hopf algebras living in a symmetric monoidal closed category
C and in [7] Brzezinski proved that if A is an algebra, C is a coalgebra and
(A, C,¢) is an entwining structure such that A is an entwined module, the
existence of a convolution invertible C-comodule morphism 7 : C — A is
equivalent to the properties that A is a Galois extension by the coalgebra C
(see [6] for the definition) and A is isomorphic to the tensor product of the
coinvariant subalgebra B with C as left B-modules and right C-comodules.

A more general result was proved in [2] for weak Galois extensions associated
to the weak entwining structures introduced by Caenepeel and De Groot in [8].
In [1] the notion of weak cleft extension was introduced and Theorem 2.11
of [2] states that for a weak entwining structure (A, C, ¥) such that A is an
entwined module, if the functor A ® — preserves coequalizers, the algebra A
is a weak C-cleft extension of the coinvariant subalgebra if and only if it is a
weak C-Galois extension and the normal basis property, defined in [2], holds.
Since Galois extensions associated to weak Hopf algebras are examples of weak
Galois extensions, the characterization of weak cleft extensions in terms of weak
Galois extensions satisfying the normal basis condition can be applied to them.

The main motivation of this paper is to extend the previous results to the
theory of lax and partial weak entwining structures. These notions were defined
by Caenepeel and Janssen in [9] and [10] with the aim of to introduce a theory of
partial actions and coactions of Hopf algebras and then to obtain a Hopf-Galois
theory in this setting. The notion of a partial group action on an algebra A over a
commutative ring k has been introduced by Exel [17] in the context of operator
algebras and the algebraic interest of these structures comes from the results
proved in [13] by Dokuchaev, Exel and Piccione, in [14] by Dokuchaev and Exel
and in [15] where a generalization of Galois theory over commutative rings to
partial group actions was given by Dokuchaev, Ferrero and Paques.

The paper is organized as follows: In section one we review some of the
standard facts about weak, partial and lax entwining structures proving that it
is possible to obtain non trivial examples of lax entwining structures working
with lax comodule algebras associated to a groupoid algebra. In particular, if
the groupoid algebra is a group algebra we have examples of partial entwining
structures. In the second section we have compiled the basic facts about Galois
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extensions in a lax setting and we introduce the notion of lax Galois extension
with normal basis. Section 3 is devoted to study the notion of cleft extension
in a lax context and contains the main theorem of this paper, i.e., under the
mild assumption that the functor A ® — preserves coequalizers, there exists an
equivalence between the notions of lax Galois extension with normal basis and
lax cleft extension. As a consequence, using that every partial or weak entwining
structure is lax, when we particularize this result to the weak case we obtain
Theorem 2.11 of [2] and in the partial case we obtain the characterization of
partial cleft extensions as partial Galois extensions with normal basis. Finally,
it is important to emphasize that the main motivation for the definition of lax
cleft extension introduced in this section comes from the following fact: if A
is an algebra, C is a coalgebra and (A, C, ¥) is a lax entwining structure such
that A is a lax entwined module with coaction p,4, the existence of a comodule
morphism 4 : C — A satisfying that there exists a morphism 2~! : C — A
with convolution 7=' Ah = e, beinge = (A ® &c) o ¥ o (C ® n,), implies
that (A, C, ¥) is a weak entwining structure. As a consequence, the notion
of partial cleft extension introduced in [5] is a classical cleft extension for an
entwining structure.

1 Weak Hopf algebras and lax entwining structures

Throughout the paper C denotes a strict monoidal category with tensor product
® and base object K. Given objects A, B, D and a morphism f : B — D,
we write A ® f forids ® f and f ® A for f ® ids where id4 is the identity
morphism for the object A. Also we assume that there exists coequalizers and
equalizers. The existence of equalizers guarantees that every idempotent splits,
i.e., for every morphism V : ¥ — Y, such that V = V o V, there exist an
object Z and morphisms i : Z — Y and p : ¥ — Z satisfying V =i o p and
po i = le

A braided monoidal category C means a monoidal category in which there
is, for all M and N in C, some natural isomorphismcyy : M @ N - N ®
M, called the braiding, satisfying the Hexagon Axiom. If the braiding satisfies
cy.m o cy.n = idygn, the category C will be called symmetric.

As for prerequisites, the reader is expected to be familiar with the notions of
algebra (monoid), coalgebra (comonoid), module and comodule in the monoidal
setting. Given an algebra A and a coalgebra D, we let ny : K — A, g :
ARA — A,ep: D — K,and 6p : D — D ® D denote the unity, the
product, the counity, and the coproduct respectively. Also, for two morphism
f,g : D — A, the symbol A denotes the usual convolution product in the

category C,i.e., f Ag=puao(f ® g)odp.
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If the category C is symmetric and A, B are algebras in C, the object
A ® B is an algebra in C where nagp = 14 ® ng and pagp = (s ® up) o
(A®cpa ®B). In adual way when D, E are coalgebras in C, D ® E is a
coalgebrain C where epgr = ep®@ep and Spgr = (D Q®cp r @ E) o (§p R k).
Finally, A’ denotes the algebra with the opposite product jtger = g © Ca A
and D" is the coalgebra with the coopposite coproduct 8 pecor = cp p o 8p.

Definition 1.1. A lax entwining structure on C consists of a triple (A, C, ),
where A is an algebra, C a coalgebra, and y : C @ A — A ® C a morphism
(the entwining morphism) satisfying the relations

Yo(C®ura)=Wa®C)o(A®Y)o (Y ® A), (1)
(A®ec)oy =pao(e®A), 2)
(Vagc ® C) 0 (A ) oy = (Y ®C) o (CRY)o(6c®A), (3)
Y o (C®na) =Vagco(e®C)odc, 4)

where e : C — A is the morphism defined by e = (A ® ec) o o (C ® na) and
Vage : A® C — A Q® C is the idempotent morphism

Vagc =(Ma ® C) o (A®@Y) o (A®C ®ny). (5)

Then, by (1), we have
Vagcoy =Y (6)

and the morphism e satisfies the equality
eNne=ce. (7)
Indeed:
ene = ((nao(e®A) ®ec) o (COY) o (8¢ ®na)
= (AQReéec)oVagco(e®C)odc=¢e

where the first equality follows by (2), the second one by the definition of the
idempotent morphism Vg, and the third one by (4).
On the other hand, if ¢ satisfies the equality

(AQec)oy =ec®A, ()

the morphism e defined previously is ¢ = ¢¢ ® n4 and, as a consequence, the
identity (4) is irrelevant. In this case the entwining structure is called partial.
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If the morphism  satisfies the conditions (1), (2) and
(A®Sc) oy = (W ®C)o(C®Y)o (5c ® A), ©)

Yo (C®na)=(e®C)odc, (10)

the triple (A, C, ¥) is called a weak entwining structure. Finally, if the condi-
tions (1), (8), (9), and

Yo(C®na)=na®C, (11)

hold, we recover the classical notion of entwining structure.

Obviously every partial or weak entwining structure is a lax entwining struc-
ture. Lax entwining structures have been introduced by Caenepeel and Janssen
in [9] as a generalization of weak entwining structures defined in [8]. The notion
of partial entwining structures arise in the context of partial group actions (see
[9], [10] and [15]) and has its origins in the pioneering work of Exel [17] were
partial actions were considered in the context of operator algebras.

Lemma 1.2. Let (A, C, V) be a lax entwining structure and let
Apgc 1 AQRC - ARC
be the morphism
Apge = (ua ®C) o (A® ((e®C) 0dc)).
Then
(1) Asge = (AR ec) 0 Vage) @ C) o (AR d¢).
(i1) The morphism A pgc is idempotent.
(il1) Vagce = Aagc © Vage = Vage © Aagc-

(iv) Aagc oV = .

Proof. The equality (i) is a consequence of the definition of V,g¢. Secondly,
the morphism A 4g¢ is idempotent because using the equality (7), the associa-
tivity of the product defined in A and the co-associativity of 5., we have:

Apgc oA pagc =(Ua®C)o(AQ(eNe)®C)o (AR Sc) = Augc-
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The proof for (iii) is the following:

Vagc o Aagc
= Ua®RC)o (AR (a0 (e®A))®C)o(ARCRY)o (ARSI ®@na)
= (UAa®ec®C)o(ARYR®C)o(ARCRY)o(A®Sc ®na)
= (HAa®ec®C)o(AB®Vagc ®C)o (AR ARIC) o (AR (Y o (C®na)))
= Auagc o Vagc,

where the first equality follows by the associativity of 4, the second one by (2),
the third one by (3) and the fourth one by (i) and the associativity of 4.

Moreover, by (4)
Vagc o Aagc
= Ha®C)o(AB®(UaA0(e®A))R®C)o(ARCRY)o(A®SIc ®n4a)
= (ua ®C) o (AQ® (Vagc o(e®C)odc))

= Vagc.

Finally, (iv) holds because by (6) and the previous identities we have
AA@COw:AA®COVA®COw=vA®COw:w- |

Remark 1.3. Notice that if (A, C, v) is a partial entwining structure the mor-
phism A 4 ¢ is the identity of A ® C.

Theorem 1.4. A lax entwining structure (A, C, V) is a weak entwining structure
if and only if Aagc = Vagc. Moreover, if (A, C, V) is partial and weak then it
is an entwining structure.

Proof. Trivially, if the entwining structure is weak we obtain that Asgc =
Vagc. Conversely, if (A, C, ¥) is lax and A sgc = Vagc, by (3) and (6) we
have

Y R®C)o(C®Y)o(5c®A)
= (Aagc®C)o(A®éc)o Y
(A®dc)o Asgco ¥
(A®dc)oy
and (9) holds. Moreover, A ggc = Vage and (7) gives Vagec o (e ® C) 0 §¢ =
(e ® C) o §¢ and (10) follows from (4). Thus, the entwining structure is weak.

Finally, if (A, C, v) is partial and weak, trivially, we have (11) and (A, C, ¥)
is an entwining structure. U
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A way to construct examples of lax entwining structures that are not partial
or weak, is to work with lax comodule algebras associated to a weak bialgebra
or a weak Hopf algebra in a symmetric monoidal category C. The notions of
weak bialgebra and weak Hopf algebra in a symmetric monoidal setting are a
generalization of the ones defined by Bohm, Nill and Szlachényi in [4]. The
definition is the following:

Definition 1.5. A weak bialgebra in a symmetric monoidal category C with
symmetry isomorphism c, is an object in C with an algebra structure (H, ny,
Wy) and a coalgebra structure (H, ey, 8p) satisfying:

(1) Sgoun = (uu @ puu)o(HQcyu @®H)o(y ).
(1) epoppo(uy @ H) = ((egopun) @ (egopun))o(HR5y @ H)
= ((enopn) @ (g opn))o(HQ (cynuodn)®H).
(i) by @ H)odpony =H Quu ® H)o ((dyony) @ (u onu))
=(HQ (g ocun)®H)o((Byonu)® (B onm)).
If moreover, the following conditions hold,

(iv) There exists a morphism Ay : H — H in C (called the antipode of H )
satisfying:
(iv-1) idy Ny = (g o) ® H)o (H ® cy p) o ((6y ony) ® H),
(v-2) Ay Nidy = (H @ (¢ o pn)) o (cyn @ H) o (H ® (8 o np)),
(iV-3) Ag ANidg N Ag = Ag,
the weak bialgebra H is a weak Hopf algebra in the symmetric monoidal
category C.

As a consequence of this definition it is an easy exercise to prove that a weak
Hopf algebra is a Hopf algebra if an only if the morphism §5 (coproduct) is
unit-preserving (i.e. ny ® ny = 8y o ny) and if and only if the counit is a
homomorphism of algebras (i.e. g o Uy = ey Q €g).

If H is a weak bialgebra it is possible to define the endomorphisms of H, IT%
(target morphism), ITX (source morphism), by

M}, = ((egopn) @ H)o(H® cypy)o ((8uony) @ H),
Ny =H®® (egoun))o(cyy ®H)o(H® By onpy)),
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and HZ, HZ by
L
[y =H®Eopuy)) o((Bpony) ®H),

My = (e o ) ® H) o (H ® (8 0 nir)).

It is straightforward to show that they are idempotent (Proposition 2.9 of [3]),
and if H is a weak Hopf algebra the antipode is antimultiplicative, anticomul-
tiplicative and leaves the unit and the counit invariant (see Proposition 2.20
of [3]).

Let H = (H,ny, Lu, €1, 8H, Lgy) be a weak Hopf algebra in C such that
the antipode is an isomorphism. Then

H = (H,ny, ity o cy.u. €1, 8, Ay') and
HP = (H, Ny, i, €1y Cl.H © 8, Ay

are weak Hopf algebras in C. Therefore (H?)*? = (H,ng, iy © Cu.u,
en,cyy o 8y, Ap) and (HP)? = (H,nu, ln © CuH,EH, C.H © 81y An)
are weak Hopf algebras in C. Moreover the weak Hopf algebras H, (H°P)“°P
and (H¢P)°P are isomorphic. The isomorphisms are Ay : (H?)? — H
and Ay : H — (HP)°P. Finally, note that HI;, = H,Ifm, = HI;,L-OP and

R
R L
HH = Hpr = HHop-

Definition 1.6. Let H be a weak bialgebra in a symmetric monoidal category
Candlettyy : H® H — H ® H be the morphism defined by ty g =
(g ® Hyo (H @ cypy) o by ® H). An algebra A is said to be a lax right
H -comodule algebra if the exists a morphism py : A — A ® H called the
coaction such that

Pa© A = PagH © (Pa ® pa), (12)
(Pa®@H)opa=(ua®tuu)o(A®cya®H)o(pa® (paona)), (13)
(A®TI}) 0 pa = ((aocan) ®TI) o (A® (paona)), (14)
paons=(AQuy)o(ART}) 0 ps) @ H)opsona. (15)

Note that if H is a bialgebra, we have Hg = ny ® ¢y and condition (14)
is equivalent to

(A®en)opa=((Haocaa) ®en)o(A® (paona)), (16)
and the equality (15) is
parons = ((A®ey)opa) ® H) o psona. (17)
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Then, if C is a category of modules over a commutative ring with unit and
H is a bialgebra in C, this definition is the one introduced by Caenepeel and
Janssen in Proposition 2.5 of [10]. Following [10] we will say that a bialgebra
H,in a symmetric monoidal category C, coacts partially on an algebra A or that
A is a right partial H-comodule algebra if there exists a morphism p4 : A —
A ® H such that (12), (13) and

(A®ep)ops=idy (18)

hold. Then, in this setting, (16) and (17) are trivial.

In the following Proposition we prove that every lax H-comodule algebra over
a weak bialgebra H in a symmetric monoidal category C provides an example
of a lax entwining structure.

Proposition 1.7. Let H be a weak bialgebra in a symmetric monoidal category
C. Let A be a lax right H-comodule algebra with coaction py : A — AQ H.
Under these conditionsthe triple (A, H, ¥ = (AQup)o(cgaQ@H)o(H®p4) :
H®A— A® H) is a lax entwining structure.

Moreover, if H is a bialgebra and A is a right partial H-comodule algebra,
the previous triple is a partial entwining structure.

Proof. Firstnote thatby (12), the naturality of the braiding and the associativity of
the product in H we have

Vo (H®ua)
= (A®uu) o (nagn @ H)o(cya®cua®H)o(H® ps® pa)
= (MAaQH)o(AR®Y)o (Y QA
and then (1) holds.
The proof for (2) is the following:
pao(e®A)
= (a®en)o(AQcya)o((Yo(HRnA) A
= (AQ(enoun))o(cna®H)o(HQ(haocan) @ H)o
(H®A® (paona))
= (A®(poun)olcya®H)o(H® (aocas)®If) o
(H®A® (paona))
= (A® (e oun)olcan ®IY) o (H® pa)
= (A®ep)o v,
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where the first and the second equalities follow by the naturality of ¢ and the
definition of i, the third and the fifth onesby ey ouy = egopug o (H ® HI;,)
and the fourth one by (14).

On the other hand, by (13) and the naturality of ¢ we obtain (3). Indeed:

(Y ®H)o(H®Y)o 6y ®A)
= (AQ (tugn oy @ HQ H)))o(cyr® HRQ H)
o(H ® ((pa ® H) 0 pa))
= (AQ®(nuegn oy @ H®H)))o(cya®H®H)o
(H® ((ua ®@tun)o(A®cya®H)o(pa® (paona))))
= (AQ((uu®H)o(H®cypu)o((dyoun)®H)))o
(cHa®HQ®H)o (HR (Ma®HQ®H)o(AQcya®H)o
(P4 ® (pa©na))))
= (Magn ®H)o(AQH ®AQcyn)o(AQH ®cya®H)o
(A®dy ® (paona)) oy
= (Vagn ® H)o (A® ) o .

The proof for (4) follows by

Vagn o (e ® H) o dy
(A®ep) oY) @ uy)o(H®cyar®H)o(Bn ® (paona))
(A® ((ep ® H)o upgn o (0n ® HQ® H))) o
(cna®HQ®H)o(H® ((pa® H)opaona))

= (A®um olcna®H)o(H®(A® (uyo (I ® H)))o
(pa ® H) 0o paona))

= Yo (H ®na),

where the first equality is a consequence of (2), the second one follows by the
naturality of ¢, the third one by the identity ((ey o uy) ® H) o (H @ cp.py) ©
g ®H)=pugo(H® Hg) as well as the associativity of the product in H,
and the fourth one by (15).

Finally, if H is a bialgebra and A a right partial H comodule algebra it is
immediate to obtain (8), and then (A, H, V) is a partial entwining structure. [J

Example 1.8. As group algebras and their duals are the natural examples of
Hopf algebras, groupoid algebras and their duals provide examples of weak
Hopf algebras. Recall that a groupoid G is simply a small category in which
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every morphism is an isomorphism. In this example, we consider groupoids
with a finite number of morphisms. The set of objects of G will be denoted by
Go and the set of morphisms by G;. The identity morphism on x € G, will also
be denoted by id, and for a morphismo : x — yin G, we write s(o) and (o),
respectively for the source and the target of o. Finally, £ (x) denotes the set of
endomorphisms of x € Go.

Let G be a groupoid, and R a commutative ring with unit. The groupoid
algebra is the direct sum

with the product of two morphisms being equal to their composition if the lat-
ter is defined and O otherwise, i.e. 0t = c ot if s(6) = t(r) and o7 =
0 if s(0) # t(r). The unit element is 1z = erfjo id,. The algebra RG
is a cocommutative weak Hopf algebra, with coproduct dzg, counit egg and
antipode A g given by the formulas:

Srg(0) =0 ®0, erg(0) =1, Agrglo)=0"".

For the weak Hopf algebra RG the target and source morphisms are respec-
tively,

Mis(0) = idyg), TRG0) = idyo).

Let G a groupoid with 2 < |Gp| and such that there exists an x € Gy with
n, = |E(x)| invertible in R. Define for an R-algebra A the R-linear morphism
pa:A— A® RGby

1
pala) = . 49 h (19)

where & = ) ;0 and the unadorned tensor product denotes the tensor
product over R. Then, A with the coaction p, is an example of lax right RG-
comodule algebra. To show that p, satisfies (12), (13), (14) and (15), first we
prove that

TRG,RG(h ® ]’l) =h X h. (20)

Indeed, using the fact that o = h for all 0 € E(x) we have

TrG,RG(h ® h) = ((Lrg @ RG) 0o (RG ® CRG,RG))( Z ocRIT® h)

oeE(x)

=(,bLRg®RG)<ZU®h®U)= Zah@o: Zh@a
oeE(x) oeE(x) oeE(x)
=h® ) o=h®h

oeE(x)
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144 JN. ALONSO ALVAREZ et al.

For p4 condition (12) follows by:

1
wA@Rgo(pA@pA))(a@b)=MA®Rg<n2 > a@a@b@r)

X o,1€E(x)

1 1
=, E ab®ot = 5 ab ® E oh
X o,t€E(x) My o€E(x)

1 1
=, ab® n.h = ab® h = py(ab).

n ny
Condition (13) is checked by applying (20):

(s @ TrG,RG) © (A® Ccrg,.a ® H) 0o (pa ® (pa 0n4a)))a)

1
= (14 ® Trgig) © (A @ crga @ H)( , a®h @140 h)

1 1
= a® trg.rg(h @ h) = 02 a®h®h=(ps®RG)o pala).

Condition (14) is proven by the properties of the target morphism:

(a0 can) @ Mig) o (A® (pa 0na)))(a)
1
= ((Haocan)® Hf«;)(ﬂ a®1s® h)

X

1
= | a®TMh = (A® ) 0 pa(a).

X

Finally, condition (15) is verified using the identity Hﬁg(h) = nyid,:

((A® urg) o ((A® Hﬁg) 004) ® RG) o ps)(14)

1 1
=(A®MH>< ) 1A®n§g<h>®h) = | La®n,id,h
nz n

X

1
=  12®h=pa(ly).

ny
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Then, as a consequence of Proposition 1.7 we obtain an example of a lax
entwining structure where ¢ : RG ® A — A ® RG is defined by

n n

‘ﬁ(Zriﬁi ®ai) = nl Zriai ®oih 21

i=1 Y=l
and
0 if s(0)#x

e(a)z((A(ggRg)ow)(U@lA):{1A if s(o0) =x.

This lax entwining structure is not partial because if v € G, and s(w) # x
we have

e(w)=07#14 = (erg ® A)(@Q l4).

Finally, note that p, satisfies the identity ((A ® €gg) o pa)(a) = a for all
a € A because:

(A ® erg) ()——1 ® E ()——1 Qnylg =
e o a a ercl(o a@n, a.
RG) © PA n RG n R

x c€E(x) x

If G is a finite group and G is the groupoid associated to G, RG is the group
algebra of G denoted by RG which is a cocommutative Hopf algebra. In this
case, for an R-algebra A, the coaction defined in (19) is

1
pala) = G| a®h, (22)

where h = ) ¢ec & and the entwining morphism is

n n n

w(Zrigi®ai) = |(1;| Zriai@)gih = |(1;| Zriai®h. (23)

i=1 i=1 i=1
Then, in this particular case, we have

1

(A@er) o E @D = A®era)( |,

a®gh>

1
a®h>: a®|Gllg=a=(erg ® A)(g ®a)

=(A®8RG)< G

1
|G|
and therefore (A, RG, V) is a partial entwining structure.

By the following Theorem these partial entwining structures can be used to
provide examples of lax entwining structures that are not partial.
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Theorem 1.9. Let (A, C, ) be a lax entwining structure and letd : K — A
be a morphism such that jup o (d @ d) =d and uy o (d @ A) = s o (A ®d).
If f; denotes the morphism f; = ppo(d® A): A — Aand (f3  C) oy =
Yo (CQ fq), thetriple (A, C, ¥y, = (fa @ C) oY) is a lax entwining structure.
Moreover, if (A, C, ) is partial and f; # ids, (A, C,V¥y,) is lax and not
partial.

Proof. First note that f; is an idempotent morphism because by the associativ-
ity of the product ;14 we have:

Jaofa=npao((nao(d®d)®A) = fa.
Also, it is easy to show that f; o n4a = d and
Jaopa=pao(fa® fa) =mao(fa®A) =pnso(A® fa). (24)

Then, by the conditions of this Theorem and the equalities (24), and (1)
we obtain

Vi o (COua)=vo(C®(nao(fa® fa))
=Ua®C)o(ARY)o (Y ®A)o(CR fu® fa)
=a®C)o (AR Yy) o (Yy, ® A).

Therefore, (1) holds for (A, C, ¥y,).
On the other hand, ey, = (A ® &c) o Yy, 0 (C®na) = fy0eand, as a
consequence, using the associativity of ;4 and (2) we have:

pao(er, ®A) = fiopso@®A) = (A®ec)o Yy,

Then, (2) holds for (A, C, ¥y,).
Moreover, by the idempotent character of f; and (3) we have

W ®C)o(CRYy)o@Bc®A)=(f1®CQ®C)o (¥ ®C)o
(CR®Y)oBc®A) = ((f ®C)0oVage) ®C) o (A®Sc) oW
= (Vite ®C) o (A®8c) o Yy,
and then (3) holds for (A, C, ¥ 1,) because by (24),
Vit =Vasc o (f1®C) = (f1®C) o Vage = (fs ®C) 0 Vagc o (f1 ®C).
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Finally, by (4) and using that (f; ® C) o Vage = (f1 ® C) o Vage o (f3 ® C)
we obtain

Yo (C®na)=((fa®C)oVagco(e®C)odc

= (f1®C) o Vagc o ((f10€) ®C) 08c = VL . o(es ®C)odc

and (4) holds for (A, C, ¥y,).
If (A, C, ) is partial and f; # ida, (A, C,V¥y,) is lax and not partial
because:
(AQec)oYy, =¢ec® fa O

Example 1.10. Let (A, RG, V) be the lax entwining structure defined in exam-
ple 1.8 in the groupoid setting. If d is a central idempotent element in A, the
morphism f; : A — A defined by f;(a) = da satisfies the conditions of the
previous Theorem and, as a consequence, (A, RG, ¥4,) is lax entwining struc-

ture where
n n

1
ll[fd(Zrllo—l' ® ai) = Zrida,' ® oih. (25)

i=1 *oi=l
The result proved by Connell in [12] assures that if R is a completely re-

ducible associative ring with unit and H is a finite group such that |H | is invert-
ible in R, there exist a set of elements in RH, {ey, ..., e,}, such that

(1) e; # 01is a central idempotent, 1 <i < n.
(i1) If i # j theneje; = 0.
(111) lRH = Z?:l €;.

(iv) The element ¢; cannot be written as ¢; = e. + ¢/’ where ¢, and e/ are

central idempotents such that e}, e/ # 0 and ele/ = 0,1 <i < n.

Then for all ¢; the morphism

n n

1
ngk <Zrigi ®hl) = |G| Zriekhi ®]’l (26)

i=1 i=1

induces a lax entwining structure (RH, RG, ¥y, ), for every finite group G with
|G| invertible in R, that is not partial.

In the final part of this section we will study the dual notion of lax right
H -comodule algebra.
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Definition 1.11. Let H be a weak bialgebra in a symmetric monoidal category C.
An algebra A is said to be a lax left H-module algebra if there exists a morphism
¢a: H® A — A called the action such that

pnao(@Pa®@@a)o(H®cya®A)o(ln®AR®A)=g¢ao0o(H®pna), (27)
a0 (H®@4) = a0 (940 (H®NA)® (@40 (1n®A)))o By OHRA), (28)
wao(A® (@ao(My @) =gsocano (AR,  (29)

a0 (H®n4) =¢a0(H®¢x) o (cpyoHOT) o8y ®mn4). (30)

Note that if H is a bialgebra we have HI;, = ny ® ey and condition (29)
is equivalent to

a0 (Nn @A) = a0 (A® (a0 (Nu ®na))), €Y
and the equality (30) is
a0 (H®na) =@ao(u @ (pao (H ®n4))). (32)

Then, if C is a category of modules over a commutative ring with unit and
H is a bialgebra in C, this definition includes the one introduced by Caenepeel
and Janssen in Proposition 4.4 of [10]. We will say that a bialgebra H, in a
symmetric monoidal category C, acts partially on an algebra A or that A is a
left partial H-module algebra if there exists a morphism ¢4 : H ® A — A
such that (27), (28) and

pao(Mu ®A) =idy (33)

hold. Then, in this setting, (31) and (32) are trivial.

If we work with finite weak Hopf algebras in C it is possible to obtain a
relation between right lax comodule algebras and left module algebras. First,
we recall some definitions and results about finite objects and finite weak Hopf
algebras in C.

Definition 1.12. An object P in C is said to be finite if there exists P* € C
such that
(P®—, P*®—,ap, Bp)
is an adjoint pair.
If (PR—, P*Q—, ap, Bp) is an adjoint pair then (P*® —, P ® —, ap«, Bpx)
with aps = (cp.p+ ® —) oap and Bp+ = Bp o (cp+ p ® —) is an adjoint pair.
Thus, if P is a finite object, P* is finite with adjunction (P* ® —, P ® —, ap+,
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Bp+), aps = (cp.pr @ —) oap and Bp- = Bp o (cp+ p @ —). As a consequence,
when P is finite, P** = P. If f : M — N is a morphism between finite objects
we denote by f* : N* — M* the dual morphism defined by

[T=M" Q@ Bn(K)) o (M*® f)oau(K)) ® NY).
Let H be a finite weak Hopf algebra in C. We define
H* = (H", Ny, bpes Emv, S, Ap+)
where
N = (H* ®epy) oap(K),
pus = (H*® B (K)o (H* @ H® Bu(K) @ H")
o(H* @y QH" Q@ H) o (ay(K) @ H* @ HY),
eg = Pu(K) o (np ® H”),
Sy =(H"®@H" @ Bu(K)) o (H*® H" @ uy ® H")
oH*"Q@ay(K)®@ H® H*) o (ay(K)® H"),

Aps = Ajp.
Then, H* is a weak Hopf algebra.

Theorem 1.13. Let A be an algebra in C and let H be a finite weak bialgebra
in C. Then, A is a left lax H-module algebra if and only if A°P is a right lax
H*°P-comodule algebra.

Proof. First, assume that A is a left lax H-module algebra with action ¢ 4. Define
the coaction paor : A —> A ® H* by

paor = cy=.a 0 (H* @ @a) o (ay(K) @ A). (34)

Then, (A%, paer) is aright lax H*“°P-comodule algebra. To prove the previous
assertion, we have to obtain that (A, p,) satisfies (12), (13), (14) and (15) for
the weak Hopf algebra H*“°?. Indeed:

(aor & ppreor) o (A® s a @ A) 0 (pacr & pPaor)

= ((maocano(@a®@a) @ H) o (H®AR®H Qcpxa)
o(HRAQ®H® pupys @ A)o(cay Qcyrny @ H* @ A)
o0(AR®ay+«(K)Qay«(K)® A)
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= (Uao(Pa®@pa)o(HR®cya®A) oy ®ARA) @ H)
o(H®AQ®cy+a)o(H Qcura®A)o(ap(K)®caa)
(pao (H®paw)) ® H) o (can ® cy.a) 0 (AQay+(K) ® A)
PAcor O Lpop,

where the first and the fourth equalities follow by the naturality of ¢, the second
one by

(H %) H %) ,LLH*cop) [¢] (H ®CH*,H %) H*) o ((XH*(K) ® OlH*(K))
= ((cuyody)® H) oap+(K)

as well as the naturality of ¢ and the third one by (27).

(aor @ Tpyrcop peeop) 0 (A ® Cppr . a @ H*) 0 (pacr @ (Naor © paor))
= ((pao((pao(H®nA) ®pa)o(HQcan)o
(cam @ H)) ® tyscor pgeeor) 0 (AQ (H @ ap+(K) @ H*) o g« (K)))
= ((nao((pao(H®NA)®@pa)o(Hun ®A)o by ® H® A)
o(H®can)@H* @ H*) o (cany ®cyy @ HY)
o(A®ay+(K) ® ay«(K))
= ((pao(H® (paocan) @ H*® H") o
(cam @cyry @ H)o (AQ ay+(K) ® ay+(K))
= (pac(HR@aA) @H* @ H") o (HQ® H®cy+a ® H") 0
(H @ cys.n @ cyrp)o (ay«(K) @ ay«(K)® A)
= (paw @ H* ") 0 ppor,

where the first, the fourth and the fifth equalities follow by the naturality of c,
the second one by

(H® H® TH*CO])’H*COP) (e} (H ®(XH*(K)® H*) O(XH*(K)
= (HOun)o@n®H)®H @ H") o (H®cy+ny @ H”)
o(ay+(K) ® ay=(K))

and the third one by (28).

((I'LAOP o CA,A) ® HII:I*cop) ] (A ® (pAop o T]Acop))
= (tao(A® (9o (T ®N)) ® H?) 0 (A® apy-(K))
= ((paocano(ARTI,)) ®H") o (A® ay-(K))
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(94 ® H) o (T ® H) o (ay(K) ® A)
(A ® Mjscap) © Pacr,

where the first and the fourth equalities follow by
L
k.., =1, (35)
the second one by (29) and the third one by the naturality of c.

(A® (tpren © (Mgscoy @ H))) 0 (a0 @ H*) © paon © nper

(@a 0 (H® @a) o (chy o (H®TIy)08,) ®14)) ® H) o ay(K)
= ((gao (H®n1) ® H*) o apy(K)

pAop [e] T’Aop ,

where the first equality follows by the naturality of ¢, the properties of «y and
By and by (35). The second one is a consequence of (30) and the last one
follows by the naturality of c.

Conversely, if A°” is a right lax H*“°?-comodule algebra then A with the
action defined by

oa=(AQBu(K))o(cyar®@H)o(HR® paw)  HRA— A

is a left lax H-module algebra. The proof is dual to the previous one and we
leave the details to the reader. UJ

Remark 1.14. Obviously, the previous Theorem remains valid if we change the
weak bialgebra by a usual bialgebra or the lax structure by a partial one. In this
case we obtain as a corollary Theorem 4.7 of [10].

On the other hand, Theorem 1.13 admits an equivalent formulation in the
following way: Let A be an algebra in C and let H be a finite weak bialgebra
in C. Then, A is aright lax H-comodule algebra if and only if A is a left lax
H*?-module algebra.

Example 1.15. Let G be a groupoid with G, finite. Then RG is free of a finite
rank as a R-module, hence R(G) = (RG)* = Homzr(RG, R) is a commutative
weak bialgebra. As R-module

R(G) = P R,

0EG]
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with f;(t) = é,... Then, forall f € R(G) we have
g=>Y g0@)fs
0€EG]

The algebra structure is given by the formulas f, f; = 8, f; and lgg =
ZUEGI f»- The coalgebra structure is

Srie)(fo) = Z f®f = Z Jop1 ® fps erG) (fo) = 8o.idys) -
Tp=0 PEGI
Also R(G) is a weak Hopf algebra where the antipode is given by
rrG (fo) = for.

As a consequence we have an adjoint pair RG ® — 4 R(G) ® — where the
morphisms agg)(R) and Bg(g) (R) are defined by

arRUR) =) fr®0,  BroR(ET® f)=f(1)

0egq

respectively. Then, if A is an R-algebra and p, the coaction defined in (19),
A is a left lax R(G)°P-module algebra with action @40 : R(G) @ A — A
defined by

Qan(f ®a) = n;1< > f(o)) a. (36)

oeE(x)
2 Entwined modules for lax entwining structures and Galois objects

Definition 2.1. Let (A, C, ) be a lax entwining structure. We denote by
.’Mg(l/f) the category whose objects are triples (M, ¢y, pyr), where (M, ¢pr)
is a right A-module, py; : M — M ® C is a morphism satisfying

(M ®é¢c) o py =idy, (37)

(pm ® H) o pyy = (Vygc ® C) o (M @ ¢) o pu. (38)
where Vyge : M @ C — M ® C is the idempotent defined by

Viec = (¢n @ C) o (M & (¥ o (C ®n4))),

and the usual entwined module condition
Puody =Py @C)o(M R Y)o (pu @ A). (39)
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The objects in .’Mg(l/f) will be called right-right lax entwined modules (or just
entwined modules if no confusion is likely) and the morphisms in .’Mg(l/f) are
morphisms f : M — N of A-modules (i.e. f o ¢y = ¢y o (f ® A)) such that

(f®C)opy=pnof.
Note that the identities (37) and (38) imply that

Vugc © Pu = Pu (40)
and, if M is a lax entwined module, by (37), the following identity
puo(M®e)opy =idy (41)

holds.

Also, it follows easily that if A is a lax right H-comodule algebra for a weak
bialgebrain a symmetric monoidal category C, then A is a lax entwining module
for the entwining structure defined in Theorem 1.7. Moreover, in the particular
case presented in Example 1.8 the additional condition (A @ ey) o pp = idy
holds.

Finally, for a partial entwining structure, the category of partial entwined
modules is defined as in the lax setting.

In the following definition we introduce the category of weak comodules for
a coalgebra C to explain the meaning of condition (38).

Definition 2.2. Let C be a coalgebra. With W (M) we denote the category
whose objects are triples (M, Vygc, pyu) such that:

(1) M isan object in C,
(1) Vyge : M @ C — M ® C is an idempotent morphism in C,
(i) py : M — M ® C is a coaction satisfying (37), (38).
The morphisms in W (M) are defined in the following way: we say that
f (M, Vugc, pm) = (N, Vngc, pn)
is a morphismin W(MC) if f : M — N is a morphism in C and the identities
pn o f = Vngco (f ®C)opu, (42)
Vvec o (f @ C) o Vyge = Vygc o (f @ €) (43)

hold.
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It is easy to show that W (M) is a category. We call it the category of
right weak C-comodules. In a similar form it is possible to define the cat-
egory of left weak C-comodules and also by duality the corresponding weak
categories of modules. Note that if (M, py) is a right C-comodule we have
that (M, Vygc = idugc, pu) is a right weak C-comodule. Also, every right
C-comodule morphism f : (M, py) — (N, py) is a morphism in "W (MC)
between the objects (M, Vygc = idygc, pu) and (N, Vyge = idygc, PN)-
Finally, notice that if (A, C, V) is a lax entwining structure and (M, ¢p1, ppr) is
a lax entwined module, then the triple

(M, Vyge = (@ @ C) o (M @ (¥ o (C ® n4a))), Pu)

is an object in W(MES) and if f : (M, ¢m, pu) — (N, ¢n, pn) is a morphism
in .’Mg(l//) we obtain that

f : (Ma VM(X)Ca pM) - (Na VN(X)C’ pN)

is a morphism of weak right C-comodules because

Vivec o (f®C)=(f ®C) o Vygc.

Proposition2.3. Let (A, C, V) be alax entwining structure such that there exists
a morphism py : A — A ® C satisfying that (A, (a, pa) belongs to .’Mg(l/f).
If for all (M, ¢y, py) € .’Mg(l//), we denote by M¢ the equalizer of py and
Iy = (P ®C)o (M ® (ps 0n4)) and by iy the injection of M¢ in M, we have
the following:

(1) The triple (Ac, Nac, ac) is an algebrain C, where n4. : K — Ac and
Hae @ Ac ® Ac — Ac are the factorizations of na and g o (ia @ is)
respectively, through the equalizer i,.

(i) The pair (Mc, ¢p.) is a right Ac-module, where ¢y - Mc @ Ac — Mc¢
is the factorization of ¢p o (iyy ® ia) through the equalizer iy,.

Proof. The proof is an easy consequence of the identity (39) and we leave the
details to the reader (see [1] for weak entwining structures). |

Example 2.4. Let (A, RG, V) the lax entwining structure introduced in exam-
ple 1.8. In this setting foralla € A we have {4(a) = pa(a) and then Agg = A.

2.5. If the conditions of Proposition 2.3 hold, it is obvious that (A, ¢4 = a4 ©
(ia®A))isaleft Ac-module and (A, ps = nao(AR®i,))isaright Ac-module.
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If with g4 4 we denote the coequalizer morphism of A ® ¢4 and ¢4 ® A we
have the coequalizer diagram

A®¢a - qA.A
ARAC®A _ A®A ~ AQac A

s QA

2.6. Let (A, C, ¥) be a lax entwining structure such that there exists a mor-
phism p4 : A - A ® C satisfying that (A, w4, pa) belongs to .?\/lg(l/f). As a
consequence of the idempotent character of V¢, there exist an object ALIC
and morphisms iygc : ALUC — A ® C and pagc : A ® C — ALC satis-
fying Vage = iagc © Page and page © iage = idape. The object ALIC is
a lax entwined module with action ¢ ¢ = page © (Ua ® C) o (A ® V) o

(iagec ® A) and morphism pagc = (Page ® C) o (A ® 8¢) o isgce- Indeed,
trivially

¢a0c o (AUC ® na) = pagc © Vage © iage = idadc.-

Moreover, by the identities (1) and
Vagc o (ua® C) o (AQY) = (ua ® C) o (AR V) (44)

we obtain easily ¢pagc o (pagec ® A) = dpagc o (ALC ® ) and then ALIC is
aright A-module with action ¢ 4. On the other hand, by

(ha®C)o(A®Y) o (Vagc ®A) = (ua ® C) o (A® ¥) (45)
and (3) we have

(Vaocec ® C) o (ALUC ® é¢) o pacic
= (Pasc®CRC)o((a®C)o(ARY)®CRC)o
(Vage ® (Y o (C®14)) ®C) o)) ® (A®Sc) oiage
= Paeco(Ua®CRCRC)o(AR((YRCR®C)o(CRY ®C)o
(Bc ®na®C)odc)) oiage
= Paeco(Ua®CRCR®C)o (AR ((Vagc ® C) 0 (AR 4c) o
(Y o (C®na)) ®C)) o (ARJc)oiage
= (paoc ® C) o paic
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and then (38) holds. Finally, using (3) and (45), we obtain (39) for psgc and

$a0c-
Letty : AQ A — A ® C be the morphism defined by 14 = (s ® C) o

(A ® pa). Then, by the same proof that we can find in 1.5 of [1] for weak
entwining structures, we obtain that Vgc o f4 = f4, and therefore, there exists
a unique morphism r4 : A ® A — AUC such that iggc 0 ¥4 = t4. On the
other hand, the morphism r4 satisfies r4 o (A ® p4) =14 0 (P4 ® A) and, as a
consequence, there exists a unique morphism (called the canonical morphism)

va i AQ®a. A— ALC (46)

such that y4 o ga.4a = ra.

Suppose that — ® A preserves coequalizers. Then A ®,4,. A is a right A-
module being the action ¢ acA (AQ®ar A) ® A — A ®4a,. A the factoriza-
tion of g4 4 o (A ® wa) through the coequalizer g4 4 ® A, i.e., ¢A®AcA is the
unique morphism such that ¢A®AcA 0 (gaar ® A) = gaao(A® na). Also,
there exists a morphism PAGs A AR A — (A®a. A) ® C defined by the
factorization of (4.4 ® C) o (A ® p,) through the coequalizer g4 4, or equiv-
alently, PA® 4. A is the unique morphism such that PA®s A © Gaa = (gaa ®
C)o(A® pys). The triple (A @4, A, ¢A®ACA’ PA®ACA) is a lax entwining mod-
ule because composing with the coequalizer g4 4, using the entwined module
condition of A and the properties of ¢ag, . 4, We have

(Pa@s 4 ® C) © Pagy. 4 ©qaa
(gaa®CQRC)o(A® ((pa ®C)opa))
= (@42a®C®C)o(A®((Vagc ® C) 0 (A®c) o pa))
= ((qaao(A®na)®CR®C)o
(AR (A® (Y o (C®na)) ®C)0dc))) o (AR pa)
(P42, 4 ®CQC)o(gan®(((Yo(C®n4))®C)odc))o(A® pa)
= (Vs aec ®C) 0 (gaa ®8c) o (A pa)
= (Vuss aec ®C) 0 (A®ac A®Sc) 0 pags.4©qans

i.e., (38) holds. Moreover, composing with the coequalizer g4 4 ® A and by
similar arguments to the previous ones we obtain

PA®A.A © Pazy. A0 (Gan ® A)

(qa,a ® C) o (A® (pa o))

(gaa®C)o (AR ((ua ®C) o (A® V) o (pa ® A)))

= (Pags. A ®C) o ((ABar A) @ V) o (Pagy. 4 ®A) o (gaa® A),
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i.e., (39) holds.

As a consequence, using the entwined module structures defined in the pre-
vious paragraphs, it is easy to show (see for example the similar proof in the
weak setting contained in 1.5 of [2]) that y4 is morphism of right A-modules.
Moreover, y4 satisfies the identity (y4 ® C) o PA®s. A = PACIC © Va- Indeed,
composing with the coequalizer g4 4, applying (38) and

Vagc 0 (ua @ C) o (A® pa) = (ua @ C) o (A® pa) (47)

we have

(Y4 ® C) 0 pag,. 4 ©qan
= ((pagc o (ra®C)) ® A) o (AR ((pa ® C) 0 pa))
((Pagc 0 (ma ® C)) ® A) 0 (AR ((Vage ® C) o (AR dc) o pa))
(Pagc ® C) o (ua ®8c) o (A pa)
(Pagc ® C) 0 (A®3¢) o Vage o (ua ® C) o (A ® pa)

PACC © YA O (A A-

Therefore, y4 is a morphism of lax entwined modules.

Finally, if A ® — preserves coequalizers, then y,4 is a morphism of left A-
modules being ¢ag acA C AQ® (A Qs A) — A ®a. A the factorization of
ga.a o (na ® A) through the coequalizer A ® ga 4, 1.e. PA@4 A is the unique
morphism such that @ag,.4 © (A ® gaa) = gaa o (La ® A), and @a0c :
A ® AUC — AUC is defined by pamc = page © (ta ® C) o (A Qisgc) (see
1.5 of [2] for the proof).

Definition 2.5. Let (A, C, V) be a lax entwining structure such that there exists
amorphismp,s : A — A® C such that (A, ua, pa) belongs to .’Mg(l//). We say
that Ac — A is a lax C-Galois extension if the canonical morphism y 4 defined
in (46) is an isomorphism.

Notice thatin (2.6) we obtain that y , satisfies the identity (Y4 QC)o PARs. A =
PaOc © Ya and, if the functor — ® A preserves coequalizers, y 4 is a morphism of
right A-modules and, as a consequence, is a morphism of lax entwined modules.
Moreover, if A @ — preserves coequalizers y is a morphism of left A-modules.
For example, if C is symmetric closed we have these properties.

Using the fact that every partial entwining structure is a lax entwining structure
we define the notion of partial C-Galois extension in a similar way.

Theorem 2.6. Let (A, C, ) be a lax entwining structure such that there exists
a morphism py : A — A ® C satisfying that (A, (La, pa) belongs to .’Mg(l/f).
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Suppose that Ac — A is a lax C-Galois extension such that the functor — @ A
preserves coequalizers. Then,

¥ =iagc © Y40 Paga. 40 (Vi 0 pagco(ma®C)) ®A).  (48)
Proof. Composing with the coequalizer g4 4 ® A we obtain

IA®C O VA © DAz, 40 (qa.a ® A)

= Vagc o (ua ®C) o (A® (paopa))

= (Ua®C)o(ua®Y)o (AR pa®A)

= (Ua®C)o(A®Y)o ((Vagc o (ua® C) o (A® pa)) ® A)
(ua ®C)o (AR Y) o ((iage ©va) @ A) o (qaa ® A),

where the first equality follows the properties of the action and the canonical
morphism, the second one by (44) and the entwined module condition (39) for
A, the third one by (44) and the fourth one by the properties of the canonical
morphism.

Therefore,

iAwC © ¥4 ° Pags.a = (a ® C) o (AR Y) o ((iagc 0 va) ® A)  (49)

and, as a consequence of this identity, we have

irec © V4 © Paga. 4 © (7y' 0 Pagc 0 (14 ® C)) ® A)
(na ®C)o(A®Y) o ((Vagc o (14 ®C)) ® A)
= a®C)o(AQY)o (Yo (CRnNa)®A) =1. U

2.9. Let (M, ¢u, py) be alax entwined module for a lax entwining structure
(A, C, y). The morphism Aygc : M @ C — M ® C defined by

Apge = oy @ C) o (M Q ((e ® C) 0 5¢))
is idempotent because by (7) we have
Amgc o Ayge = (pu @ C) o (M @ (((e Ae) ® C) 05¢)) = Augc-

Then, there exist an object M x C and morphisms jygc : M x C - M ® C and
qMmecC - MRXIC > MxC satisfying AM@C = jM®COQM®C and QM®COjM®C =
idyxc.
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If there exists a morphism ps : A — A ® C satisfying that (A, ©a, pa)
belongs to M (1), for the morphism ¢, defined in 2.6 we obtain

Apgc 0ty =ta. (50)
Indeed, by (40) and (iii) of Lemma 1.2 we have
AA@C ofhy
= (A ®C)o(A® (Asgc o pa))
(1a ® C) o (AR (Aagc © Vage © pa))
(1a ® C) o (A® (Vagc © pa))

fa.

Therefore, there exists a unique morphism r;, = gagc 04 : A® A —
A x C such that jagc o 1)y = t4. On the other hand, the morphism r/, satisfies
ryo(A® @a) =r) o (pa @ A) and, as a consequence, there exists a unique
morphism (called the second canonical morphism)

Ba:AQs. A—> AXC on

suchthat B4 0 gaa =7).
Let

Ql=qA®COiA®CZA|:’C—>AXC and
QZZPA(X)C OjA®C tAx C— ALOC

be the morphisms defined using the injections and the projections associated
to the idempotents Vg and A 4g¢. Then,

Qioyaogaa=gagc © Vagc 0ta = qagc 0la = ”;; =Baoqaa,
Qr0Ba0Gaa = Pagc © Aagc Ota = Pagc Ota =T4 =YA40qa.A

and, as a consequence we obtain the following relations between the canonical
morphism and the second canonical morphism

Qioys=PBa, 20Ps=Ya. (52)

As in Theorem 2.6 if the functor — ® A preserves coequalizers and B4 is an
isomorphism it it possible to obtain an expression of i involving B4 and its
inverse. To prove this assertion, first we obtain the identity

Jagc © Ba o Pag,.a = (1a @ C) o (A® V) o ((jage 0 Ba) @ A).  (53)
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Indeed, composing with the coequalizer g4 4 ® A we have

Jagc © Ba o Pag,. a0 (gaa ® A)
= Augco(ua®C)o (AR (paopa))
(na ®C)o(a® (Apsgco¥)) o (A® pa® A)
(na®C)o(na®yY)o(A® pa®A)
(A ®C)o(A®Y) o ((Asgc o (a @ C) o (A® pa)) ® A)
(na ®C) o (A® V) o ((jawc © Pa) ® A) o (qaa ® A),
where the first equality follows by the properties ¢4, .4 and B4, the second

one by the entwined module condition for A, the associativity of the product
wa as well as the left A-linearity of A sg¢ being page = 1a ® C, i.e.

(s ®C) o (A® Vage) = Vage © (s ® O). (54)

The third one follows by (iv) of Lemma 1.2, the fourth one by (50) and finally,
the fifth one by the properties of 84. Therefore (53) holds and then applying this
identity, the equalities (2), (3) and (i) and (iv) of Lemma 1.2, we obtain

Jagc 0 Ba o apy. a0 (By' ©qasc o (1a®C) ® A)
= (Ma®C)o(AR®Y) o ((Asgco(na®C)) ®A)
= (a®C)o(e®@Y)o(6c®A)
= (A®ec)oy)®C)o(CRY)o(5c ®A)
= ((A®¢ec)oVagc) ®C)o(AQ®Sc) oY
= ApgcoV¥
Y.
The following Theorem clarify the implications of assuming the isomor-
phism condition for B4.

Theorem 2.7. Let (A, C, V) be a lax entwining structure such that there exists
a morphism py : A — A ® C satisfying that (A, (La, pa) belongs to .’Mg(l/f).
Suppose that the functor — ® A preserves coequalizers. Then if B 4 is an isomor-
phism, the canonical morphism y 4 is an isomorphism and (A, C, V) is a weak
entwining structure.

Proof. If B, is an isomorphism, y4 is an isomorphism with inverse y, =
,3;1 o 21 where €2 is the morphism defined in 2.9. Indeed,

)/AOIBXIOQI = QzOIBAOﬂXIOQl = QzOQl = pA®COAA®COiA®C = idA[jC
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where the last equality follows by (iii) of Lemmma 1.2. On the other hand,
composing with the coequalizer g4 4, we have

BiloQioyaoqaa=By' ogaac o Vasc o (a®C)o(A® pa)
= B4 0qasc o (1A ® C) o (A® pa)

-1 -1
=,3A O”A =,3A oBaoqar=4qan

and therefore ,3;1 0Qioys= idA@ACA‘
Finally, if y4 and B4 are isomorphisms by (48) and the similar equality
obtained in 2.9 we have

Y = iapc 0 Y40 Paga. 40 (Vs 0 pagc o (14 ® C)) ® A)
= jagc 0 Baodag,. a0 (By' 0qaac o (14 ® C)) ® A).
Then, composing with C ® n4 we prove that
Yo (C®na) = Vagc o (a®C) = Aagco(na®O0),

and therefore,
Yo (C®na)=(e®C)odc,

ie., (A, C, ¥) is a weak entwining structure (see Theorem 1.4). U

Example 2.8. Let (A, RG, ¥) the lax entwining structure introduced in example
1.8. Then, it is easy to show that

Bala ®apg b) = nyyala Qagg b)

and then, B4 is an isomorphism if and only if y4 is an isomorphism. As a
consequence, by Theorem 2.7, y4 and 4 are not isomorphisms.

Lemma 2.9. Let (A, C, ) be a lax entwining structure such that there exists a
morphism p, : A — A ® C satisfying that (A, a, pa) belongs to .’Mg(l//). Let
o :A— Ac ® C be a morphism of left Ac-modules for the actions ¢s.oc =
Mae @ C and ¢4 = g o (ia @ A). Then, there exists an unique morphism
My @ AQu. A— A such that

My oqans=pao(A®((if®ec)oa)).

Moreover, if A ® — preserves coequalizers, m, is a left A-module morphism.
Proof. The proof is similar to the one developed in Lemma 1.9 of [2]. U
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Definition 2.10. Let Ac < A be a lax C-Galois extension. We will say that
Ac — A satisfies the normal basis property (or A¢c — A is a lax C-Galois
extension with normal basis) if there exists an idempotent morphism of left Ac-
modules Q4 : Ac ® C — Ac ® C, for the action pa.gc = ta. ® C, and an
isomorphismby : Ac X C — A, where Ac X C is the image of 24, satisfying
the following conditions:

(1) by is an isomorphism of of left Ac-modules, where ¢a.xc = Facec ©
(ae ® C) o (Ac ® sacec), and sacgc * Ac X C — Ac ® C, racec :
Ac ® C — Ac X C are the morphisms such that Sa.gc © Facec = 24,

FAc®C © Sacec = idacKc-

(i) If wa = baoracgc : Ac ® C — A and 0, = saogc oby' : A —
Ac ® C, the following equalities hold

Qu=((Ac ®ec) o)) ® C) o psowa, (55)
paowpa = Vagco(wg ®C)o(Ac ®Ic). (56)
(i) If f = wao(a. ®C) and f' = Mgy, oyA_1 o pagc © (na ®C) the equality
F'Af=mac(AR (' Afoyo(C®na) (57
holds where m,y, is the morphism introduced in Lemma 2.9.

Observe that w, and o'y are morphisms of left Ac-modules and then we can
apply Lemma 2.9 for 0 = w',. Moreover, p.xc is a well defined structure of
left Ac-module because 24 is a morphism of left Ac-modules. Also, we have a
commutative diagram

A

/
% <
$24

Ac®c >AC®C
r‘% A@C
AcKC

Also, notice that equality (56) says that w, is a morphism in "W (M) be-
tween the objects (AC ® C, VAC®C®C = idAC®C®Ca PAceC = Ac ® 8c) and
(A, Vagc, pa)
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This definition is a generalization of the one introduced in [2] for weak en-
twining structures. In this setting (A, pa) is a right C-comodule and Q2 4 and b 5
are morphisms of right C-comodules. As a consequence, w, and ', are also
morphisms of right C-comodules and the equalities (55) and (56) hold trivially.
Moreover, in the weak setting (57) holds (see the proof of Theorem 2.11 of [2] ).

Note that if C is a category of modules over a commutative ring, this notion
of normal basis in the lax setting says that A is a direct summand of Ac ® C
in the category of left Ac-modules and as well as the image of an idempotent
morphism that satisfies some identities closely related with the right C-comodule
condition.

Finally, if Ac — A is a partial C-Galois extension, the definition of partial
C-Galois extension with normal basis is the one obtaining when we replace in
Definition 2.10 lax by partial.

3 The characterization of lax C-Galois extensions with normal basis

In this section, for a lax entwinig structure, we introduce the notion of lax
C-cleft extension A and we obtain a characterization of C-Galois extensions
with normal basis in as lax C-cleft extensions.

Definition 3.1. Letr (A, C, ¥) be a lax entwining structure. By Reg"V®(C, A)
we denote the set of morphisms h € Hom¢(C, A) such that there exists a
morphism h=' € Hom¢(C, A), called the left weak inverse of h, satisfying
h~'Ah=e.

Remark 3.2. Suppose that (A, C, ¥) be a lax entwining structure such that
there exists a morphism ps : A — A ® C satisfying that (A, w4, pa) belongs
to .?\/lg(w). Thenif h € Hom(C, A) is a morphism such that

paoh=Vygco(h®C)odc, (58)

i.e. & is a morphism in W (MC) between the objects (C, Vege = idegc,
pc = 6¢) and (A, Vagce, pa), by the entwined module condition for A, it is
easy to show that

hne=h. (59)

Moreover, if h € Reg"®(C, A), it is possible to obtain an explicit expression
for i as

Y =Us®C)o(A® (paops)o(h"'®h)odc)®A).  (60)
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Indeed,

v
Aprgc oY
(A®ec)oVaac) ® C) o (A®¢c) oY
(A®ec)®C)o (Y ®C) o (CRY)o(5c ®A)
((Lao(e®A)®C)o(CRY)o(5c®A)
(a0 (W' A ®AN®C)o(CRY) o (8¢ ® A)
(MAa®C)o (AR (a0 (h®A) R®C) o (CRY))) o
("' ®8c®A)o(8c ® A)

= (MAa®C)o (AR (MAa®C)o(ARY))) o
(W' ® (Vagc 0 (h® C) 08¢c) ® A) o (8¢ ® A)

= (MAa®C)o (AR (MAa®C)o(ARY))) o
(h™' ® (paoh) ® A) o (5c ® A)

= (UAa®C)o(A® (paopa)o (' ®@h)odc)® A),

where the first equality follows by (iv) of Lemma 1.2, the second one by (i) of
Lemma 1.2, the third one by (3) and the fourth one by (2). To obtain the fifth
one we used that & € Reg"®(C, A), while the sixth one is a consequence of the
associativity of u4 and the coassociativity of §¢. The seventh one follows by
(45), the eighth one by (58) and finally the ninth one by the entwined module
condition for A.

Notice that if we replace the equality (58) by

paoh=(h®C)odec,

that is, if we assume that / is a right C-comodule morphism, we can obtain the
same explicit expression for ¥ and then, composing with C ® n4, we have

Yo (C®na)=@a®C)o(A®ps)o(h™ ' @h)odc = (e®C)odc,

or, equivalently, (A, C, ¥) is a weak entwining structure.

Example 3.3. Let R be a commutative ring, G = {g; | i = 0, ..., n} a finite
group with go the identity element and A a R-algebra. Following [10], a left
partial action of G on A consists of a set of idempotents {e,, | i =0, ...,n} C A,
and a set of isomorphisms «,, : egl_—lA — e, A such that e,) = 1y, ag, =

Bull Braz Math Soc, Vol. 45, N. 1, 2014



LAX ENTWINING STRUCTURES, GROUPOID ALGEBRAS AND CLEFT EXTENSIONS 165

idy and
€ Ugig; (egjflg;la) = oy, (egiflagj (egjfla)), (61)
g (e,-1ab) = ag (e -1a)ag (e,-1D), (62)
g (eglfl) = € (63)

forall g;, gjin G and a, b in A.

By Proposition4.9 of [10] we know that there exists a bijective correspondence
between left partial G-actions and structures of left partial R G-module algebra
over A. Then, A with the partial action

(pA(gi ® (1) = Ug, (egl_—la)

is a left partial RG-module algebra. Therefore, A°” with the coaction defined
in (34) is a partial right R(G)“P-comodule algebra. In this case

par (@) = Z va(gi ®a)® fgi

gieG

where {f,, | i = 0,...,n}is the dual basis of {g; | i = 0,...,n} and, as a
consequence, p4or 18 the coaction determined by the grouplike element

> fa

gieG

(see Proposition 6.3 of [5]).

Then if we assume as in [5] that a plausible definition of cleft extension in the
partial setting involves the existence of a convolution invertible right colinear
morphism from R(G)“’” to A, by the arguments presented in the previous remark,
we obtain that the partial entwining structure associated to paor, i.e.

(A7, R(G)P, ¥ = (A ® ppr@G)er) o (CrG).a @ R(G)) o (R(G) ® paer)),

is weak. Therefore, by Theorem 1.4 we prove that (A°?, R(G)“?, {) is an
entwining structure and, as a consequence, 4 o (RG ® n4) = erg ® na, Or
equivalently, (A, ¢,) is a usual left RG-module algebra.

Motivated for this problem, in the following definition we introduce a new
notion of cleft extension in a lax setting.

Definition 3.4. Let (A, C, V) be a lax entwining structure such that there exists
a morphism py : A — A ® C satisfying that (A, (La, pa) belongs to .’Mg(l/f).
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We will say that Ac — A is a lax C-cleft extension if there exists a morphism
h : C — Ain Reg"R(C, A), called the cleaving morphism, satisfying the
equality (58) and
oo (A®h™)oVige =pao(A®R™), (64)
Vo(C®h™)ode=¢aoh™, (65)
where {4 is the morphism defined in Proposition?2.3.

This definition is a generalization of the one introduced for the weak ent-
wining setting in [1] and the one used by Brzezinski in [7] for entwining struc-
tures. Notice that, while in the case of a cleft extension for a weak entwin-
ing structure h is required to be a right comodule morphism (A is a right
C-comodule), here this condition is replaced by (58). Also, in this definition
appears a new condition (64) that, in the weak setting, is a consequence of

Vagc = Aagc and
enh b =hn"t (66)

Finally, as in the previous definitions, the notion of partial C-cleft extension
is introduced in a similar way.

Lemma 3.5. Let Ac — A be a lax C-cleft extension with cleaving morphism
h. Then, for the left inverse of h the equality (66) holds.

Proof. Check

eAh ' '=(AQec)oYo(COh Nodc=(AQec)olaoh t=h7!
where the first equality follows by (2), the second on by (65) and the last one
by the identity idy = (A ® &¢) o pa. U
Remark 3.6. In the conditions of the previous Lemma, the inverse of the

cleaving morphism can be obtained as

hl=enAh™ = ps0(A@h 1) oVigeo(e® A)ode
=pao(A®h™) oy o(C®na)

where the second equality follows by (64) and the last one by (4). Then, as a
consequence, the following identity

$puo(Mh™")oVyge =¢uo(Mh") (67)
holds for any lax entwined module M.
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In the followig proposition we give a characterization of lax C-cleft exten-
sions.

Proposition3.7. Let (A, C, ¥) be a lax entwining structure such that there exists
a morphism ps : A — A ® C such that (A, jLa, pa) belongs to .’Mg(l/f). Let
h € RegVR(C, A) satisfying the equalities (58) and (64). Then the following
assertions are equivalent:

(1) For every lax entwined module the morphism
gu=¢uoMh™Nopy:M—>M
factors through the equalizer of py and Ly, that is, if iy : Mc — M is
the equalizer morphism defined in Proposition 2.3, there exists an unique
morphism py - M — M¢ such thatiy o py = gu-
(i1) The morphism
ga=pao(A®h Nops:A—> A
factors through the equalizer of pa and La, that is, if iy : Ac — Ais

the equalizer morphism defined in Proposition 2.3, there exists an unique
morphism py : A — Ac suchthatiy o py = ga.

(iil)) A¢ < A is a lax C-cleft extension with cleaving morphism h.

Proof. (i) = (ii) Just consider M = A.
(i1) = (iii) To prove this assertion, first we show that
gaoh=hnAh' (68)
Indeed, by (58) and (64) we have
hAhR ' =ps0(A®@h ) oVageco(h® C) obde =gy oh.
Then,
Yo (C®h™ ) odc
= (a®C)o(h™' ® (pao(h AR™")))ob¢
(A ®C) o (h™' ® (paogaoh))) odc
(a4 ®C)o(h™' @ (sa08a0h)))odc
tao (h™' A(gaoh)
tao (W' AR ARTY)
tao(enh™)
taoh™!,
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where the first equality follows by (60) and the coassocitivity of ¢ and the
second one by (68). To obtain the third one we used that g, factors through
i4 and the fourth one follows by the associativity of 4. The fifth equality is a
consequence of (68) and the sixth one follows by the associativity of the convo-
lution product as well as the condition 2 € Reg"®(C, A). Finally, the last one
follows by (66).
Therefore, Ac < A is alax C-cleft extension with cleaving morphism /.
(iii) = (i) Let M be a lax entwined module and assume that Ac < A is a lax
C-cleft extension with cleaving morphism /. Then
Pm © 8m
= (pu®C)o(MY)o (o ®h™")opy
(G ®C)o(MY) o (Vige ®h™") o (M ®8¢) 0 pu
(G ®C)o (M@ (W o(CO®h")osc)) o pu
(G ® C) o (M & (Laoh™) o py
= {M °8m;
where the first equality follows by the entwined module condition for M, the

second one by (38), the third one by

Py ® C) o (M ®@Y) o (Vuge ® A) = (du ® C) o (M ® V), (69)
the fourth one by (65) and the last one by the right A-module condition for M.

Therefore, gy, factors through the equalizer of py, and &y,. |

Lemma 3.8. Let Ac < A be a lax C-cleft extension with cleaving morphism
h. Then for all lax entwined module M the following equality holds.

puodyo iy @A) = ¢y o (Mc @ pa). (70)
Proof. To prove this equality check

iy opuodyo(iy®A)
= ¢uo@u®h)o(M®Y)o(pyoin)® A)
= ¢puoM®(nao(A®h ) oy)) o ((pyoin)®A)
= ¢uoliu® pao(a®h™)o(A®Y) o ((paons) @A)
= ¢yo(iy ®ga)
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= ¢y o (iy ® (is 0 pa))
= iy oPy.o(Mc® pa),

where the first equality follows by the entwined module condition for M, the
second one by the A-module condition for M, the third one is a consequence of
Pum 0 iy = Cy oiy, the A-module condition for M as well as the associativity
of ;4. In the fourth one we use the entwined module condition for A and the
unit properties. The fifth one follows by the factorization properties of g4 and
finally, the last one, by (ii) of Proposition 2.3.

Therefore (70) holds because iy, is an equalizer. U

If Ac — A is alax C-cleft extension, in the following Proposition, for all
lax entwined module M, we obtain an idempotent morphism satisfying suitable
conditions.

Proposition 3.9. Let Ac — A be a lax C-cleft extension with cleaving
morphism h. Let M be a lax entwined module. Define:

wM=¢MO(iM®h)IMc®C—>M

and
&y =(pu®@C)opy: M — McQ®C.

Then, the following assertions hold:
(i) The morphisms wy and ), satisfy the equality
wy 0wy = idy (71)
and wy; is a morphism in W (M) between the objects
Mc ® C, Vycocoe = idycgcec: Pucoc = Mc @ é¢)
and (M, Vyec, Pu), i.e.

pm o wy = Vygce o (wy ® C) o (Mc ® é¢). (72)

As a consequence Qy = o), owy : Mc ® C — Mc ® C is an idem-
potent morphism and

Qu =(((Mc ®ec)ow)y) ®C)opyowy. (73)
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(i1) In the particular case of M = A, we have that wy = s o (ix ® h) and
'y = (pa ® C) o pa are morphism of left Ac-modules for the actions
Gacec = ta. @ Cand gy = g0 (ia ® A).

Proof. The

equality (71) holds because:

wy 0wy,

by o (Pyo(Mh™")opy)®h)opy

Py o (Pyo(Mh™") o Vyge) ®h) o (M ®38c) o pu
by o (dy ® A) o (M @ ((h™' ®h) 08¢)) o pu
duo(M®e)opy

idy,

where the first equality follows by definition, the second one by (38), the third

one by (67)
fifth one by

, the fourth one by the A-module condition for M and finally, the
(41).

On the other hand,

Pm © Wy

(n ®@C)o (M@ Y)o((pmoin) ®H)

(dm @ C) o (iy @ ((ua ®C) o (AR Y) o ((pa ®Na) @ h)))
(dm ® C) o (iy ® (pa o h))

(ém ® C) o (iy @ (Vagc o (h @ C) 0 5¢))

= Vugco (wy ®C)o (Mc ® 8¢),

where the first equality follows by the entwined module condition for M, the

second one

by the properties of the equalizer morphism iy, as well as the A-

module condition for M, the third one the entwined module condition for A, the
fourth one by (58) and the last one by

Viugc 0 9y ® C) = (¢py @ C) o (M @ V). (74)

Therefore, (72) holds. Finally, the identity (73) is a trivial consequence of
idy = (M ®ec) o puy.

In the particular case of M = A we obtain that w, and ', are morphisms
of left Ac modules because by (i) of Proposition 2.3 and the associativity of
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a4 we have

WA O PAcRC
pao ((igopac)®h)

= pao((nao(ia®ia) ®h)
a0 (Ac ® wa)

and by the entwined module condition for A, the properties of i4 and (70)
we obtain

W)y 0 P4

((paopa) ®C)o (AR Y)o((pacia) ®A)
= ((paopa)®C)o(ia®@((ua®C)o(A®Y) o ((paons) ®A)))
= ((paopua) ®C)o(ia ® pa)

Pacec © (Ac ® w)).

Remark 3.10. Note that in the conditions of the previous Proposition we have
an isomorphism by, : M¢c X C — M where M X C denotes the image of
the idempotent €2,,. If we denote by sy .gc and ry.gc the injection and the
projection associated to €2)7, we have that byy = wy o sy.gc and therefore

;/Il = I'Mcac © W)y

In the case M = A, the idempotent 2, is a left Ac-module morphism and b4
is also a left Ac-module morphism for ¢4 .xc = racec ©Pacec © (Ac @Sacoc)-

Finally, note that if ), is a morphism in W (M) between the objects
(M, VM®C, pM) and (MC ® C, ind®C®Ca PMc@C = MC ® 6c) we obtain that
Vugce = idyge and then (M, py) is right C-comodule. On the other hand,
if Vugc = idygc, we have that (M, py) is right C-comodule and ), is a
morphism of right C-comodules.

Now we can prove the main theorem of this section.

Theorem 3.11. Let (A, C, V) be a lax entwining structure such that there
exists a morphism py : A — A ® C such that (A, jLa, pa) belongs to .’Mg(l/f).
Consider the following assertions:

(1) Ac < Ais alax C-cleft extension.

(i1) Ac — A is a lax C-Galois extension with normal basis.

Then (1) = (ii). If A ® — preserves coequalizers (ii) = (i).
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Proof. (i) = (ii) Let Ac <> A be a lax C-cleft extension and take
Yi=qaaro(Ua®A) o (AQh ' ®h)o (AR Sc) ciage : ALC — A®q4. A

Then y4 o y; = idanc because

iA®C O VA O V4

tho (s ®A)o(AQh ' ®@h)o(A®Sc)0iagc
(A®C)o(AQus®C)o(AQ ™' ® (Vagc 0
(h®C)oéc)) o (A®Sc)oiagce

Vagc © Aagc © lagc

iA®C 5

where the first equality follows by the properties of y,4, the second one by (58)
and the associativity of w4, the third one by (54) and the last one by (iii) of
Lemma 1.2.

On the other hand, y} o y4 = idA@ACA because

VA O0YA0da.A

= gaao(ua®A)o(AQh™ @h)o(ARSc) oty

= qaao(ua®A) o (AR (uao(A®h™")oVage)®h)o
(A®A®dc) o (AR®pa)
Gaao(pa®A)o(A®ga®h)o(A® pa)

= qaao(A® (nao(ga®h)opa))

= gaao(A® (ao((nao(A®h™") o Vage) ®h) o (A®Sc)o0 pa))

= gaaro(A® (nao(A®e)opa))

qA.A,

where the first equality follows by the properties of 4, the second and the sixth
ones by the associativity of 4 and (64), the third and the fifth ones by (38), the
fourth one by the properties of g4 4 and finally, the last one by (41).

Therefore y, is an isomorphism with inverse y, = Y, and, as a conse-
quence, A¢ < A is a lax C-Galois extension. Finally, by (i) of Proposition 3.9
and Remark 3.10 we obtain that A <> A satisfies the normal basis condi-
tion because in this setting (see (ii) of Proposition 3.9) we have that ws =
pao(ia ®h), w, =(ps® C) o p, and then

f=wa0a ®C) =pugo((iaona)®h)=nh
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and
7
= my 0¥y ©pagc o (a®C)

My, 0Gano (s ®A) o (A®h™ ®h) o (A®6Sc) 0 Vage 0 (14 ® C)
= pao(A® (h™" A(gaoh)))oVagc o (na®C)
tao(A® (W' A(h Ah™"))) o Vage o (14 ® O)
pao(A® (A" AR) ARTY) 0 Vage 0 (14 ® C)
a0 (A® (e Ah™")) o Vage o (ns ® C)

a0 (A®h™") o Vage o (na®C)
= pao(A®hHo(ms®C)
= h

where the first and the second equalities follow by definition, the third one by
Lemma 2.9 (0 = /;) and the associativity of w4, the fourth one by (68), the
fifth one by the associativity of the convolution product, the sixth one by the
properties of 2~1, the seventh one by (66), the eighth one by (64) and finally the
last one by the unit properties.

Therefore,

fIANf=e=puao(AQ(f A f))oo(CQna).

(i) = (i) Let A¢c — A be a weak C-Galois extension satisfying the normal
basis condition and suppose that A ® — preserves coequalizers. Take h = f and
and h=! = f'.

Then by (56) we obtain (58). The proof for (64) is the following:

pao(A®h™") o Vage
= My, 0 Pagu.4°(A® (vy' 0 pasc o (14 ®C))) o Vage
= my, o Yi' o@anc o (A® (Pagc © (4 ® C))) 0 Vagc
= My, 0¥Vs' ©Ppasc o (s ®C)o(A® (Vage o (14 ® C))) o Vage
= my, o Vi © Pasc
= My, 0¥y ©pasc o (s ®C)o(A® (Vage o (14 ® C)))
= my 0y, opatc o (A® (pasc o (14 ® C)))
= My, 0 Pag, 40 (A® (vy' o pasc o (14 ®C)))
= pao(A®h™,
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where in the first equality we used that m,,, is a morphism of left A-modules, the

second one by the same property for y, ! the third one is a consequence of the
definition of ¢ ¢ and the fourth one follows by (54). The fifth, sixth, seventh
and eighth ones follow by the same arguments.

To show that 7~! A h = e we need some preliminary steps. First we prove
that

pao(A®h™")ops=(ia ®ec) oy (75)
Indeed, by the same arguments used in the proof of (64) we have
mao(A®h™") o py
= My, 0 Pagu. 40 (A® (vy' 0 pasc o (14 ®C))) o pa
My, 0 vy opanc © (A® (pagc o (14 ® C€))) o pa
My, 0¥y ©Pagc ©(a ® C) 0 (A® (Vage 0 (14 ® C))) 0 pa
= mgy, 0 ¥4 © pasc © pa

and by Lemma 2.9,

My, © VA_I 0 PAgC © Pa

= My, 0¥y 0 pagc o (s ®C)o(na® pa)

= mwgoyA_loer(nA@A)

= my, 0qaac(Na®A)

= pao(Ma® ((ia ®ec)ow)y))

= (lA ® 8c) (o] (1):4
Therefore (75) holds.
On the other hand, the identity

pao(A® (' Ah))ops=idy (76)

also holds. To prove it compute:

pao(A® (h™' Ah))ops
= pao((ao(A®h™")oVgc) ®h) o (AR®Sc) o pa
= pao((uao(A®h™")ops) ®h)opy
= paoo(((ia ®ec)owy) @h)opy
= wa0((Ac ®ec) owy) ® C) o py
= wy0Quoa,
idy,
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where the first equality follows by the associativity of 4 and (64), the second
one by (38) and the third one by (75). In the fourth one we used the definition of
h and the left Ac-module condition for the morphism w4. The fifth one follows
by (55) and the last one by the properties of the idempotent €24 .

Then we have,

pao(A® (h™' Ah))ops=idy=ps0(A®e)ops

and as a consequence
1ao(A® (™" Ah))oisgc 0Yaoqas =pao(A®e)oisgc 0 Va0 qan

or, equivalently,

tao(A® (W™ AR))oisge = a0 (A®e)oisgc.
Therefore,

1ao(A® (™ AR)oVage =pao (A®e)o Vage
and composing with n4 ® C we obtain

rao(A® (" AR) oy o(C®ns) =pao(A®e) oy o(C®na).
Thus, by (57) we prove that k= A h =e,i.e. h € Reg"®(C, A), because
pao(A®e)oyo(CONA) =e.

To finish the proof it remains to prove (65). First, note that by (58) and the
equality 2= A b = e it is possible to obtain an explicit formula for ¥ as
in (60). Also by (75), (58) and (64) we have

(ia ®ec) 0 Quo(a ®C) =ppao(AQh™Nopsoh=hAh™. (17

Then, (65) holds because

Vo (C®h)ode

= (a®C)o(h™' ®(pao(h AR™)))0b¢
(A ®C)o(h™' @ (((paoia) ®ec) o Qo (s ® C))) odc
(Ha®C) o (h™' ® (¢aoia) ®ec) o Qa0 (na ®C))) od¢
tao (B A(pao(A®h ") opsoh))
tao(h™ A(uao(A®h™") o Vage o (h® C) 0dc))
tao (W' AR ARTY)
tao((h™"Ah)yAR™h
tao(enh™h)
taoh™l.

Bull Braz Math Soc, Vol. 45, N. 1, 2014



176 JN. ALONSO ALVAREZ et al.

Finally, a trivial consequence of the previous Theorem is the following
Corollary.

Corollary 3.12. Let (A, C, V) be a partial entwining structure such that there
exists a morphism ps : A — A ® C such that (A, ja, pa) belongs to .’Mg(w).
Consider the following assertions:

(1) A¢ — Ais a partial C-cleft extension.
(i) Ac < A is a partial C-Galois extension with normal basis.

Then (1) = (ii). If A ® — preserves coequalizers, (ii) = (1).
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