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Heterogeneous ubiquitous systems inRd and
Hausdorff dimension

Julien Barral and Stéphane Seuret

Abstract. Let {xn}n∈N be a sequence in[0, 1]d, {λn}n∈N a sequence of positive real
numbers converging to 0, andδ > 1. The classical ubiquity results are concerned with
the computation of the Hausdorff dimension of limsup-sets of the form

S(δ) =
⋂

N∈N

⋃

n≥N

B(xn, λ
δ
n).

Let μ be a positive Borel measure on[0, 1]d, ρ ∈ (0, 1] andα > 0. Consider the finer
limsup-set

Sμ(ρ, δ, α) =
⋂

N∈N

⋃

n≥N:μ(B(xn,λ
ρ
n))∼λ

ρα
n

B(xn, λ
δ
n).

We show that, under suitable assumptions on the measureμ, the Hausdorff dimension of
the setsSμ(ρ, δ, α) can be computed. Moreover, whenρ < 1, a yet unknown saturation
phenomenon appears in the computation of the Hausdorff dimension ofSμ(ρ, δ, α).
Our results apply to several classes of multifractal measures, andS(δ) corresponds to
the special case whereμ is a monofractal measure like the Lebesgue measure.
The computation of the dimensions of such sets opens the way to the study of several
new objects and phenomena. Applications are given for the Diophantine approximation
conditioned by (or combined with)b-adic expansion properties, by averages of some
Birkhoff sums and branching random walks, as well as by asymptotic behavior of random
covering numbers.
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1 Introduction

Since the famous result of Jarnik [34] concerning Diophantine approximation
and Hausdorff dimension, the following problem has been widely encountered
and studied in various mathematical situations.

Let {xn}n∈N be a sequence in a compact metric spaceE and{λn}n∈N a sequence
of positive real numbers converging to 0. Let us define the limsup set

S =
⋂

N∈N

⋃

n≥N

B(xn, λn),

and letD be its Hausdorff dimension. Letδ > 1. What can be said about the
Hausdorff dimension of the subsetS(δ) of Sdefined by

S(δ) =
⋂

N∈N

⋃

n≥N

B(xn, λ
δ
n) ?

Intuitively one would expect the Hausdorff dimension ofS(δ) to be lower
bounded byD/δ. This has been proved to hold in many cases which can roughly
be separated into two classes:

• when the sequence{(xn, λn)}n forms a sort of “regular system” [3, 18, 19],
which ensures a strong uniform repartition of the points{xn}n.

• when the sequence{(xn, λn)}n forms an ubiquitous system [22, 23, 33, 15]
with respect to a monofractal measure carried by the setS.

Let us mention that similar results are obtained in [47] whenE is a Julia set.
When dimS(δ) < D, such subsetsS(δ) are often referred to as exceptional sets
[21]. Another type of exceptional sets arises when considering the level sets of
well-chosen functions:

• the function associating with each pointx ∈ [0, 1] the frequency of the
digit i ∈ {0, 1, . . . , b − 1} in theb-adic expansion ofx,

• more generally the function associating with each pointx the average of
the Birkhoff sums related to some dynamical systems,

• the functionx 7→ h f (x), when f is either a function or a measure on
Rd and h f (x) is a measure of the local regularity (typically an Hölder
exponent) off aroundx.
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It is a natural question to ask whether these two approaches can be combined
to obtain finer exceptional sets. Let us take an example to illustrate our purpose.

On one side, it is known since Jarnik’s results [34] that if the sequence
{(xn, λn)}n is made of the rational pairs{(p/q, 1/q2)}p,q∈N∗2, p≤q, then for every
δ > 1 the subsetS(δ) of [0, 1] has a Hausdorff dimension equal to 1/δ. In
the ubiquity’s setting, this is a consequence of the fact that the family{(p/q,
1/q2)}p,q∈N∗2 forms an ubiquitous system associated with the Lebesgue mea-
sure [22, 23].

On the other side, given(π0, π1, . . . , πb−1) ∈ [0, 1]b such that
∑b−1

i =0 πi = 1,
Besicovitch and later Eggleston [24] studied the setsEπ0,π1,...,πb−1 of pointsx
such that the frequency of the digiti ∈ {0, 1, . . . , b− 1} in theb-adic expansion
of x is equal toπi . More precisely, for anyx ∈ [0, 1], let us consider theb-adic
expansion of

x =
∞∑

m=1

xmb−m, where ∀m, xm ∈ {0, 1, . . . , b − 1}.

Let φi,n(x) be the mapping

x 7→ φi,n(x) =
#
{
m ≤ n : xm = i

}

n
. (1)

ThenEπ0,π1,...,πb−1 = {x : ∀i ∈ {0, 1, . . . , b−1}, limn→+∞ φi,n(x) = πi }. They
found that dimEπ0,π1,...,πb−1 =

∑b−1
i =0 −πi logb πi .

We address the problem of the computation of the Hausdorff dimension of
the subsetsEπ0,π1,...,πb−1

δ of [0, 1] defined by

Eπ0,π1,...,πb−1
δ =





x ∈ (0, 1) :






∃ (pn,qn)n ∈ (N∗2)N such thatqn → +∞,

|x − pn/qn| ≤ 1/q2δ
n and∀i ∈ {0, . . . , b − 1},

limn→+∞ φi,[logb(q2
n)]
(pn/qn) = πi






([x] denotes the integer part ofx). In other words, we seek in this exam-
ple for the Hausdorff dimension of the set of points of[0, 1] which are well-
approximated by rational numbers fulfilling a given Besicovitch condition (i.e.
having given digit frequencies in theirb-adic expansion). This problem is not
covered by the works mentioned above. The main reason is the heterogeneity
of the repartition of the rational numbers satisfying the Besicovitch conditions.
As a consequence of Theorems 2.1 and 2.2 of this paper, we obtain

dim Eπ0,π1,...,πb−1
δ =

∑b−1
i =0 −πi logb πi

δ
. (2)
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The key point to achieve this work is to see the Besicovitch condition as
a scaling property derived from a multinomial measure. More precisely, the
computation of the Hausdorff dimensions of the setsEπ0,π1,...,πb−1

δ proves to be a
particular case of the following problem: Letμ be a positive Borel measure on
the compact metric spaceE considered above. Givenα > 0 andδ ≥ 1, what is
the Hausdorff dimension of the set of pointsx of E that are well-approximated
by points of{(xn, λn)}n at rateδ, i.e. such that for an infinite number of integers
n, |x − xn| ≤ λδn, conditionally to the fact that the corresponding sequence of
pairs(xn, λn) satisfy

lim
n→∞

logμ
(
B(xn, λn)

)

log(λn)
= α? (3)

In other words, ifε = (εn)n≥1 is a sequence of positive numbers converging to
0, what is the Hausdorff dimension of

Sμ(δ, α, ε) =
⋂

N≥0

⋃

n≥N: λα+εn
n ≤μ(B(xn,λn))≤λ

α−εn
n

B(xn, λ
δ
n) ? (4)

We study the problem inRd (d ≥ 1). An upper bound for the Hausdorff
dimension ofSμ(δ, α, ε) is given by Theorem 2.1 forweakly redundant systems
{(xn, λn)}n (see Definition 2.1). Its proof uses ideas coming from multifractal
formalism for measures [17, 43].

Theorem 2.2 (caseρ = 1) gives a precise lower bound for the Hausdorff
dimension ofSμ(δ, α, ε) when the family{(xn, λn)}n forms a 1-heterogeneous
ubiquitous system with respect to the measureμ (see Definition 2.2 for this
notion, which generalizes the notion of ubiquitous system mentioned above).
It can be applied to measuresμ that enjoy some statistical self-similarity prop-
erty, and to any family{(xn, λn)}n as soon as the support ofμ is covered by
lim supn→∞ B(xn, λn).

To fix ideas, let us state a corollary of Theorems 2.1 and 2.2. This result
uses the Legendre transformτ ∗

μ of the “dimension” functionτμ considered in the
multifractal formalism studied in [17] (see Section 2.2 and Definition 8).

Theorem 1.1. Let μ be a multinomial measure on[0, 1]d. Suppose that the
family {(xn, λn)}n forms a weakly redundant 1-heterogeneous ubiquitous system
with respect to

(
μ, α, τ ∗

μ(α)
)
.

There is a positive sequenceε = (εn)n≥1 converging to 0 at∞ such that

∀ δ ≥ 1, dim Sμ(δ, α, ε) = τ ∗
μ(α)/δ.
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Examples of remarkable families{(xn, λn)}n are discussed in Section 6, as
well as examples of suitable statistically self-similar measuresμ. There, the
measuresμ are chosen so that the property (3) has a relevant interpretation (for
instance in terms of theb-adic expansion of the pointsxn).

The formula (4) defining the setSμ(δ, α, ε) naturally leads to the question
of conditioned ubiquity into the following more general form: Letρ ∈ (0, 1].
What is the Hausdorff dimension of

Sμ(ρ, δ, α, ε) =
⋂

N≥0

⋃

n≥N: λρ(α+εn)
n ≤μ(B(xn,λ

ρ
n))≤λ

ρ(α−εn)
n

B(xn, λ
δ
n) ? (5)

We remark that, in (4) and (5), ifμ equals the Lebesgue measure and ifα = d,
the conditions onB(xn, λ

ρ
n) are empty, since they are independent ofxn, λn and

ρ. This remains true for a strictly monofractal measureμ of indexα, that is such
that∃ C > 0, ∃ r0 such that

∀ x ∈ supp(μ), ∀ 0< r ≤ r0, C−1r α ≤ μ(B(x, r )) ≤ Crα.

Again, an upper bound for the Hausdorff dimension ofSμ(ρ, δ, α, ε) is found
in Theorem 2.1 for weakly redundant systems.

Theorem 2.2 (caseρ < 1) yields a lower bound for the Hausdorff dimension
of Sμ(ρ, δ, α, ε)whenρ < 1, as soon as the family{(xn, λn)}n forms aρ-hetero-
geneous ubiquitous system with respect toμ in the sense of Definition 2.3. The
introduction of this dilation parameterρ substantially modifies Definition 2.2
and the proofs of the results in the initial caseρ = 1.

As a consequence of Theorem 2.2, a new saturation phenomenon occurs for
systems that are both weakly redundant andρ-heterogeneous ubiquitous sys-
tems whenρ < 1. This points out the heterogeneity introduced when consider-
ing ubiquity conditioned by measures that are not monofractal. The following
result is also a corollary of Theorems 2.1 and 2.2.

Theorem 1.2. Let μ be a multinomial measure on[0, 1]d. Let ρ ∈ (0, 1).
Suppose that{(xn, λn)}n forms a weakly redundantρ-heterogeneous ubiquitous
system with respect to

(
μ, α, τ ∗

μ(α)
)
.

There is a positive sequenceε = (εn)n≥1 converging to 0 at∞ such that

∀ δ ≥ 1, dim Sμ(ρ, δ, α, ε) = min
(d(1 − ρ)+ ρτ ∗

μ(α)

δ
, τ ∗
μ(α)

)
.
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Under the assumptions of Theorem 1.2, whenτ ∗
μ(α) < d, althoughδ starts

to increase from 1, dimSμ(ρ, δ, α, ε) remains constant untilδ reaches the crit-

ical value
d(1−ρ)+ρτ∗

μ(α)

τ∗
μ(α)

> 1. Whenδ becomes larger than
d(1−ρ)+ρτ∗

μ(α)

τ∗
μ(α)

, the

dimension decreases. This is what we call a saturation phenomenon.
It turns out that conditioned ubiquity as defined in this paper is closely related

to the local regularity properties of some new classes of functions and measures
having dense sets of discontinuities. In particular, Theorem 2.2 is a crucial tool
to analyze measures constructed as the measuresνρ,γ,σ

νρ,γ,σ =
∑

n≥0

λγn μ
(
B(xn, λ

ρ
n)

)σ
δxn,

whereδxn is the probability Dirac mass atxn, ρ ∈ (0, 1], andγ, σ are real
numbers which make the series converge. Conditioned ubiquity is also essential
to perform the multifractal analysis of Lévy processes in multifractal time. These
objects have multifractal properties that were unknown until now. Their study
is achieved in other works [9, 10, 11, 12].

The definitions of weakly redundant andρ-heterogeneous ubiquitous sys-
tems are given in Section 2. The statements of the main results (Theorems 2.1
and 2.2) then follow. The proofs of Theorem 2.1, Theorem 2.2 (caseρ = 1)
and Theorem 2.2 (caseρ < 1) are respectively achieved in Sections 3, 4 and
5. Finally, our results apply to suitable examples of systems{(xn, λn)}n and
measuresμ that are discussed in Section 6.

2 Definitions and statement of results

It is convenient to endowRd with the supremum norm‖ ∙ ‖∞ and with the
associated distance(x, y) ∈ Rd × Rd 7→ ‖x − y‖∞ = max1≤i ≤d(|xi − yi |).
Throughout the paper, for a setS, |S| denotes then the diameter ofS.

We briefly recall the definition of the generalized Hausdorff measures and
Hausdorff dimension inRd. Let ξ be agaugefunction, i.e. a non-negative non-
decreasing function onR+ such that limx→0+ ξ(x) = 0. LetSbe a subset ofRd.
Forη > 0, let us define

H ξ
η (S) = inf

{Ci }i ∈I :S⊂
⋃

i ∈I Ci

∑

i ∈I

ξ (|Ci |) , (the family{Ci }i ∈I coversS)

where the infimum is taken over all countable families{Ci }i ∈I such that∀i ∈
I, |Ci | ≤ η. As η decreases to 0,H ξ

η (S) is non-decreasing, andH ξ (S) =
limη→0H

ξ
η (S) defines a Borel measure onRd, called Hausdorffξ -measure.
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Defining the familyξα(x) = |x|α (α ≥ 0), there exists a unique real number
0 ≤ D ≤ d, called the Hausdorff dimension ofS and denoted dimS, such that
D = sup

{
α ≥ 0 : H ξα (S) = +∞

}
= inf

{
α : H ξα (S) = 0

}
(with the conven-

tion sup∅ = 0). We refer the reader to [40, 26] for instance for more details on
Hausdorff dimensions.

Let μ be a positive Borel measure with a support contained in[0, 1]d. The
analysis of the local structure of the measureμ in [0, 1]d may be naturally done
using ac-adic grid (c ≥ 2). This is the case for instance for the examples of
measures of Section 6. We shall thus need the following definitions.

Let c be an integer≥ 2. For every

j ≥ 0, ∀ k = (k1, . . . , kd) ∈ {0, 1, . . . , cj − 1}d, I c
j,k

denotes thec-adic box

[k1c
− j , (k1 + 1)c− j )× . . .× [kdc− j , (kd + 1)c− j ).

Then,∀x ∈ [0, 1)d, I c
j (x) stands for the uniquec-adic box of generationj that

containsx, andkc
j,x is the unique (multi-)integer such thatI c

j (x) = I c
j,kc

j,x
. If both

k = (k1, . . . , kd)andk ′ = (k′
1, . . . , k

′
d)belong toNd,‖k−k ′‖∞ = maxi |ki −k′

i |.
The set ofc-adic boxes included in[0, 1)d is denoted byI .

Finally, the lower Hausdorff dimension ofμ, dim(μ), is defined, as usual, as
inf

{
dim E : E ∈ B([0, 1]d), μ(E) > 0

}
.

2.1 Weakly redundant systems

Let{xn}n∈N be a family of points of[0, 1]d and{λn}n∈N a non-increasing sequence
of positive real numbers converging to 0. For everyj ≥ 0, let

Tj =
{
n : 2−( j +1) < λn ≤ 2− j

}
. (6)

The following definition introduces a natural property from which an upper
bound for the Hausdorff dimension of limsup-sets (4) and (5) can be derived.
Weak redundancyis slightly more general thansparsityin [27].

Definition 2.1. The family{(xn, λn)}n∈N is said to form a weakly redundant
system if there exists a sequence of integers(Nj ) j ≥0 such that

(i) lim j →∞ log Nj /j = 0.
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(ii) for every j ≥ 1, Tj can be decomposed intoNj pairwise disjoint subsets
(denotedTj,1, . . . , Tj,Nj ) such that for each1 ≤ i ≤ Nj , the family{
B(xn, λn) : n ∈ Tj,i

}
is composed of disjoint balls.

We have
⋃Nj

i =1 Tj,i = Tj . Since theTj,i are pairwise disjoint, any pointx ∈
[0, 1]d is covered by at mostNj balls B(xn, λn), n ∈ Tj . Moreover, for everyi
and j , the number of balls ofTj,i is bounded byCd ∙ 2d j , whereCd is a positive
constant depending only ond. Indeed, if two integersn 6= n′ are such thatλn

andλn′ belong toTj,i , then‖xn − xn′‖∞ ≥ 2− j .

2.2 Upper bounds for Hausdorff dimensions of conditioned limsup sets

Letμ be a finite positive Borel measure on[0, 1]d.
We let the reader verify that if suppμ = [0, 1]d, then the concave function

τμ : q 7→ lim inf
j →∞

− j −1 logc

∑

k∈{0,...,cj −1}d

μ(I c
j,k)

q (7)

does not depend on the integerc ≥ 2. This function is often considered when
performing the multifractal formalism for measures of [17]. Then, the Legendre
transform ofτμ atα ∈ R+, denoted byτ ∗

μ, is defined by

τ ∗
μ : α 7→ inf

q∈R

(
αq − τμ(q)

)
∈ R ∪ {−∞}. (8)

Theorem 2.1. Let {xn}n∈N be a family of points of[0, 1]d and {λn}n∈N a non-
increasing sequence of positive real numbers converging to 0. Letμ be a positive
finite Borel measure with a support equal to[0, 1]d. Let {εn}n∈N be a positive
sequence converging to 0,ρ ∈ (0, 1], δ ≥ 1 andα ≥ 0. Let us define

Sμ(ρ, δ, α, ε) =
⋂

N≥1

⋃

n≥N: λρ(α+εn)
n ≤μ(B(xn,λ

ρ
n))≤λ

ρ(α−εn)
n

B(xn, λ
δ
n).

Suppose that{(xn, λn)}n∈N forms a weakly redundant system. Then

dim Sμ(ρ, δ, α, ε) ≤ min
( d(1 − ρ)+ ρτ ∗

μ(α)

δ
, τ ∗
μ(α)

)
. (9)

Moreover,Sμ(ρ, δ, α, ε) = ∅ if τ ∗
μ(α) < 0.

The result does not depend on the precise value of the sequence{εn}n, as soon
as limn→+∞ εn = 0. The proof of Theorem 2.1 is given in Section 3.
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2.3 Heterogeneous ubiquitous systems

Letα > 0 andβ ∈ (0, d] be two real numbers. They play the role respectively of
the Hölder exponent ofμ and of the lower Hausdorff dimension of an auxiliary
measurem.

The upper bound obtained by Theorem 2.1 is rather natural. Here we seek
for conditions that make the inequality (9) become an equality. The following
Definitions 2.2 and 2.3 provide properties guarantying this equality.

The notion ofheterogeneous ubiquitous systemgeneralizes the notion ofubiq-
uitous systeminRd considered in [22]. The abbreviationm-a.e. orμ-a.e. means
as usualm- orμ-almost every orm- orμ-almost everywhere.

Definition 2.2. The system{(xn, λn)}n∈N is said to form a1-heterogeneous
ubiquitous system with respect to(μ, α, β) if conditions(1-4)are fulfilled.

(1) There exist two non-decreasing continuous functionsφ andψ defined on
R+ with the following properties:

– ϕ(0) = ψ(0) = 0, r 7→ r −ϕ(r ) andr 7→ r −ψ(r ) are non-increasing
near0+,

– limr →0+ r −ϕ(r ) = +∞, and∀ ε > 0, r 7→ r ε−ϕ(r ) is non-decreasing
near0+,

– ϕ andψ verify (2), (3)and(4).

(2) There is a measurem with support[0, 1]d enjoying the following proper-
ties:

• m-a.e. y ∈ [0, 1]d belongs tolim supn→+∞ B(xn, λn/2), i.e.

m

(
⋂

N≥1

⋃

n≥N

B
(
xn, λn/2

)
)

= ‖m‖. (10)

• We have:
{

Form-a.e. y ∈ [0, 1]d, ∃ j (y), ∀ j ≥ j (y),

∀ k such that‖k − kc
j,y‖∞ ≤ 1, P1

1(I
c
j,k) holds,

(11)

whereP1
M(I ) is said to hold for the setI and for the real numberM ≥

1 when
M−1|I |α+ψ(|I |) ≤ μ

(
I
)

≤ M |I |α−ψ(|I |). (12)
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• We have:
{

For m-a.e. y ∈ [0, 1]d, ∃ j (y), ∀ j ≥ j (y),

∀ k such that‖k − kc
j,y‖∞ ≤ 1, Dm

1 (I
c
j,k) holds,

(13)

whereDm
M(I ) is said to hold for the setI and for the real numberM >

0 when
m(I ) ≤ M |I |β−ϕ(|I |). (14)

(3) (Self-similarity ofm) For everyc-adic boxL of [0, 1)d, let fL denote the
canonical affine mapping fromL onto[0, 1)d . There exists a measuremL

on L, equivalent to the restrictionm|L of m to L (in the sense thatm|L

andmL are absolutely continuous with respect to one another), such that
property (13) holds for the measuremL ◦ f −1

L instead of the measurem.

For everyJ ≥ 1, let us then introduce the sets

EL
J =






x ∈ L :






∀ j ≥ J + logc

(
|L|−1

)
,

∀ k such that‖k − kc
j,x‖∞ ≤ 1,

we have: mL
(
I c

j,k

)
≤

(
|I c

j,k |

|L|

)β−ϕ
( |I c

j,k |

|L|

)






.

The setsEL
J form a non-decreasing sequence inL, and by(13) and prop-

erty (3),
⋃

J≥1 EL
J is of full mL -measure. We can thus consider the integer

J(L) = inf
{

J ≥ 1 : mL(EL
J ) ≥ ‖mL‖/2

}
.

For everyx ∈ (0, 1)d and j ≥ 1, let us define the set of balls

B j (x) =
{
B(xn, λn) : x ∈ B

(
xn, λn/2

)
andλn ∈ (c−( j +1), c− j ]

}
.

Notice that this set may be empty. Whenδ > 1 and B(xn, λn) ∈ B j (x),
considerB(xn, λ

δ
n). This ball contains an infinite number ofc-adic boxes.

Among them, letBδn be the set ofc-adic boxes of maximal diameter.
Then define

Bδj (x) =
⋃

B(xn,λn)∈B j (x)

Bδn.

(4) (Control of the growth speedJ(L) and of the mass‖mL‖) There exists a
subsetD of (1,∞) such that for everyδ ∈ D, for m-a.e. x ∈ [0, 1]d (or
equivalently, by (10) form-a.e. x ∈ lim supn→∞ B

(
xn, λn/2

)
), there is an

Bull Braz Math Soc, Vol. 38, N. 3, 2007



“main” — 2007/8/14 — 0:32 — page 477 — #11

HETEROGENEOUS UBIQUITOUS SYSTEMS INRd AND HAUSDORFF DIMENSION 477

infinite number of generationsj for which there existsL ∈ Bδj (x) such
that

J(L) ≤ logc

(
|L|−1)ϕ(|L|) and |L|ϕ(|L|) ≤ ‖mL‖. (15)

Remark 2.1.

1. (1) is a technical assumption. In(2), (13) provides us with a lower bound
for the lower Hausdorff dimension of the analyzing measurem. (11) yields
a control of the local behavior ofμ, m-a.e. Then (10) is the natural
condition onm to analyze ubiquitous properties of{(xn, λn)}n conditioned
by μ. (3) details a self-similar property form, and(4) imposes a control
of the growth speed in the level sets for the “copies”mL ◦ f −1

L of m. The
combination of(3) and(4) supplies the monofractality property used in
classical ubiquity results.

2. Ifμ is a strictly monofractal measure of exponentd (typically the Lebesgue
measure), then(1-4) are always fulfilled withα = β = d andμ = m as
soon as (10) holds. In fact, in this case,(1-4) imply the conditions required
to be an ubiquitous system in the sense of [22, 23].

3. Property(4) can be weakened without affecting the conclusions of Theo-
rem 2.2 below as follows:

(weak 4) There exists a subsetD of (1,∞) such that for everyδ ∈ D,
for m-a.e. x ∈ (0, 1), there exists an increasing sequencejk(x) such that
for everyk, there existsB(xnk, λnk) ∈ B jk(x)(x) as well as ac-adic box
Lk included inB(xnk, λ

δ
nk
) such that (15) holds withL = Lk; moreover

limk→∞
log |Lk|
logλnk

= δ.

This weaker property, necessary in [11], slightly complicates the proof
and we decided to only discuss this point in this remark.

In order to treat the case of the limsup-sets (5) defined with a dilation parameter
ρ < 1, conditions(2) and(4) are modified as follows.

Definition 2.3. Letρ < 1. The system{(xn, λn)}n∈N is said to form aρ-hetero-
geneous ubiquitous system with respect to(μ, α, β) if the following conditions
are fulfilled.

(1) and(3) are the same as in Definition2.2.

(2(ρ)) There exists a measurem with a support equal to[0, 1]d such that:
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• There exists a non-decreasing continuous functionχ defined onR+ such
thatχ(0) = 0, r 7→ r −χ(r ) is non-increasing near0+, limr →0+ r −χ(r ) =
+∞, and∀ε, θ, γ > 0, r 7→ r ε−θϕ(r )−γχ(r ) is non-decreasing near 0.

Moreover, form-a.e. y ∈ [0, 1]d, there exists an infinite number of integers
{ ji (y)}i ∈N with the following property: the ballB(y, c−ρ ji (y)) contains at
leastcji (y)(d(1−ρ)−χ(c− ji (y))) pointsxn such that the associated pairs(xn, λn)

all satisfy

λn ∈
[
c− ji (y)+1, c− ji (y)(1−χ(c− ji (y)))

]
,

for everyn′ 6= n, B(x′
n, λ

′
n)

⋂
B(xn, λn) = ∅.

(16)

• (11) and(13) of assumption(2) are also supposed here.

(4’) There existsJm such that for everyj ≥ Jm, for everyc-adic boxL = I c
j,k ,

(15) holds. In particular,(4) holds withD = (1,+∞).

Remark 2.2.

1. Heuristically, (16) ensures that form-a.e. y, for infinitely many j ,
approximatelycjd(1−ρ) “disjoint” pairs (xn, λn) such thatλn ∼ c− j can
be found in the neighborhoodB(y, c−ρ j ) of y. This property is stronger
than(10).

2. Condition(4’) is stronger than(4), in the sense that it implies(4) for any
system{(xn, λn)} andD = (1,+∞). It appears that(4’) is often satisfied,
for instance by the first two classes described in Section 6.2 (see [13]).

Property(4) is needed for the last two examples developed in Section 6.2
and for other measures constructed similarly (see [14]). Indeed, for these
kinds of random measures, it was impossible for us to prove(4’), and we
are only able to derive that, with probability 1,(4) holds with a dense
countable setD (see [14]).

Before stating the results, a last property has to be introduced. Letρ < 1. For
every setI , for every constantM > 1,PρM(I ) is said to hold if

M−1|I |α+ψ(|I |))+2αχ(|I |)) ≤ μ
(
I
)

≤ M |I |α−ψ(|I |)−2αχ(|I |). (17)

The dependence inρ of PρM(I ) is hidden in the functionχ (see (16)).
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It is convenient for aρ-heterogeneous ubiquitous system{(xn, λn)} (ρ ∈ (0, 1])
with respect to(μ, α, β) to introduce the sequencesερM = (ε

ρ

M,n)n≥1 defined for
a constantM ≥ 1 by ερM,n = max(ερ,−M,n, ε

ρ,+
M,n), where

λ
α±ερ,±M,n
n = M∓(2λn)

α±ψ(2λn)±2αχ(2λn)(by conventionχ ≡ 0 if ρ = 1). (18)

2.4 Lower bounds for Hausdorff dimensions of conditioned limsup-sets

The triplets(μ, α, β), together with the auxiliary measurem, have the properties
required to study the exceptional sets we introduced before.
Let δ̂ = (δn)n≥1 ∈ [1,∞)N

∗
, ε̃ = (εn)n≥1 ∈ (0,∞)N

∗
, ρ ∈ (0, 1], M ≥ 1, and

Ŝμ(ρ, δ̂, α, ε̃) =
⋂

N≥1

⋃

n≥N:Q(xn,λn,ρ,α,εn) holds

B(xn, λ
δn
n ), (19)

whereQ(xn, λn, ρ, α, εn) holds whenλρ(α+εn)
n ≤ μ

(
B(xn, λ

ρ
n)

)
≤ λρ(α−εn)

n . So,
whenδ̂ is a constant sequence equal to someδ ≥ 1, the set̂Sμ(ρ, δ̂, α, ε̃) coin-
cides with the setSμ(ρ, δ, α, ε̃) defined in (4) and considered in Theorem 2.1.

Theorem 2.2.Letμ be a finite positive Borel measure whose support is[0, 1]d,
ρ ∈ (0, 1] andα, β > 0. Let {xn}n∈N be a sequence in[0, 1]d and {λn}n∈N a
non-increasing sequence of positive real numbers converging to 0.

Suppose that{(xn, λn)}n∈N forms aρ-heterogeneous ubiquitous system with
respect to(μ, α, β). LetD̂ be the set of pointsδ ofR which are limits of a non-

decreasing element of
(
{1} ∪D

)N∗

(in the case ofρ < 1,D = (1,+∞)).
There exists a constantM ≥ 1 such that for everyδ ∈ D̂, we can find a

non-decreasing sequencêδ converging toδ and a positive measuremρ,δ which
satisfymρ,δ

(
Ŝμ(ρ, δ̂, α, ε

ρ

M)
)
> 0, and such that for everyx ∈ Ŝμ(ρ, δ̂, α, ε

ρ

M),
(recall thatχ ≡ 0 if ρ = 1 and the definition ofερM (18))

lim sup
r →0+

mρ,δ

(
B(x, r )

)

r D(β,ρ,δ)−ξρ,δ(r )
< ∞, (20)

where





∀ ρ ∈ (0, 1], D(β, ρ, δ) = min

(d(1 − ρ)+ ρβ

δ
, β

)

∀ r > 0, ξρ,δ(r ) = (4 + d)ϕ(r )+ χ(r ).

δ̂ can be taken equal to the constant sequence(δ)n≥1 if δ ∈ {1} ∪D.

For the two first classes of measures of Section 6.2 (Gibbs measures and
products of multinomial measures),(4’) holds instead of(4) andD = (1,+∞),
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and thus Theorem 2.2 applies with anyρ ∈ (0, 1]. For the last two classes
of measures of Section 6.2 (independent multiplicative cascades and compound
Poisson cascades), Theorem 2.2 cannot be applied whenρ < 1.

Corollary 2.3. Under the assumptions of Theorem2.2, there existsM ≥ 1 such
that for everyδ ∈ D̂, there exists a non-decreasing sequenceδ̂ converging toδ
such thatH ξρ,δ (Ŝμ(ρ, δ̂, α, ε

ρ

M)) > 0. Moreover,̂δ = (δ)n≥1 if δ ∈ {1} ∪D.
In particular, dim Ŝμ(ρ, δ̂, α, ε

ρ

M) ≥ D(β, ρ, δ).

Whenρ < 1, D(β, ρ, δ) remains constant and equal toβ whenδ ranges in[
1, d(1−ρ)+ρβ

β

]
. This is what we call a saturation phenomenon. Then, as soon as

d(1−ρ)+ρβ
β

< δ, we are back to a “normal” situation whereD(β, ρ, δ) decreases
as 1/δ whenδ increases.

Whenρ = 1, D(β, ρ, δ) = β/δ, thus there is no saturation phenomenon.

Corollary 2.4. Fix ε̃ = (εn)n≥1 a positive sequence converging to 0. As-
sume that{(xn, λn)}n∈N forms a weakly redundant and aρ-heterogeneous ubiq-
uitous system with respect to(μ, α, τ ∗

μ(α)). Under the assumptions of Theo-
rem 2.1 and Theorem2.2, there exists a constantM ≥ 1 such that for every

δ ∈
[d(1−ρ)+ρτ∗

μ(α)

τ∗
μ(α)

,+∞
)

∩ D̂, there exists a non-decreasing sequenceδ̂ con-

verging toδ such that

dim
(
Ŝμ(ρ, δ̂, α, ε

ρ

M)
)

= dim

(
Ŝμ(ρ, δ̂, α, ε

ρ

M)
∖ ⋃

δ′>δ

Sμ(ρ, δ
′, α, ε̃)

)

= D(τ ∗
μ(α), ρ, δ).

Moreover,̂δ can be taken equal to(δ)n≥1 if δ ∈ {1} ∪D.

Remark 2.3.

1. Corollary 2.3 is an immediate consequence of Theorem 2.2.

2. In order to prove Corollary 2.4, observe first that whenδ > 1 and̂δ is a non-
decreasing sequence converging toδ, Ŝμ(ρ, δ̂, α, ε

ρ

M) ⊂ Sμ(ρ, δ′, α, ε
ρ

M)

for all δ′ < δ. Theorem 2.1 gives the optimal upper bound for

dim
(
Ŝμ(ρ, δ̂, α, ε

ρ

M)
)
.

Again by Theorem 2.1, whenδ ≥
d(1−ρ)+ρτ∗

μ(α)

τ∗
μ(α)

, for δ′ > δ, the sets

Sμ(ρ, δ′, α, ε̃) form a non-increasing family of sets of Hausdorff dimen-
sion< D(τ ∗

μ(α), ρ, δ). This impliesH ξρ,δ
( ⋃

δ′>δ Sμ(ρ, δ′, α, ε̃)
)

= 0.
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Finally the lower bound for the dimension

dim

(
Ŝμ(ρ, δ̂, α, ε

ρ

M)
∖ ⋃

δ′>δ

Sμ(ρ, δ
′, α, ε̃)

)

is given by Corollary 2.3. This holds for any sequenceε̃ converging to
zero.

Whenδ = ρ = 1 and̂δ = (1)n≥1, the arguments are similar to those used for
δ > 1.

3 Upper bound for the Hausdorff dimension of conditioned limsup-sets:
Proof of Theorem 2.1

The sequence{(xn, λn)}n is fixed, and is supposed to form a weakly redundant
system (Definition 2.1). We shall need the functions defined for everyj ≥ 1 by

τμ,ρ, j (q) = − j −1 log2

∑

n∈Tj

μ
(
B(xn, λ

ρ
n)

)q
and τμ,ρ(q) = lim inf

j →∞
τμ,ρ, j (q),

with the convention that the empty sum equals 0 and log(0) = −∞.
In the sequel, the Besicovitch’s covering theorem is used repeatedly

Theorem 3.1.[Theorem 2.7 of [40]]Let d be an integer greater than 1. There
is a constantQ(d) depending only ond with the following properties. LetA be
a bounded subset ofRd andF a family of closed balls such that each point ofA
is the center of some ball ofF .

There are familiesF1, ...,FQ(d) ⊂ F coveringA such that eachFi is disjoint,
i.e.

A ⊂
Q(d)⋃

i =1

⋃

F∈Fi

F and ∀F, F ′ ∈ Fi with F 6= F ′, F ∩ F ′ = ∅.

Let (Nj ) j ≥1 be a sequence as in Definition 2.1, and consider for everyj ≥ 1
the associated partition{Tj,1, . . . , Tj,Nj } of Tj . For every subsetSof Tj , for every
1 ≤ i ≤ Nj , Theorem 3.1 is used to extract from

{
B(xn, λ

ρ
n) : n ∈ Tj,i ∩ S

}

Q(d) disjoint families of balls denoted byTj,i,k(S), 1 ≤ k ≤ Q(d), such that

⋃

n∈Tj,i ∩S

B(xn, λ
ρ
n) ⊂

Q(d)⋃

k=1

⋃

n∈Tj,i,k(S)

B(xn, λ
ρ
n). (21)
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Let us then introduce the functions

τ̂μ,ρ, j (q) = − j −1 log2 sup
S⊂Tj

∑

n∈
⋃Nj

i =1

⋃Q(d)
k=1 Tj,i,k(S)

μ
(
B(xn, λ

ρ
n)

)q
( j ≥ 1)

and τ̂μ,ρ(q) = lim inf j →∞ τ̂μ,ρ, j (q). Recall thatτμ is defined in (7).

Lemma 3.2.Under the assumptions of Theorem2.1, one has

τμ,ρ ≥ d(1 − ρ)+ ρτμ and τ̂μ,ρ ≥ ρτμ. (22)

Proof.

• Let us show the first inequality of (22).

First suppose thatq ≥ 0. Fix j ≥ 1 and 1≤ i ≤ Nj . For everyn ∈ Tj,i ,
B(xn, λ

ρ
n) ∩ [0, 1]d is contained in the union of at most 3d distinct dyadic boxes

of generationjρ := [ jρ] − 1 denotedB1(n), . . . , B3d(n). Hence

μ
(
B(xn, λ

ρ
n)

)q
≤




3d

∑

i =1

μ
(
Bi (n)

)




q

≤ 3dq
3d

∑

i =1

μ
(
Bi (n)

)q
.

Moreover, since the ballsB(xn, λn) (n ∈ Tj,i ) are pairwise disjoint and of
diameter larger than 2−( j +1), there exists a universal constantCd depending only
ond such that each dyadic box of generationjρ meets less thanCd2d(1−ρ) j of these
ballsB(xn, λ

ρ
n). Hence when summing overn ∈ Tj,i the massesμ

(
B(xn, λ

ρ
n)

)q
,

each dyadic box of generationjρ appears at mostCd2d(1−ρ) j times. This implies
that

∑

n∈Tj,i

μ
(
B(xn, λ

ρ
n)

)q
≤ 3dqCd2d(1−ρ) j

∑

k∈{0,...,2 jρ−1}d

μ(I j,k)
q (23)

and
∑

n∈Tj

μ
(
B(xn, λ

ρ
n)

)q
≤ 3dqCd Nj 2

d(1−ρ) j
∑

k∈{0,...,2 jρ−1}d

μ(I j,k)
q. (24)

Since logNj = o( j ), we obtainτμ,ρ(q) ≥ d(1 − ρ)+ ρτμ(q).

Now suppose thatq < 0. Let us fix j ≥ 1 and 1≤ i ≤ Nj . For every
n ∈ Tj,i , B(xn, λ

ρ
n) contains a dyadic boxB(n) of generation[ jρ] + 1, and

μ
(
B(xn, λ

ρ
n)

)q
≤ μ

(
B(n)

)q
. The same arguments as above also yieldτμ,ρ(q) ≥

d(1 − ρ)+ ρτμ(q).
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• We now prove the second inequality of (22).

Suppose thatq ≥ 0. Fix j ≥ 1 andS a subset ofTj , as well as 1≤ i ≤ Nj

and 1≤ k ≤ Q(d). We use the decomposition (21). Since the ballsB(xn, λ
ρ
n)

(n ∈ Tj,i,k(S)) are pairwise disjoint and of diameter larger than 2−( j +1)ρ , there
exists a universal constantC′

d, depending only ond, such that each dyadic box
of generationjρ meets less thanC′

d of these balls. Consequently, the arguments
used to get (23) yield here

∑

n∈Tj,i,k(S)

μ
(
B(xn, λ

ρ
n)

)q
≤ 3dqC′

d

∑

k∈{0,...,2 jρ−1}d

μ(I j,k)
q and

∑

n∈
⋃Nj

i =1

⋃Q(d)
k=1 Tj,i,k(S)

μ
(
B(xn, λ

ρ
n)

)q
≤ 3dqC′

d Q(d)Nj

∑

k∈{0,...,2 jρ−1}d

μ(I j,k)
q.

The right hand side in the previous inequality does not depend onS, hence

sup
S⊂Tj

∑

n∈
⋃Nj

i =1

⋃Q(d)
k=1 Tj,i,k(S)

μ
(
B(xn, λ

ρ
n)

)q
≤ 3dqC′

d Q(d)Nj

∑

k∈{0,...,2 jρ−1}d

μ(I j,k)
q,

and the conclusion follows. The caseq < 0 is left to the reader. �

Proof of Theorem 2.1. Let 0 ≤ α ≤ τ ′
μ(0

−). We haveτ ∗
μ(α) = inf q≥0 (αq −

τμ(q)). We first prove that dimSμ(ρ, δ, α) ≤
d(1−ρ)+ρτ∗

μ(α)

δ
. For this, we fix

η > 0 andN ≥ 1 so thatεn < η for n ≥ N. Then we introduce the set

Sμ(N, η, ρ, δ, α) =
⋃

n≥N: λρ(α+η)
n ≤μ(B(xn,λ

ρ
n))

B(xn, λ
δ
n),

which can be written as

Sμ(N, η, ρ, δ, α) =
⋃

j ≥inf n≥N log2(λ
−1
n )

⋃

n∈Tj : λ
ρ(α+η)
n ≤μ(B(xn,λ

ρ
n))

B(xn, λ
δ
n).

We remark thatSμ(ρ, δ, α, ε̃) ⊂ Sμ(N, η, ρ, δ, α) and useSμ(N, η, ρ, δ, α)
as covering ofSμ(ρ, δ, α, ε̃) in order to estimate theD-dimensional Hausdorff
measure ofSμ(ρ, δ, α, ε̃) for a fixedD ≥ 0.

Letq ≥ 0 such thatτμ(q) > −∞. Let jq be an integer large enough so thatj ≥
jq impliesτμ,ρ, j (q) ≥ τμ,ρ(q) − η. Also let jN = max

(
jq, inf n≥N log2(λ

−1
n )

)
.
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For some constantC depending onD, δ, α, η, ρ andq only, we have

H ξD

2∙2− jN δ

(
Sμ(ρ, δ, α, ε̃)

)
≤

∑

j ≥ jN

∑

n∈Tj : λ
ρ(α+η)
n ≤μ

(
B(xn,λ

ρ
n)

)

∣
∣B(xn, λ

δ
n)

∣
∣D

≤
∑

j ≥ jN

∑

n∈Tj

|B(xn, λ
δ
n)

∣
∣D
λ−qρ(α+η)

n μ
(
B(xn, λ

ρ
n)

)q

≤
∑

j ≥ jN

(22− j δ)D2( j +1)qρ(α+η)2− j τμ,ρ, j (q)

≤ C
∑

j ≥ jN

2− j (Dδ−qρ(α+η)+τμ,ρ (q)−η).

Therefore, if

D >
ρ(α + η)− τμ,ρ(q)+ η

δ
, H ξD

2∙2− jN δ

(
Sμ(ρ, δ, α, ε̃)

)

converges to 0 asN → ∞, and dimSμ(ρ, δ, α, ε̃) ≤ D. This yields

dim Sμ(ρ, δ, α, ε̃) ≤
qρ(α + η)− τμ,ρ(q)+ η

δ
,

which is less thand(1−ρ)+ρ(αq−τμ(q))+(qρ+1)η
δ

by Lemma 3.2. This holds for every
η > 0 and for everyq ≥ 0 such thatτμ(q) > −∞. Finally,

dim Sμ(ρ, δ, α, ε̃) ≤
d(1 − ρ)+ ρ inf q≥0 αq − τμ(q)

δ

=
d(1 − ρ)+ ρτ ∗

μ(α)

δ
.

Let us now show that dimSμ(ρ, δ, α, ε̃) ≤ τ ∗
μ(α). This time, for j ≥ 1 we

defineSj = {n ∈ Tj : λρ(α+η)
n ≤ μ

(
B(xn, λ

ρ
n)

)
}. By (21), we remark that

Sμ(ρ, δ, α, ε̃) ⊂
⋃

j ≥ jN

Nj⋃

i =1

Q(d)⋃

k=1

⋃

n∈Tj,i,k(Sj )

B(xn, λ
ρ
n).

By definition of τ̂μ,ρ(q), a computation mimicking the previous one yields

H ξD

2∙2−ρ jN

(
Sμ(ρ, δ, α, ε̃)

)
≤ C

∑

j ≥ jN

2− j (Dρ−qρ(α+η)+τ̂μ,ρ (q)−η).
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Hence dimSμ(ρ, δ, α, ε̃) ≤ qρ(α+η)−τ̂μ,ρ (q)+η
ρ

, for everyη > 0 and everyq ≥ 0
such thatτμ(q) > −∞. The conclusion follows from Lemma 3.2.

Finally, whenτ ∗
μ(α) < 0 andSμ(ρ, δ, α, ε̃) 6= ∅, the previous estimates show

thatH ξD

2∙2−ρ jN
(Sμ(ρ, δ, α, ε̃)) is bounded forD ∈ (τ ∗

μ(α), 0) (we can formally
extend the definition ofH ξD to the caseD < 0). This is a contradiction.

The proof whenα ≥ τ ′
μ(0

−) follows similar lines. �

4 Conditioned ubiquity. Proof of Theorem 2.2 (caseρ = 1)

We assume that a 1-heterogeneous ubiquitous system is fixed. With each pair
(xn, λn) is associated the ballIn = B(xn, λn). For everyδ ≥ 1, I (δ)n denotes
the contracted ballB(xn, λ

δ
n). The following property is useful in the sequel.

Because of the assumption(1) onϕ andψ , we have

∃C > 1, ∀ 0< r ≤ s ≤ 1, s−ϕ(s) ≤ Cr−ϕ(r ) ands−ψ(s) ≤ Cr−ψ(r ). (25)

We begin with a simple technical lemma

Lemma 4.1. Let y ∈ [0, 1]d, and assume that there exists an integerj (y) such
that for some integerc ≥ 2, (11) and(13) hold for y and everyj ≥ j (y).

There exists a constantM independent ofy with the following property: for
everyn such thaty ∈ B(xn, λn/2) and logc λ

−1
n ≥ j (y) + 4, Dm

M(B(y, 2λn))

andP1
M(B(xn, λn)) hold.

Proof. Assume thaty ∈ B(xn, λn/2)withλn ≤ c− j (y)−4. Let j0 be the smallest
integer j such thatc− j ≤ λn/2, and j1 the largest integerj such thatc− j ≥ 2λn.
We have j0 ≥ − logc λn ≥ j1 ≥ j (y). We thus ensured by construction that
j0 − 4 ≤ − logc λn ≤ j1 + 4.

Recall thatI j (y) is the uniquec-adic box of scalej containingy, and thatk j,y

is the uniquek ∈ Nd such thaty ∈ I c
j,k = I j (y). We have

I c
j0
(y) ⊂ B(xn, λn) ⊂

⋃

‖k−kc
j1,y

‖∞≤1

I c
j1,k,

which yields

μ
(
I c

j0
(y)

)
≤ μ(B(xn, λn)) ≤

∑

‖k−kc
j1,y

‖∞≤1

μ
(
I c

j1,k

)
.
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Applying (11) and (12) yields

|c− j0|α+ψ(|c− j0 |) ≤ μ(B(xn, λn)) ≤ 3d|c− j1|α−ψ(|c− j1 |).

Combining the fact thatj0 − 4 ≤ − logc λn ≤ j1 + 4 with (25) and (18) gives

λ
α+ε1,+

M,n
n = M−1|2λn|

α+ψ(2λn) ≤ μ(B(xn, λn)) ≤ M |2λn|
α−ψ(2λn) = λ

α−ε1,−
M,n

n

for some constantM that does not depend ony.
Similarly, we get from (13) and (14) thatDm

M

(
B(y, 2λn)

)
holds for some

constantM > 0 that does not depend ony. �

Proof of Theorem 2.2 in the caseρ = 1 Throughout the proof,C denotes a
constant which depends only onc, α, β, δ, ϕ andψ .

The caseδ = 1 follows immediately from the assumptions (heremδ =
m1 = m).

Now let M ≥ 1 be the constant given by Lemma 4.1. Letδ ∈ D̂ ∩ (1,+∞),
and let{dn}n≥1 be a non-decreasing sequence inD converging toδ (if δ ∈ D,
dn = δ for everyn). For everyk ≥ 1, j ≥ 1 andy ∈ [0, 1]d, let

n(dk)
j,y = inf

{

n : λn ≤ c− j , ∃ j ′ ≥ j :

{
B(xn, λn) ∈ B j ′(y) and

∃ L ∈ Bdk
n , (15) holds

}

. (26)

We shall find a sequencêδ = (δn)n≥1, converging toδ, to construct a general-
ized Cantor setKδ in Ŝμ(1, δ̂, α, ε1

M) and simultaneously the measuremδ on Kδ.
The successive generations ofc-adic boxes involved in the construction ofKδ,
namelyGn, are obtained by induction.

First step: The first generation of boxes definingKδ is taken as follows.

Let L0 = [0, 1]d. Consider the first elementd1 of D of the sequence con-
verging toδ. We first impose thatδn := d1, for everyn ≥ 1. The values of the
sequencêδ will be modified in the next steps of the construction so thatδ̂ will
become a non-decreasing sequence satisfying limn→+∞ δn = δ.

Due to assumptions(2), (3) and (4), there existEL0 ⊂ EL0
J(L0)

such that
m(EL0) ≥ ‖m‖/4 and an integerJ ′(L0) ≥ J(L0) such that for ally ∈ EL0:

– y ∈
⋂

N≥1

⋃
n≥N B(xn, λn/2),

– for every j ≥ J ′(L0), both (11) and (13) hold,
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– there are infinitely many integersj such that (15) holds for someL ∈
Bd1

j (y).

In order to construct the first generation of balls of the Cantor set, we invoke
the Besicovitch’s covering Theorem 3.1. We are going to apply it toA = EL0

and to several familiesF1( j ) of balls constructed as follows.
For y ∈ EL0, we denoten(d1)

j,y by nj,y. Then for everyj ≥ J ′(L0) + 4, we
defineF1( j ) =

{
B

(
y, 2λn j,y

)
: y ∈ EL0

}
.

The familyF1( j ) fulfills the conditions of Theorem 3.1. Thus, for every
j ≥ J ′(L0) + 4, Q(d) families of disjoint ballsF1

1( j ), ...,FQ(d)
1 ( j ), can be

extracted fromF1( j ). Therefore, sincem(A) = m(EL0) ≥ ‖m‖/4, for somei
we have

m

( ⋃

B∈F i
1( j )

B

)
≥

‖m‖

(4 Q(d))
.

Again, we extract fromF i
1( j ) a finite family of pairwise disjoint balls̃G1( j ) =

{B1, B2, . . . , BN} such that

m

( ⋃

Bk∈G̃1( j )

Bk

)
≥

‖m‖

8 Q(d)
. (27)

By construction, with eachBk can be associated a pointyk ∈ EL0 so thatBk =
B(yk, 2λn j,yk

). Moreover, by construction (see (26)),In j,yk
= B(xnj,yk

, λn j,yk
) ⊂

B(yk, 2λn j,yk
) = Bk. Thus I (d1)

n j,yk
= B(xnj,yk

, λd1
n j,yk

) is included inBk. Finally,

Lemma 4.1 yieldP1
M(B(xnj,yk

, λn j,yk
)) andDm

M(Bk).
Let Fk be the closure of one of thec-adic boxes of maximal diameter included in

I (d1)
n j,yk

, and such that both (15) holds forFk. Such a box exists by (26). Moreover,

by construction we have|Fk| ≤ |I (d1)
n j,yk

| ≤ C|Fk| for some universal constantC.
We write Bk = Fk. Conversely, if ac-adic boxF can be writtenB for some

larger ballB, we write B = F . Therefore, for every closed boxF constructed
above we can ensure by construction that

C−1|F | ≤ |F |d1 ≤ C|F |, (28)

whereC depends only on the fixed given sequence{dn}n. We eventually set

G1( j ) =
{
Bk : Bk ∈ G̃1( j )

}
. (29)

We notice the following property that will be used in the last step: By construc-
tion, if F1 andF2 are two distinct elements ofG1( j ) then their distance is at least
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maxi ∈{1,2}(|Fi |/2−
(
|Fi |/2

)d1
), which is larger than maxi ∈{1,2} |Fi |/3 for j large

enough (d1 > 1 by our assumption).
On the algebra generated by the elements ofG1( j ), a probability measuremδ

is defined by

mδ(F) =
m(F)

∑
Fk∈G1( j ) m(Fk)

.

Let F ∈ G1( j ). By construction,Dm
M(F) holds. Using consecutively this

fact, (28) and (25), we obtain

m(F) ≤ M |F |β−ϕ(|F |) ≤ C|F |β/d1|F |−ϕ(|F |) ≤ C|F |β/d1|F |−ϕ(|F |).

Moreover, by (27), and recalling the definition ofG1( j ) (29), we obtain
∑

Fk∈G1( j )

m(Fk) =
∑

Bk∈G̃1( j )

m(Bk) ≥
‖m‖

8 Q(d)
.

As a consequence,

∀ F ∈ G1( j ), mδ(F) ≤ 8 Q(d)C‖m‖−1|F |β/d1|F |−ϕ(|F |).

By our assumption(1), we can fix j1 large enough so that

∀ F ∈ G1( j1), 8 Q(d)C‖m‖−1 ≤ |F |−ϕ(|F |).

We choose thec-adic elements of the first generation of the construction ofKδ

as being those ofG1 := G1( j1). By construction

∀ F ∈ G1, mδ(F) ≤ |F |β/d1−2ϕ(|F |). (30)

We know that by construction, for everyF ∈ G1, there existsyk ∈ EL0 such
that B(xnj1,yk

, λn j1,yk
) ⊂ F = B(yk, 2λn j1,yk

).

As a consequence, for everyy ∈
⋃

F∈G1
F , there exists an integern such that

λn ≤ c−4, |xn − y| ≤ λδnn , andP1
M(In) = P1

M(B(xn, λn)) holds.

Second step:The second generation of boxes is obtained as follows. Letn1

be the largest integer among then(d1)
j1,yk

, where theyk are the points naturally
associated with the ballsI ∈ G1 above.

Considerd2, the second element of the sequence{dn}n converging toδ. We
modify the sequencêδ: for everyn > n1, we imposeδn := d2.

Let us focus on one of thec-adic boxesL ∈ G1. The selection procedure is
the same as in the first step. Due to assumptions(2), (3) and(4), we can find a
subsetEL of EL

J(L) such thatmL
(
EL

)
≥ ‖mL‖/4 and an integerJ ′(L) ≥ J(L)

such that for ally ∈ EL :
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– y ∈
⋂

N≥1

⋃
n≥N B(xn, λn/2),

– ∀ j ≥ J ′(L)+ logc

(
|L|−1

)
,

∀ k, ‖k − kc
j,y‖∞ ≤ 1, D

mL◦ f −1
L

1

(
fL(I

c
j,k)

)
andP1

1(I
c
j,k) hold. (31)

– There are infinitely many integersj such that (15) holds for someL ∈
Bd2

j (y).

We again apply Theorem 3.1 toA = EL and to familiesF2( j ) of balls con-
structed as above. Hence, for every

j ≥ J ′(L)+ logc

(
|L|−1

)
+ 4, F2( j ) =

{
B(y, 2λ

n
(d2)
j,y
) : y ∈ EL

}

(
n(d2)

j,y is defined in(26)
)
. We setnj,y := n(d2)

j,y .

The familyF2( j ) fulfills the conditions of Theorem 3.1 and coversEL . By
Theorem 3.1, for everyj ≥ J ′(L)+ logc

(
|L|−1

)
+4, Q(d) families of pairwise

disjoint boxesF1
2( j ), . . . ,FQ(d)

2 ( j ), whose union coversEL , can be extracted
fromF2( j ). SincemL(A) = mL(EL) ≥ ‖mL‖/4, there existsi such that

mL

( ⋃

B∈F i
2( j )

B

)
≥

‖mL‖

4Q(d)
.

As in the first step, we extract fromF i
2( j ) a finite family of disjoint balls

G̃L
2 ( j ) = {B1, B2, . . . , BN} such that

mL

( ⋃

Bk∈G̃L
2 ( j )

Bk

)
≥

‖mL‖

8 Q(d)
. (32)

As above, with eachBk is associated a pointyk ∈ EL so that

Bk = B
(

yk, 2λn j,yk

)
, and I (d2)

n j,yk
⊂ In j,yk

⊂ Bk.

Now, notice that Lemma 4.1 applies withmL ◦ f −1
L instead ofm and with the

same constantM . It follows thatD
mL◦ f −1

L
M

(
fL(Bk)

)
andP1

M(In j,yk
) hold. LetFk

be the closure of one of thec-adic balls of maximal diameter included inI (d2)
n j,yk

such that (15) holds forFk.
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We then define the notationBk = Fk, and converselyBk = Fk. We also have
(28) (for the same constantC). We eventually define

GL
2 ( j ) =

{
Bk : Bk ∈ G̃L

2 ( j )
}
. (33)

On the algebra generated by the elementsF of GL
2 ( j ), an extension of the

restriction to the ballL of the measuremδ is defined by

mδ(F) =
mL(F)

∑
Fk∈GL

2 ( j ) mL(Fk)
mδ(L).

Let F ∈ GL
2 ( j ). SinceD

mL◦ f −1
L

M

(
fL(F)

)
holds, we have

mL(F) ≤ M

(
|F |

|L|

)β−ϕ
(

|F |
|L|

)

≤ C|F |β/d2|L|−β
(

|F |

|L|

)−ϕ
(

|F |
|L|

)

≤ C|F |β/d2|L|−β |F |−ϕ(|F |),

where (25) has been used. Moreover, by (32) and (33),

∑

Fk∈GL
2 ( j )

mL(Fk) =
∑

Bk∈G̃L
2 ( j )

mL(Bk) ≥ ‖mL‖/8 Q(d).

Consequently, sincemδ(L) can be bounded using (30), we obtain

mδ(F) ≤ 8mδ(L)Q(d)‖mL‖
−1

C|F |β/d2|L|−β |F |−ϕ(|F |)

≤ 8 Q(d)‖mL‖
−1

C|L|β/d1−β−2ϕ(|L|)|F |β/d2−ϕ(|F |).

By (1), we can choosej2(L) large enough so that for every integerj ≥ j2(L),
for everyc-adic ballF ∈ GL

2 ( j ), 8 Q(d)C‖mL‖
−1

|L|β/d1−β−2ϕ(|L|) ≤ |F |−ϕ(|F |).
Then, takingj2 = max

{
j2(L) : L ∈ G1

}
, and defining

G2 =
⋃

L∈G1

GL
2 ( j2),

this yields an extension ofmδ to the algebra generated by the elements ofG1
⋃

G2

and such that for everyF ∈ G1
⋃

G2, mδ(F) ≤ |F |β/d2−2ϕ(|F |) (indeed ifF ∈ G1

|F |β/d1 ≤ |F |β/d2 becaused2 ≥ d1).
Notice that by construction, for everyF ∈ G2, |F | ≤ maxF∈G1 2(c−4|F |)d2.
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Finally we definen2 as the largest integer among then(d2)

j2(L),yk
, where theyk

are the points naturally associated with the ballsF ∈ G2 above.

Third step: We end the induction. Assume thatN generations of closedc-
adic boxesG1, . . . ,GN are found for some integerN ≥ 2. Assume also that
a probability measuremδ on the algebra generated by

⋃
1≤p≤N Gp is defined

and that the following properties hold (the fact that this holds forN = 2 comes
from the two previous steps):

(i) For every 1≤ p ≤ N, the elements ofGp are closed pairwise disjointc-
adic boxes, and for 2≤ p ≤ N, maxF∈Gp |F | ≤ 2c−4dp maxF∈Gp−1 |F |dp.

For 1 ≤ p ≤ N, with eachF ∈ Gp is associated aball F enjoying the
properties:

– F ⊂ F ,

– there is a constantC > 0 which depends only onδ such that (28)
holds,

– if F1 6= F2 belong toGp, their distance is at least maxi ∈{1,2} Fi /3,

– the F ’s (F ∈ Gp) are pairwise disjoint.

– F satisfies the next parts(ii) , (iii) , (iv), (v) and(vi).

(ii) For every 2≤ p ≤ N, each elementF of Gp is included in an element
L of Gp−1. Moreover, F ⊂ L, logc

(
|F |−1

)
≥ J(L) + logc

(
|L|−1

)
and

F ∩ EL
J(L) 6= ∅.

(iii) There exists a sequencêδ = {δq}q≥1 such that:

– δ̂ is non-decreasing, and∀ q ≥ 1, δq ≤ δ,

– for every 1≤ p ≤ N and F ∈ Gp, there is an integerq such that

F ⊂ I
(δq)
q = B(xq, λ

δq
q ) ⊂ F , P1

M(Iq) holds, andδq = dp.

– for every 1≤ p ≤ N −1, we found an integernp such that for every
q ∈ {np−1 +1, np−1 +2, . . . , np}, δq = δp (with the convention that
n0 = 0).

(iv) For everyF ∈
⋃

1≤p≤N Gp, mδ(F) ≤ |F |β/dN−2ϕ(|F |).

(v) For every 1≤ p ≤ N − 1, L ∈ Gp, andF ∈ Gp+1 such thatF ⊂ L,

mδ(F) ≤ 8 Q(d)mδ(L)
mL(F)

‖mL‖
.
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(vi) EveryL ∈
⋃

1≤p≤N Gp satisfies (15).

The constructions of a generationGN+1 of c-adic balls and an extension of
mδ to the algebra generated by the elements of

⋃
1≤p≤N+1 Gp such that proper-

ties(i) to (vi) hold for N + 1 are done in the same way as whenN = 1.
By induction, and because of the separation property(i), we get:

– a sequence(GN)N≥1 and a non-decreasing sequenceδ̂ converging toδ,

– a probability measuremδ onσ
(
F : F ∈

⋃
N≥1 GN

)

such that properties(i) to (vi) hold for everyN ≥ 1. We now define

Kδ =
⋂

N≥1

⋃

F∈GN

F.

By construction,mδ(Kδ) = 1 and because of property(iii) , we haveKδ ⊂
Ŝμ(1, δ̂, α, ε1

M). The measuremδ can be extended toB([0, 1]d) by the usual way:
mδ(B) := mδ(B∩ Kδ) for B ∈ B([0, 1]d). Finally, sinceδn ≤ δ for everyn ≥ 1,
property(iv) implies that for everyF ∈

⋃
N≥1 GN ,

mδ(F) ≤ |F |β/δ−2ϕ(|F |). (34)

Last step: Proof of (20). IfF ∈ GN , we setg(F) = N.

Let us fix B an open ball of[0, 1]d of length less than the one of the elements
of G1, and assume thatB ∩ Kδ 6= ∅. Let L be the element of largest diameter in⋃

N≥1 GN such thatB intersects at least two elements ofGg(L)+1 included inL.
We remark that this implies thatB does not intersect any other element ofGg(L),
and as a consequencemδ(B) ≤ mδ(L).

Let us distinguish three cases:

• When|B| ≥ |L|: we have by (34)

mδ(B) ≤ mδ(L) ≤ |L|β/δ−2ϕ(|L|) ≤ C|B|β/δ−2ϕ(|B|). (35)

• When|B| ≤ c−J(L)−3|L|: let L1, . . . , L p be the elements ofGg(L)+1 that
intersectB. We use property(v) to get

mδ(B) =
p∑

i =1

mδ(B ∩ Li ) ≤ mδ(L)
8 Q(d)

‖mL‖

p∑

i =1

mL(Li ). (36)
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Let j0 be the unique integer such thatc− j0 ≤ |B| < c− j0+1. Assume thatB
intersects for instance the boxesLi1 and Li2. Then, by(i), we have|B| ≥
max(|Li1|, |Li2|)/3 when j0 is large enough. Consequently, when|B| is small
enough, we get|B| ≥ (maxi =1,...,p |Li |)/3 and the scale of the boxesLi (defined
as[− logc |Li |]) is always larger thanj0 − [logc 3] ≥ j0 − 2.

By property (ii) , for eachi ∈ {1, . . . d}, we haveEL
J(L) ∩ Li 6= ∅. Let

y ∈ EL
J(L) ∩ Li for somei , and let us consider thec-adic boxI c

j0−2,k j0−2,y
. For

everyz ∈ Li , |y − z| ≤ c−( j0−2). Thisyields

Li ⊂
⋃

k: ‖k−k j0−2,y‖∞≤1

I c
j0−2,k .

The ballB intersectsLi , thus the distance betweeny andB is at mostc−( j0−2).
As a consequence, ifLi ′ 6= Li , the distance betweeny and Li ′ is lower than
c−( j0−3). This implies that

p⋃

i =1

Li ⊂
⋃

k: ‖k−k j0−3,y‖∞≤1

I c
j0−3,k . (37)

Sincey ∈ EL
J(L) and j0 ≥ − logc |L| + J(L) + 3, assumption(3) ensures

the control of them-mass of the unions of all the balls that appear on the left
hand-side of (37) by the sum of the masses of the 3d c-adic boxesI c

j0−3,k , ‖k −
k j0−3,y‖∞ ≤ 1. These boxes all satisfy

mL(I c
j0−3,k) ≤

(
|I c

j0−3,k |

|L|

)β−ϕ
( |I c

j0−3,k |

|L|

)

≤ C

(
|B|

|L|

)β (
|B|

|L|

)−ϕ
(

|B|
|L|

)

whereC depends only onβ. Injecting this in (36) and using thatthe Li are
pairwise disjoint, we obtain that for|B| small enough

mδ(B) ≤ mδ(L)
8 Q(d)

‖mL‖

p∑

i =1

mL(Li )

≤ mδ(L)
8 Q(d)

‖mL‖
3d C

(
|B|

|L|

)β (
|B|

|L|

)−ϕ
(

|B|
|L|

)

≤ mδ(L)
C

‖mL‖

(
|B|

|L|

)β
|B|−ϕ(B),
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whereC takes into account all the constant factors. We then use consecutively
two facts. First, by (34),mδ(L) ≤ |L|β/δ|L|−2ϕ(|L|) ≤ C|L|β/δ|B|−2ϕ(|B|), which
implies, sincer 7→ r β(1−1/δ) is bounded near 0,

mδ(B) ≤
C

‖mL‖
|B|β/δ|B|−3ϕ(|B|)

(
|B|

|L|

)β(1−1/δ)

≤
C

‖mL‖
|B|β/δ|B|−3ϕ(|B|).

Second,(vi) allows to upper bound‖mL‖−1
by |L|−ϕ(L), which yields

mδ(B) ≤ C|L|−ϕ(|L|)|B|β/δ|B|−3ϕ(|B|) ≤ C|B|β/δ|B|−4ϕ(|B|). (38)

• c−J(L)−3|L| < |B| ≤ |L|: we need at mostcd(J(L)+4) contiguous boxes of
diameterc−J(L)−3|L| to coverB. For these boxes, the estimate (38) can be
used. Also we know by(vi) thatcJ(L) ≤ |L|−ϕ(L), so for|B| small enough

mδ(B) ≤ Ccd(J(L)+4)
(
c−J(L)−3|L|

)β/δ−4ϕ(c−J(L)−3|L|)

≤ Ccd J(L)|B|β/δ−4ϕ(|B|)

≤ C|L|−dϕ(|L|)|B|β/δ−4ϕ(|B|)

≤ C|B|β/δ−(4+d)ϕ(|B|).

Combining (35) and (38) with assumption(1), we obtain a universal constantC
such that for every non-trivial ballB of [0, 1]d small enough, we havemδ(B) ≤
C|B|β/δ|B|−(4+d)ϕ(|B|). This yields (20). �

5 Dilation and Saturation. Proof of Theorem 2.2 (Caseρ < 1)

The introduction of the condition (16) induces a modification in the construction
of the Cantor set with respect to the caseρ = 1, in the selection of the pairs
(xn, λn). The following lemma is comparable with Lemma 4.1

Lemma 5.1. Let y ∈ [0, 1]d, and assume that(11) and (13) hold for y when
j ≥ j (y) for some integerj (y). There exists a constantM independent ofy with
the following property: for every integerj such that j (1 − χ(c− j )) ≥ j (y)+5

ρ
,

for every integern such thatλn ∈
[
c− j +1, c− j (1−χ(c− j ))

]
and

B(y, (cρ − 1)c− jρ) ⊂ B(xn, λ
ρ
n) ⊂ B(y, c− jρ(1−χ(c− j ))), (39)

thenPρM(B(xn, λ
ρ
n)) holds. Moreover, the same constantM can be chosen so

thatDm
M(B(y, r )) holds forr ∈ (0, c− j (y)−1).
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Proof. Let us fix j such that (39) holds, and let us denotej1 the integer[ jρ]+2
and j2 the integer[ jρ(1−χ(c− j ))] − 2. By definition of j1 and j2, (39) implies
that I c

j1
(y) ⊂ B(xn, λ

ρ
n) ⊂

⋃
‖k−kc

j2,y
‖∞≤1 I c

j2,k
. Combining this with (11) yields

(c− j1)α+ψ(c− j1) ≤ μ(B(xn, λ
ρ
n)) ≤ 3d(c− j2)α−ψ(c− j2). (40)

We havec− j1 ≤ 2λρn = |B(xn, λ
ρ
n)| ≤ 2c− j2, but by (39) we also have

C−1(2c− j2)
1

1−χ(c− j ) ≤ 2λρn ≤ C(2c− j1)1−χ(c− j ) (41)

for some constantC independent ofy and j . Hence, using the monotonicity of
r 7→ r −ψ(r ), (40) and (41) yields the two inequalities

M−1(2λρn)
α

1−χ(c− j )
(
2λ

ρ

1−χ(c− j )
n

)ψ
(

2λ

ρ

1−χ(c− j )
n

)
≤ μ(B(xn, λ

ρ
n)),

(2λρn)
ψ(2λρn) ≤

(
2λ

ρ

1−χ(c− j )
n

)ψ
(

2λ

ρ

1−χ(c− j )
n

)

for some constantM ≥ 1 also independent ofy and j . Eventually, sinceχ(r ) →
0 whenr → 0, we have 1

1−χ(c− j )
≤ 1 + 2χ(c− j ) for j large enough. As a

consequence, for the same constantM we can write

M−1(2λρn)
α+2αχ(2λρn)+ψ(2λ

ρ
n) ≤ μ(B(xn, λ

ρ
n)).

The upper bound of (40) is treated with the same arguments, and we obtain
μ(B(xn, λ

ρ
n)) ≤ M(2λρn)

α−αχ(2λρn)−ψ(2λ
ρ
n). HencePρM(B(xn, λ

ρ
n)) holds.

To prove thatDm
M(B(y, r ) holds for someM > 0 independent ofy and

r ∈ (0, c− j (y)−1) it is enough to write that

B(y, r ) ⊂
⋃

‖k−kc
j,y‖∞≤1

I c
j,k,

where j is the largest integer such thatr ≤ c− j , and then to use (13). �

If y, j and(xn, λn) satisfy (16), then they also satisfy (39). This ensures that
the Cantor set we are going to build is included inSμ(ρ, δ, α, ε

ρ

M).

Proof of Theorem 2.2 in the caseρ < 1. Here again, the caseδ = 1
is obvious and left to the reader. SinceD = (1,∞), we deal with the sets
Ŝμ(ρ, (δ)n≥1, α, ε

ρ

M), which are equal to the setsSμ(ρ, δ, α, ε
ρ

M).
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Let δ > 1. As in the proof of Theorem 2.2, we construct a generalized Cantor
setKδ in Sμ(ρ, δ, α, ε

ρ

M) and a measuremρ,δ on Kδ.

First step: The first generation in the construction ofKδ is as follows:

Let L0 = [0, 1]d. Using assumption(2(ρ)), there exist a subsetEL0 of EL0
J(L0)

of m-measure larger than‖m‖/4 and an integerJ ′(L0) ≥ J(L0) such that
∀y ∈ EL0, ∀ j ≥ J ′(L0), (11) and (13) hold. There is a subsetẼL0 of EL0 of
m-measure greater than‖m‖/8 such that for everyy ∈ ẼL0, (16) holds.

Once again we are going to apply Theorem 3.1 toA = ẼL0 and to families
B1( j ) of balls built as follows. Lety ∈ ẼL0. We define

nj,y,ρ = inf
{
n :c−n(1−χ(c−n)) ≤ c− j +5

ρ and(16) holds with ji (y) = n
}
. (42)

Then for everyj ≥ J ′(L0), let us introduce the family

B1( j ) =
{
B(y, 3c−ρn j,y,ρ ) : y ∈ ẼL0

}
.

For every j ≥ J ′(L0), the familyB1( j ) fulfills conditions of Theorem 3.1.

Hence,∀ j ≥ J ′(L0), Q(d) families of disjoint ballsB1
1( j ), ...,BQ(d)

1 ( j ) can
be extracted fromB1( j ). The same procedure as in Theorem 2.2 allows us
to extract from these new families a finite family of disjoint balls̃G1( j ) =
{B1, B2, . . . , BN} such that

m
( ⋃

Bk∈G̃1( j )

Bk

)
≥

‖m‖

16Q(d)
. (43)

Recall that with eachBk can be associated a pointyk ∈ ẼL0 so that
Bk = B(yk, 3c−ρn j,yk,ρ ). Let us fix one of the ballsBk = B(yk, 3c−ρn j,yk,ρ ).

By construction, we can find
[
cnj,yk,ρ (d(1−ρ)−χ(c

−n j,yk,ρ ))
]

points xn in the ball
B(yk, c

−ρn j,yk,ρ ) such that (16) holds. We denoteS(Bk) the set of these points
xn. The corresponding ballsB(xn, λn) are pairwise disjoint. By construction,
for each of these pointsxn ∈ S(Bk), we have

B
(
yk, (c

ρ − 1)c−ρn j,yk,ρ
)

⊂ B
(
xn, λ

ρ
n

)
⊂ B

(
yk, c

−ρn j,yk,ρ (1−χ(c
−n j,yk,ρ ))

)
. (44)

Therefore each pointxn ∈ S(Bk) such that (16) holds verifies the conditions
of Lemma 5.1. ThusPρM(B(xn, λ

ρ
n)) andDm

M(Bk) hold for some constantM
independent of the scale and ofx. This constantM is the one chosen to define
Sμ(ρ, δ, α, ε

ρ

M).
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Let us now considerI (δ)n = B(xn, λ
δ
n). Let Fn,k be the closure of one of the

c-adic box of maximal diameter included inI (δ)n . Since|Bk| = 6c−ρn j,yk,ρ , we
have|Bk| ≤ C|Fn,k|ρ/δ for some constantC depending only onδ.

We write Bk = Fn,k. Conversely, if a closedc-adic boxF can be writtenB

for some larger ballB, we writeB = F . Pay attention to the fact that a number

equal to #S(Bk) ≥
[
cnj,yk,ρ (d(1−ρ)−χ(c

−n j,yk,ρ ))
]

of c-adic boxesFn,k can be written
asBk for the same ballBk. For everyc-adic boxF such that there existsk with
Bk = F , we ensured by construction

|F | ≤ C|F |ρ/δ (45)

for some constantC depending onδ. Moreover, thec-adic boxF is included in
a contracted ballI (δ)n = B(xn, λ

δ
n) such thatPρM(B(xn, λ

ρ
n)) holds.

Since|Bk| = 6c−ρn j,yk,ρ , there isC > 0 independent ofk andρ such that

#S(Bk) ≥
[
cnj,yk,ρ (d(1−ρ)−χ(c

−n j,yk,ρ ))
]

≥ C−1|Bk|
− d(1−ρ)

ρ |Bk|
χ(|Bk|). (46)

We eventually define

G1( j ) =
{
Fn,k : Fn,k ∈ G̃1( j )

}
. (47)

We notice thatF1 andF2 belong toG1( j ) andF1 6= F2 then the distance between
F1 andF2 is by construction at least maxi ∈{1,2} Fi /3.

On the algebra generated by the elements ofG1( j ), a probability measuremδ,ρ

is defined by

mρ,δ(F) =

m(F)
#S(F)∑

Bk∈G̃1( j ) m(Bk)
.

SinceDm
M(F) holds for the measurem, by (45) and (25), we have

m(F) ≤ M |F |β−ϕ(|F |) ≤ C|F |ρβ/δ|F |−ϕ(|F |) ≤ C|F |ρβ/δ|F |−ϕ(|F |).

Then, we also have by (46) and (44)

(#S(F))−1 ≤ C|F |
d(1−ρ)
ρ |F |−χ(|F |)

≤ C|F |
ρ
δ

d(1−ρ)
ρ |F |−χ(|F |)

≤ C|F |
d(1−ρ)
δ |F |−χ(|F |).

Moreover, by (43) and the definition ofG1( j ) (29), we get

∑

Bk∈G̃1( j )

m(Bk) ≥
‖m‖

16Q(d)
.
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Thus,

∀ F ∈ G1( j ), mρ,δ(F) ≤ 16Q(d)C‖m‖−1|F |−ϕ(|F |)|F |−χ(|F |)|F |
d(1−ρ)+ρβ

δ .

By our assumption(1), we can fix j1 large enough so that

∀ F ∈ G1( j1), 16Q(d)C‖m‖−1 ≤ |F |−ϕ(|F |).

We choose thec-adic elements of the first generation of the construction ofKδ

as being those ofG1 := G1( j1). By construction

∀ F ∈ G1, mρ,δ(F) ≤ |F |
d(1−ρ)+ρβ

δ
−2ϕ(|F |)−χ(|F |), (48)

and for everyx ∈
⋃

F∈G1
F , there exists an integern so thatλn ≤ c−5/ρ ,

‖xn − x‖∞ ≤ λδn, andPρM(B(xn, λ
ρ
n)) holds. Moreover, maxF∈G1 |F | ≤ 2c−5δ/ρ .

Second step:The second generation is built as in the caseρ = 1, by focusing
on onec-adic boxL of the first generation. We give the essential clues to obtain
this second generation.

Using assumption(2(ρ)), there exist a subsetEL of EL
J(L) of mL -measure

larger than‖mL‖/4 and an integerJ ′(L) ≥ J(L) such that for ally ∈ EL , for
every j ≥ J ′(L) + logc

(
|L|−1

)
, (31) holds. Then, there exists a subsetẼL of

EL of mL-measure greater than‖mL‖/8 such that for everyy ∈ ẼL , (16) holds.
One more time we apply Theorem 3.1 toA = ẼL and to families of balls

B2( j ). Let y ∈ ẼL . For everyj ≥ J ′(L)+ logc

(
|L|−1

)
, we define the family

B2( j ) =
{
B(y, 3c−ρn j,y,ρ ) : y ∈ ẼL

}
.

The family B̃2( j ) fulfills conditions of Theorem 3.1. Hence,Q(d) families of
disjoint ballsB1

2( j ), . . . ,BQ(d)
2 ( j ) can be extracted fromB2( j ). Moreover, we

can also extract from these families one finite family of disjoint ballsG̃L
2 ( j ) =

{B1, B2, . . . , BN} such that

mL

( ⋃

Bk∈G̃2( j )

Bk

)
≥

‖mL‖

16Q(d)
. (49)

Each of these ballsBk can be writtenB(yk, 3c−ρn j,yk,ρ ) for some pointyk ∈
ẼL and some integernj,yk,ρ . Moreover, by (16), with eachBk can be associ-

ated
[
cnj,yk,ρ (d(1−ρ)−χ(c

−n j,yk,ρ ))
]

pointsxn in B(yk, c
−ρn j,yk,ρ ) such that (16) holds.

As above,S(Bk) denotes the set of these pointsxn. The corresponding balls
B(xn, λn) are pairwise disjoint.
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By construction, (44) holds for each of these pointsxn ∈ S(Bk). Moreover,
Lemma 5.1 holds with the measuremL ◦ f −1

L instead ofm and with the same
constantM . Consequently, each pointxn ∈ S(Bk) such that (16) holds is such

thatPρM(B(xn, λ
ρ
n)) andD

mL◦ f −1
L

M

(
fL(Bk)

)
hold.

We then considerI (δ)n = B(xn, λ
δ
n), and we denote byFn,k the closure of one

c-adic box of maximal diameter included inI (δ)n . Again we have (45).
We write Bk = Fn,k. Conversely, if a closedc-adic boxF can be writtenB

for some larger ballB, we writeB = F . We eventually set

GL
2 ( j ) =

{
Fn,k : Fn,k ∈ G̃L

2 ( j )
}
. (50)

On the algebra generated by the elements ofGL
2 ( j ), an extension of the prob-

ability measuremρ,δ is defined by

mρ,δ(F) = mρ,δ(L)

mL (F)
#S(F)∑

Bk∈G̃L
2 ( j ) mL(Bk)

.

SinceD
mL◦ f −1

L
M

(
fL(Bk)

)
and (45) hold, we get

mL(F) ≤

(
|F |

|L|

)β−ϕ
(

|F |
|L|

)

≤ C|F |
ρβ
δ |L|−β

(
|F |

|L|

)−ϕ
(

|F |
|L|

)

≤ C|F |
ρβ
δ |L|−β |F |−ϕ(|F |),

where the monotonicity ofx 7→ x−ϕ(x) of assumption(1) is used. Then (46)
appliedto F and (49) yield

mρ,δ(F) ≤ mρ,δ(L)
16Q(d)C

‖mL‖
|F |

ρβ
δ |L|−β |F |−ϕ(|F |)|F |

d(1−ρ)
δ |F |−χ(|F |),

and using (48) finally gives

mρ,δ(F) ≤
16Q(d)C|L|

d(1−ρ)+ρβ
δ

−β−2ϕ(|L|)−χ(|L|)

‖mL‖
|F |

d(1−ρ)+ρβ
δ

−ϕ(|F |)−χ(|F |)

By assumption(1) we can choosej2(L) large enough so that for every integer
j ≥ j2(L), for everyI ∈ GL

2 ( j ),

16Q(d)C‖mL‖
−1

|L|
d(1−ρ)+ρβ

δ
−β−2ϕ(|L|)−χ(|L|) ≤ |F |−ϕ(|F |).

Then, taking j2 = max{ j2(L) : L ∈ G1} and definingG2 =
⋃

L∈G1
GL

2 ( j2),
this yields an extension ofmρ,δ to the algebra generated by the elements of
G1

⋃
G2. We have for every

F ∈ G1

⋃
G2, mρ,δ(F) ≤ |F |

d(1−ρ)+ρβ
δ

−2ϕ(|F |)−χ(|F |).
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We remark that by construction ifJ ∈ G1 andF ∈ G2 verify F ⊂ J we have

∑

F ′∈G2, F
′
=F

mρ,δ(F
′) ≤ 16Q(d)mρ,δ(J)

mJ(F)

‖mJ‖
.

Also notice that by construction,|F | ≤ maxJ∈G1 2(c−5|J|)δ/ρ ≤ (2c−5δ/ρ)2

for everyF ∈ G2. Moreover,F is contained in someI (δ)n such that|I (δ)n | ≤ C|F |,
whereC is a constant which depends only onc.

Third step: Assume thatN generations of closedc-adic boxesG1, . . . ,GN

have already been found for some integerN ≥ 2. Assume also that a probability
measuremρ,δ on the algebra generated by

⋃
1≤p≤N Gp is defined and that:

(i) The elements ofGp are pairwise disjoint closedc-adic boxes, and for
1 ≤ p ≤ N, maxI ∈Gp |I | ≤

(
2c−5δ/ρ

)p
.

For 1 ≤ p ≤ N, with eachF ∈ Gp is associated aball F enjoying the
properties:

– F ⊂ F ,

– there is a constantC > 0 which depends only onδ such that (45)
holds,

– if F1 6= F2 belong toGp, their distance is at least maxi ∈{1,2} Fi /3,

– the F ’s (F ∈ Gp) are pairwise disjoint,

– F satisfies the next parts(ii) , (iii) , (iv) and(v).

(ii) For every 2≤ p ≤ N, each elementF of Gp is a subset of an element
L of Gp−1. Moreover, F ⊂ L, logc

(
|F |−1

)
≥ J(L) + logc

(
|L|−1

)
and

F ∩ EL
J(L) 6= ∅.

(iii) For every 1≤ p ≤ N and F ∈ Gp, there exists an integerq such that
F ⊂ B(xq, λ

δ
q) = I (δ)q ⊂ F andPρM(B(xq, λ

ρ
q)) holds, and|I (δ)q | ≤ C|F |

for some constantC which depends only onc.

(iv) For everyF ∈
⋃

1≤p≤N Gp, mρ,δ(F) ≤ |F |
d(1−ρ)+ρβ

δ
−2ϕ(|F |)−χ(|F |).

(v) For every 1≤ p ≤ N − 1, L ∈ Gp, andF ∈ Gp+1 such thatF ⊂ L,

∑

F ′∈Gp+1, F ′=F

mρ,δ(F
′) ≤ 16Q(d)mρ,δ(L)

mL(F)

‖mL‖
.
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The construction of a generationGN+1 of c-adic boxes and an extension of
mρ,δ to the algebra generated by the elements of

⋃
1≤p≤N+1 Gp such that prop-

erties(i) to (v) hold for N + 1 are done as whenN = 1.
Then, by induction, we get a sequence(GN)N≥1 and a probability measure on

σ
(
F : F ∈

⋃
N≥1 GN

)
such that properties(i) to (v) hold for every

N ≥ 1, and Kρ,δ =
⋂

N≥1

⋃

I ∈GN

F.

By construction,mρ,δ(Kρ,δ) = 1 and because of(iii) Kρ,δ ⊂ Sμ(ρ, δ, α, ε
ρ

M).
Finally, the measuremρ,δ is extended toB([0, 1]d) in the usual way:mρ,δ(B) :=
mρ,δ(B ∩ Kρ,δ) for everyB ∈ B([0, 1]d).

Last step: Proof of (20). IfF ∈ GN , recall that we setg(F) = N.

Fix B an open ball of[0, 1] of diameter less than the one of the elements ofG1

such thatB ∩ Kρ,δ 6= ∅. Let L be the element of largest diameter in
⋃

N≥1 GN

such thatB intersects at least twoballs Li such thatLi belongs toGg(L)+1 and
Li is included inL (hencemρ,δ(B) ≤ mρ,δ(L)).

• When|B| ≥ |L|:

mρ,δ(B) ≤ mρ,δ(L) ≤ |L|
d(1−ρ)+ρβ

δ
−2ϕ(|L|)−χ(|L|)

≤ C|B|
d(1−ρ)+ρβ

δ
−2ϕ(|B|)−χ(|B|).

• When|B| < c−J(L)−3|L|: let L1, . . . , L p be thec-adic boxes inGg(L)+1

such that∀i L i intersectsB. Property(v) yields

mρ,δ(B) =
p∑

i =1

∑

L∈Gg(L)+1, L=Li

mρ,δ(B ∩ L) ≤
p∑

i =1

mρ,δ(L)
16Q(d)

‖mL‖
mL(Li ).

Let j0 be the unique integer so thatc− j0 ≤ |B| < c− j0+1. Because of(i), we
have|B| ≥ maxi |Li |/3. As a consequence− logc |Li | ≥ j0 −[logc 3] ≥ j0 −2.

The same arguments as in the proof of Theorem 2.2 (Caseρ = 1) yield that
there exists an indexi0 and a pointy ∈ EL

J(L)∩ Li0 such that
⋃p

i =1 Li is included
in

⋃
k: ‖k−k j0−3,y‖∞≤1 I c

j0−3,k . Hence

p∑

i =1

mL(Li ) ≤
∑

k: ‖k−k j0−3,y‖∞≤1

mL(I c
j0−3,k), (51)
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and by definition ofEL
J(L), we can boundmL(I c

j0−3,k) by

mL(I c
j0−3,k) ≤

(
|I c

j0−3,k |

|L|

)β−ϕ
( |I c

j0−3,k |

|L|

)

≤ C

(
|B|

|L|

)β (
|B|

|L|

)−ϕ
(

|B|
|L|

)

.

There are 3d such pairwise disjoint boxes in the sum (51), hence

mρ,δ(B) ≤
16Q(d)

‖mL‖
mρ,δ(L)3

dC

(
|B|

|L|

)β (
|B|

|L|

)−ϕ
(

|B|
|L|

)

≤
16Q(d)3dC

‖mL‖
mρ,δ(L)

(
|B|

|L|

)β
|B|−ϕ(|B|).

By (iv), we obtain

mρ,δ(L) ≤ |L|
d(1−ρ)+ρβ

δ |L|−2ϕ(|L|)−χ(|L|) ≤ |L|
d(1−ρ)+ρβ

δ |B|−2ϕ(|B|)−χ(|B|),

which yields

mρ,δ(B) ≤
16Q(d)3dC

‖mL‖
|L|

d(1−ρ)+ρβ
δ

(
|B|

|L|

)β
|B|−3ϕ(|B|)−χ(|B|).

Then, the second property of (15) in assumption(4) allows to upper bound
‖mL‖−1

by |L|−ϕ(|L|), which is lower than|B|−ϕ(|B|), and thus

mρ,δ(B) ≤ C|L|
d(1−ρ)+ρβ

δ

(
|B|

|L|

)β
|B|−4ϕ(|B|)−χ(|B|). (52)

Finally, if β > d(1−ρ)+ρβ
δ

, (52) yields

mρ,δ(B) ≤ C|B|
d(1−ρ)+ρβ

δ

(
|B|

|L|

)β− d(1−ρ)+ρβ
δ

|B|−4ϕ(|B|)−χ(|B|)

≤ C|B|
d(1−ρ)+ρβ

δ |B|−4ϕ(|B|)−χ(|B|);

If β ≤ d(1−ρ)+ρβ
δ

, (52) yields

mρ,δ(B) ≤ C|B|β |L|
d(1−ρ)+ρβ

δ
−β |B|−4ϕ(|B|)−χ(|B|) ≤ C|B|β |B|−4ϕ(|B|)−χ(|B|).

In both cases, ifD(β, ρ, δ) = min
(
β,

1−ρ+ρβ
δ

)
,

mρ,δ(B) ≤ C|B|D(β,ρ,δ)|B|−4ϕ(|B|)−χ(|B|). (53)
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• c−J(L)−3|L| ≤ |B| ≤ |L|: we need at mostcd(J(L)+4) contiguousc-adic
boxes of diameterc−J(L)−3|L| to coverB. For these boxes, (53) can be
used to get

mρ,δ(B) ≤ Ccd(J(L)+4)
(
c−J(L)−3|L|

)D(β,ρ,δ)−4ϕ(c−J(L)−3|L|)−χ(c−J(L)−3|L|)

≤ Ccd J(L)|B|D(β,ρ,δ)|B|−4ϕ(|B|)−χ(|B|)

≤ C|L|−dϕ(|L|)|B|D(β,ρ,δ)|B|−4ϕ(|B|)−χ(|B|)

≤ C|B|D(β,ρ,δ)|B|−(4+d)ϕ(|B|)−χ(|B|).

This shows (20) and ends the proof of Theorem 2.2 whenρ < 1. �

6 Examples

Section 6.1 exhibits several families{(xn, λn)}n which satisfy (10) or (16) for
any measurem, and form weakly redundant systems. Then Section 6.2 pro-
vides examples of triplets

(
μ, α, τ ∗

μ(α)
)

leading toρ-heterogeneous ubiquitous
systems. It also gives relevant interpretations to propertyPρM .

6.1 Examples of families{(xn, λn)}n∈N

Let us notice first that, to ensure (10), it suffices that
⋂

N≥1

⋃

n≥N

B
(
xn, λn/2

)
= [0, 1]d. (54)

• The family of theb-adic numbers.

Fix b an integer≥ 2. Let us consider the sequence{(kb− j , 2b− j )}, for j ∈ N
andk = (k1, k2, . . . , kd) ∈ {0, . . . , bj − 1}d. By construction, for everyj ≥ 2,⋃

k∈{0,...,bj −1}d B
(
kb− j , b− j

)
= [0, 1]d. Hence (54) is satisfied, (16) holds for

any measurem and the family is weakly redundant.

• The family of the rational numbers.

By Theorem 200 of [30], any pointx = (x1, . . . , xd) ∈ [0, 1]d such that
at least one of thexi is an irrational number satisfies for infinitely manyp =
(p1, p2, . . . , pd) andq the inequality‖x − p/q‖∞ ≤ q−(1+1/d). As a conse-
quence, the sequence

{(
p/q, 2q−(1+1/d)

)}
for q ∈ N∗ andp = (p1, p2, . . . ,

pd) ∈ {0, . . . , q − 1}d fulfills (54). Here again, (16) holds for any measurem.
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To ensure the weak redundancy, we must select only the rational numbers{(
p/q, 2q−(1+1/d)

)}
such that at least one fractionpi /q is irreducible. But (54)

is no more satisfied. Indeed, the rational numbersp/q themselves do not belong
to the corresponding limsup-set (each rational number belongs only to a finite
number of ballsB

(
p/q, 2q−(1+1/d)

)
. Nevertheless, as soon as the rational points

are not atoms ofm (for instance ifdim(m) > 0), both (10) and (16) hold. In
this case, by Theorem 193 of [30], the same holds with

{(
p/q, 2/

√
5q2

)}
when

d = 1. This family is used to prove (2).

• The family
{
({nα}, 1/n)

}
n∈N.

Let us focus on the cased = 1 to introduce another family. Letα be an
irrational number. For everyn ∈ N, we denote by{nα} the fractional part ofnα.
If x /∈ Z + αZ, we have|nα − x| < 1/2n for an infinite number of integersn
(see Theorem II.B in [20] for instance). Hence

R\ (Z+ αZ) ⊂
⋂

N≥1

⋃

n≥N

B({nα}, 1/2n).

As soon asm (Z+ αZ) = 0, (10) is satisfied for the family{({nα}, 1/n)}n≥1.
We do not know the measuresm for which (16) holds. However the following
property concerning the redundancy holds:

Proposition 6.1.
{
({nα}, 1/n)

}
n≥1 forms a weakly redundant system if and

only if inf
{
ξ : #

{
(p,q) ∈ N× N∗ : |α − p/q| ≤ q−ξ

}
= ∞

}
= 2.

We know that every irrational number is approximated at rateξ ≥ 2 by the
rational numbers. But the system{({nα}, 1/n)}n is weakly redundant if and
only if the approximation rate by rational numbers ofα is exactly equals 2.

Proof. Notations of Definition 2.1 are used.

We remark thatTj (defined by (6)) contains exactly 2j integers.
Suppose that the family is not weakly redundant. For every partition ofTj into

Nj subsets, we have lim supj →+∞ j −1log Nj > 0. Let us fix such a partition.
There existsε > 0 such that for infinitely many integersj , we can find a real
numberx ∈ [0, 1] such that more than 2ε j among the{B(xn, λn)}n∈Tj containx.
Since these integersnbelong toTj , the correspondingλn belong to(2−( j +1), 2− j ].
Consequently, these 2ε j integersn all verify |{nα} − x| ≤ 2− j .

By a classical argument, there are two integersn andn′ of Tj such that

n 6= n′, |n − n′| ≤ 2 j and|{nα} − {n′α}| ≤ 2 ∙ 2− j (1+ε). (55)
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We deduce from (55) that there existsp ∈ N such that
∣
∣|n − n′|α − p

∣
∣ ≤

2 ∙ 2− j (1+ε) ≤ 2|n − n′|−(1+ε). Hence
∣
∣α − p/|n − n′|

∣
∣ ≤ 2|n − n′|−(2+ε). Since

(55) holds for infinitely manyj , |n − n′| cannot be bounded asj goes to∞.
This yields

ξα := inf
{
ξ : #

{
(p,q) ∈ N× N∗ :

∣
∣α − p/q

∣
∣ ≤ q−ξ

}
= ∞

}
> 2.

Conversely, ifξα > 2, fix ε ∈ (0, ξα−2). For infinitely many(p,q) ∈ N×N∗,
we have|α − p/q| ≤ q−(2+ε). For such an integerq, we have{nqα} ≤ 1/qn
for everyn ∈

[
1,qε/2

]
. Forq large enough, letjq be the largest integerj so that

[ j, j + 1] ⊂
[

log2(q), (1 + ε/2) log2(q)
]
. Consider thenTjq . By construction,

the point 0 belongs to at least 2
ε
4 jq balls B(xn, λn) such thatn ∈ Tjq . Hence

Njq ≥ 2 jqε/4. Since this holds for infinitely manyj ’s, the conclusion follows.�

• Poisson point processes.

Let Sbe a Poisson point process with intensityλ⊗ν in the square[0, 1]×(0, 1],
whereλ denotes the Lebesgue measure on[0, 1] andν is a positive locally finite
Borel measure on(0, 1] (see [38] for the construction of a Poisson process). Let
us take the family{(xn, λn)}n equal to the setS. Let c be an integer≥ 2. Then
for j ≥ 1, let us introduce the quantitiesTc

j = {n : c−( j +1) < λn ≤ c− j }, as
well as

β j = j −1logc ν
(
(c−( j −1), c−( j −2)]

)
and β = lim sup

j →∞
β j .

We haveβ = lim supj →∞ j −1logbE(# Tj −2) for b ∈ {2, c}, but we use a basis
c rather than 2 in order to discuss property (16). In fact, it is a general property
that the number lim supj →∞ j −1logc # Tc

j itself does not depend onc. We group
the information concerning (10), (16) and weak redundancy:

Proposition 6.2.

1. Suppose
∫
[0,1] exp

(
2

∫
[t,1] ν((2y, 1)) dy

)
dt = +∞. This implies in par-

ticular β ≥ 1. With probability1, (54) holds.

2. Fix ρ ∈ (0, 1). Letχ be a function defined as in Definition2.3. If there
exists an increasing sequence( jn)n≥1 such thatβ jn ≥ 1−χ(c− jn)+4/ jn,
then with probability1, (16) holds for any measurem.

3. {(xn, λn)}n is weakly redundant almost surely if and only ifβ ≤ 1.

As a consequence, ifν(dλ) = γdλ/λ2 with γ > 1/2, with probability 1, the
systemS is weakly redundant and (54) holds. In addition, ifγ is large enough,
with probability 1, (16) holds for any measurem.
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Proof.

(i) It is a consequence of Shepp’s theorem (see [46] and [16]).

(ii) We shall need the following lemma.

Lemma 6.3. Let γ ∈
(
1, 2, 1

)
. Let N be a Poisson random variable with

parameterM . For all p ≥ 1, we have

P(N ≤ M − Mγ ) = O(M−p) (M → ∞).

The proof of Lemma 6.3 uses the identity

n∑

k=0

exp(−M)
Mk

k!
=

∫ ∞

M

un

n!
e−u du(M > 0, n ∈ N)

as well as Laplace’s method for equivalents of integrals.
For j ≥ 1 and 0≤ k ≤ c[ jρ] − 1, let Î c

[ jρ],k be the subset ofI c
[ jρ],k obtained by

keeping one overc of the consecutivec-adic subintervals ofI[ jρ],k of generation
j − 2, that is

Î c
[ jρ],k =

⋃

k′=0,...,cj −[ jρ]−3−1

I c
j −2,cj −2−[ jρ]k+ck′ .

Let us also define the random sets

Sj,k =
{
n : λn ∈ (c−( j −1), c−( j −2)], xn ∈ Î c

[ jρ],k

}
,

and the random variablesNj,k = # Sj,k. The Nj,k’s are mutually independent
Poisson random variables with parameterM j equal to the product ofν

(
(c−( j −1),

c−( j −2)]
)

with
∣
∣ Î c

[ jρ],k

∣
∣, that isM j = cjβ j ∙ c−[ jρ]−1.

Fix γ ∈ (1/2, 1) and let

Ej =
{
∀ 0 ≤ k ≤ c[ jρ] − 1, Nj,k ≥ M j − Mγ

j

}
for j ≥ 1.

We haveP(Ej ) =
(
P(Nj,0 ≥ M j − Mγ

j )
)c[ jρ]

. Moreover, by definition ofjn, we
have limn→∞ M jn = ∞. Consequently, using the form ofM j and Lemma 6.3,
we have limn→∞ P(Ejn) = 1. Since the eventsEjn are independent, by the
Borel-Cantelli lemma we haveP(lim supn→∞ Ejn) = 1.

A computation shows thatM jn − Mγ

jn
≥ c(β jn−ρ) jn−4 for n large enough. It

follows that with probability 1, there exist infinitely manyjn such that for all
0 ≤ k ≤ c[ jnρ] − 1, Njn,k ≥ cjn(1−ρ−χ(c− jn )). Moreover, by construction, the
balls B(xn, λn) for n ∈ Sj,k are pairwise disjoint, and ify ∈ [0, 1], B(y, c− jnρ)

contains at least one of thêI[ jnρ],k’s. The conclusion follows.
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(iii) If β ≤ 1, the fact that{(xn, λn)}n forms almost surely a weakly redundant
system is a consequence of the estimates obtained in the proofs of Lemma 5
and 8 of [32] for the numbers̃Nj,k = #{n ∈ Tj : xn ∈ [k2− j , (k+1)2− j ]}.

If β > 1, computations patterned after those performed in proving (ii) show
that if ε ∈ (0, β − 1), with probability 1, there are infinitely many integersj
such that for allk ∈ {0, . . . , cj − 1}, #{n ∈ Tj : xn ∈ I c

j,k} ≥ cj ε. �

• Random family based on uniformly distributed points.

Let {xn}n be a sequence of points independently and uniformly distributed in
[0, 1]d and{λn}n a non-increasing sequence of positive numbers.

We do not know conditions ensuring that (16) holds for some non-trivial mea-
surem. The following Proposition concerns (10) and weak redundancy.

Proposition 6.4.Letβ = lim supj →∞ j −1log2 #Tj .

1. Suppose thatlim supn→+∞

(∑n
p=1 λp/2

)
− d logn = +∞. This implies

β ≥ 1. With probability 1(54) holds.

2. Suppose thatβ ≤ 1. With probability 1,{(xn, λn)}n is weakly redundant.

As a consequence, ifλn = γ /n for someγ > 2d then, with probability 1,{
(xn, λn)

}
n

is weakly redundant and (54) holds.

Proof.

(i) It is Proposition 9 of [35].

(ii) The estimates of [32] invoked in the proof of Proposition 6.2(iii) also
concernN̂j,k = #{n ∈ Tj : xn ∈ [k2− j , (k + 1)2− j ]} for the example we
are dealing with (i.e.(xn) is a sequence of i.i.d. uniform variables) when
d = 1. In particular, whend = 1, a sufficient condition for the system
to be weakly redundant isβ ≤ 1. Since a random variable with uniform
distribution in [0, 1]d is a random vector inRd which components are
independent uniform random variables in[0, 1], the same property holds
in dimensiond if β ≤ 1. �
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6.2 Examples of measuresμ and m, Interpretations of the property PρM

We give interpretations only forP1
M , sincePρM contains similar information.

Given the measureμ and the exponentα > 0, there is typically an uncount-
able family of values ofβ > 0 such that properties (11), (13),(3) and (4) of
Definition 2.2 hold for many systems{(xn, λn)}n. Consequently, we seek for the
largest value ofβ. It follows from the study of the multifractal nature of statis-
tically self-similar (including the deterministic) measures we deal with that, in
general, this optimal value is given byβ = τ ∗

μ(α) (see formulas (7) and (8)).
We select four classes of measures to which Theorem 2.2 is applicable.

Other examples can be found in [28, 7, 2, 8, 14]. We keep in mind part3.
of Remark 2.1.

For the rest of this section the sequences{xn}n∈N and{λn}n∈N are fixed, and
we assume that(0, 1)d ⊂ lim supn→∞ B(xn, λn/2).

ForC, κ, r > 0 andγ > 1/2, letϕC(r ) = C| log(r )|−1/2(log log| log(r )|
)1/2

,

ϕ̃κ(r ) =
(

log | log(r )|
)−κ

, andψγ (r ) = C| log(r )|−1/2( log | log(r )|
)γ

.

• Product ofd multinomial measures and frequencies of digits

Let (π(i )0 , . . . , π
(i )
c−1), 1 ≤ i ≤ d, bed probability vectors with positive com-

ponents such that
c−1∑

l=0

π
(i )
j = 1, ∀ 1 ≤ i ≤ d.

For 1 ≤ i ≤ d let μ(i ) be the multinomial measure on[0, 1] associated with
(π

(i )
0 , . . . , π

(i )
c−1), andμ = μ(1) ⊗ ∙ ∙ ∙ ⊗ μ(d) the product measure of theμ(i ) on

[0, 1]d. We have

τμ(i ) (q) = − logc

c−1∑

k=0

(π
(i )
k )

q and τμ(q) =
d∑

i =1

τμ(i ) (q).

It is convenient to takeα = τ ′
μ(q) for some givenq ∈ R. Let us then define

β = τ ∗
μ(α) = qτ ′

μ(q)−τμ(q), andμq = μ(1)q ⊗∙ ∙ ∙⊗μ(d)q , whereμ(i )q is the multi-

nomial measure associated with the vector
(
cτμ(i ) (q)(π(i )0 )

q, . . . , cτμ(i ) (q)(π(i )c−1)
q
)
.

It is proved in [13] that each measureμ(i ) satisfies properties (11), (13),(3)
and (4’) with the exponentsαi = τ ′

μ(i )
(q) andβi = qτ ′

μ(i )
(q) − τμ(i ) (q), and

with m equal toμ(i )q . This requires some work, because the masses of thec-adic
boxes and of their immediate neighbors need to be controlled. We can choose
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mI ◦ f −1
I = m = μ(i )q , and(3) and(4’) do not matter. Moreover,(ϕ, ψ) is of the

form (ϕC, ψγ ).
Now, in terms of conditioned ubiquity, it is interesting to recall the well-known

interpretation of the conditions (11) and (13), which hold for eachμ(i ), in terms
of c-adic expansions (recall Section 1 and the definition (1) ofφk, j ): Forμ(i )-
almost every pointxi ∈ [0, 1], for every 0≤ k ≤ c − 1, for all

y ∈ I j,kxi −1 ∪ I j,kxi
∪ I j,kxi +1, lim

j →∞
φk, j (y) = cτμ(i ) (q)(π(i )k )

q.

The previous remarks yield the following result, which implies (2).

Proposition 6.5. Let q ∈ R. The measureμ satisfies properties(11), (13),
(3) and (4’) with α = τ ′

μ(q), β = τ ∗
μ(α), (ϕ, ψ) of the form(ϕC, ψγ ), and

mI ◦ f −1
I = m = μq for all I ∈ I .

Moreover, there exists a sequenceεn ↘ 0 such that, when applying Theo-
rem2.2, propertyQ(xn, λn, 1, α, ε1

M,n) in (19) can be replaced by the following
condition in terms ofc-adic expansion: for every1 ≤ i ≤ d, for every

0 ≤ k ≤ c − 1,
∣
∣
∣φk,[logc(λ

−1
n )](xn,i )− cτμ(i ) (q)(π(i )k )

q
∣
∣
∣ ≤ εn,

wherexn = (xn,1, . . . , xn,d).

• Gibbs measures and average of Birkhoff sums

Let φ be a(1, . . . , 1)-periodic Hölder continuous function onRd. Let T be
the transformation of[0, 1)d defined by

T
(
(x1, . . . , xd)

)
= (cx1 mod 1, . . . , cxd mod 1).

For k ∈ N, let Tk denote thekth iteration of T (T0 = Id[0,1)d ). For every

x ∈ [0, 1)d andn ≥ 1, let us also define thenth Birkhoff sum ofx,

Sn(φ)(x) =
n−1∑

k=0

φ
(
Tk(x)

)
as well as Dn(φ)(x) = exp

(
Sn(φ)(x)

)
.

The Ruelle Perron-Frobenius theorem (see [44]) ensures that the probability
measuresμn given on[0, 1]d by μn(dx) = Dn(φ)(x) dx/

∫
[0,1)d Dn(φ)(u) du

converges weakly to a probability measureμwhich is a Gibbs state with respect to
the potentialφ and the dynamical system([0, 1)d, T). The multifractal analysis
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of μ is performed in [28, 29] for instance. Withφ is also associated the analytic
function

L : q ∈ R 7→ d log(c)+ lim
n→∞

j −1 log
∫

[0,1)d
Dn(qφ)(u) du,

which is the topological pressure ofqφ. We have

τμ(q) =
qL(1)− L(q)

log(c)
.

Forq ∈ R, letμq be the Gibbs measure defined asμ, but with the potentialqφ.
Then, the structure ofμ combined with the Hölder regularity ofφ and the law

of the iterated logarithm (see Chapter 7 of [45]) yield

Proposition 6.6. Let q ∈ R. The measureμ satisfies properties(11), (13),
(3) and (4’) with α = τ ′

μ(q), β = τ ∗
μ(α), bothϕ andψ of the formϕC, and

mI ◦ f −1
I = m = μq for all I ∈ I .

There existsC > 0 such that, applying Theorem2.2, in (19) the property
Q(xn, λn, 1, α, ε1

M,n) can be replaced in terms of average of Birkhoff sums by:

∣
∣L ′(q)− A[| logc(λn)|](xn)

∣
∣ ≤ ϕC(λn), where Ap(x) =

Sp(φ)(x)

p
.

• Independent multiplicative cascades, average of branching random walks

For these random measures, the situation is subtle. Indeed, the study achieved
in [14] concludes that property(4)can be satisfied for some systems{(xn, λn)}n≥1,
while the strong property(4’) fails because of the unavoidable large values of
J(L) for somec-adic boxesL.

Let us recall that these measuresμ are constructed as follows. LetX be a
real valued random variable. Let us defineL : q ∈ R 7→ d log(c)+ logE(eq X),
and assume thatL(1) < ∞. For everyc-adic box J included in[0, 1]d, let
XJ be a copy ofX. Moreover, assume that theXJ ’s are mutually independent.
The branching random walk is then

∀ x ∈ [0, 1)d, ∀ n ≥ 1, Sn(x) =
∑

J∈I , c−n≤|J|≤c−1, x∈J

XJ . (56)

The measureμ is obtained as the almost sure weak limit of the sequenceμn

on [0, 1]d given byμn(dx) =
(
E(eX)

)−n
eSn(x) dx.
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Let

θ : q ∈ R 7→
qL(1)− L(q)

log(c)
.

In [39, 37], it is shown thatθ ′(1−) > 0 is a necessary and sufficient condition
for μ to be almost surely a positive measure with support equal to[0, 1]d. The
multifractal nature ofμ or of variants ofμ has been investigated in many works
[36, 31, 25, 42, 1, 41, 4]. We need to consider the interiorJ of the interval
{q ∈ R : θ ′(q)q − θ(q) > 0}.

For everyq ∈ J and everyc-adic boxI in [0, 1)d, let us introduce the sequences
of measuresμq,n andmI

q,n defined as follows:μq,n is defined asμn but using
XJ(q) := q XJ instead ofXJ in (56), andmI

q,n is defined asμq,n but with
q Xf −1

I (J) instead ofXJ(q) in (56).

It is shown in [4] that, with probability 1,∀ q ∈ J, the measuresμq,n converge
weakly to a positive measureμq on[0, 1]d; In addition,∀ q ∈ J, for everyc-adic
box I of generation≥ 1, the sequence of measuresmJ

q,n converges weakly to a
measuremI

q on [0, 1]d, andτμ(q) = θ(q) onJ.
The following result is a consequence of Theorem 4.1 in [14].

Proposition 6.7.Suppose thatlim supn→∞ B(xn, λn/4) ⊃ (0, 1)d.

For everyq ∈ J, with probability 1 (and also with probability 1, for almost
everyq ∈ J), μ satisfies properties(11), (13), (3) and (4) with the exponents
α = τ ′

μ(q) andβ = τ ∗
μ(α), (ϕ, ψ) of the form(ϕ̃κ , ψγ ), m = μq, mI ◦ f −1

I = mI
q

for all I ∈ I , andD = Q ∩ (1,∞).
There existsγ > 1/2 such that, applying Theorem2.2, in (19) the property

Q(xn, λn, 1, α, ε1
M,n) can be replaced in terms of average of branching random

walks by:
∣
∣L ′(q)− A[| logc(λn)|](xn)

∣
∣ ≤ ψγ (2λn), whereAp(x) = Sp(x)/p.

• Poisson cascades and average of covering numbers in the cased = 1

Let ξ > 0 and S a Poisson point process inR × (0, 1) with intensity3
given by3(ds dλ) = ξdsdλ/2λ2. For everyc-adic box I of [0, 1], define
SI =

{
( f −1

I (t), |I |−1λ) : (t, λ) ∈ S, λ < |I |
}
. The point processSI is a copy

of S.
For everyt ∈ [0, 1] andε ∈ (0, 1], the covering number oft at heightε by the

Poisson intervals{(s − λ, s + λ) : (s, λ) ∈ S} is defined by

NS
ε (t) =

∑

(t,λ)∈S, λ≥ε

1{(s−λ,s+λ)}(t) = #
{
(s, λ) ∈ S : λ ≥ ε, t ∈ (s − λ, s + λ)

}
.
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The measureμ on [0, 1] is the almost sure weak limit, asε → 0, of

με(dt) =
(
E(eNS

ε (t)
))−1

eNS
ε (t) dt = εξ(e−1)eNS

ε (t) dt. (57)

Let L : q ∈ R 7→ ξ−1 + eq − 1, and letθ : q ∈ R 7→ ξ
(
qL(1)− L(q)

)
.

In [7], it is shown thatθ ′(1−) > 0 is a necessary and sufficient condition for
μ to be almost surely a positive measure supported by[0, 1)d. LetJ = {q ∈ R :
θ ′(q)q − θ(q) > 0. It is also shown in [7] that, with probability 1, for allq ∈ J,
the measuresμq,ε on [0, 1] given byμq,ε(dt) = εξ(e

q−1)eq NS
ε (t) dt converge

weakly, asε → 0, to a positive measureμq on [0, 1]; moreover, for every
q ∈ J, for everyc-adic intervalI of generation≥ 1, the family of measuresmI

q,ε

constructed asμq,ε but with NSI
ε (t) instead ofNS

ε (t) in (57) converges weakly,
asε → 0, to a measuremI

q on [0, 1]; finally, we haveτμ(q) = θ(q) onJ.
The same conclusions as in Proposition 6.7 hold ifQ(xn, λn, 1, α, ε1

M,n) is
replaced by ∣

∣
∣L ′(q)+

1

ξ log(λn)
Nλn(xn)

∣
∣
∣ ≤ ψγ (2λn).

More on covering numbers and related questions can be found in [5, 6].

6.3 Example wheredim
(

lim supn→∞ B(xn, λn/2)
)
< d.

Let us return to the example of Gibbs measuresμ in Section 6.2. Letq0 > 0. Fix
K a subset ofR such thatτ ′

μ(K) ∩ (τ ′
μ(q0), τ

′
μ(−q0)) = ∅. Define the system

{(xn, λn)} =
{ (
(k + 1/2) c− j , c− j

)
:

logμ
(
B

(
(k + 1/2) , c− j

))

− j log(c)
∈ K

}
.

Let S = lim supn→∞ B(xn, λn/2). For everyq ∈ K, we haveμq(S) = 1 and

dim S ≤ max
(
τ ∗
μ(τ

′
μ(−q0)), τ

∗
μ(τ

′
μ(q0))

)
< d.
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