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A characterization of Clifford tori with constant
scalar curvature one by the first stability eigenvalue
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Abstract. Let M be a compact hypersurface with constant scalar curvature one im-
mersed into the unit Euclidean sphere S

n+1. As is well-known, such hypersurfaces can
be characterized variationally as critical points of the integral

∫
M
Hdv. In this paper we

derive a sharp upper bound for the first eigenvalue of the corresponding Jacobi operator
in terms of the mean curvature of the hypersurface. Moreover, we prove that this bound
is achieved only for the Clifford tori in S

n+1 with scalar curvature one.
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1 Introduction

Let ψ : Mn → S
n+1 be an immersed orientable hypersurface of the unit Eu-

clidean sphere S
n+1. We will denote by A its second fundamental form (with

respect to a globally defined normal unit vector fieldN ), with principal curvatures
κ1, . . . , κn, and by H the mean curvature of the hypersurface, H = (1/n)S1,
where S1 = tr(A) = ∑n

i=1 κi is the first elementary symmetric function of the
principal curvatures. We will also use the second elementary symmetric function
of the principal curvatures, denoted by S2, which is related to the (normalized)
scalar curvature R of the hypersurface by the Gauss equation

n(n− 1)(R − 1) = 2S2 = 2
n∑

i<j=1

κiκj . (1)
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The first Newton transformation of the hypersurface is given by

P1 = S1I − A = nHI − A,

where I stands for the identity operator on X(M). Observe that P1 is also a
self-adjoint linear operator which commutes with A, and tr(P1) = (n− 1)S1 =
n(n − 1)H . In a recent paper, Alencar, do Carmo and Santos [2], using the
first Newton transformation, have obtained the following gap theorem for closed
(compact without boundary) hypersurfaces of the sphere with constant scalar
curvature R = 1 (equivalently S2 = 0).

Theorem 1. [2, Theorem 1]. Let Mn be a closed orientable hypersurface with
constant scalar curvature R = 1 isometrically immersed into the unit Euclidean
sphere S

n+1. Assume that S1 does not change sign and choose the orientation
such that S1 ≥ 0. Assume further that

|√P1A|2 ≤ tr(P1) = (n− 1)S1.

Then

(i) |√P1A|2 = (n− 1)S1;

(ii) M is either totally geodesic or Mn = S
n1(r1) × S

n2(r2) ⊂ S
n+1, where

n1 + n2 = n, r2
1 + r2

2 = 1, and β = (r2/r1)
2 satisfies the quadratic

equation

n1(n1 − 1)β2 − 2n1n2β + n2(n2 − 1) = 0.

As explained by the authors, Theorem 1 above was inspired by a well known
similar result on minimal hypersurfaces in the Euclidean sphere first proved by
Simons [11] (part (i)), and later completed, simultaneous and independently, by
Chern, do Carmo and Kobayashi [5] and Lawson [7].

On the other hand, it is well known that hypersurfaces of the sphere with
constant scalar curvature R = 1 can be characterized variationally as critical
points of the integral

∫
M
Hdv, where dv stands for the volume element ofM (for

the details see, for instance, [9, 10, 3]). The Jacobi equation of this variational
problem is given by

T1f = L1f + |√P1A|2f + tr(P1)f = L1f + |√P1A|2f + n(n− 1)Hf.

Here f ∈ C∞(M) and L1 is a second order differential operator defined by

L1f = div(P1(∇f )),
Bull Braz Math Soc, Vol. 35, N. 2, 2004
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where ∇f is the gradient of f .
In general, the operator L1 is not elliptic. It is clear from the definition that

L1 is elliptic if and only if P1 is positive definite (or negative definite). In our
case, for hypersurfaces of the sphere S

n+1 with constant scalar curvature R = 1
(equivalently, S2 = 0), L1 is elliptic if and only if n ≥ 3 and the third elementary
symmetric function of the principal curvatures, denoted by S3, does not vanish
onM (see [6, Proposition 1.5] and [2, Theorem 2.1]). When the operatorL1, and
hence the Jacobi operator T1, are elliptic, we may always choose the orientation
such that P1 is positive definite, H > 0 and S3 < 0 on M . In that case, we can
use the min-max characterization of the first eigenvalue of T1 as

λ
T1
1 = min

{− ∫
M
f T1(f )dv∫
M
f 2dv

; f ∈ C∞(M), f 	≡ 0

}
. (2)

Observe that with our criterion, a real number λ ∈ Spec(T1) if and only if

T1f + λf = 0

for some smooth function f ∈ C∞(M), f 	≡ 0. Using f ≡ 1 as a test function,
it easily follows from (2) that

λ
T1
1 ≤ − 1

vol(M)

(∫
M

(|√P1A|2 + n(n− 1)H)dv

)
< 0.

where vol(M) is the n-dimensional volume of M .
Appart from the totally geodesic equators, the easiest hypersurfaces in S

n+1

with constant scalar curvature one belong to the family of the Clifford tori.
A Clifford torus in S

n+1 is obtained by considering the standard immersions
S
m(r) ↪→ R

m+1 and S
n−m(

√
1 − r2) ↪→ R

n−m+1, for a given radius 0 < r < 1
and integer m ∈ {1, . . . , n − 1}, and taking the product immersion S

m(r) ×
S
n−m(

√
1 − r2) ↪→ S

n+1 ⊂ R
n+2. Its principal curvatures are given by

κ1 = · · · = κm = −
√

1 − r2

r
, κm+1 = · · · = κn = r√

1 − r2
,

and its constant mean curvature H = H(r) and constant (normalized) scalar
curvature R = R(r) are given by

nH(r) = S1 = nr2 −m

r
√

1 − r2
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and

n(n− 1)(R(r)− 1) = 2S2 = n(n− 1)r4 − 2(n− 1)mr2 +m(m− 1)

r2(1 − r2)
.

In particular, R(r) = 1 if and only if X = r2 satisfies the following quadratic
equation

n(n− 1)X2 − 2m(n− 1)X +m(m− 1) = 0, 0 < X < 1.

Observe that for each fixed dimension n, n ≥ 3, there are exactly (up to congru-
ences) n−2 Clifford tori in S

n+1 with constant scalar curvature one (equivalently,
S2 = 0), which are of the form

S
m(rm)× S

n−m(
√

1 − r2
m), m = 1, . . . , n− 2,

with

r2
m = (n− 1)m+ √

(n− 1)m(n−m)

n(n− 1)
,

and all of them satisfy (under the appropriate orientation) 3S3 = −(n− 1)S1 =
−n(n − 1)H < 0 (for the details, we refer the reader to [2, Section 2.2]). As
observed by Alencar, do Carmo and Santos in [2], for these Clifford tori with
constant scalar curvature one, the Jacobi stability operator T1 is elliptic and
reduces to

T1 = L1 + 2(n− 1)S1 = L1 + 2n(n− 1)H, H = positive constant,

and

λ
T1
1 = −2(n− 1)S1 = −2n(n− 1)H < 0.

Motivated by the value of λT1
1 for these Clifford tori, in this paper we will prove

the following result.

Theorem 2. Let Mn be a closed orientable hypersurface with constant scalar
curvature R = 1 (equivalently, S2 = 0) isometrically immersed into the unit
Euclidean sphere S

n+1. Assume that n ≥ 3 and S3 does not vanishes on M , and
choose the orientation such that H > 0. Let λT1

1 stands for the first eigenvalue
of the Jacobi stability operator

T1 = L1 + |√P1A|2 + tr(P1) = L1 + |√P1A|2 + n(n− 1)H.
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Then

λ
T1
1 ≤ −2n(n− 1)minH (3)

and equality holds if and only if M is a Clifford torus with constant scalar
curvature one; that is, up to a congruence,

M = S
m(rm)× S

n−m(
√

1 − r2
m) ⊂ S

n+1, m = 1, . . . , n− 2,

with

r2
m = (n− 1)m+ √

(n− 1)m(n−m)

n(n− 1)
.

Theorem 2 was motivated by a similar result for minimal hypersurfaces of the
sphere, recently obtained by Perdomo [8] (see also the previous papers by Simons
[11] and Wu [12]). Specifically, that result states that ifMn is a closed orientable
minimal hypersurface of the sphere S

n+1 which is not totally geodesic, and λJ1
stands for the first eigenvalue of its stability operator J = −� − |A|2 − n,
then λJ1 ≤ −2n, with equality if and only if M is a minimal Clifford torus
S
n−m(

√
(n−m)/n)× S

m(
√
m/n) ⊂ S

n+1.

Our bound (3) is sharp and achieved only for the Clifford tori in S
n+1 with

scalar curvature one, S
m(rm)× S

n−m(
√

1 − r2
m) ⊂ S

n+1 withm = 1, . . . , n− 2.
However, our bound does not depend only on the dimension n of the manifold,
but also on its mean curvature H . It would be very interesting to find a bound
c(n) which would depend only on the dimension n. A natural candidate for c(n)
would be the maximum value of λT1

1 over the Clifford tori

S
m(rm)× S

n−m
(√

1 − r2
m

)
⊂ S

n+1

with m = 1, . . . , n − 2. If we denote by λT1
1 (n,m) the value of λT1

1 for
S
m(rm)× S

n−m(
√

1 − r2
m), a direct computation shows that

λ
T1
1 (n,m) = −2n(n− 1)H(rm)

= −2n(n− 1)
√
m(n−m)√

(n− 2)m(n−m)+ (n− 2m)
√
(n− 1)m(n−m)

and

λ
T1
1 (n, n− 2) < · · · < λ

T1
1 (n, 2) < λ

T1
1 (n, 1) = −n(n− 1)

√
2

n− 2
.
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Therefore, one could expect that, under the hypothesis of our Theorem 2, it holds
that

λ
T1
1 ≤ −n(n− 1)

√
2

n− 2
,

with equality if and only if M is, up to a congruence, the Clifford torus
S

1(
√

2/n) × S
n−1(

√
(n− 2)/n). Unfortunately, as far as we know, our tech-

nique does not allow us to conclude so.
This paper was finished while the first author was visiting the Instituto de

Matemática Pura e Aplicada (IMPA) at Rio de Janeiro, Brazil, in July 2003.
There, he had the ocassion to speak to Professors do Carmo and Santos about
Theorem 2, and he was informed that they have also obtained, simultaneous and
independently, the following related result [4], which can be seen as a conse-
quence of our Theorem 2.

Corollary 3. [4] Let Mn be a closed orientable hypersurface with constant
scalar curvature R = 1 (equivalently, S2 = 0) isometrically immersed into the
unit Euclidean sphere S

n+1. Assume that n ≥ 3 and S3 does not vanishes onM ,
and choose the orientation such that H > 0. If λT1

1 ≥ −2n(n− 1)H , then M is
a Clifford torus with constant scalar curvature one.

2 Proof of Theorem 2

The estimative (3) in our Theorem 2 will be an application of the following result
concerning the first eigenvalue of the Jacobi stability operator T1.

Proposition 4. LetMn be a closed orientable hypersurface with constant scalar
curvature R = 1 (equivalently, S2 = 0) isometrically immersed into the unit
Euclidean sphere S

n+1. Assume that n ≥ 3 and S3 does not vanishes on M , and
choose the orientation such that H > 0. If λT1

1 stands for the first eigenvalue of
the Jacobi stability operator T1, then

λ
T1
1 ≤ −2n(n− 1)

∫
M
H 3dv∫

M
H 2dv

where dv stands for the volume element of Mn.

Proof. Since H > 0 on M , we can use H as a test function in (2) to estimate
λ
T1
1 . Let us recall the following Simons type formula for L1(H), which for the
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case of hypersurfaces with scalar curvature R = 1 immersed into S
n+1 reads as

follows

L1(H) = 1

n
|∇A|2 − n|∇H |2 + n(n− 1)H 2 + 3HS3

= 1

n
|∇A|2 − n|∇H |2 + n(n− 1)H 2 − |√P1A|2H,

(4)

(for a proof, see [1, Lemma 3.7], taking into account that in our case S2 = 0 and
|A| = S1 = nH , and |√P1A|2 = −3S3 > 0). Moreover, we also know (see [1,
Lemma 4.1]) that

|∇A|2 ≥ n2|∇H |2, (5)

so that

L1(H) ≥ (n(n− 1)H − |√P1A|2)H, (6)

with equality if and only if |∇A|2 = n2|∇H |2. Therefore,

HT1(H) = HL1H + |√P1A|2H 2 + n(n− 1)H 2 ≥ 2n(n− 1)H 3,

Now, using f = H in (3), we conclude from here that

λ
T1
1 ≤ − ∫

M
HT1(H)dv∫
M
H 2dv

≤ −2n(n− 1)

∫
M
H 3dv∫

M
H 2dv

,

which completes the proof of Proposition 4. �
Now we are ready to prove our Theorem 2. From Proposition 4, we easily see

that

λ
T1
1 ≤ −2n(n− 1)

∫
M
H 3dv∫

M
H 2dv

≤ −2n(n− 1)minH. (7)

Moreover, if λT1
1 = −2n(n − 1)minH , then, from the proof of Proposition 4,

equality also holds in (5), which gives that

|∇A|2 = n2|∇H |2. (8)

On the other hand, when λT1
1 = −2n(n− 1)minH we also get from (7) that

∫
M

H 3dv =
(∫

M

H 2dv

)
minH,
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that is, ∫
M

H 2(H − minH)dv = 0.

ButH 2 > 0 and (H − minH) ≥ 0 onM , so thatH ≡ minH is constant onM .
By (8), this implies that ∇A = 0, that is, the second fundamental form is parallel.
Finally, we apply a result of Lawson [7, Theorem 4] (see also [5, Lemma 3]) to
conclude thatM is a Clifford torus with constant scalar curvature R = 1; that is,
M is, up to congruences, a Clifford torus of the form

M = S
m(rm)× S

n−m(
√

1 − r2
m), m = 1, . . . , n− 2,

with

r2
m = (n− 1)m+ √

(n− 1)m(n−m)

n(n− 1)
.

Conversely, we already know that for every Clifford torus with constant scalar
curvature one, the Jacobi stability operator T1 is elliptic and reduces to

T1 = L1 + 2(n− 1)S1 = L1 + 2n(n− 1)H, H = positive constant,

and the first stability eigenvalue is given by

λ
T1
1 = −2n(n− 1)H = −2n(n− 1)minH.

3 Another proof of the case of equality in Theorem 2

In this section we would like to show how Perdomo’s technique in [8] also works
to characterize the Clifford tori with scalar curvature one as the only closed
hypersurfaces with constant scalar curvature R = 1 in S

n+1 whose first stability
eigenvalue λT1

1 satisfies λT1
1 = −2n(n− 1)minH , under the assumption that the

Jacobi operator T1 is elliptic (equivalently, n ≥ 3 and S3 does not vanishes on
M).

To see it, assume that λT1
1 = −2n(n− 1)minH . As is well known, since T1 is

assumed to be elliptic, then its first eigenvalue λT1
1 is simple and its eigenspace

is generated by a first positive eigenfunction ρ ∈ C∞(M). Then

T1ρ + λ
T1
1 ρ = 0

or, equivalently,

L1(ρ) = −(
λ
T1
1 + |√P1A|2 + n(n− 1)H

)
ρ. (9)
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Observe that ∇ρ−1 = −ρ−2∇ρ and

L1(ρ
−1) = div(−ρ−2P1(∇ρ)) = −ρ−2L1(ρ)+ 2ρ−3〈∇ρ, P1(∇ρ)〉

= (λ
T1
1 + |√P1A|2 + n(n− 1)H)ρ−1 + 2ρ−3〈∇ρ, P1(∇ρ)〉.

Define f = Hρ−1 ∈ C∞(M). Then

∇f = H∇ρ−1 + ρ−1∇H = −Hρ−2∇ρ + ρ−1∇H,
and, using also the inequality (6), we can compute as follows

L1f = L1(Hρ
−1) = HL1(ρ

−1)+ ρ−1L1(H)+ 2〈∇H,P1(∇ρ−1)〉
= H(λ

T1
1 + |√P1A|2 + n(n− 1)nH)ρ−1 + 2Hρ−3〈∇ρ, P1(∇ρ)〉

+ ρ−1L1(H)− 2ρ−2〈∇H,P1(∇ρ)〉
= f (λ

T1
1 + |√P1A|2 + n(n− 1)H)

+ ρ−1L1(H)− 2ρ−1〈∇f, P1(∇ρ)〉 (10)

≥ f (λ
T1
1 + |√P1A|2 + n(n− 1)H)+ f (n(n− 1)H − |√P1A|2)

− 2ρ−1〈∇f, P1(∇ρ)〉
= 2n(n− 1)f (H − minH)− 2ρ−1〈∇f, P1(∇ρ)〉
≥ −2ρ−1〈∇f, P1(∇ρ)〉.

Summing up,

L1f + 2ρ−1〈∇f, P1(∇ρ)〉 ≥ 0 on M. (11)

Let p0 ∈ M be the point where the positive function f attains its maximum
onM , and let � be a region around p0 on which f is greater than some positive
constant. Since the maximum of f in � is obtained in the interior of �, by
(11) and the maximum principle we deduce that f is constant on �. Since M
is connected, we conclude that f is constant on all M . Therefore, ∇f = 0,
L1(f ) = 0, and equality trivially holds in (11). That means that both inequal-
ities in the computation of (10) must be equalities. Observe now that the first
inequality in (10) becomes an equality if and only if equality holds in (6), that is,
if and only if |∇A|2 = n2|∇H |2. Besides, the second inequality in (10) becomes
an equality if and only if H = minH is constant on M . As a consequence,
the second fundamental form A is parallel, and we apply the rigidity result of
Lawson to conclude that M is a Clifford torus with scalar curvature R = 1.
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