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On scaling limits and Brownian interlacements*

Alain-Sol Sznitman

Abstract. We consider continuous time interlacements on Zd , d ≥ 3, and investi-
gate the scaling limit of their occupation times. In a suitable regime, referred to as the
constant intensity regime, this brings Brownian interlacements on Rd into play, whereas
in the high intensity regime the Gaussian free field shows up instead. We also investigate
the scaling limit of the isomorphism theorem of [40]. As a by-product, when d = 3,
we obtain an isomorphism theorem for Brownian interlacements.
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0 Introduction

Informally, random interlacements provide a model for the local structure left
at appropriately chosen time scales by random walks on large recurrent graphs,
which are locally transient. Their vacant set has non-trivial percolative prop-
erties, see for instance [9], [31], [38], [43], which are useful in the study of
certain disconnection and fragmentation problems, see [6], [7], [37], [44]. Their
connectivity properties have been actively investigated, see [5], [20], [28], [29],
[30]. Random interlacements have further been helpful in some questions of
cover times, see [1], [2]. They have also been linked to Poisson gases of Marko-
vian loops, see [23], [41]. Recently, connections between random interlacements
and Gaussian free fields have emerged, which underline the important role of
occupation times of random interlacements, see [40].

In this article, we investigate the scaling limit of the field of occupation times
of continuous time interlacements onZd , d ≥ 3. In the constant intensity regime,
this brings into play the Brownian interlacements on Rd , d ≥ 3. In the high
intensity regime, the massless Gaussian free field shows up instead. Further,
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we investigate the scaling limit of the isomorphism theorem derived in [40].
Dimension three plays a special role, and when d = 3, we obtain as a limit an
identity in law relating the occupation-time measure of Brownian interlacements
onR3 to the massless Gaussian free field, somewhat in the spirit of [22], [23], in
the context of Poisson gases of Brownian loops at half-integer levels.

We now discuss our results in more detail. We consider continuous time random
interlacements on Zd , d ≥ 3. In essence, this is a Poisson point process on a
certain state space consisting of doubly infiniteZd -valued trajectories marked by
their duration at each step, modulo time-shift. A non-negative parameter u plays
the role of a multiplicative factor of the intensity measure of this Poisson point
process, which is defined on a suitable canonical space, see [39], denoted here
by (�,A,P). The field of occupation times of random interlacements at level u
is denoted by Lx,u (ω), for x ∈ Zd , u ≥ 0, ω ∈ �. It records the total duration
spent at x by the trajectories modulo time-shift with label at most u in the cloud
ω, see [39].

We investigate the scaling limit for the field of occupation times of random
interlacements on Zd , d ≥ 3, and introduce the random measure on Rd

LN = 1

d N2

∑
x∈Zd

Lx,uN δ x
N
, N ≥ 1, (0.1)

where (uN )N≥1 is a suitably chosen sequence of positive levels. In the constant
intensity regime, that is when

uN = dαN2−d, with α > 0 (0.2)

(in this case the intensity measure E[LN ] of LN converges vaguely to α dy as
N goes to infinity), we show in Theorem 3.2 that

LN converges in distribution to Lα, as N → ∞, (0.3)

whereLα stands for the occupation-time measure of Brownian interlacements at
level α, see (2.37). We construct Brownian interlacements in Section 2 using a
similar strategy as in [38] or [42]. This is technically somewhat more involved
in the present context, and the key identity is encapsulated in Lemma 2.1. The
random measure Lα is supported by the random closed set Iα0 , the Brownian
fabric at level α, which is the union of the traces in Rd of the doubly infinite
trajectories modulo time-shift with label at most α in the Poisson cloud defining
the Brownian interlacements, see (2.30). This random closed subset ofRd is a.s.
connected when d = 3, but a.s. disconnected when d ≥ 4, see Proposition 2.5.

Bull Braz Math Soc, Vol. 44, N. 4, 2013
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On the other hand in the high intensity regime, that is when

Nd−2uN → ∞, (0.4)

we show in Theorem 3.3 and Corollary 3.5 that

L̂N =
√

d

2N2−duN

(
LN − E[LN ]) converges in distribution to the

massless Gaussian free field � on Rd ,

(0.5)

which is the canonical generalized random field on S′(Rd), the space of tem-
pered distributions on Rd , such that for any V in the Schwartz space S(Rd),
the pairing 〈�, V 〉 is a centered Gaussian variable with variance

∫
V (y)G(y −

y ′)V (y ′)dydy ′, with G(·) the Green function of Brownian motion on Rd ,
d ≥ 3, see (1.3).

The low intensity regime, when Nd−2uN → 0, leads to a null limit for LN in
(0.1), and will not be further discussed in the present work.

From the isomorphism theorem for random interlacements, see [40], one
knows that when (ϕx)x∈Zd is a discrete massless Gaussian free field, i.e. a cen-
tered Gaussian field with covariance E[ϕx ϕx′ ] = g(x − x ′), with g(·) the Green
function of simple random walk on Zd , see (1.1), independent from (Lx,u )x∈Zd ,
one has for any u ≥ 0 the distributional identity:(

1

2
ϕ2

x + Lx,u

)
x∈Zd

law=
(1

2
(ϕx + √

2u)2
)

x∈Zd
. (0.6)

We explain in Section 4 how one quickly recovers (0.5) from this identity in the
regime where, in essence, as N → ∞, the variance of

∑
|x|≤N ϕ

2
x is negligible

compared to that of
√

uN

∑
|x|≤N ϕx . This corresponds to the full range (0.4)

when d = 3, but only the partial range of (0.4) where uN N2 log N → ∞, when
d = 4, and uN N2 → ∞, when d ≥ 5, see Remark 4.2. This fact singles out
the special role of dimension 3, and motivates the investigation when d = 3 of
the scaling limit of (0.6) (with adequate counter terms) in the constant intensity
regime (0.2). Indeed, when d = 3, Theorem 5.1 roughly states that for any
α ≥ 0 (denoting Wick products by ::, see Section 5)

1

d N2

∑
x∈Zd

:
(
ϕx + √

2uN
)2: δ x

N
converges in distribution to :

(
�+ √

2α
)2: , (0.7)

with uN as in (0.2), and the last term defined by regularization of the massless
Gaussian free field � on R3 (crucially using the fact that the Green function is

Bull Braz Math Soc, Vol. 44, N. 4, 2013
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locally square integrable when d = 3), see the beginning of Section 5. As a
scaling limit of (0.6) we obtain the identity in law on S′(R3), for α ≥ 0:

1

2
:�2: + Lα = 1

2
:
(
� + √

2α
)2: , (0.8)

where Lα is independent of � and denotes, as above, the occupation-time mea-
sure of Brownian interlacements onR3 at level α, see Corollary 5.3. This identity
in law has a similar spirit to some of the results in [22], [23] in the context of
Poisson gases of Brownian loops at half-integer levels, see Remark 5.4.

Let us describe how the article is organized. In Section 1 we collect some
useful facts concerning Green functions, occupation times of random interlace-
ments on Zd , and discrete as well as continuous free fields. Section 2 is of
independent interest. It constructs the Brownian interlacements on Rd , d ≥ 3,
and derives some of their key properties, see Propositions 2.4, 2.5, 2.6. In Sec-
tion 3, we investigate the limit of LN , respectively L̂N , in the constant intensity,
respectively, high intensity regime. The main results appear in Theorems 3.2,
3.3 and Corollary 3.5. In the short Section 4 we use the isomorphism theorem
(0.6) as a mean to recover (0.5). Section 5 focuses on the three-dimensional sit-
uation. The scaling limit of (0.6) (with adequate counter terms) is investigated
in the constant intensity regime (0.2). The main results appear in Theorem 5.1
and Corollary 5.3.

Finally, let us explain our convention concerning constants. We denote by
c, c′, c̃, c positive constants changing from place to place, which simply depend
on d. Numbered constants c0, c1, . . . refer to the value corresponding to their
first appearance in the text. Dependence of constants on additional parameters
appears in the notation.

1 Some useful facts

In this section, we introduce additional notation, and collect some useful facts
concerning Green functions, occupation times of random interlacements on Zd ,
d ≥ 3, and massless Gaussian free fields on Zd and Rd , d ≥ 3.

We write | · |, respectively | · |∞, for the Euclidean, respectively, the supremum
norm on Rd . Throughout, we tacitly assume d ≥ 3. We let B(y, r), y ∈ R

d ,
r ≥ 0, stand for the closed Euclidean ball with center y and radius r .

We denote by g(·, ·) the Green function of simple random walk on Zd , that
is, for x , x ′ ∈ Zd , g(x , x ′) is the expected time spent at x ′ for the discrete time,
simple random walk starting at x . The function g(·, ·) is symmetric, and due to
translation invariance, one has for x , x ′ in Zd

g(x , x ′) = g(x − x ′) = g(x ′ − x), where g(·) = g(·, 0). (1.1)

Bull Braz Math Soc, Vol. 44, N. 4, 2013
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One knows that g(·) ≤ g(0) and that when x tends to infinity, cf. [21], p. 31,

g(x) ∼ dG(x), where (1.2)

G(y) = 1

2πd/2
	
(d

2
− 1

)
|y|2−d, for y ∈ Rd, (1.3)

and “∼” in (1.2) means that the ratio of the two members tends to 1 as x goes
to infinity. Writing G(y, y ′) = G(y − y ′) = G(y ′ − y), one knows, see [10],
p. 32, that the (0,∞]-valued function G(·, ·) is the Green function of Brownian
motion on Rd .

For N ≥ 1, we denote by LN the lattice in Rd :

LN = 1

N
Z

d . (1.4)

For functions f, h on LN such that
∑

y∈LN
| f (y)h(y)| < ∞, we write

〈
f, h

〉
LN

= 1

Nd

∑
y∈LN

f (y)h(y). (1.5)

We rescale the Green function g(·, ·) and define

gN (y, y ′) = 1

d
Nd−2g(Ny, Ny ′), for y, y ′ ∈ LN , (1.6)

as well as gN(·) = gN(·, 0), so that gN(y, y ′) = gN (y − y ′) = gN (y ′ − y). By
(1.2), (1.3), we also see that

lim
N

sup
|y|≥γ

|gN (y)− G(y)| = 0, for every γ > 0. (1.7)

We introduce the linear operator

G N f (y) = 1

Nd

∑
y′∈LN

gN (y, y ′) f (y ′), y ∈ LN , (1.8)

which is well-defined when the function f : LN → R is such that∑
y∈LN

gN (y, y ′) | f (y ′)| < ∞

for some (and hence all) y in LN , in particular, when f vanishes outside a
finite set.

Bull Braz Math Soc, Vol. 44, N. 4, 2013
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Similarly, when f, h are measurable functions on Rd such that | f h| is inte-
grable, we write 〈

f, h
〉 = ∫

Rd
f (y) h(y) dy. (1.9)

We also introduce the linear operator

G f (y) =
∫
Rd

G(y, y ′) f (y ′) dy ′, for y ∈ Rd, (1.10)

which is well-defined when the measurable function f on Rd satisfies∫
G(y, y ′) | f (y ′)| dy ′ < ∞

for all y ∈ Rd , in particular when f is bounded measurable and vanishes outside
a bounded set.

We now recall an identity for the Laplace transform of the field of occupation
times (Lx,u )x∈Zd of continuous time random interlacements onZd at level u ≥ 0.
When V : LN → R has finite support, the operator G N V , which is the compo-
sition of the multiplication by V with the operator G N in (1.8), sends bounded
functions on LN into bounded functions on LN . We write ‖G N V ‖L∞→L∞ for
the corresponding operator norm (the space of bounded functions on LN being
endowed with the sup-norm). One knows from Theorem 2.1 of [39] that when
V : LN → R has finite support and ‖G N |V | ‖L∞→L∞ < 1, then for u ≥ 0,

E

[
exp

{ ∑
x∈Zd

V
( x

N

) 1

d N2
Lx,u

}]
= exp

{u

d
Nd−2

〈
V , (I − G N V )−11

〉
LN

}
.

(1.11)

Note that when V vanishes outside a single point one readily finds by differen-
tiation that:

E[Lx,u ] = u, for x ∈ Zd and u ≥ 0. (1.12)

We then turn to the discussion of Gaussian free fields. Recall that we tacitly
assume d ≥ 3. We begin with the discrete case. We endowRZ

d
with the product

σ -algebra, and denote by (ϕx)x∈Zd the canonical coordinates. The canonical law
P g of the massless Gaussian free field on Zd is characterized by the fact that

under P g, (ϕx)x∈Zd is a centered Gaussian field with covariance

E P g[ϕxϕx′ ] = g(x , x ′), for x , x ′ ∈ Zd .
(1.13)

Bull Braz Math Soc, Vol. 44, N. 4, 2013
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In the continuous case, we consider the space S′(Rd) of tempered distributions
onRd . We endow S′(Rd)with the cylindrical σ -algebra generated by the canon-
ical pairings with functions of S(Rd ). We write� for the canonical generalized
random field on S′(Rd) (i.e. the identity map). The symmetric bilinear form on
S(Rd)× S(Rd) defined by

E(V ,W ) =
∫

V (y)G(y−y ′)W (y ′) dy dy ′( = 〈
V ,GW

〉 = 〈
GV ,W

〉)
(1.14)

is positive definite (see for instance [36], p. 75). It satisfies the bound

|E(V ,W )| ≤ c ‖V ‖L1(Rd )(‖W‖L∞(Rd ) + ‖W‖L1(Rd )), for V ,W ∈ S(Rd ),

and hence is continuous (we endow S(Rd) with its usual Fréchet topology,
see [17], p. 6-8). By Minlos’ Theorem, see Theorem 2.3, p. 12 of [34], or
Theorem 2.4.1, p. 28 of [17], there exists a unique probability measure P G

on S′(Rd) such that

under P G, for each V ∈ S(Rd),
〈
�, V

〉
is a centered Gaussian variable with variance E(V , V ).

(1.15)

The law P G describes the massless Gaussian free field on Rd , see Chapter 6 § 2
of [15].

2 Brownian interlacements

In this section we construct the Brownian interlacements on Rd , d ≥ 3, intro-
duce their occupation-time measure, and discuss some key properties of these
objects. We follow a similar approach as in [38], [42]. However, the continuous
set-up is technically more challenging. An important step is the construction of
the intensity measure of our basic point process on a space of doubly infinite tra-
jectories modulo time-shift. We mainly rely on a crucial compatibility property
of the measure expressed in “local charts”, see Lemma 2.1 (cf. Theorem 1.1 of
[38] and Theorem 2.1 of [42]), rather than on an approach based on projective
limits, see [45], [32], following the outline of [16].

We first need to introduce notation. We recall that we tacitly assume d ≥ 3.
We denote by W+ the subspace of C(R+,Rd) of continuous Rd-valued trajec-
tories tending to infinity at infinite times, and by W the subspace of C(R,Rd)

consisting of continuous bilateral trajectories from R into Rd , which tend to
infinity at plus and minus infinite times. We write Xt , t ≥ 0, and Xt , t ∈ R,
for the respective canonical processes, and denote by θt , t ≥ 0, and θt , t ∈ R,

Bull Braz Math Soc, Vol. 44, N. 4, 2013
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the respective canonical shifts. The spaces W+ and W are endowed with the
respective σ -algebras W+ and W generated by the canonical processes. Given
an open subset U of Rd , w ∈ W+, we write TU (w) = inf{s ≥ 0; Xs(w) /∈ U }
for the exit time of U . When F is a closed subset of Rd , we write

HF(w) = inf{s ≥ 0; Xs(w) ∈ F)}, H̃F(w) = inf{s > 0; Xs(w) ∈ F},
for the respective entrance time and hitting time of F . When w ∈ W , we define
HF(w) and TU (w) by similar formulas, simply replacing the condition s ≥ 0,
by s ∈ R.

We then consider W ∗ the set of equivalence classes of trajectories in W
modulo time-shift, i.e. W ∗ = W/ ∼, where w ∼ w′ , when w(·) = w′(· + t) for
some t ∈ R. We denote by π∗ the canonical map W → W ∗, and introduce the
σ -algebra W ∗ = {A ⊆ W ∗; (π∗)−1(A) ∈ W }, which is the largest σ -algebra

on W ∗ such that (W,W )
π∗−→ (W ∗,W ∗) is measurable. Incidentally, note that

a random variable Z on W invariant under θ (i.e. Z ◦ θt = Z , for all t in R)
determines a unique random variable Z ∗ on W ∗ such that Z ∗ ◦ π∗ = Z . Given
a compact subset K of Rd , we write WK for the subset of trajectories of W that
enter K , and W ∗

K for its image under π∗.
Since d ≥ 3, and Brownian motion onRd is transient, we view Py, the Wiener

measure starting from y ∈ Rd , as defined on (W+,W+), and write Ey for the
corresponding expectation. When ρ is a finite measure on Rd , we write Pρ for
the Wiener measure with “initial distribution” ρ and Eρ for the corresponding
expectation.

When B is a closed Euclidean ball of positive radius (as a shorthand in what
follows, we will simply write that B is a closed ball), and when y /∈ B, we define
P B

y [·] = Py[ · |HB = ∞] to be the law of Brownian motion starting at y condi-
tioned never to enter B, and write E B

y for the corresponding expectation. When
y ∈ ∂B (the boundary of B), as z inRd\B tends to y, the measures P B

z converge
weakly (on C(R+,Rd)) to a measure P B

y supported on {w ∈ W+;w(0) = y and
w(t) /∈ B for all t > 0}, which can be represented as the Brownian excursion
measure inRd\B starting from y conditioned on the event of finite positive mass
that {H̃B = ∞} (see Theorems 4.1 and 2.2 of [4], and also Theorem 3.1 of [8]
for bounds on the exit time from small balls centered at y under P B

z ). Using
rotational invariance and the explicit nature of the conditioning, one can also in
a more direct fashion establish the above mentioned facts using a skew product
representation of the law P B

z .
We write

pt (y, y ′) = 1

(2π t)d/2
exp

{
− |y − y ′|2

2t

}
,

Bull Braz Math Soc, Vol. 44, N. 4, 2013
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with t > 0, y, y ′ ∈ Rd , for the Brownian transition density, so that with similar
notation as below (1.3)

G(y, y ′) =
∫ ∞

0
pt (y, y ′) dt, for y, y ′ ∈ Rd . (2.1)

Given a compact subset K of Rd , we denote by eK the equilibrium measure
of K (see Proposition 3.3, p. 58 of [36], or Theorem 1.10, p. 58 of [27]). This
measure does not have atoms (see [36], p. 58, or [27], p. 197). It is supported
by the boundary of K (actually, the boundary of the unbounded component of
K c, see [27], p. 58). Its total mass is the capacity cap(K ) of K . The equilibrium
measure eK is related to the time of the last visit of K via (see Theorem 3.4, p. 60
of [36]):

Py[LK > 0, LK ∈ dt, X L K ∈ dz] = pt (y, z) eK (dz) dt, (2.2)

where for w ∈ W+ we write LK (w) = sup{t > 0;w(t) ∈ K } (with the conven-
tion supφ = 0), for the time of last visit of w to K .

For B a closed ball (see above (2.1) for the terminology), we introduce the
following (finite) measure on W 0

B = {w ∈ W ; HB(w) = 0} (⊆ WB), the subset
of W of bilateral trajectories that enter B at time 0 for the first time,

Q B
[
(X−t)t≥0 ∈ A′, X0 ∈ dy, (Xt )t≥0 ∈ A

]
= eB(dy) P B

y [A′] Py[A], for A, A′ ∈ W+.
(2.3)

The next lemma states an important compatibility property of the above collec-
tion of finite measures. In essence, the measures Q B should be thought of as
the expressions in the (natural) “local charts” of W ∗ with respective domains
W 0

B (⊆ WB ) of the intensity measure we are trying to construct (see also below
(1.15) of [38]).

Lemma 2.1. Assume that B, B ′ are closed balls, and B lies in the interior of
B ′, then

θHB ◦ (1{HB < ∞} Q B′
) = Q B. (2.4)

We postpone the proof of Lemma 2.1 for the time being, and explain how the
construction of the intensity measure of our basic Poisson point process proceeds.
We first observe that for K compact subset of Rd we can unambiguously define

Q K = θHK ◦ (1{HK < ∞} Q B

)
, for any closed ball B ⊇ K , (2.5)

Bull Braz Math Soc, Vol. 44, N. 4, 2013
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and this definition coincides with (2.3) when K is a closed ball. Indeed, when
the closed balls B1 and B2 contain K , we can find a closed ball B ′ containing
B1 ∪ B2 in its interior, so that by Lemma 2.1 we have

θHK ◦ (1{HK < ∞} QB1

) = θHK

(
1{HK < ∞} θHB1

◦ (1{HB1 <∞} QB′ )
)

= θHK ◦ (θHB1
(1{HK < ∞} QB′ )

)
= θHK ◦ (1{HK < ∞} QB′

)
,

(2.6)

and a similar identity holds with B2 in place of B1. Hence (2.5) is unambiguous
and agrees with (2.3) when K is a closed ball.

We now come to the theorem constructing what will be in essence up to a non-
negative multiplicative factor the intensity measure of the Poisson point process
defining the Brownian interlacements.

Theorem 2.2. There exists a unique σ -finite measure ν on (W ∗,W ∗) such that
for each compact subset K of Rd

1W∗
K
ν = π∗ ◦ Q K . (2.7)

Proof. Given a sequence of compact subsets Kn ↑ Rd , we have

W ∗ =
⋃
n≥0

W ∗
Kn
,

and the uniqueness of ν is immediate. For the existence of ν, it suffices to check
that for K ⊆ K ′ compact subsets of Rd

π∗ ◦ Q K = π∗ ◦ (1WK Q K ′). (2.8)

Indeed, one then defines ν so that 1W∗
Kn
ν = π∗ ◦ Q Kn for some Kn ↑ Rd , noting

that the restriction to W ∗
Kn

of π∗ ◦ Q Kn+1 equals π∗ ◦ (1WKn
Q Kn+1) which equals

π∗ ◦ Q Kn by (2.8). Using (2.8) once again, one sees that ν does not depend on
the sequence Kn, and (2.7) immediately follows (choosing K0 = K ). To prove
(2.8), we note that when the closed ball B contains K ′, then by (2.5) we have

Q K = θHK ◦ (1WK Q B) and

1WK Q K ′ = 1WK θHK ′ ◦ (1WK ′ Q B) = θHK ′ ◦ (1WK Q B).

Hence, the images under π∗ of Q K and 1W ′
K

Q K ′ coincide, that is (2.7) holds. �

Bull Braz Math Soc, Vol. 44, N. 4, 2013
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We are now reduced to the

Proof of Lemma 2.1. It suffices to show that for any continuous compactly
supported function f : R → R

d ,∫
eB′ (dy′) Ey′

[
HB < ∞, ei

∫ HB
0 f (v−HB)·XvdvEX HB

[
ei
∫ ∞

0 f (v)·Xvdv] F ′(y′, HB)
]

=
∫

eB(dy) EB
y
[
ei
∫ ∞

0 f (−v)·Xvdv] Ey
[
ei
∫ ∞

0 f (v)·Xvdv], where

F ′(y′, t) = EB′
y′
[
ei

∫∞
0 f (−v−t)·Xvdv], for y′ ∈ ∂B ′, t ≥ 0.

(2.9)

Indeed the second line of (2.9) coincides with E Q B [ei
∫
R

f (v)·Xvdv], whereas by
the strong Markov property at time HB , the first line of (2.9) equals

E Q B′[HB < ∞, ei
∫
R

f (v−HB )·Xvdv]
= E θHB ◦(1{HB<∞}Q B′)[ei

∫
R

f (v)·Xvdv
]
,

and the claim (2.4) follows. We will thus prove (2.9). We denote by Pt
y,y′ the

Brownian bridge measure in time t > 0, from y to y ′ inRd , see [36], p. 137-140,
and write Et

y,y′ for the corresponding expectation. We consider y ∈ B ′ and use
the last exit decomposition at the last visit of B ′, see Theorem 2.12 of [14] and
(3.39) on p. 60 of [36], to assert that under Py , conditionally on LB′ = t (with
t > 0), and X L B′ = y ′ (with y ′ ∈ ∂B), the law of (X L B′+v)v≥0 and (Xv)0≤v≤t

are independent, respectively distributed as P B
y′ and Pt

y,y′ and (LB′ , X L B′ ) has
distribution pt (y, y ′) eB′(dy ′) 1{t > 0} dt . Writing U = Bc we find as a result
that for y in B ′

Ey

[
ei

∫∞
0 f (−v)·Xvdv, HB = ∞]

=
∫ ∞

0
dt

∫
eB′(dy ′) E B′

y′
[
ei

∫∞
0 f (−v−t)·Xvdv]

× Et
y,y′

[
ei

∫ t
0 f (−v)·Xvdv, TU > t

]
pt (y, y ′)

=
∫ ∞

0
dt

∫
eB′(dy ′) F ′(y ′, t) Et

y′,y
[
e
∫ t

0 f (v−t)·Xvdv, TU > t
]

pt (y
′, y),

(2.10)

where, in the last step, we used that the law of (Xt− ·)0≤·≤t under Pt
y,y′ equals

Pt
y′,y , cf. (A.12), p. 139 of [36], that pt (·, ·) is symmetric, and the notation from

below (2.9).
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We introduce the notation F(z) = ψ(z) Ez[ei
∫ ∞

0 f (v)·Xvdv] for z ∈ Rd , where
ψ is a continuous compactly supported [0, 1]-valued function, which equals
to 1 on a neighborhood of B. We pick ε > 0 and introduce the finite measure

mε(dy) = 1

ε

∫
dz F(z) Pz[HB < ε, Xε ∈ dy]

= 1

ε

∫
dz F(z) Pε

z,y [HB < ε] pε(z, y) dy.

(2.11)

We integrate (2.10) with respect to mε(dy). The first line of (2.10) yields∫
dz F(z)

1

ε
Ez

[
HB < ε, EXε [HB = ∞, ei

∫∞
0 f (−v)·Xvdv]] definition P B.=∫

dz F(z)
1

ε
Ez

[
HB < ε, PXε [HB = ∞] E B

Xε [ei
∫∞

0 f (−v)·Xvdv]] simple Markov=
property∫

dz F(z)
1

ε
Ez

[
HB < ε, HB ◦ θε = ∞, E B

Xε [ei
∫ ∞

0 f (−v)·Xvdv]] =∫
dz F(z)

1

ε
Ez
[
0 < LB < ε, E B

Xε
[ei

∫∞
0 f (−v)·Xvdv]].

By the last exit decomposition of Brownian motion starting at z at the last visit
of B, the above expression equals∫

dz F(z)
1

ε

∫ ε

0
ds ps(z, y) eB(dy) E B

y

[
E B

Xε−s
[ei

∫∞
0 f (−v)·Xvdv]]

=
∫

eB(dy)
1

ε

∫ ε

0
ds
(∫

ps(y, z) F(z) dz
)

E B
y

[
E B

Xε−s
[ei

∫∞
0 f (−v)·Xvdv]]

(by symmetry of ps(·, ·)).
Using the fact that for y ∈ ∂B, P B

y -a.s., as u → 0, P B
Xu

converges weakly to P B
y

(one could actually also invoke the Markov property under P B
y at this point), and

dominated convergence, as ε → 0, the above quantity tends to∫
eB(dy) Ey

[
ei

∫ ∞
0 f (v)·Xvdv

]
E B

y

[
ei

∫ ∞
0 f (−v)·Xvdv]. (2.12)

Using the symmetry of pε(·, ·) and the fact that for y ∈ U = Bc, Pε
z,y [HB <

ε] = Pε
y,z[HB < ε] (when z ∈ B, note that Pz-a.s., H̃B = 0, and both terms
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equal 1), the last line of (2.10) after integration with respect to mε(dy) yields∫
eB′ (dy ′)

∫ ∞

0

dt

ε
F ′(y ′, t)

∫
dz dy F(z)

× Et
y′,y

[
ei

∫ t
0 f (v−t)·Xvdv, TU > t

]
pt(y

′, y) Pε
y,z[HB < ε] pε(y, z)

=
∫

eB′ (dy ′)
∫ ∞

0

dt

ε
F ′(y ′, t) Ey′

[
ei

∫ t
0 f (v−t)·Xvdv, t < HB < t + ε, F(Xt+ε)

]
=

∫
eB′ (dy ′) Ey′

[
HB < ∞,

1

ε

∫ HB

(HB−ε)+
ei

∫ t
0 f (v−t)·XvdvF(Xt+ε) F ′(y ′, t) dt

]
.

Applying dominated convergence as ε → 0, the above quantity tends to∫
eB′ (dy ′)Ey′

[
HB < ∞, ei

∫ HB
0 f (v−HB)·Xvdv

× EX HB
[ei

∫∞
0 f (v)·Xvdv] F ′(y ′, HB)

]
.

(2.13)

Comparing (2.12) and (2.13), we have shown (2.9). This proves Lemma 2.1. �

Remark 2.3. 1) When B is a closed ball, for w ∈ WB we can define

LB(w) = sup{t ∈ R, LB(w) ∈ B}.
Applying the last exit decomposition formula, as in (2.10), to the forward term
in (2.3), we see that for A, A′ ∈ W+ we have

Q B [(X−t)t≥0 ∈ A′, (Xs)0≤s≤L B ∈ ·, (X L B+s)s≥0 ∈ A]

=
∫ ∞

0
dt

∫
eB(dy ′) eB(dy) P B

y′ [A′] Pt
y′,y[·] P B

y [A] pt (y
′, y)

(2.14)

(where (Xs)0≤s≤L B is viewed as a random element of the space T of continu-
ousRd-valued trajectories of positive finite duration, measurably identified with
C([0, 1],Rd)× (0,∞) via the map (w, T ) → w( ·

T ) ∈ T ).
From this identity using the symmetry of pt(·, ·) and the already used fact that

Pt
y′,y is the image of Pt

y,y′ under time reversal, we find (analogously to (1.40) of
[38]) that

(X L B−t)t∈R under Q B has law Q B . (2.15)

One can introduce on W ∗ the time inversion w∗ → ∨
w∗, where

∨
w∗ = π∗(∨

w),

with
∨
w(t) = w(−t) for t ∈ R, and w ∈ W arbitrary such that π∗(w) = w∗ . It
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follows from (2.15) that the image (π∗ ◦ Q B)
∨ of (π∗ ◦ Q B) under time inversion

coincides with π∗ ◦ Q B . By Theorem 2.2 it follows that the image
∨
ν of ν under

time inversion satisfies ∨
ν = ν. (2.16)

2) In an easier fashion one sees that when one considers y ∈ Rd and denotes by
τy the translation by −y on W ∗, which to w∗ associates w∗ − y (defined in an
obvious way), or a linear isometry R ofRd , and its natural operationw∗ → Rw∗
on W ∗, we find that

ν is invariant under τy, (2.17)

ν is invariant under R, (2.18)

3) When λ > 0, one can define the scaling sλ(w) = λw( ·
λ2 ) for w ∈ W , and on

W ∗ via sλ(w∗) = π∗(sλ(w)), forw ∈ W arbitrary such that π∗(w) = w∗. From
the identity valid for arbitrary λ > 0 and closed ball B

sλ ◦ Q B = λ2−d QλB, (2.19)

one finds by Theorem 2.2 that

sλ ◦ ν = λ2−dν, for λ > 0. (2.20)

4) One knows that when the compact set K (⊆ Rd) lies in the interior of the
closed ball B, then eK (·) = PeB [HK < ∞, X HK ∈ ·], see Theorem 1.10, p. 58
of [27]. By (2.3) and (2.5) we thus see that

Q K [(Xt )t≥0 ∈ ·] = PeK . (2.21)

We can now introduce the measurable map from W ∗
K into W+ defined by w∗ ∈

W ∗
K → w∗,K ,+ = (

w(HK + t)
)

t≥0, for any w ∈ WK with π∗(w) = w∗. Then,
by (2.7) and (2.21) we see that

the image of 1W∗
K
ν under w∗ → w∗,K ,+ equals PeK . (2.22)

�
As a next step we introduce the canonical space for the Brownian interlace-

ment point process, namely the space of point measures on W ∗ ×R+,

� =
{
ω =

∑
i≥0

δ(w∗
i ,αi ), with (w∗

i , αi) ∈ W ∗ × [0,∞) and

ω(W ∗
K × [0, α]) < ∞, for any compact subset K of Rd and α ≥ 0

}
.

(2.23)
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We endow � with the σ -algebra A generated by the evaluation maps w →
ω(B), for B ∈ W ∗ ⊗B(R+), and denote by P the law on (�,A) of the Poisson
point measure with intensity measure ν ⊗ dα on W ∗ × R+. For K compact
subset of Rd and α ≥ 0, we consider the measurable function on � with value
in the set of finite point measures on W+

μK ,α(ω) =
∑
i≥0

1{αi ≤ α,w∗
i ∈ W ∗

K } δ
w

∗,K,+
i

,

when ω =
∑
i≥0

δ(w∗
i ,αi ) ∈ �,

(2.24)

with the notation from above (2.22). We readily see by (2.22) that

μK ,α is a Poisson point process on W+ with intensity measure αPeK . (2.25)

As a direct consequence of (2.16)-(2.20) we obtain the following invariance
properties.

Proposition 2.4. P is invariant under the following transformations on �:

ω =
∑
i≥0

δ(w∗
i ,αi ) −→

∑
i≥0

δ
(
∨
wi

∗,αi )
, (2.26)

ω =
∑
i≥0

δ(w∗
i ,αi ) −→

∑
i≥0

δ(w∗
i −y,αi ) (with y ∈ Rd), (2.27)

ω =
∑
i≥0

δ(w∗
i ,αi ) −→

∑
i≥0

δ(Rw∗
i ,αi ) (with R linear isometry of Rd), (2.28)

ω =
∑
i≥0

δ(w∗
i ,αi ) −→

∑
i≥0

δ(sλ(w∗
i ),λ

2−d αi ) (with λ > 0). (2.29)

When ω ∈ �, α ≥ 0, r ≥ 0, the formula (see the beginning of Section 1 for
notation)

Iαr (ω) =
⋃

i≥0:αi ≤α

⋃
s∈R

B(wi (s), r),

where ω ∈
∑
i≥0

δ(w∗
i ,αi ) and π∗(wi ) = w∗

i for i ≥ 0,
(2.30)

defines the Brownian interlacement at level α with radius r . By construction,
see (2.23), this is a closed subset of Rd . When r = 0, we refer to Iα0 (ω) as the
Brownian fabric at level α. The terminology is truly pertinent when d = 3, see
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(2.36) below. The complement of Iαr (ω) is an open subset of Rd , the vacant set
at level α and radius r :

V α
r (ω) = R

d\Iαr (ω), for ω ∈ �, α ≥ 0, r ≥ 0. (2.31)

The set � of closed (possibly empty) subsets of Rd can be endowed with the
σ -algebra F generated by the sets {F ∈ �; F ∩ K = ∅}, where K varies over
the compact subsets of Rd , see [25], p. 27 (incidentally, this is the Borel σ -
algebra for a metrizeable topology for which � is compact, see [25], p. 3 and
27). The �-valued map Iαr on � is measurable, and one can thus consider its
law Qα

r on (�,F).

Proposition 2.5. (α ≥ 0, r ≥ 0, y ∈ R
d , R linear isometry, λ > 0) Qα

r is
determined by the identity

Qα
r ({F ∈ �; F ∩ K = ∅}) = P[Iαr ∩ K = ∅] = e−α cap(Kr ),

for K ⊆ Rd compact,
(2.32)

where Kr = K + B(0, r) the set of points within | · |-distance at most r from K .
Moreover, under P,

Iαr + y has same law as Iαr (translation invariance), (2.33)

R(Iαr ) has same law as Iαr (isotropy), (2.34)

λIαr has same law as Iλ2−d α
λr (scaling), (2.35)

Iα0 is a.s.-connected, when d = 3,

and disconnected, when d ≥ 4 and α > 0. (2.36)

Proof. Note that {Iαr ∩ K = ∅} = {ω ∈ �; ω(W ∗
Kr

× [0, α]) = 0}, so that

P[Iαr ∩ K = ∅] = c−αν(W∗
Kr
) (2.7),(2.21)= e−α cap(Kr ), whence (2.32).

The identity (2.32) determines Qα
r on a π -system generating F , and the first

claim follows. The identities (2.33)-(2.35) are direct consequences of (2.27)-
(2.29) (alternatively, they can be derived from (2.32)). The last claim is a direct
consequence of the fact that for any closed ball B, Q B(dw) ⊗ Q B(dw′)-a.s.,
w(R) ∩ w′(R) �= ∅, when d = 3, but w(R) ∩ w′(R) = ∅, when d ≥ 4, as a
consequence of the fact that Brownian paths meet each other when d = 3, and,
when starting from different points, miss each other when d ≥ 4, see [11] (when
d ≥ 4 we also use (2.15) to take care of the bilateral nature of the paths). �
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As a last topic of this section, we introduce the occupation-time measure of
Brownian interlacements at level α ≥ 0 and discuss some of its properties.
It is the locally finite (or Radon) measure on Rd defined for ω ∈ �, α ≥ 0,
A ∈ B(Rd) by

Lα(ω)(A) =
∑

i≥0:αi≤α

∫
R

1{wi (s) ∈ A} ds, where ω =
∑
i≥0

δ(w∗
i ,αi )

with π∗(wi ) = w∗
i , for i ≥ 0,

= 〈
ω, fA ⊗ 1[0,α]

〉
,

(2.37)

where fA(w
∗) = ∫

R
1A
(
w(s)

)
ds, for w ∈ W arbitrary such that π∗(w) = w∗,

and 〈ω, h〉 stands for the integral of h with respect to ω. Note that by the choice
of � and W ∗, the expression in (2.37) is finite when A is a bounded set. From
the second line of (2.37), the dependence in ω isA-measurable, and Lα defines
a random measure on Rd , see Chapter 1 of [19]. Further when A ∈ B(Rd) is
bounded and B a closed ball containing A, then for α ≥ 0

E[Lα(ω)(A)] = E
[〈
ω, fA ⊗ 1[0,α]

〉]
= α

〈
ν, f A

〉 (2.7),(2.3)= α EeB

[ ∫ ∞

0
1A(Xs) ds

]
= α

∫
eB(dy)G(y, y′) 1A(y

′) dy ′

= α |A| (with |A| the Lebesgue measure of A),

(2.38)

since
∫

eB(dy)G(y, y′) = 1 for y ′ ∈ B, by (2.2), (2.1). In other words:

the intensity measure of Lα equals α dy. (2.39)

Observe also that by inspection of (2.37)

the support of Lα coincides with Iα0 . (2.40)

The next result will be very useful and provides an expression for the Laplace
transform of Lα.

Proposition 2.6. When V is a bounded, measurable, compactly supported func-
tion on Rd , and

‖G |V | ‖L∞(Rd ) < 1 (see (1.10) for notation), (2.41)

then I − GV is a bounded invertible operator on L∞(Rd) and for any α ≥ 0,

E
[

exp
{〈
Lα, V

〉}] = exp
{
α
〈
V , (I − GV )−11

〉}
, (2.42)

with the notation (1.9) and 〈Lα, V 〉 the integral of V with respect to Lα.
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Proof. Up to routine modifications, this follows by similar arguments as
Theorem 2.1 of [39]. �

Remark 2.7. As a direct application of the invariance property (2.29) and the
definition (2.9) we see that for α ≥ 0, the occupation-time measure Lα has the
following scaling invariance

Lα law= λ2 hλ ◦ Lλd−2α, for λ > 0, (2.43)

where hλ(y) = λy denotes the homothety of ratio λ onRd . One can also recover
the identity (2.43) from (2.42). �

3 Scaling limits of occupation times

In this section we study the scaling limit of the random field of occupation times
of random interlacements on Zd , d ≥ 3. In the constant intensity regime (0.2),
we show that LN (see (0.1)) converges in distribution to the occupation-time
measure of Brownian interlacements, see Theorem 3.2. In the high intensity
regime (0.4), we show that L̂N (see (0.5)) converges in distribution to the massless
Gaussian free field, see Theorem 3.3 and Corollary 3.5.

We tacitly endow the set of Radon measures on Rd with the topology of the
vague convergence (see A.7 of [19]). Given a positive sequence (uN )N≥1, it
follows from (1.12) that

E[LN([0, 1)d)] = 1

d
Nd−2uN . (3.1)

This quantity equals α(> 0) in the constant intensity regime (0.2), and tends to
∞ in the high intensity regime (0.4). The low intensity regime (when Nd−2uN →
0) leads to a convergence in distribution of LN to the null measure on Rd , and
we will only focus on the constant and high intensity regimes.

We begin with some preparation. We consider an integer M ≥ 1, and

a continuous function V on Rd with support in CM = [−M, M]d . (3.2)

We recall the notation (1.8), (1.10) from Section 1. With a slight abuse of
notation, we still denote by V the restriction of V to LN (see (1.4)).

Proposition 3.1. (under (3.2))

sup
N≥1

‖G N |V | ‖L∞(LN ) ≤ c0(M) ‖V‖L∞(CM ∩LN ) ≤ c0(M) ‖V‖L∞(Rd ). (3.3)

lim
N

〈
V , (G N V )n−11

〉
LN

= 〈
V , (GV )n−11

〉
, for all n ≥ 1. (3.4)

Bull Braz Math Soc, Vol. 44, N. 4, 2013



�

�

“main” — 2013/11/14 — 14:02 — page 573 — #19
�

�

�

�

�

�

ON SCALING LIMITS AND BROWNIAN INTERLACEMENTS 573

Proof. We begin with the proof of (3.3), and assume, without loss of generality,
that ‖V‖L∞(CM ∩LN ) = 1. By a classical harmonicity (or martingale) argument
one sees that

sup
y∈LN

|G N |V |(y)| = sup
y∈CM ∩LN

|G N |V |(y)|,

since V is supported in CM . It then follows from (1.2), (1.8) that

sup
y∈CM ∩LN

|G N |V |(y)| ≤ c

N2

(
1 +

∑
0<|x|∞≤2M N

1

|x |d−2

)
≤ c′ M2 (x belongs to Zd in the sum),

(3.5)

and the claim (3.3) follows. Note that the continuity of V was not needed for the
proof of (3.3). We then turn to the proof of (3.4). As we now explain, it suffices
to show that for all bounded continuous functions W on Rd ,

lim
N

sup
y∈CM ∩LN

|(G N V W )(y)− (GV W )(y)| = 0. (3.6)

Indeed, once (3.6) is established, we note that GV W is bounded continuous on
R

d as a convolution of the locally integrable function G(·) (see (1.3)) with the
compactly supported continuous function V W . Then, we observe that for n ≥ 1,

sup
y∈CM ∩LN

|(G N V )n1(y)− (GV )n1(y)|

≤ sup
y∈CM ∩LN

∣∣(G N V )
(
(G N V )n−11 − (GV )n−11

)
(y)

∣∣
+ sup

y∈CM ∩LN

|(G N V (GV )n−11)(y)− (GV (GV )n−11)(y)|.

Using induction over n ≥ 1, we see that the last term tends to zero with N , by
(3.6) and the observation below (3.6), and the first term after the inequality sign
tends to zero with N by the induction hypothesis and the first inequality in (3.3).
Thus, once (3.6) is proved, it follows that

sup
CM ∩LN

|(G N V )n−11(·)− (GV )n−11(·)| −→
N

0, for each n ≥ 1. (3.7)

The claim (3.4) now follows by a straightforward Riemann sum approximation.
We now prove (3.6) and introduce the shorthand F = V W . The function F

is continuous on Rd with support in CM . Then, for γ ∈ (0, 1), N ≥ 1, and
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y ∈ CM ∩ LN , we have

|GN F(y)− G F(y)| =
∣∣∣ 1

Nd

∑
y′∈LN

gN (y
′) F(y − y′)−

∫
Rd

G(y) F(y − y′) dy′∣∣∣
≤
(

1

Nd

∑
|y′|∞≤γ

gN (y
′) +

∫
|y′|∞≤γ

G(y′) dy′
)

‖F‖L∞(Rd )

+
∣∣∣ 1

Nd

∑
γ≤|y′|∞≤2M

gN (y
′) F(y − y′) −

∫
γ≤|y′|∞≤2M

G(y′)F(y − y′) dy′∣∣∣.
(3.8)

The functions G(·) F(y −·) are uniformly continuous on {y ′ ∈ Rd ; γ ≤ |y ′|∞ ≤
2M} uniformly in y ∈ CM . By (1.7) and a Riemann sum approximation argu-
ment we see that the last term of (3.8) tends to zero uniformly in y ∈ CM ∩ LN .
On the other hand, the second line of (3.8) is bounded by(

c

N2
(γ 2 N2 + 1)+ c′γ 2

)
‖F‖L∞(Rd ).

Taking a limsup in N , and then letting γ tend to zero, we obtain (3.6). The claim
(3.4) now follows, and this completes the proof of Proposition 3.1. �

We are now ready to state the convergence result for the law of LN in the
constant intensity regime (i.e. Nd−2uN = dα, see (0.2)). The definition of Lα
appears in (2.37).

Theorem 3.2. (under (0.2))

LN converges in distribution to Lα, as N → ∞. (3.9)

Proof. By Theorem 4.2, p. 22 of [19], it suffices to show that for any continu-
ous compactly supported function V on Rd

〈LN , V 〉 converges in distribution to 〈Lα, V 〉, as N → ∞. (3.10)

Without loss of generality we assume that V satisfies (3.2) and ‖V ‖L∞(Rd ) ≤ 1.
By (1.11) and (3.3) we see that for |z| < 1

c0
(with c0 from (3.3)) and N ≥ 1,

E
[

exp{z
〈
LN , V

〉}] = exp
{
α
〈
zV , (I − zG N V )−11

〉
LN

}
= exp

{
α
∑
n≥1

zn 〈V , (G NV )n−11
〉
LN

}
.

(3.11)
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In particular this shows (with (3.3)) that

sup
N≥1

E
[

cosh
(
r
〈
LN , V

〉)]
< ∞, when r < c−1

0 . (3.12)

Thus, the laws of 〈LN , V 〉, N ≥ 1, are tight, and the random variables ez〈LN ,V 〉,
N ≥ 1, |Rez| ≤ r(< c−1

0 ), are uniformly integrable. Hence, if along some
subsequence Nk , k ≥ 1, the random variables 〈LN , V 〉 converge in distribution
to a random variable U , it follows from Theorem 5.4, p. 32 of [3], that for
|z| < c−1

0 in C one has

E[ezU ] = lim
k
E[ez〈LNk ,V 〉]

(3.11)= lim
k

exp
{
α
∑
n≥1

zn
〈
V , (G Nk V )n−11

〉
LN

}
(3.3),(3.4)= exp

{
α
∑
n≥1

zn
〈
V , (GV )n−11

〉} (2.42)= E[ez〈Lα ,V 〉],

(3.13)

where in the last step we have used the fact that ‖G |V | ‖L∞(Rd ) ≤ c0 as a result
of (3.3) and (3.6). By analyticity, the first and the last expression in (3.13) are
equal in the strip |Rez| < c−1

0 of the complex plane. Hence U and 〈Lα, V 〉 have
the same characteristic function, and we have shown (3.10). This completes the
proof of Theorem 3.2. �

We now turn to the discussion of the high intensity regime (0.4) (i.e.
Nd−2uN → ∞), and recall the definition of the random signed measure L̂N

from (0.5):

L̂N =
√

d

2Nd−2uN
(LN − E[LN ])

(1.12)=
√

d

2Nd−2uN

(
LN − uN

d N2

∑
y∈LN

δy

)
.

(3.14)

For a bounded measurable function V on Rd with compact support, the notation
〈L̂N , V 〉 will refer to the integral of V with respect to L̂N . In essence, the next
result states that L̂N tends in distribution to the massless Gaussian free field, see
(1.15). This fact will be made precise in Corollary 3.5.
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Theorem 3.3. (under (0.4)) When V is continuous compactly supported func-
tion on Rd , then, as N → ∞,

〈L̂N , V 〉 converges in distribution to a centered Gaussian variable

with variance E(V , V )
(1.14)=

∫
V (y)G(y − y ′) V (y ′) dy dy ′.

(3.15)

Proof. Without loss of generality, we assume, for convenience, that (3.2) holds
and that ‖V ‖L∞(Rd ) ≤ 1. Further, we use the shorthand aN = ( 2

d Nd−2uN )
1
2 , and

assume that aN ≥ 1, for all N ≥ 1 (this possibly involves the replacement of
finitely many uN ). We then see that for |z| < c−1

0 and N ≥ 1,

E[ez〈L̂N ,V 〉] = E
[

exp
{ z

aN

(〈
LN , V

〉 − uN

d
Nd−2〈V , 1

〉
LN

)}]
(1.11),(3.3)= exp

{uN

d
Nd−2

∑
n≥2

zn

an
N

〈
V , (G N V )n−11

〉
LN

}
.

(3.16)

By Proposition 3.1 and the fact that uN
d Nd−2/an

N equals 1
2 when n = 2 and is

bounded by 1
2 and converges to zero for N tending to infinity, when n ≥ 3, we

find that
E[ez〈L̂N ,V 〉] −→

N→∞ e
z2
2 〈V ,GV 〉 for |z| < c−1

0 . (3.17)

The claim (3.15) then follows by similar arguments as below (3.13). �

Remark 3.4. By (1.12) one sees that for any N ≥ 1

E

[ ∑
y∈LN

(1 + |y|)−(d+1)LNy,uN

]
< ∞.

Thus on a set of full P-measure, (1 + |y|)−(d+1), and hence all functions V ∈
S(Rd), are L̂N -integrable. Redefining L̂N on a negligible set as (for instance)
being equal to zero, we see that L̂N (ω) is a tempered distribution for each ω ∈
�, and 〈L̂N , V 〉 a random variable on (�,A,P) for each V ∈ S(Rd). Hence,
we can also view L̂N as an S′(Rd)-valued random variable on (�,A,P). �

In the next result about convergence in distribution of L̂N , the space S′(Rd) is
tacitly endowed with the strong topology (see p. 60 of [13], or p. 5, 6 of [17]).
We recall the notation P G for the law on S′(Rd) of the massless Gaussian free
field (see (1.15)). The next result states the convergence of L̂N in distribution to
the massless Gaussian free field in the high intensity regime.

Corollary 3.5. (under (0.4))

L̂N converges in law to P G as N → ∞. (3.18)
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Proof. By the Lévy continuity theorem on S′(Rd ) (see Théorème 2, p. 516 of
[26], and also Théorème 3.6.5, p. 69 of [12]), it suffices to show that for each
V ∈ S(Rd ), the variables 〈L̂N , V 〉 converge in distribution to 〈�, V 〉 (under P G),
namely a centered Gaussian variable with variance E(V , V ), (see (1.15)).

We thus consider V ∈ S(Rd ) and a continuous [0, 1]-valued compactly sup-
ported function χL on Rd equal to 1 on C2 (see (3.2) for notation). We write
χL(·) = χ( ·

L ) for L ≥ 1 and define VL = χL V .
By dominated convergence E(VL, VL) → E(V , V ), as L → ∞. By Theo-

rem 3.3 our claim (3.18) will thus follow once we show that

lim
L→∞

sup
N≥1

E
[〈
L̂N , V − VL

〉2] = 0. (3.19)

By differentiating (3.16) twice in z at the origin and approximating V by VL ′,
with L ′ → ∞, we see from Fatou’s Lemma that

E
[〈
L̂N , V − VL

〉2] ≤ 〈
V − VL, G N (V − VL)

〉
L N
, for N ≥ 1, L ≥ 1. (3.20)

Applying (3.3) to χ(·) |V |(· + a) for a ∈ Zd and using that sup{gN(y); y ∈ LN ,
|y|∞ ≥ 1} is uniformly bounded in N (see (1.7)), we see that

ρ = sup
N≥1

‖G N |V | ‖L∞(LN ) < ∞,

and that 〈
V − VL, G N (V − VL)

〉
LN

≤ c ρ
∑
a∈Zd

sup
y∈a+[0,1)d

∣∣(1 − χL(y)
)

V (y)
∣∣ −→

L→∞ 0.

The claim (3.19) follows, and this completes the proof of Corollary 3.5. �

4 Scaling limits via the isomorphism theorem

In this short section we revisit Theorem 3.3 under the perspective of the iso-
morphism theorem stated in (0.6). This offers a different route to Theorem 3.3
for sequences (uN )N≥1 in a “sufficiently high intensity regime”. The special
role of dimension 3 where we recover the full range (0.4) will be highlighted.
Notation for the Gaussian free field on Zd have been introduced at the end of
Section 1. In particular, (ϕx)x∈Zd stands for the canonical field on RZ

d
and P g

for the canonical law of the Gaussian free field.
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We introduce the random signed measure on Rd

�N = 1√
d N

d
2 +1

∑
x∈Zd

ϕx δ x
N
. (4.1)

Given a continuous compactly supported function V on Rd and a positive se-
quence (uN )N≥1 the identity (0.6) implies that under P g ⊗ P

1

2

∑
z∈Zd

V
( x

N

)(
ϕ2

x − g(0)
)+

∑
x∈Zd

V
( x

N

)
(Lx,uN − uN )

law=

1

2

∑
z∈Zd

V
( x

N

)(
ϕ2

x − g(0)
)+√

2uN

∑
x∈Zd

V
( x

N

)
ϕx .

(4.2)

With the notation (0.5) and (4.1), this identity can be rewritten under the form

1

2

∑
z∈Zd

V
( x

N

)(
ϕ2

x − g(0)
)+ √

2d uN N
d
2 +1

〈
L̂N , V

〉 law=

1

2

∑
z∈Zd

V
( x

N

)(
ϕ2

x − g(0)
)+ √

2d uN N
d
2 +1〈�N , V

〉
.

(4.3)

Importantly, note that L̂N involves uN in its definition,but�N does not (cf. (4.1)).
In the next lemma we look at the size of the terms in (4.3) which involve the

Gaussian free field. To this end, we introduce the sequence

bN =

⎧⎪⎨⎪⎩
N4 when d = 3,

N4 log N when d = 4,

Nd when d ≥ 5.

(4.4)

Lemma 4.1.〈
�N , V

〉
is a centered Gaussian variable with variance

〈
V ,GN V

〉
LN
. (4.5)〈

�N , V
〉

converges in distribution to a centered Gaussian variable

with variance
∫

V (y)G(y − y′)V (y′) dy dy′, as N → ∞. (4.6)

1

bN
E P g

[( ∑
x∈Zd

V
( x

N

)(
ϕ2

x − g(0)
))2]

has a positive limit when N → ∞. (4.7)
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Proof. We begin with (4.5) and note that 〈�N , V 〉 is a centered Gaussian vari-
able with variance

1

d Nd+2

∑
x,x′ ∈Zd

V
( x

N

)
g(x , x ′) V

( x ′

N

)
(1.5),(1.6)=
(1.8)

〈V ,G NV 〉LN ,

whence the claim.
Next, (4.6) is an immediate consequence of (4.5) and (3.4) (with n = 2). We

then turn to (4.7). We note that from Lemma 5.2.6, p. 201 of [24], one has the
identity

E P g[(
ϕ2

x − g(0)
)(
ϕ2

x′ − g(0)
)] = 2g2(x , x ′), for x , x ′ ∈ Zd . (4.8)

As a result we find that

1

bN
E P g

[( ∑
x∈Zd

V
( x

N

)(
ϕ2

x − g(0)
))2]

= 2

bN

∑
x,x′∈Zd

V
( x

N

)
g2(x − x ′) V

( x ′

N

)
.

(4.9)

When d = 3, G(y) = c |y|−1 (see (1.3)) is locally square integrable on R3, and
the above quantity equals (see (1.6))

18

N6

∑
y,y′∈LN

V (y) g2
N (y − y′) V (y′) −→

N→∞ 18
∫

V (y)G2(y − y′) V (y′) dy dy′, (4.10)

as can be seen by separately considering the terms |y − y ′| ≥ γ and |y − y ′| < γ ,
with y, y ′ ∈ LN , in the spirit of what was done below (3.8), letting first N go to
infinity, and then γ go to zero. Note that the integral in (4.10) is equal to (with
pt(·, ·) the Brownian transition density, see above (2.1)):∫

R+×R+×Rd×Rd
ds dt dz dz′

( ∫
Rd

dy V (y) p s
2
(y, z) p t

2
(y, z′)

)2

by a similar calculation as in Proposition 4.8, p. 75 of [36]. This quantity is
positive when V is not identically equal to zero, see the bottom of p. 75 of [36]
for a similar argument.

When d = 4, bN = N4 log N , and given L ≥ 1 and γ > 0, the contribution
in the right-hand side of (4.9) of the terms with |x − x ′| ≤ L or |x − x ′| ≥
γ N is O( 1

log N ), as N tends to infinity, by (1.3). Combined with the fact that
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1
log N

∑
0<|x|≤N

1
|x|4 tends to a positive limit, when N tends to infinity (as can be

seen by looking at the difference of the sum and the integral
∫

B(0,N)\B(0,1)
dx
|x|4 ),

we find that when d = 4,

2

N4 log N

∑
x,x′ ∈Z4

V
( x

N

)
g2(x − x ′) V

( x ′

N

)
−→

N
c
∫
R4

V 2(y) dy. (4.11)

Finally, when d ≥ 5, the sum
∑

x∈Zd g2(x) converges by (1.3), and hence

2

Nd

∑
x,x′ ∈Z4

V
( x

N

)
g2(x − x ′) V

( x ′

N

)
−→

N
c
∫
Rd

V 2(y) dy. (4.12)

We have thus shown (4.7), and this concludes the proof of Lemma 4.1. �
We will now conclude this short section with some remarks, in particular

linking together (4.3), Lemma 4.1, and Theorem 3.3.

Remark 4.2. 1) By similar arguments as in Remark 3.4 we can view �N as an

S′(Rd)-valued random variable. The same proof as in Corollary 3.5 yields that

�N converges in law to P G, as N → ∞. (4.13)

2) When

uN
Nd+2

bN
→ ∞,

we can divide both members of (4.3) by
√

2d uN N
d
2 +1. By Lemma 4.1 we

then see that for each continuous compactly supported function V on Rd , both
〈L̂N , V 〉 and 〈�N , V 〉 converge in distribution to a centered Gaussian variable
with variance 〈V ,GV 〉 (once again, note that uN enters the definition of L̂N but
not that of �N ). One thus recovers the convergence asserted in Theorem 3.3
under the assumption⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

uN N → ∞, when d = 3,

uN
N2

log N
→ ∞, when d = 4,

uN N2 → ∞, when d ≥ 5.

(4.14)

This recovers the full range of validity of Theorem 3.3 (i.e. uN Nd−2 → ∞),
when d = 3, but only part of the range when d ≥ 4. Observe that when d ≥ 4, in
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the high intensity regime uN Nd−2 → ∞, 〈L̂N , V 〉 and 〈�N , V 〉 have the same
distributional limit, regardless of whether (4.14) breaks down or not.

3) One may wonder from the above discussion, whether some cancellations may
be extracted from (4.3). In the high intensity regime uN Nd−2 → ∞, given
M ≥ 1, can one for each N couple two Gaussian free fields (ϕx)x∈Zd , (ψx)x∈Zd ,
with (Lx,uN )x∈Zd , so that

(ϕx)x∈Zd is independent of (Lx,uN )x∈Zd ,

1

2
ϕ2

x + Lx,uN = 1

2

(
ψx + √

2uN
)2
, a.s., for x ∈ NCM

(see (3.2) for notation),

and for any continuous function V supported in CM ,

1

2

∑
x∈Zd

V
( x

N

)
(ϕ2

x −ψ2
x )
/(√

uN N
d
2 +1

) −→
N

0 in probability?

Such a coupling would yield a simple way to recover the identity of the distri-
butional limits of 〈L̂N , V 〉 and 〈�N , V 〉 in the high intensity regime. Of course,
when (4.14) holds such a coupling can be achieved (by (4.7) the last condition
is automatically satisfied). �

5 The special case of dimension 3

We have seen in the last section that when d = 3 the isomorphism theorem
(0.6) offers a quick route to the study of the asymptotic behaviour of L̂N in the
full range of the high intensity regime (0.4). In this section we investigate what
happens “at the edge”, in the constant intensity regime (0.2). The scaling limit
of the distributional identity (0.6) (with proper counter terms) will bring as a by-
product an isomorphism theorem for 3-dimensional Brownian interlacements,
see Theorem 5.1 and Corollary 5.3. This last corollary has a similar flavor to
the distributional identity derived by Le Jan in the context of a Poisson gas
of Brownian loops at half-integer intensity, see Chapter 10 §2, p. 104 of [23].
We recall the notation of the end of Section 1 concerning Gaussian free fields.
Throughout this section d = 3.

We denote by H the Gaussian space, which is the L2(P G)-closure of{〈
�, f

〉; f ∈ S(Rd )
}
.
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For Y, Z in H the Wick product, see [18], p. 23, 24, :Y Z : equals Y Z −E PG [Y Z ],
and one has the identity, see [18], p. 11, 12 or [24], p. 201:

E PG [:Y 2: :Z 2:] = 2E P [Y Z ]2, for Y, Z ∈ H

= 2
〈
f,Gh

〉2
, when Y = 〈

�, f
〉
, Z = 〈

�, h
〉
,

with f, h ∈ S(Rd)

(5.1)

When d = 3, the Green function G(y, y ′) is locally square integrable, and for
bounded measurable functions V on R3 vanishing outside a compact set, one
can define ∫

V (y) :�2
y: dy = lim

ε→0

∫
V (y) :�2

y,ε: dy in L2(P G), (5.2)

where �y,ε = 〈
�, ρy,ε

〉
, with ρy,ε(·) = 1

ε3 ρ(
·−y
ε
), and ρ(·) a non-negative,

smooth, compactly supported function on R3 such that
∫
ρ(z) dz = 1. This fact

uses (5.1), the crucial local square integrability of G(·), and similar arguments
as in the proof of Proposition 8.5.1, p. 153 of [15], see also [23], p. 101. In
addition, the limit object in the left-hand side of (5.1) does not depend on the
specific choice of ρ(·). For convenience, we will assume that ρ(·) is radially
symmetric and supported in B(0, 1).

For V as above, one also defines (in a simpler fashion) the element of H :∫
V (y) �y dy = lim

ε→0

∫
V (y)�y,ε dy in L2(P G). (5.3)

We now assume that we are in the constant intensity regime (0.2), and for V a
continuous compactly supported function onR3, we rewrite (4.2) as the following
identity in distribution under P g ⊗ P:

1

2

∑
x∈Z3

V
( x

N

)
:ϕ2

x : + d N2
〈
LN , V

〉 law= 1

2

∑
x∈Z3

V
( x

N

)
:
(
ϕx +√

2uN

)2: , (5.4)

where
:(ϕx + √

2uN )
2: = :ϕ2

x: + 2
√

2uN ϕx + 2uN

and
:ϕ2

x : = ϕ2
x − g(0).

We already know that 〈LN , V 〉 converges in distribution to 〈Lα, V 〉 (see The-
orem 3.2). The limit behavior of the other terms in (5.4) is described by
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Theorem 5.1. (d = 3, V continuous with compact support)

For α ≥ 0 and uN = 3α/N (= dα/Nd−2), as N → ∞,

1

3N2

∑
x∈Z3

V
( x

N

)
:
(
ϕx + √

2uN

)2:

converges in law to
∫

V (y) :(�y + √
2α)2: dy

(5.5)

(the last term can be defined as∫
V (y):�2

y: dy + 2
√
α

∫
V (y) �y dy + 2α

∫
V (y) dy,

but see also (5.10) below).
Under P G ⊗ P one has the distributional identity

1

2

∫
V (y) :�2

y: dy + 〈
Lα, V

〉 law= 1

2

∫
V (y) :

(
�y + √

2α
)2: dy. (5.6)

Proof. We first observe that (5.5), (5.4) (choosing α = 0 to handle the first
term of (5.4)) and Theorem 3.2 readily imply (5.6). Thus, we only need to prove
(5.5). This is a case of lattice field approximation (see chapter 9 §5 and §6 of
[15], also Chapter 8 of [33]). However, the fact that we consider the d = 3
situation and massless free fields, makes the set-up a bit different. Since some
care is needed, see for instance [15], p. 185-187, we sketch the proof for the
reader’s convenience. We define

ϕy,N =
√

N

d
ϕNy (with d = 3), for y ∈ LN , (5.7)

and note that the first term of (5.5) equals

1

N3

∑
y∈LN

V (y) :
(
ϕy,N + √

2α
)2: . (5.8)

We now choose ε(N) > 0 tending to 0 not too fast so that

ε(N) → 0 and N ε3(N) → ∞, as N → ∞. (5.9)

As we explain below, the claim (5.5) will follow once we establish the following
three facts:

lim
N

∥∥∥ ∫ V (y) :
(
�y + √

2α
)2: dy

−
∫

V (y) :
(
�y,ε + √

2α
)2: dy

∥∥∥
L2(PG )

= 0,

(5.10)
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lim
N

∥∥∥ ∫ V (y) :
(
�y,ε + √

2α
)2: dy

− 1

N3

∑
y∈LN

V (y) :
(
�y,ε + √

2α
)2: dy

∥∥∥
L1(PG)

= 0,
(5.11)

and for small real z, i.e. |z| ≤ r0,

lim
N

(
E PG

[
exp

{ z

N3

∑
y∈LN

V (y) :
(
�y,ε + √

2α
)2 :

}]
− E P g

[
exp

{ z

N3

∑
y∈LN

V (y) :
(
ϕy,N + √

2α
)2:

}])
= 0

(5.12)

We first explain how these three facts yield a proof of (5.5). By Theorem 3.50,
p. 39 of [18], we can replace L1(P G) by L2(P G) in (5.11). Together with (5.10)
we find that

lim
N

∥∥∥ 1

N3

∑
y∈LN

V (y) :
(
�y,ε + √

2α
)2:

−
∫

V (y) :
(
�y + √

2α
)2: dy

∥∥∥
L2(PG)

= 0.

(5.13)

By Theorem 6.7, p. 82 of [18], we thus see that for some r1 > 0,

sup
N≥1

E PG
[

cosh
( r1

N3

∑
y∈LN

V (y) :
(
�y,ε + √

2α
)2:

)]
< ∞. (5.14)

By (5.12), we then find that for some 0 < r2 < r1 ∧ r0,

sup
N≥1

E P g
[

cosh
( r2

N3

∑
y∈LN

V (y) :
(
ϕy,N + √

2α
)2:

)]
< ∞. (5.15)

Thus, by a similar argument as below (3.12), we see that the laws under P g of the
random variables 1

N3

∑
y∈LN

V (y) :(ϕy,N + √
2α)2: are tight, and, when along a

subsequence Nk they converge in distribution to a random variable U , then, for
|z| < r2, ezU is integrable and one has

E[ezU ] = lim
Nk

E P g
[

exp
{ z

N3

∑
y∈LN

V (y) :
(
ϕy,N + √

2α
)2:

}]
(5.12)= lim

Nk
E PG

[
exp

{ z

N3

∑
y∈LN

V (y) :
(
�y,ε + √

2α
)2:

}]
= E PG

[
exp

{
z
∫

V (y) :
(
�y + √

2α
)2: dy

}]
,

(5.16)
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using in the last step both the uniform integrability of the variables under the
expectation in the second line when |z| < r2 by (5.14), and (5.13) (see Theo-
rem 5.4, p. 32 of [3]). By analyticity, the equality between the first and the last
term of (5.16) extends to the strip {z ∈ C; |Rez| < r2}. Hence, the random
variable U has same distribution as

∫
V (y) :(�y + √

2α)2: dy, regardless of the
extracted subsequence Nk , and (5.5) follows.

There remains to establish (5.10)-(5.12). The claim (5.10) is an immediate
consequence of (5.2), (5.3) and the identity :(�y,ε + √

2α)2: = :�2
y,ε : +

2
√

2α �y,ε + 2α.
We then turn to (5.11) and simply explain why

lim
N

∥∥∥ ∫ V (y) :�2
y,ε: dy − 1

N3

∑
y∈LN

V (y) :�2
y,ε:

∥∥∥
L1(PG)

= 0. (5.17)

The case of the linear term (where 2
√

2α �y,ε replaces :�2
y,ε:) is simpler to

handle, and the constant terms (after developing the square in (5.11)) cancel
each other. The quantity under the limit in (5.17) is bounded above by I1 + I2,
where

I1 = E PG
[( ∫

hN (y) :�2
y,ε: dy

)2] 1
2
, with

hN (y) =
∑
z∈LN

(
V (y)− V (z)

)
1
{

y ∈ z + 1

N
[0, 1)3

}
,

(5.18)

I2 =
∑
z∈LN

|V (z)| E PG
[∣∣∣ ∫

z+ 1
N [0,1)3

:�2
y,ε: − :�2

z,ε : dy
∣∣∣]. (5.19)

By (5.1) we see that

I 2
1 ≤ 2

∫
|hN (y)| |hN (y)| G2

ε(y − y ′) dy dy ′, where (5.20)

Gε(y) = E PG [�y,ε �0,ε]
=
∫
ρε(z − y)G(z − z′) ρε(z′) dz dz′, for y ∈ R3.

(5.21)

Note that ρε(·) is spherically symmetric with support in B(0, ε) and G harmonic
on R3\{0}, so that

Gε(y) = G(y), when |y| > 2ε

≤ c

ε
‖ρ‖∞, when |y| ≤ 2ε,

(5.22)
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where in the last step we used that
∫
|z−z′ |≤r G(z − z′) dz = c r2, for r ≥ 0,

z′ ∈ R3.
We introduce a box� = [−M, M)3, with M ≥ 1 integer, such that

� contains all points within | · |∞-distance 1 from the support of V . (5.23)

Note that hN vanishes outside � (cf. (5.18)), and converges uniformly to 0 as
N → ∞. Moreover, by (5.22) and the local square integrability of G2, we see
that

∫
�×� G2

ε(y − y ′) dy dy → ∫
�×� G2(y − y ′) dy dy ′, as N → ∞. Hence,

see (5.20),
I1 → 0, as N → ∞. (5.24)

We then control I2. We first note that N3|�| bounds the number of boxes z +
1
N [0, 1)3 intersecting the support of V (with |�| the volume of �, and z ∈ LN ).
Hence,

I2 ≤ ‖V ‖∞ |�| sup
y∈ 1

N [0,1)3
E PG [|:�2

y,ε: − :�2
0,ε:|]. (5.25)

Moreover, for y ∈ R3 we have

E PG [(:�2
y,ε: − :�2

0,ε:)
2]

= E PG [:�2
y,ε:] + E PG [:�2

0,ε:] − 2E PG [:�2
y,ε: :�2

0,ε:]
(5.1)= 4

(
G2
ε(0)− G2

ε(y)
) (5.22)≤ c(ρ)

ε

(
Gε(0)− Gε(y)

)
≤ c(ρ)

ε

|y|
ε2

(
since ‖ |∇Gε| ‖L∞(R3) ≤ c(ρ)

ε2

)
.

(5.26)

We thus see that

I2 ≤ c(ρ) ‖V‖∞|�| (Nε3)−
1
2 −→

N
0 (by (5.9)). (5.27)

This complete the proof of (5.11). We now turn to (5.12).
By (5.22) and (1.2), (1.3), (1.6) we have for y, y ′ ∈ LN , N ≥ 1,

Gε(y−y ′) ≤ c(ρ)
(
|y−y ′|∨ 1

N

)−1
and gN(y, y ′) ≤ c

(
|y−y ′|∨ 1

N

)−1
. (5.28)

We can thus make sure that for small real z,

sup
N,y∈LN

|z|
N3

∑
y∈LN

Gε(y − y ′) |V (y ′)| ≤ 1

2
, and (5.29)

sup
N,y∈LN

|z|
N3

∑
y∈LN

gN (y − y ′) |V (y ′)| ≤ 1

2
(5.30)
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(incidentally,by (3.6) and the continuity of G |V |, we also have |z| ‖G |V |‖L∞(R3)

≤ 1
2).

If �N = � ∩ LN , the matrix
(
Gε(y − y ′))y,y′∈�N is positive definite. Indeed,

by (5.21) it suffices to note that ρε(· − y), y ∈ �N , are linearly independent
(one easily sees by taking Fourier transforms and using an analytic continuation
argument that any linear relation between these functions is trivial).

By Lemma 5.2.1 on p. 198 of [24], or Proposition 2.14 on p. 47 of [41], for z
as above,

E PG
[

exp
{ z

2N3

∑
y∈LN

V (y) :
(
�y,ε + √

2α
)2:

}]

= eαz〈V ,(I−zG̃ε V )−11〉LN

(det2((I − zG̃εV )|�N ×�N ))
1
2

,

(5.31)

where det2
(
(I − zG̃εV )|�N ×�N

)
denotes the regularized determinant of the

finite matrix K , which is the restriction to

�N ×�N of

(
δy,y′ − zGε (y − y ′)

V (y ′)
N3

)
y,y′∈LN

,

that is (det K )e−Tr(K −I ) (where Tr stands for the trace), see [34], p. 75. In addi-
tion, with some abuse of notation, in the term in the exponential in the right-hand
side of (5.31), G̃ε stands for the linear operator on functions on LN defined by
a similar formulas as (1.8), with gN (y, y ′) replaced by Gε(y − y ′), so that G̃εV
operates on bounded functions on LN and I − zG̃εV is invertible by (5.29).
Also, compared to the above references, we used the identity following from the
Neumann expansion of (I − zG̃εV )−1:〈

V , (I − zG̃εV )
−11

〉
LN

= 〈
V , 1

〉
LN

+ z
〈
V , (I − zG̃εV )−1G̃εV 1

〉
LN
.

In a similar manner, with analogous notation, for z as above, we have

E P g
[

exp
{ z

2N3

∑
y∈LN

V (y) :
(
�y,N + √

2α
)2:

}]

= eαz〈V ,(I−zGN V )−11〉LN

(det2((I − zG N V )|�N ×�N ))
1
2

,

(5.32)

By Proposition 3.1 and (5.30) we have for z as above

lim
N

〈
V , (I − zG N V )−11

〉
LN

= 〈
V , (I − zGV )−11

〉
. (5.33)
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By an analogous argument as for the proof of Proposition 3.1 and (5.29) we have

lim
N

〈
V , (I − zG̃εV )−11

〉
LN

= 〈
V , (I − zGV )−11

〉
. (5.34)

As we now explain, the claim (5.12) will now follow once we prove that

sup
N

∑
y,y′∈�N

(
Gε(y, y ′)2 + gN (y, y ′)2

) 1

N6
< ∞, (5.35)

lim
N

∑
y,y′∈�N

(
Gε(y, y ′)− gN(y, y ′)

)2 1

N6
= 0. (5.36)

Indeed from Theorem 9.2, on p. 75 of [35], one knows that for any n×n matrices
A, B (and ‖ · ‖2 denotes the Hilbert-Schmidt norm)

|det2(I + A)− det2(I + B)| ≤ ‖A − B‖2 exp{c(‖A‖2 + ‖B‖2 + 1)2} (5.37)

(the constant c does not depend on n).
Assuming (5.35), (5.36) one thus finds that for small z

lim
N

det2
(
(I − zG̃εV )|�N ×�N

)− det2
(
(I − zG N V )|�N ×�N

) = 0, and (5.38)

the regularized determinants in (5.38) each belong to
[

1
2 ,

3
2

]
for N ≥ 1 (5.39)

(we use (5.37) with B = 0 and det2(I) = 1 for this last fact).
Combined with (5.33), (5.34) the claim (5.12) then follows.
There remains to prove (5.35) and (5.36). The bound (5.35) follows from (5.28)

in a straightforward fashion, and we concentrate on (5.36). We pick γ > 0. The
sum in (5.36) equals J1 + J2, where J1 collect the terms where |y − y ′| > γ and
I2 the terms where |y − y ′| ≤ γ . When N is large, Gε(y − y ′) = G(y − y ′) for
all |y − y ′| > γ (see (5.22)), G(y − y ′) − gN(y − y ′) converges uniformly to
zero on this set by (1.7). We thus find that limN J1 = 0. As for the second term
J2, by (5.28) we have

lim
N

J2 ≤ lim
N

c(�, ρ)

N3

(
N2 +

∑
z∈LN ,0<|z|≤γ

1

|z|2
)

≤ c′(�, ρ) γ . (5.40)

Letting γ tend to 0, we obtain (5.36). This completes the proof of (5.12) and
hence of Theorem 5.1. �
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Remark 5.2. 1) Note that for V continuous with compact support onR3 one has

E

[( ∫
V (y) :�2

y: dy
)2] = 2

∫
V (y)G2(y − y ′) V (y ′) dy dy ′

≤ c ‖V‖L1(Rd )

(‖V ‖L∞(Rd ) + ‖V‖L1(R3)

)
,

and a similar bound holds for

E

[( ∫
(V (y) �y dy

)2
]

=
∫

V (y)G(y − y ′) V (y ′) dy dy ′.

We can thus extend the linear map sending V to
∫

V (y) :(�y + √
2α

)2: dy ∈
L2(P G) by continuity to S(R3) for any α ≥ 0. By the regularization theorem,
see Theorem 2.3.2, p. 24 of [17], one can find a version denoted by :(�+√

2α)2:,
which is an S′(R3)-valued random variable defined on the canonical space where
P G is defined such that for any V ∈ S(R3),

P G-a.s.,
〈
:
(
� + √

2α
)2:, V 〉 =

∫
V (y) :

(
�y + √

2α
)2: dy.

2) The intensity measure of Lα equals α dy (see (2.39)), and by similar consid-
erations as in Remark 3.4 we can also viewLα (after a possible redefinition on a
set of measure 0) as an S′(R3)-valued random variable defined on (�,A,P). �

As a consequence of Theorem 5.1 we obtain an isomorphism theorem for
the occupation measure of Brownian interlacements on R3, which arises as the
scaling limit (with suitable counter terms) of (0.6):

Corollary 5.3. (d = 3, α ≥ 0)

Under P G ⊗ P one has the identity in law on S′(R3):

1

2
:�2: + Lα law= 1

2
:
(
�+ √

2α
)2: (5.41)

Proof. By Remark 5.2 we can obtain the identity (5.6) for any V ∈ S(R3).
Hence under P G ⊗ P, the random variables〈1

2
:�2: + Lα, V

〉
and

〈1

2
:(�+ √

2α)2:, V
〉

have the same distribution for each V ∈ S(R3), and (5.41) easily follows. �
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Remark 5.4. In the context of Brownian loops on Rd , 1 ≤ d ≤ 3 (suitably
killed when d = 1, 2), Le Jan, see p.104 of [23], showed that 1

2 :�2: (or its
corresponding object when d = 1, 2) has the same law as the renormalized
occupation field of a Poisson cloud of Brownian loops with intensity parameter
α = 1

2 .

Observe that here, in (5.41), no renormalization on Lα is needed (and α varies
over R+). Only terms involving the free field need renormalization. �

References

[1] D. Belius. Cover times in the discrete cylinder. Available at arXiv:1103.2079.

[2] D. Belius. Gumbel fluctuations for cover times in the discrete torus. To appear in
“Probab. Theory Relat. Fields”, also available at arXiv:1202.0190.

[3] P. Billingsley. Convergence of probability measures. Wiley, New York (1968).

[4] K. Burdzy. Multidimensional Brownian Excursions and Potential Theory. Wiley,
New York (1987).
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[7] J. Černý, A. Teixeira and D. Windisch. Giant vacant component left by a ran-
dom walk in a random d-regular graph. Ann. Inst. Henri Poincaré Probab. Stat.,
47(4) (2011), 929–968.

[8] M. Cranston and T.R. McConnell. The lifetime of conditioned Brownian motion.
Z. für Wahrsch. verw. Geb., 65(1) (1983), 1–11.

[9] A. Drewitz, B. Ráth and A. Sapozhnikov. Local percolative properties of the
vacant set of random interlacements with small intensity. To appear in “An-
nales de l’Institut Henri Poincaré, Probabilités et Statistiques”, also available at
arXiv:1206.6635.

[10] R. Durrett. Brownian motion and martingales in analysis. Wadsworth, Belmont
CA (1984).

[11] A. Dvoretzky, P. Erdös and S. Kakutani. Double points of paths of Brownian
motion in n-space. Acta Sci. Math., Szeged, 12B (1950), 75–81.

[12] X. Fernique. Processus linéaires, processus généralisés. Ann. Inst. Fourier, Greno-
ble, 17(1) (1987), 1–92.

[13] I.M. Gel’fand and N.Ya. Vilenkin. Generalized Functions. Academic Press, New
York and London (1964).

[14] R.K. Getoor. Splitting times and shift functionals. Z. Wahrscheinlichkeitstheorie
verw. Gebiete, 47 (1979), 69–81.

Bull Braz Math Soc, Vol. 44, N. 4, 2013



�

�

“main” — 2013/11/14 — 14:02 — page 591 — #37
�

�

�

�

�

�

ON SCALING LIMITS AND BROWNIAN INTERLACEMENTS 591

[15] J. Glimm and A. Jaffe. Quantum Physics. Springer, Berlin (1981).

[16] G.A. Hunt. Markoff chains and Martin boundaries. Illinois J. Math., 4 (1960),
313–340.

[17] K. Itô. Foundations of Stochastic Differential Equations in Infinite Dimensional
Spaces. Soc. Indust. Appl. Math., Philadelphia (1984).

[18] S. Janson. Gaussian Hilbert Spaces. Cambridge University Press (1997).

[19] O. Kallenberg. Random measures. Academic Press, New York (1976).

[20] H. Lacoin and J. Tykesson. On the easiest way to connect k points in the random
interlacements process. Available at arXiv:1206.4216.

[21] G.F. Lawler. Intersections of random walks. Birkhäuser, Basel (1991).

[22] Y. Le Jan. Markov loops and renormalization. Ann. Probab., 38(3) (2010),
1280–1319.

[23] Y. Le Jan. Markov paths, loops and fields, volume 2026 of “Lecture Notes in
Math”. Ecole d’Eté de Probabilités de St. Flour, Springer, Berlin (2012).

[24] M.B. Marcus and J. Rosen. Markov processes, Gaussian processes, and local
times. Cambridge University Press (2006).

[25] G. Matheron. Random Sets and Integral Geometry. Wiley, New York (1975).

[26] P.-A. Meyer. Théorème de continuité de P. Lévy sur les espaces nucléaires. Sémi-
naire Bourbaki, 311 (1965/66), 509–522.

[27] S. Port and C. Stone. Brownian motion and classical Potential Theory. Academic
Press, New York (1978).

[28] E.B. Procaccia and J. Tykesson. Geometry of the random interlacement. Electron.
Commun. Probab., 16 (2011), 528–544.

[29] B. Ráth and A. Sapozhnikov. Connectivity properties of random interlacement and
intersection of random walks. ALEA Lat. Am. J. Probab. Math. Stat., 9 (2012),
67–83.

[30] B. Ráth and A. Sapozhnikov. The effect of small quenched noise on connectivity
properties of random interlacements. Electron. J. Probab., 8(4) (2013), 1–20.

[31] V. Sidoravicius and A.S. Sznitman. Percolation for the vacant set of random inter-
lacements. Comm. Pure Appl. Math., 62(6) (2009), 831–858.

[32] M.L. Silverstein. Symmetric Markov Processes. Lecture Notes in Math., 426
(1974), Springer, Berlin.

[33] B. Simon. The P(φ)2 Euclidean (Quantum) field theory. Princeton University Press
(1974).

[34] B. Simon. Functional Integration and Quantum Physics. Academic Press, New
York (1979).

[35] B. Simon. Trace Ideals and Their Applications. Am. Math. Soc., Providence,
second edition (2005).

Bull Braz Math Soc, Vol. 44, N. 4, 2013



�

�

“main” — 2013/11/14 — 14:02 — page 592 — #38
�

�

�

�

�

�

592 ALAIN-SOL SZNITMAN

[36] A.S. Sznitman. Brownian motion, obstacles and random media. Springer, Berlin
(1998).

[37] A.S. Sznitman. On the domination of random walk on a discrete cylinder by random
interlacements. Electron. J. Probab., 14 (2009), 1670–1704.

[38] A.S. Sznitman. Vacant set of random interlacements and percolation. Ann. Math.,
171 (2010), 2039–2087.

[39] A.S. Sznitman. Random interlacements and the Gaussian free field. Ann. Probab.,
40(6) (2012), 2400–2438.

[40] A.S. Sznitman. An isomorphism theorem for random interlacements. Electron.
Commun. Probab., 17(9) (2012), 1–9.

[41] A.S. Sznitman. Topics in occupation times and Gaussian free fields. Zurich
Lectures in Advanced Mathematics, EMS, Zurich (2012).

[42] A. Teixeira. Interlacement percolation on transient weighted graphs. Electron.
J. Probab., 14 (2009), 1604–1627.

[43] A. Teixeira. On the size of a finite vacant cluster of random interlacements with
small intensity. Probab. Theory Relat. Fields, 150(3-4) (2011), 529–574.

[44] A. Teixeira and D. Windisch. On the fragmentation of a torus by random walk.
Commun. Pure Appl. Math., 64(12) (2011), 1599–1646.

[45] M. Weil. Quasi-processus. Séminaire de Probabilités IV, Lecture Notes in Math.,
124 (1970), 217–239, Springer, Berlin.

Alain-Sol Sznitman
Departement Mathematik
ETH-Zurich
CH-8092 Zürich
SWITZERLAND

E-mail: alain-sol.sznitman@math.ethz.ch

Bull Braz Math Soc, Vol. 44, N. 4, 2013


