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Abstract. We study the existence of minimal graphs in ˜PSL2(R) with prescribed
boundary data, possibly infinite. We give necessary and sufficient conditions on the
“lengths” of the sides of the inscribed polygons in an unbounded domain in H2, that
yield solutions to the minimal surface equation with prescribed boundary data.
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1 Introduction

In 1966 H. Jenkins and J. Serrin published the work “The Dirichlet problem for
the minimal surface equation”, [6], where they show the existence of minimal
graphs inR3 over bounded domains inR2 with infinite boundary data. J. Spruck
in [16] extended the theorem of Jenkins and Serrin to constant mean curvature
graphs in R3 over bounded domains of R2.

The work of Jenkins and Serrin inspired many extensions to other ambient
spaces. For minimal graphs in S2 × R the existence theorem was proved by
H. Rosenberg [13]. In H2 × R, B. Nelli and H. Rosenberg [10] proved the
theorem of Jenkins and Serrin over bounded domains in H2. P. Collin and
H. Rosenberg in [1] treated the case in which the domain in H2 is unbounded
and L. Mazet, M. Rodríguez and H. Rosenberg [9] dealt with a more general
setting. In [4], J. Gálvez and H. Rosenberg proved this theorem in M2 × R

over bounded domains inM2 = Hadamard surface. When M2 is a Riemannian
surface we have the work of A.L. Pinheiro [11]. For constant mean curvature
graphs in H2 × R, the theorem was proved for bounded domains in H2 by
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L. Hauswirth, H. Rosenberg and J. Spruck [5] and for unbounded domains by
A. Folha and S. Melo in [3]. In Heisenberg space Nil3 , A.L. Pinheiro [12]

studied the case of minimal graphs over bounded domains in R2. In ˜P S L2(R),
R. Younes in [17] shows the existence of minimal surfaces which are graphs over
bounded domains in H2.

In this paper we study minimal graphs in the space ˜P S L2(R). This space is
a Riemannian fibration over the hyperbolic plane H2. Here we are interested in

obtaining a Jenkins-Serrin type theorem for minimal graphs in ˜P S L2(R) over
unbounded domains inH2.

The ˜P S L2(R) space is a simply connected 3-dimensional homogeneous Rie-
mannian manifold with four dimensional isometry group. Denote by P S L2(R)

the quotient Lie group S L2(R)/{±Id}, where S L2(R) is the 3-dimensional Lie
group of 2×2 real matrices of determinant 1. The universal covering of P S L2(R)

is ˜P S L2(R). Let UH2 be the unit tangent bundle of H2, i.e. the submanifold
of TH2 consisting of tangent vectors of unit length. We can identify UH2 with

P S L2(R) and consequently ŨH2 with ˜P S L2(R). Furthermore, ˜P S L2(R) is dif-

feomorphic toH2 × R but ˜P S L2(R) is not a product space, see [15] for further
information.

In this article we consider a convex domain D ⊂ H2 whose boundary ∂D
is composed of complete geodesic arcs {Ai}, {B j } and convex arcs {Ck} with
all the vertices in ∂∞H2. We give necessary and sufficient conditions on the
geometry of the domainD which assure the existence of a function u defined in
D, whose graph is minimal and u takes the value +∞ on each Ai , −∞ on each
B j and prescribed continuous data on each Ck . The conditions will be in terms
of the lengths of sides of inscribed polygons. Since these quantities are infinite
in general, the formulation of the conditions is somewhat delicate.

This paper is organized as follows. In Section 2 we state the main theorems,
which will be proved in Section 8. In Sections 3 and 4 we give the necessary

background for the study of minimal graphs in ˜P S L2(R). Sections 5 and 6
contain a general maximum principle and the flux formula, which are useful tools
to prove preliminary results and the necessary conditions of the main theorems.
In Section 7, we state results about divergence lines, which are essential to prove
the sufficient conditions of the main theorems.

2 Main Theorems

In this section, we establish the theorems that give necessary and sufficient con-

ditions for the existence of minimal graphs in ˜P S L2(R) which take, on the

Bull Braz Math Soc, Vol. 45, N. 1, 2014
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boundary of a domain, the values +∞ on {Ai }, −∞ on {B j } and continuous
data on {Ck}. We begin giving some definitions.

Definition 2.1 (Admissible Domain). We say that an unbounded domainD in
H2 is admissible if it is simply connected and ∂D is a polygon formed by sides
{Ai },

{
B j

}
and {Ck}, such that {Ai } and

{
B j

}
are geodesics and {Ck } are convex

curves (with respect to the interior of D). We suppose that two arcs Ai do not
have a common end-point; the same for two arcs B j . All the vertices of ∂D are
supposed at infinity ∂∞H2 (∂D is an ideal polygon).

Remark 2.1. When a convex arc Ck in ∂D has a vertex point dκ ∈ ∂∞H2,
we assume that the other arc η of ∂D having dκ as vertex is asymptotic to
Ck at dκ , that is, for a sequence of points xn ∈ η, converging to dκ , we have
distH2(xn, Ck) → 0 as n → ∞.

Definition 2.2 (Dirichlet Problem in ˜P S L2(R)). Let D be an admissible
domain. The Dirichlet Problem consists in finding a solution for the minimal
surface equation in D which assumes the value +∞ on each Ai, −∞ on each
B j and prescribed continuous data on each Ck .

Definition 2.3 (Admissible Inscribed Polygons). Let D be an admissible do-
main. We say that P is an admissible inscribed polygon if P ⊂ (D ∪ ∂D) and
its sides are geodesics. Moreover, the vertices of P are also vertices of D.

To solve the Dirichlet problem we will find necessary and sufficient conditions
in terms of lengths of the sides of P. When the domain is unbounded these
quantities can be infinite. Using the ideas as in [1], we proceed as follows.

Let P be an inscribed polygon inD ⊂ H2 and let {dκ} ∈ ∂∞H2 be the vertices
of P. For each κ , we consider a horocycle Hκ at dκ ; such that Hi ∩H j = ∅,
if i 
= j . Let Fκ be the convex horodisk with boundary Hκ . We suppose that
the polygon P is P = ⋃

l ηl . Each side ηl of P meets exactly two horodisks.
Denote by η̄l the part of ηl outside the two horodisks; and by |ηl |H2 the length
of η̄l . Note that η̄l is a compact arc of ηl .

So, we define

α(P) =
∑
Ai ∈P

|Ai |H2 , β(P) =
∑
B j ∈P

∣∣B j

∣∣
H2 and �(P) =

∑
l

|ηl |H2

where P =⋃l ηl .

We are now ready to state the main theorems.

Bull Braz Math Soc, Vol. 45, N. 1, 2014
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Theorem 2.1. Let D ⊂ H2 be an admissible domain and suppose that the
family {Ck} is empty. Then there exists a solution to the Dirichlet Problem in
˜P S L2(R) if, and only if, for some choice of the horocycles at the vertices,

α(∂D) = β(∂D), for P = ∂D (1)

and
2α(P) < �(P) and 2β(P) < �(P), (2)

for all admissible inscribed polygons P, P 
= ∂D.

When {Ck} is non-empty we are able to prove the result below.

Theorem 2.2. Let D ⊂ H2 be an admissible domain and suppose that the
family {Ck} is nonempty. Then there exists a solution to the Dirichlet Problem

in ˜P S L2(R), if and only if for some choice of the horocycles at the vertices,

2α(P) < �(P) and 2β(P) < �(P), (3)

for all admissible inscribed polygons P, P 
= ∂D.

Remark 2.2. Let P be an inscribed polygon inD ⊂ H2 and let {dκ} ∈ ∂∞H2 be
the vertices of P. LetHκ be a horocycle at dκ . Suppose that the conditions (1),
(2) and (3) are satisfied for a family of horocyclesH = {Hκ}. Take the family
H ′ = {Hκ}κ 
=s ∪ {H ′

s}, where H ′
s is contained in the horodisk Fs bounded by

Hs . Conditions (1), (2) and (3) also hold for the family H ′. In the following,
the subindices T and T ′ are used to clarify the dependence of the terms with
respect to H and H ′ respectively.

Indeed, if P = ∂D

α(∂DT ′) − β(∂DT ′) = α(∂DT ) − β(∂DT ) = 0,

then condition (1) holds for this family H ′.
Now, consider P 
= ∂D. Suppose that the horocycle Hs meets sides Ai and

B j of the polygon P, for some i, j . The part that is added in α(PT ′) is also
added in β(PT ′) and �(PT ′), and this preserves the inequalities. See Figure 1.
WhenHs meets sides Ai and Ck , for some i, k (or Ai and E , where E is interior
arc in D) the part that is added in α(PT ′) is also added in �(PT ′) and β(PT ′)
remains the same. The case where Hs meets B j and Ck , for some j, k (or B j

and E) is similar as above. If Hs meets Ck and E , for some k, then the part
added in �(PT ′) does not change the inequalities. So conditions (2) and (3) hold
for this family H ′.

Bull Braz Math Soc, Vol. 45, N. 1, 2014
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Ai

B j

Hs

H ′
s

Figure 1: Hs and H ′
s in the disk model for H2.

3 The space ˜P SL2(R)

The space ˜P S L2(R) is a simply connected 3-dimensional homogeneous man-
ifold whose isometry group has dimension 4. This manifold is a Riemannian
fibration over the hyperbolic plane H2 and its fibers are geodesics tangent to a
unitary Killing field ξ . The bundle curvature is the number τ such that ∇̃Xξ =
τ X × ξ for any vector field X , where ∇̃X is the Riemannian connection of
˜P S L2(R). The bundle projection π : ˜P S L2(R) → H2 is a Riemannian submer-

sion, see [17].
We take the half-plane model of the hyperbolic plane H2,

H2 = {(x , y) ∈ R2 | y > 0},
with metric

dsH2 = λ2(dx 2 + dy2), λ = 1

y
.

The metric in ˜P S L2(R) is

ds2 = λ2(dx 2 + dy2) +
(

2τ
λy

λ
dx − 2τ

λx

λ
dy + dz

)2

,

where τ is the bundle curvature. For more information, see [2].
Now we will build an orthonormal frame {E1, E2, E3} on ˜P S L2(R). Denote

by E3 the vector field ξ . Let {e1, e2} be the orthonormal frame of H2 given by

e1 = 1
λ
∂x and e2 = 1

λ
∂y . We denote E1, E2 the horizontal lifts to ˜P S L2(R) of

e1 and e2, respectively. Thus

dπ(Ei ) = ei and 〈Ei, E3〉 = 0, i = 1, 2.

Here 〈 , 〉 is the scalar product in ˜P S L2(R).

Bull Braz Math Soc, Vol. 45, N. 1, 2014
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Using this information, we can give expression of Ei in local coordinates

E1 = 1

λ
∂x − 2τ

λy

λ2
∂z, E2 = 1

λ
∂y + 2τ

λx

λ2
∂z and E3 = ∂z.

So {E1, E2, E3} defined as above is an orthonormal frame on ˜P S L2(R).

4 Graphs

In the space ˜P S L2(R) a graph is the image of a section of the Riemannian

submersion. Let s : D → ˜P S L2(R) be a section of the Riemannian submersion
π : ˜P S L2(R) → H2, i.e., s is a map that satisfies π ◦ s = IdD . We define by
�0 the surface given by {z = 0} and we identify the domain D ⊂ H2 with its lift

to �0, i.e., if (x , y) ∈ D then its lift is the point of ˜P S L2(R) whose coordinates
are (x , y, 0).

Given a function u ∈ C2(D) we define the graph G(u) of u on D as

G(u) =
{
(x , y, u(x , y)) ∈ ˜P S L2(R); (x , y) ∈ D

}
,

where the value u(x , y) is the distance from the lift of (x , y) ∈ H2 to s(x , y) ∈
π−1(x , y) along the geodesic fiber through (x , y, 0).

We take the function F(x , y, z) = z − u(x , y) in ˜P S L2(R). Clearly G(u) =
F−1(0) and let N = ∇F

‖∇F‖ be the unitary vector normal field to G(u) in ˜P S L2(R)

pointing up. Here the gradient ∇ is calculated in the metric of ˜P S L2(R) and ‖.‖
is the norm in ˜P S L2(R). To calculate the mean curvature H of G(u), with respect

to the normal N , choose the vectors v1, v2 ∈ ˜P S L2(R) such that {v1, v2, N}
is an orthonormal basis of T

(
˜P S L2(R)

)
. As N is a unitary field we have〈∇̃N N, N

〉 = 0. Then

−2H =
2∑

i=1

〈∇̃vi N, vi

〉

=
2∑

i=1

〈∇̃vi N, vi
〉+ 〈∇̃N N, N

〉
= div(N),

where div denotes the divergence in ˜P S L2(R).

Bull Braz Math Soc, Vol. 45, N. 1, 2014
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Hence div
(

∇F
‖∇F‖

)
= −2H .

Calculating ∇F and ‖∇F‖ we find

∇F =
(
−2τ

λy

λ3
− ux

λ2

)
∂x +

(
2τ

λx

λ3
− uy

λ2

)
∂y

+
(

1 + 4τ 2
λ2

y

λ4
+ 2τ

λyux

λ3
− 2τ

λx uy

λ3
+ 4τ 2 λ2

x

λ4

)
∂z

=
(
−2τ

λy

λ2
− ux

λ

)
E1 +

(
2τ

λx

λ2
− uy

λ

)
E2 + E3

and

‖∇F‖ =
(

−2τ
λy

λ2
− ux

λ

)2

+
(

2τ
λx

λ2
− uy

λ

)2

+ 1.

So
∇F∥∥∇F
∥∥ = ρ

W
E1 + ω

W
E2 + 1

W
E3.

Here ρ =
(
−2τ

λy

λ2 − ux
λ

)
, ω = (2τ λx

λ2 − uy

λ

)
and W 2 = ρ2 + ω2 + 1.

Therefore

div

(
∇F∥∥∇F
∥∥
)

= div

(
ρ

W
E1 + ω

W
E2 + 1

W
E3

)
.

Since E3 is a Killing field, div(E3) = 0 and div
(

1
W E3

) = 0. Then

div
( ρ

W
E1 + ω

W
E2

)
+ div

(
1

W
E3

)
= div

( ρ

W
E1 + ω

W
E2

)
=

2∑
i=1

〈
∇̃Ei

( ρ

W
E1 + ω

W
E2

)
, Ei

〉

=
2∑

i=1

〈
∇ei dπ

( ρ

W
E1 + ω

W
E2

)
, ei

〉
H2

= divH2

( ρ

λW
∂x + ω

λW
∂y

)
.

Bull Braz Math Soc, Vol. 45, N. 1, 2014
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Thus

−2H = divH2

( ρ

λW
∂x + ω

λW
∂y

)
.

The equation above is called the H-graph equation. So u is a solution for the
minimal surface equation if u satisfies

Mu := divH2

( ρ

λW
∂x + ω

λW
∂y

)
= 0. (4)

5 Maximum principle

The next result is a General Maximum Principle proved in [12]. We fix some

notations. Let π : M
3 → M2 be a Riemannian submersion and Nu the upwards

unit normal vector to the graph G(u) of u in M
3
. We write this vector as Nu =

− Gu

Wu
+ 1

Wu
, where − Gu

Wu
is the horizontal part of Nu and W 2

u = 1 + ‖Gu‖2
M

.
Since Gu is horizontal, we can identify Gu with its projection dπ(Gu). So for
the functions u, v in �0 we have, as proved in [7], that

Gu − Gv = ∇u − ∇v,

here ∇ denotes the gradient on M2.
Now we state a lemma proved in [7].

Lemma 5.1. Let u and v be functions in C2(D), D is a domain in M2. Then〈
Gu − Gv,

Gu

Wu
− Gv

Wv

〉
M2

= Wu + Wv

2
‖Nu − Nv‖M

3 ≥ 0,

with equality at a point if and only if ∇u = ∇v.

Theorem 5.1. General Maximum Principle. Consider D ⊂ M2 a bounded
domain. Let u, v ∈ C2(D) be such that their graphs are minimal surfaces in

M
3
. Let I ⊂ ∂ D be a finite set of points such that ∂ D − I consists of smooth

arcs and suppose that u and v extend continuously to each smooth arc of ∂ D − I .
If u ≤ v on ∂ D − I , then u ≤ v on D.

6 Flux formula

Let u be a solution of the minimal surface equation (4) on a domain D ⊂
H2. We consider the half-space model of H2 with λ = 1

y . We denote by −Xu

Bull Braz Math Soc, Vol. 45, N. 1, 2014
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the horizontal projection of the upwards normal vector to the graph of u in
˜P S L2(R). So

−Xu = dπ
( ρ

W
E1 + ω

W
E2

)
=
( yρ

W
∂x + yω

W
∂y

)
,

where ρ = 2τ − yux , ω = −yuy and W 2 = 1 + ρ2 + ω2.

Definition 6.1. Let η be an arc in D and ν the unit normal to η. We define the
flux of u across η to be

Fu(η) =
∫

η

〈Xu, ν〉H2ds,

ds is the arclength of η in H2.

Since u is a solution of the minimal surface equation, we know that Xu has
null divergence, see equation (4). Moreover, |Xu |H2 ≤ 1. So we can extend the
definition of flux to an arc η in ∂D. In this case, we consider the vector ν as the
outer conormal vector of ∂ D.

Lemma 6.1. Let u be a solution of the minimal surface equation in D. Then the
following conditions hold:

(i) if η is a piecewise smooth arc in D, then |Fu(η)| ≤ |η|H2;

(ii) if D′ ⊂ D is a compact bounded domain, then Fu(∂ D′) = 0;

(iii) if η ⊂ D, then |Fu(η)| < |η|
H2 .

For the proof of (i) and (ii) of the lemma above is sufficient to observe that
|Xu|2H2 ≤ 1 and divH2 Xu = 0 and to use Stokes Theorem. To prove (iii) we
use the fact that |Xu|2H2 < 1 in the interior of D.

Lemma 6.2. Let η be a convex arc in ∂ D. Let u be a solutionwhich is continuous
on η. Then

|Fu(η)| < |η|H2 .

For the proof of this lemma, see [17].

Lemma 6.3. Let u be a solution of the minimal surface equation in D. If
u → +∞ on an arc η in ∂ D (respectively, −∞), then η is a geodesic of H2

and Fu(η) = |η|
H2 (respectively, − |η|

H2).

Bull Braz Math Soc, Vol. 45, N. 1, 2014
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Proof. We take p ∈ η such that distH2(p, ∂η) > 0 and a sequence of points
{pm} in D such that {pm} → p. So, we have u(pm) → +∞. We denote

vm = u − u(pm) and G(vm) the graph of vm in ˜P S L2(R) over D. By Cur-
vature estimates, from [14], we get a δ > 0 independent of m, such that a
neighborhood of each Pm = (pm, vm(pm)) = (pm, 0) in G(vm) is a graph
G Pm(vm, δ), of bounded geometry (C2− bounded), over the disk D(Pm, δ) of
radius δ centered at the origin of TPm G(vm). Here TPm G(vm) is the tangent
plane of G(vm) at Pm.

For m large enough, the tangent planes TPm G Pm(vm, δ) are almost vertical,
otherwise the vertical projection by π of G Pm(vm, δ) would have points outside
D. So a subsequence of TPm G Pm (vm, δ) converges to a vertical plane � when
{pm} → p. This implies that the disks D(Pm, δ) converge to a disk D(P, δ) in
�, where P = (p, 0), and the graphs G Pm(vm, δ) converge to a minimal graph
G P over D(P, δ) ⊂ �. We know that the plane � is tangent to π−1(η) in the

point P of ˜P S L2(R), where π−1(η) ⊂ ˜P S L2(R) is the vertical cylinder on η.
We suppose that the curve η is not a geodesic. Then there exists a geodesic

� in H2 tangent to η at p. We know that G P and π−1(�) are tangent at
P . If G P is on one side of π−1(�), by the maximum principle, we have
G P ⊂ π−1(�) and η would be a geodesic. If G P is on both sides of π−1(�)

we have that G P ∩ π−1(�) is composed of k ≥ 2 curves passing through P
meeting transversally at P . So in a neighborhood of P these curves separate
G P in 2k components and the adjacent components lie in alternate sides of
π−1(�). Moreover the normal vector to G P alternates from pointing down to
pointing up when one goes from one component to the another. This cannot
occur. Therefore η is a geodesic in H2.

Now we prove the second part of the lemma. Suppose that u → +∞ on η.
We know that the tangent planes TPG(u) are almost vertical at points suffi-
ciently close to η and the normal vector N(P) is almost horizontal. So, using
the definition of Xu, we have that close to η, 〈Xu, ν〉H2 approaches one. Thus,
for ε > 0 small

〈Xu, ν〉H2 ≥ 1 − ε.

Therefore, for all small ε > 0∫
η

〈Xu, ν〉H2 ds ≥
∫

η

(1 − ε)ds.

As ε tends to zero ∫
η

〈Xu, ν〉H2 ≥ |η|H2 .

Bull Braz Math Soc, Vol. 45, N. 1, 2014
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However, by Lemma 6.1,
∫
η
〈Xu, ν〉H2 ≤ |η|

H2 . Then∫
η

〈Xu, ν〉H2 = |η|H2 .

The case u → −∞ is similar, just observe that 〈Xu, ν〉H2 approaches −1 at
points sufficiently near to η, so Xu = −ν along η. �

Remark 6.1. By the second part of the lemma above we conclude that if a
solution u tends to +∞ on geodesic arcs η1, η2 of ∂ D, then, using the triangle
inequality, these arcs cannot meet at a strictly convex corner in ∂ D.

We can write a generalization of the second part of Lemma 6.3.

Lemma 6.4. Let {un} be a sequence of continuous solutions on D. If {un}
diverges uniformly to +∞ (respectively, −∞) on compact sets of η ⊂ ∂ D
while remains uniformly bounded on compact sets of �, then Fun (η) → |η|H2

(respectively, Fun (η) → −|η|
H2).

The next lemma is almost a converse of Lemma 6.3. We follow the ideas
in [9].

Lemma 6.5. Let u be a solution in D and η̃ ⊂ ∂ D a geodesic arc such that
Fu(η) = |η|

H2 (Fu(η) = − |η|
H2), for every compact arc η ⊂ η̃. Then u

assumes the boundary value +∞ (−∞) on η̃.

Proof. Let η be a compact arc as in the statement of the lemma, small enough,
such that there exists a geodesic triangle T contained in D whose sides are η,
S1 and S2 satisfying length(S1)=length(S2). We denote by � the region of D
bounded by T . We consider the solution v which takes values +∞ on η and
v = u on S1, S2. This solution thank to Lemma 5.3 in [17].

We need to show that u = v in � ∪ T . If this is not the case, the set
O = {u − v < ε} is different from empty, for ε > 0 a regular value of
u − v. Let D′ be the connected component of the complement of O in �

which has T − η in its boundary and let O ′ be the complement of D′ in �.
In particular we see that O ⊂ O ′ and ∂ O ′ ⊂ ∂ O. Let q be a point in ∂ O ′ − η.
For μ > 0, let O ′(μ) = {p ∈ O ′; distH2(p, η) > μ}. Let q1, q2 be the end-points
of the connected component of ∂ O ′ ∩ ∂ O ′(μ) which contains q. Let pi be the
projection of qi on η, i = 1, 2. Let Õ(μ) be the domain bounded by the
segments [p1, q1], [p2, q2], the arc [p1, p2] ⊂ η and the boundary component

Bull Braz Math Soc, Vol. 45, N. 1, 2014



�

�

“main” — 2014/3/12 — 13:57 — page 102 — #12
�

�

�

�

�

�

102 SOFIA MELO

of O ′(μ) between q1, q2, which is denoted by �(μ). As Fu(∂ O ′) = 0 =
Fv(∂ O ′) we obtain

0 = Fu(∂ O ′) − Fv(∂ O ′)

=
∫

�(μ)

〈Xu − Xv, ν〉H2 +
∫

[p1,q1]∪[p2,q2]
〈Xu − Xv, ν〉H2

+
∫

[p1,p2]
〈Xu − Xv, ν〉H2.

On �(μ) the vector Xu − Xv points outside Õ(μ), because Xu − Xv =
∇u − ∇v. Then, we can write

0 <

∫
�(μ)

〈Xu − Xv, ν〉H2

= −
∫

[p1,q1]∪[p2,q2]
〈Xu − Xv, ν〉H2 −

∫
[p1,p2]

〈Xu − Xv, ν〉H2

≤ 4μ,

because the last term in the second line vanishes using the hypothesis Fu(η) =
|η|H2 and Lemma 6.3 applied to v. Note that the integral on �(μ) increases
when μ → 0. That contradicts previous inequality. Therefore, u = v and
u → +∞ on η.

The proof for u → −∞ in the geodesic arc η when Fu(η) = − |η|
H2 , is

analogous as above taking v = −∞ on η and v = u on S1 and S2. �

Lemma 6.6. Let D be a domain whose boundary ∂ D contains an arc η and let
{un} be a sequence of solutions in D with each un continuous on η. Then if the
sequence diverges to +∞ uniformly on compact subsets of D while remaining
uniformly bounded on compact subsets of η, we have

lim
n→∞ Fun (η) = −|η|.

7 Divergence lines

In this section we will use a technique developed in [8] which allows to describe
the properties of the sets where a sequence (not necessarily monotone) of solu-
tions of the minimal surface equation converges or diverges without the aid of a
maximum principle. Many ideas found here were inspired by [9].
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We denote by D a domain in H2 with piecewise smooth boundary and solu-
tions are always solutions of the minimal surface equation (4).

Definition 7.1. Let D be a domain with piecewise smooth boundary, and {un} a
sequence of solutions in D. We define the convergence set as

U = {p ∈ D; |∇un(p)| is bounded independently of n}
and the divergence set as

V = D −U.

Lemma 7.1. Let p ∈ D and {un} be a sequence of solutions in D. If p ∈ U,
there is a subsequence of {vn = un − un(p)} converging uniformly to a solution
in a neighborhood of p in D. In particular U is open. If p ∈ V , then there
is a compact geodesic arc L p(δ) ∈ D of length 2δ centered at p such that,
after passing to a subsequence, {Nvn (q, vn(q))} converges to a horizontal vector
Nq . The vector Nq is such that dπ(Nq ) is orthogonal to L p(δ) at every point
q ∈ L p(δ). The constant δ > 0 only depends on distH2(p, ∂ D).

Remark 7.1. For any q ∈ D and {vn = un − un(q)}, we note that

Nun (q, un(q)) = Nvn (q, vn(q))

after vertical translation, and the convergence and divergence sets are the same
for {un} and {vn}.

Proof of Lemma 7.1. We denote by G(vn) the graph of vn in ˜P S L2(R) over
D. We fix p in D such that the distance from P = (p, vn(p)) = (p, 0) to the
boundary of G(vn) is bigger than or equal to distH2(p, ∂ D). So the curvature
estimates, see [14], give us a δ1 > 0 (independent of n) such that a neighborhood
of P in G(vn) is a graph, in geodesic coordinates, with bounded geometry, over
the disk of radius δ1, Dn(P, δ1), centered at the origin of TPG(vn). We call this
graph G P(vn, δ1).

If p ∈ U the sequence {|∇un |} is bounded, then there is a subsequence of
{Nvn (P)}, still called {Nvn (P)}, which converges to a non horizontal vector and
consequently the tangent planes associated to this subsequence converges to a
non vertical plane �. The disks Dn(P, δ1) converge to a disk Dδ1 of radius δ1

centered at the origin of � and the graphs G P(vn, δ1) converge to a minimal
graph G P(δ1) over Dδ1. Since this plane � is a non vertical, there is δ̃, 0 <

δ̃ ≤ δ1, such that G P(δ1) is a graph over a disk in D centered at p of radius δ̃.
We conclude that there is a neighborhood of p ∈ D such that a subsequence of
{vn} converges to a solution in this neighborhood.
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Now suppose that p ∈ V . Since {|∇un |} is unbounded there is a subse-
quence of {Nvn (P)} that converges to a horizontal vector NP . So (for this sub-
sequence) the tangent planes TPG(vn) converge to a vertical plane � and the
graphs G P(vn, δ1) converge to a minimal graph G P(δ′) over a disk of radius
δ′ ≤ δ1 centered at the origin of �.

We take the geodesic L p ⊂ D passing through p orthogonal to dπ(NP ) and
let L̃ p be its horizontal lift. We know that G P(δ′) ⊂ π−1(L p), i.e., G P(δ′) is
contained in the minimal surface π−1(L p) (see the proof of Lemma 6.3).

Now, let δ ≤ δ′. We take L̃ p(δ) ⊂ L̃ p the geodesic arc contained in G P(δ′) ∩
L̃ p which contains P and has length 2δ. Since G P(δ′) ⊂ π−1(L p) we have
that, for all q ∈ L p(δ), {Nvn (q, vn(q))} converges to a horizontal vector Nq

at (q, vn(q)) orthogonal to L̃ p(δ). Therefore, dπ(Nq ) is orthogonal to L p(δ)

at q, ∀q ∈ L p(δ). �

Remark 7.2. The lemma above shows that the convergence set is a domain.

Lemma 7.2. Given p ∈ V , there is a geodesic L ⊂ D, which passes by p such
that, after passing to a subsequence, {Nvn (q, vn(q))} converges to a horizontal
vector Nq , ∀q ∈ L, with the property that dπ(Nq ) is orthogonal to L. This
geodesic L contains L p(δ) and L ⊂ V .

Proof. Let L be the geodesic in D which contains L p(δ) joining points of ∂ D
(L p(δ) is given in Lemma 7.1). We denote by pq, q ∈ L, the compact arc in L
between p, q, and by Nvn |pq the normal vector to G(vn) at the points (q1, vn(q1))

where q1 ∈ pq. We define

� =
⎧⎨⎩q ∈ L

∣∣∣∣∣∣
there is a subsequence of {vn} such that Nvn |pq (associated
with this subsequence) becomes horizontal with its vertical
projection orthogonal to pq .

⎫⎬⎭
We want to prove that � = L. Since p ∈ �, � 
= ∅. We will prove that �

is open and closed. First, we will prove that � is open. Let q be a point in �.
We denote {v�(n)} the subsequence associated to �. Since � ⊂ V , Lemma 7.1
ensures the existence a geodesic arc Lq (δ) with center q such that, after passing
to a subsequence, {Nv�(n)|Lq (δ)} converges to horizontal vector N with dπ(N)

orthogonal to Lq (δ). We note that dπ(N) is orthogonal to Lq (δ) and to pq
simultaneously. From which we deduce that Lq (δ) ⊂ L and thus � is open.

Now we will prove that � is closed. We take a sequence of points {qm} in
� such that qm → q ∈ L. We will show that q ∈ �. For each m, there is
a subsequence of {vn} such that {Nvn |pqm

} becomes horizontal with its vertical
projection orthogonal to pqm . By the diagonal process we obtain a subsequence
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of {vn} such that (for this subsequence) {Nvn |pqm
} converges to a horizontal vector

with its vertical projection orthogonal to L in pqm, ∀m. Then by Lemma 7.1
we can find a geodesic Lqm (δ) through qm, (for m large, δ depends only on the
distance from q to ∂ D) such that {Nvn |pqm

} converges to a horizontal vector N
such that dπ(N) is orthogonal to Lqm(δ). Thus Lqm (δ) ⊂ L. Since qm → q, we
have that, for all m large enough, q ∈ Lqm (δ). Consequently q ∈ �. �

An important conclusion of the lemma above is that the divergence set V is
the union of geodesics Li , which are called divergence lines,V =

⋃
i∈I Li .

Lemma 7.3. Let {un} be a sequence of solutions in D. Suppose that the diver-
gence set V of {un} consists of a countable number of divergence lines. Then
there is a subsequence of {un}, again denoted by {un}, such that:

1. The divergence set of {un} consists of a countable number of pairwise
disjoint divergence lines.

2. For any connected component U′ of U = D − V and for any p ∈ U′,
the sequence {un − un(p)} converges uniformly on compact subsets ofU′
to a solution in U′.

Proof. Let L1 be a divergence line of {un}. We take p1 ∈ L1 and {v1
n =

un − un(p1)}. Lemma 7.2 guarantees that, after passing to a subsequence,
{Nv1

n
(q1, v1

n(q1))} converges to a horizontal vector Nq1 such that dπ(Nq1 ) is
orthogonal to L1 at q1, for all q1 in L1. The divergence set of this subsequence
is contained in the divergence set of the original sequence, so the divergence
set associated to this subsequence has only a countable number of lines. This
subsequence is still denoted by {un} and its divergence set by V .

Suppose that there exists a divergence line L2 
= L1 in V . We take p2 ∈
L2 and {v2

n = un − un(p2)}. Then, we can find a subsequence such that
{Nv2

n
(q2, v2

n)} converges to a horizontal vector Nq2 such that dπ(Nq2 ) is orthog-
onal to L2 at q2, for each q2 ∈ L2. If L1 ∩ L2 
= ∅ we take a point q ∈ L1 ∩ L2.
Then a subsequence of {Nv2

n
(q, vn(q))} converges to a horizontal vector Nq

where dπ(Nq ) is orthogonal to L1 and L2 simultaneously at q. So L1 and L2 are
tangent at q. Since L1, L2 are geodesics, we obtain L1 = L2. We continue this
process to get a subsequence of {un}, still denoted by {un}, whose divergence
set is composed of a countable number of pairwise disjoint divergence lines.
This proves 1.

Now we prove part 2 of Lemma 7.3. Lemma 7.1 shows that there is a subse-
quence of {un} and a neighborhood of each point p ∈ U such that {un − un(p)}
(associated with this subsequence) converges to a minimal graph, and this con-
vergence is uniform on compact subsets of this neighborhood. Then taking a
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countable dense sequence {pi } inU′, by the diagonal process we obtain a subse-
quence of {un} such that {un − un(p)} converges uniformly on compact subsets
ofU′, ∀p ∈ U′. �

Lemma 7.4. Let {un} be a sequence of solutions in D, such that its diver-
gence set is composed of a countable number of pairwise disjoint divergence
lines. Suppose that {un} converges to a solution u in a connected set U′ ⊂ D.
Let η be a compact arc in ∂U′ included in a divergence line of {un} such that
Xun → ν along η, where ν is the outer conormal to η with respect to U′. Then
if p ∈ U′ and q ∈ η, we have

lim
n→∞(un(q) − un(p)) = +∞.

Proof. We choose p, q as in the hypothesis of the lemma. Since Xun → ν

along η, we have that Fun (η) → |η|, where Fun (η) is the flux of un across η.
So Lemma 6.5 ensures that u → +∞ on η.

Claim 7.1. For n large, there is an ε > 0 such that ∂un
∂t ≥ 0 on {ϒ̃(t); −ε <

t ≤ 0}, where ϒ̃(t) is the horizontal lift of the geodesic arc {ϒ(t); −ε < t
≤ 0} ⊂ U′ with −θ < t ≤ 0, θ ≥ ε, ϒ(0) = q and ϒ ′(0) = ν. The inequality
is strict on {ϒ(t); −ε < t < 0}.

Indeed, using Lemma 7.1 and the fact that u
∣∣
η = +∞ , we obtain an ε > 0

such that, ∂u
∂t ≥ 1 in {ϒ̃(t); −ε < t < 0}. The convergence un → u implies

that ∂un
∂t > 0 in {ϒ̃(t); −ε < t < −θ0}, for every 0 < θ0 < ε and n ≥ n0(θ0).

Let Q be a point in η̃, where η̃ is the horizontal lift of η and π(Q) = q.
If the claim is not true, considering a subsequence if necessary, there is a
sequence {qm} in {ϒ(t); −θ0 ≤ t ≤ 0}, such that, qm → q and ∂un

∂t (Qm) = 0
for the points in the sequence {Qm}.

If the sequence {|∇un(qm)|} is bounded we have, from the curvature esti-
mates, that {|∇un|} is uniformly bounded over a disk D(qm) of radius indepen-
dent of n, centered at qm . Since qm → q the sequence {|∇un(q)|} is bounded,
because for m large enough, q ∈ D(qm). This contradicts the fact that q is
contained in the divergence set.

If the sequence {|∇un(qm)|} is unbounded, we consider the sequence {un −
un(qm)} and D1

n the disk of radius δ in the graph of {un − un(qm)} centered
at (qm, 0) given by the curvature estimates, with δ independent of n. Since
∂un
∂t (Qm) = 0, the disks D1

n converge to a vertical disk centered at (q, 0) of
radius δ in π−1(ϒ), here ϒ is a geodesic through q orthogonal to η. Let D2

n

be a disk of radius δ centered at (q, 0) in the graph of {un − un(q)}. Since η
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is contained in a divergence line, {D2
n} converges to a vertical disk centered at

(q, 0) in π−1(η). Then, for n large enough, these disks D1
n and D2

n intersect
transversally. But this is impossible because the normal vectors to D1

n and D2
n

only depend on the gradient of un , so they are the same vector (on domains where
both sequences are defined) for the two sequences. This proves Claim 7.1.

Let qt ∈ U′ be the point qt = ϒ(t), t < 0, for t small enough. Claim 7.1
assures, for n large, that

un(q) − un(p) ≥ un(qt ) − un(p) ≥ u(qt) − u(p) − 1.

The second inequality came from the convergence of {un} to u. The third term
is as large as we want, because u

∣∣
η = +∞. �

For completeness we state an important Remark made in [9].

Remark 7.3. Let L be a divergence line and suppose there exists two com-
ponents �1 and �2 of U such that L ⊂ ∂�i , i = 1, 2. Consider the points
p1 ∈ �1, p2 ∈ �2. Passing to a subsequence, {un − un(pi )} converges uni-
formly on compact sets of �i to a minimal graph ui : �i → R. Assume
Fu1(T ) = |T |H2 for each bounded arc T ⊂ L, when L is oriented as ∂�1. Then
Fu2 (T ) = − |T |H2 , when L is oriented as ∂�2. We deduce from Lemma 7.4
that {(un − un(p1)) |L} diverges to +∞ and {(un − un(p2)) |L} diverges to −∞.
In particular, we can deduce that {un − un(p1)} diverges to +∞ uniformly on
compacts sets of �2 and {un − un(p2)} diverges to −∞ uniformly on compacts
sets of �1. See Figure 2.

p1

p2

�1

L

�2

T

Figure 2: Domains �1 and �2.
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Lemma 7.5. Let η ⊂ ∂ D be a smooth arc. We consider a sequence of solutions
{un} in D, such that, limn→∞ un|η = f , f a continuous function. Then an
end-point of the divergence line cannot be an interior point of η.

Proof. We consider p a point of η and η′ a neighborhood of p in η such that
η′ ⊂ η.

First we suppose that η is a strictly convex arc. Let � be the geodesic arc
in H2 joining the end-points of η′. We consider η′ small enough such that the
domain �, bounded by η′ and �, is contained in D.

We define M = maxη′ | f |. So we can take |un| < M + 1 on η′, for n
large enough. Using Theorem 1 of [17], we have that there are minimal graphs
v+, v− : � → R given by

v+ =
{

M + 1 on η′
+∞ on �

and v− =
{ −M − 1 on η′

−∞ on �.

By the general maximum principle we have

v− ≤ un ≤ v+,

for all n.
Thus, by the compactness principle, see [17], we have � ⊂ U. Therefore, p

is not an end-point for any divergence line.
Now consider η a geodesic curve and L a divergence line with an end-point

in p ∈ η. Then there is a subset V ⊂ D which contains a subarc (containing
p) of η in its boundary, and the sequence diverges to ±∞ on V . Assume that
the sequence diverges to +∞. Taking a point q ∈ η ∩ ∂V , denote by pq the arc
contained in η joining the points p and q. Let s be a point in L and ps the arc in
L joining p and s. Denote by sq the geodesic arc joining s and q. Suppose that
q is as close to s as necessary, in order to guarantee sq ⊂ V . We choose this
“triangle” T so that the sequence {un} diverges to +∞ in the domain �T ⊂ V
bounded by T . By the flux formula,

0 = Fun (ps) + Fun (pq) + Fun (sq).

By Lemma 6.6 we have,

lim
n→+∞ Fun (pq) = −|pq |.

Since ps ⊂ L, using Remark 7.3, either

lim
n→+∞ Fun (ps) = |ps| or lim

n→+∞ Fun (ps) = −|ps |.
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First, suppose that
lim

n→+∞ Fun (ps) = −|ps|.
Then,

0 = lim
n→+∞ Fun (ps) + lim

n→+∞ Fun (pq) + lim
n→+∞ Fun (sq)

≤ −|ps| − |pq| + |sq|.
But this contradicts the triangular inequality.
Now we consider the case where

lim
n→+∞ Fun (ps) = |ps|.

By Lemma 7.4 we have that {un} diverges to +∞ on a subset of D − V which
has L and a subarc of η in its boundary. Then applying the same argument as
above, we get a contradiction.

Now, suppose that there are two, or more, divergence lines with end-points in
p. We fix two divergence lines, L1, L2. The point p ∈ η divides η in two curves
η1, η2. We orient L1, L2, η1, η2, such that, W1 is the domain bounded in part by
L1 ∪ η1 and not containing L2; W2 is the domain bounded in part by η2 ∪ L2

and not containing L1; and W3 is the domain bounded in part by L1 ∪ L2 and
not containing η1 ∪ η2. Let q ∈ L1, s ∈ L2, p1 ∈ η, p2 ∈ η be points. Denote
by pq the arc in L1 joining p and q, by ps the arc in L2 joining p and s, by
qs ⊂ W3 the geodesic arc joining q to s, by qp1 ⊂ W1 the geodesic arc joining
q and p1, and by sp2 ⊂ W2 the geodesic arc joining s and p2. In some of these
subsets Wi , i = 1, 2, 3 the sequence {un} diverges to +∞. Suppose that in W3

the sequence diverges to +∞.
If,

lim
n→+∞ Fun (ps) = −|ps| and lim

n→+∞ Fun (pq) = −|pq |,
when the arcs are oriented as ∂W3, then applying the flux formula to the triangle
formed by ps, pq and qs, we obtain a contradiction as before.

If, when the arcs are oriented as ∂W3, either

lim
n→+∞ Fun (ps) = |ps| or lim

n→+∞ Fun (pq) = |pq |,

then doing as we have done before to the triangle formed by qp1, pq and p1 p,
if limn→+∞ Fun (pq) = |pq |, or to the triangle formed by ps, pp2 and sp2, if
limn→+∞ Fun (ps) = |ps|, we obtain a contradiction. �
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8 Proof of the Theorems

We fix some notations. Let {Hκ(m)} be a sequence of nested horocycles at
dκ such that Hκ(m) converges to dκ as m → +∞. We choose Hκ(m), such
that Hκ(m + 1) ⊂ Fκ(m), Fκ(m) is the convex horodisk bounded by Hκ(m).
Here γ̄κ(m) = Hκ(m) ∩ (∂D∪D).

Let D(m) be the domain bounded by

∂D(m) = (∂D− {∪κ Fκ(m)})⋃( ∪κ γκ(m)
)
,

where γκ(m) is the geodesic arc inD having the same end-points as γ̄κ(m). Let
P be the boundary of a domain �. Similarly, we define �(m) the domain whose
boundary is

P(m) = (P − {∪κ Fκ(m)})⋃( ∪κ γ ′
κ(m)

)
,

where γ ′
κ(m) are the geodesic arcs contained in � ∩ {∪κ Fκ(m)} joining the

pointsP ∩ {∪κHκ(m)}.
Proof of Theorem 2.1. We suppose that the conditions (1) and (2) are true for
polygonsP inD.

Claim 8.1. There is a solution in D with boundary values

un =
{

n on ∪i Ai

−n on ∪ j B j .
(5)

Proof of Claim 8.1. For each m, the existence Theorem (Proposition 5.4 in
[17]) says, there is a solution of the minimal surface equation um in D(m) with
boundary values

um =

⎧⎪⎨⎪⎩
n on ∪i Ai (m)

−n on ∪ j B j (m)

0 on ∪κ γκ(m).

We fix m0. For all m > m0, we have {um} is a sequence of solutions of the
minimal surface equation in D(m0) bounded above by n and below by −n.
By the Compactness Principle, see [17], there is a subsequence of {um} that
converges inD(m0) to a solution. By the boundary values of the {um}, we have
um |Ai (m0) = n and um|B j (m0) = −n. By the diagonal process, we have in D a
solution un, given by

un =
{

n on ∪i Ai

−n on ∪ j B j . �
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So using Claim 8.1 we have that there exists a solution of the minimal sur-
face equation given by (5).

We consider the sequence {un} formed by the solutions above. We will prove
that the sequence {un} does not have divergence lines. For this we assume that
there exists some divergence line and we obtain a contradiction.

We know, by Lemma 7.5, that the end-points of these lines are in the ver-
tices of D. Since ∂D has only a finite number of vertices, we can suppose
that the divergence set consists of a finite number of disjoint divergence lines.
These lines separate the domain D in at least two connected components, and
the interior of these components belong to the convergence domain U. By
Lemma 7.4, in some connected component of the convergence set, the sequence
{un} diverges to +∞ or −∞. We suppose that in some connected component
of the convergent setU′ the sequence diverges to +∞ (the case −∞ is similar).

Since U′ ⊂ U, we have that the sequence {un − un(p)}, p ∈ U′, converges
uniformly on compact subsets ofU′ to a solutionof the minimal surface equation
u inU′. On the other hand, by the choice ofU′ we have un(p) → +∞, p ∈ U′.
Moreover, we note that ∂U′ = P is an admissible polygon. Taking the family
of horocycles {Hκ(m)} at dκ , we can choose P satisfying the next result.

Claim 8.2. We can choose P so that

Fu

(
P(m) − [{∪i Ai (m)} ∪ {∪κ(γ

′
κ(m))}])

= − ∣∣P(m) − [{∪i Ai(m)} ∪ {∪κ (γ
′
κ(m))}]∣∣

H2

where ∂U′ = P. See [9] for a proof.

We are supposing that there is some divergence line, so P 
= ∂D. Then the
hypothesis are the inequalities (2). Using the flux formula and Claim 8.2 we
have

0 = Fu (P(m))

= Fu

(
P(m) − [{∪i Ai (m)} ∪ {∪κ (γ

′
κ(m))}])

+ Fu
({∪i Ai (m)} ∪ {∪κ(γ

′
κ(m))})

≤ − ∣∣P(m) − [{∪i Ai (m)} ∪ {∪κ(γ
′
κ(m))}]∣∣

H2

+ ∣∣{∪i Ai (m)} ∪ {∪κ (γ
′
κ(m))}∣∣

H2

= 2α(P) − �(P) + ∣∣∪κ

(
γ ′

κ(m)
)∣∣
H2 .
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As m → ∞, | ∪κ (γ ′
κ(m))|H2 tends to zero, because we have only sides Ai

and Bi . So
0 ≤ 2α(P) − �(P),

which contradicts the hypothesis. Then, the sequence {un} does not have any
divergence lines.

Thus, D is the convergence domain and this implies that there is a subse-
quence of {un − un(p)}, p ∈ D, which converges to a solution u on D. Here
we use the hypothesis (1) in P = ∂D.

If the sequence {un} is bounded at the point p ∈ D, u has the desired bound-
ary values, that is, u|Ai = +∞ and u|Bi = −∞. We will show that even
if the sequence {un} is unbounded the solution u has the boundary values as
prescribed.

We suppose the sequence {un(p)} tends to −∞. So, on each Ai , we have that
{un − un(p)} → +∞ when n → +∞. By the flux formula we can show that on
Bi the sequence {un − un(p)} tends to −∞. Indeed, applying the flux formula
in P(m),

0 = lim
n→∞ Fun (P(m))

=
∑

i

lim
n→∞ Fun (Ai (m)) +

∑
i

lim
n→∞ Fun (Bi (m)) +

∑
κ

lim
n→∞ Fun (γκ(m))

≥ α(P) − β(P) −
∑

κ

|γ ′
κ(m)|H2.

As m → +∞,
∣∣γ ′

κ(m)
∣∣→ 0, then 0 ≥ α(P) − β(P). But by the hypothesis,

α(P) = β(P) and this implies that limn→∞ Fun (Bi(m)) = −|Bi (m)|. So, by
Lemma 6.5, {un − un(p)} → −∞ on Bi , ∀i.

We suppose the sequence {un(p)} tends to +∞. So {un − un(p)} → −∞
on each Bi . Using the flux formula we can show that on Ai the sequence
{un − un(p)} tends to +∞. By the flux formula,

0 = lim
n→∞ Fun (P(m))

=
∑

i

lim
n→∞ Fun (Ai(m)) +

∑
i

lim
n→∞ Fun (Bi(m)) +

∑
κ

lim
n→∞ Fun

(
γ ′

κ(m)
)

≤ α(P) − β(P) +
∑

κ

|γ ′
κ(m)|H2.

As m → ∞ we have β(P) ≤ α(P). Since we cannot have α(P) > β(P), by
the hypothesis, we have limn→∞ Fun (Ai (m)) = |Ai (m)|H2. Then {un − un(p)}
tends to +∞ on Ai , ∀i.
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To show the conditions (1) and (2) we suppose that there is a solution u in
D to the Dirichlet problem. First, we prove the equation (1) Applying the flux
formula to P(m) = ∂D(m), we have

0 = Fu (P(m)) =
∑

i

Fu(Ai (m)) +
∑

i

Fu(Bi (m)) +
∑

κ

Fu(γ
′
κ(m)).

Therefore, by the flux formula, we have the inequalities∑
i

|Ai (m)|H2 −
∑

i

|Bi(m)|H2 −
∑

κ

∣∣γ ′
κ(m)

∣∣
H2 =

α(∂D) − β(∂D) −
∑

κ

|γ ′
κ(m)|H2 ≤ 0

∑
i

|Ai (m)|H2 −
∑

i

|Bi(m)|H2 +
∑

κ

∣∣γ ′
κ(m)

∣∣
H2 =

α(∂D) − β(∂D) +
∑

κ

|γ ′
κ(m)|H2 ≥ 0

So, as m → ∞, we have |γκ(m)|H2 → 0. Thus

α(D) = β(D).

Now, we prove the inequalities (2). Let P be a polygon inD whose sides are
Ai , B j and El . By the flux formula, we know that Fu(P(m)) = 0. So, we can
write

Fu (∪i Ai (m)) = −Fu (P(m) − ∪i Ai (m))

= −Fu

({∪ j B j (m)} ∪ {∪l El(m)} ∪ {∪κγ
′
κ(m)})

Then, using the equality above and the flux formula

α(P) =
∑

i

|Ai (m)|H2

= Fu (∪i Ai (m)) = −Fu

({∪ j B j (m)} ∪ {∪l El(m)} ∪ {∪κγ
′
κ(m)})

≤ ∣∣Fu

({∪ j B j (m)} ∪ {∪l El(m)} ∪ {∪κγ
′
κ(m)})∣∣

≤ |Fu

(∪ j B j (m)
) | + |Fu(∪l El(m))| + |Fu(∪κγ

′
κ(m))|

≤ β(P) + |Fu (∪l El(m))| +
∑

κ

∣∣γ ′
κ(m)

∣∣
H2

= �(P) − α(P) −
∑

l

|El (m)|H2 + |Fu (∪l El(m))| +
∑

κ

∣∣γ ′
κ(m)

∣∣
H2 .
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Since |Fu (∪l El (m))| <
∑

l |El (m)|H2 and
∣∣γ ′

κ(m)
∣∣
H2 → 0, ∀κ when

m → ∞, then 2α(P) < l(P).
Similarly, by the equation Fu(P(m)) = 0 we have

Fu
(∪ j B j (m)

) = −Fu
(
P(m) − ∪ j B j (m)

)
.

Using this equation, the inequality 2β < �(P) follows analogously as above.
Therefore Theorem 2.1 is proved. �

Proof of Theorem 2.2. Let us assume that there exists a solution u to the
Dirichlet problem. The proof is similar to Theorem 2.1 applied in the polygons
P in D formed by arcs Ai , B j , Ck ⊂ ∂D and arcs El ⊂ (D ∪ ∂D).

To show that there exists a solution u to the Dirichlet Problem we suppose
that the inequalities (3) are true for all polygons P in D.

Claim 8.3. There exists a solution un in D such that

un =

⎧⎪⎨⎪⎩
n, on Ai

−n, on B j

fn, on Ck ,

where fn = ϕ ◦ f, ϕ : R → R,

ϕ(x) =

⎧⎪⎨⎪⎩
x , −n ≤ x ≤ n

−n, x < −n

n, x > n.

We assume that the claim is true. We take the sequence of solutions {un}
inD defined by

un =

⎧⎪⎨⎪⎩
n, on Ai

−n, on B j

fn, on Ck .

The convergence set of {un} is D, as in the proof of Theorem 2.1. So there is
a subsequence which converges to a solution u on D. Using barrier functions
given by [17], we have that the limit of this subsequence on the boundary is the
limit of the boundary values and also the limit solution extends continuously to
the boundary, so we deduce that u takes the desired boundary values.

Now we prove Claim 8.3. We will proceed as in the proof of Claim 8.1.
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Let {dl} be the vertices of domain D. We can assume that each vertex dl is
in {(x , y) ∈ R2; y = 0}. For each l let σl [m] be the geodesics which are semi-
circles centered at dl of radius 1

m . So, for m big enough, each σl [m] divides the
domain D in exactly two components (�l

1 e �l
2), one of them, say �l

1, having
dl in its asymptotic boundary. Now, let �l [m] be the geodesic arc contained in
σl[m] joining the boundary points of D.

We can find a solution with prescribed boundary values using the Existence
Theorem in [17]. Let Ai [m] be the compact arcs of Ai that lie outside �l

1, B j [m]
the compact arcs of B j outside �l

1 and Ck [m] the compact arcs in Ck outside
�l

1. So, there exists

un =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n on Ai [m]
−n on B j [m]
fn on Ck [m]
0 on �l[m],

where fn = ϕ ◦ f, ϕ : R → R,

ϕ(x) =

⎧⎪⎨⎪⎩
x , −n ≤ x ≤ n

−n, x < −n

n, x > n.

From now on, the proof is analogous to the one of Claim 8.1. Hence,
Claim 8.3 is proved. �
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