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Abstract

Mycorrhizal symbioses (mycorrhizas) of Ericaceae, including ericoid mycorrhiza (ErM), have been mainly studied in the
Northern Hemisphere, although the highest diversity of ericaceous plants is located in the Southern Hemisphere, where
several regions remain largely unexplored. One of them is South America, which harbors a remarkably high diversity of
Ericaceae (691 species and 33 genera) in a wide range of environmental conditions, and a specific mycorrhizal type called
cavendishioid. In this review, we compile all available information on mycorrhizas of Ericaceae in South America. We
report data on the mycorrhizal type and fungal diversity in 17 and 11 ericaceous genera, respectively. We show that South
American Ericaceae exhibit a high diversity of habitats and life forms and that some species from typical ErM subfamilies
may also host arbuscular mycorrhiza. Also, a possible geographical pattern in South American ErM fungal communities is
suggested, with Sebacinales being the dominant mycorrhizal partners of the Andean clade species from tropical mountains,
while archetypal ErM fungi are common partners in southern South America species. The gathered information challenges
some common assumptions about ErM and suggests that focusing on understudied regions would improve our understanding
of the evolution of mycorrhizal associations in this intriguing family.
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Introduction

Mycorrhizas are symbiotic associations between most land
plants and specific fungal taxa (Smith and Read 2008). The
mycorrhizal association is estimated to be present in more
than 90% of plant species and is distributed in almost all
terrestrial ecosystems (Brundrett and Tedersoo 2018; van
der Heijden et al. 2015). In this interaction, plants provide
carbon to the fungal partners, which in exchange deliver
soil nutrients to plants, among other non-nutritional benefits
(Delavaux et al. 2017). Depending on their function, struc-
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ture, and on plant and fungal identity (Genre et al. 2020;
Smith and Read 2008), mycorrhizas are classified into four
types: arbuscular mycorrhiza (AM), ectomycorrhiza (EM),
and ericoid (ErM) and orchid mycorrhizas (OrM). AM
is the most ancestral type (Maherali et al. 2016; Strullu-
Derrien et al. 2018), in which fungi from the Glomeromy-
cetes colonize the roots of 80% of plant species, forming
intracellular structures such as arbuscules or coils (Smith
and Read 2008). EM symbiosis, on the other hand, evolved
independently several times along plant and fungal evolu-
tion (Martin et al. 2016; Tedersoo and Brundrett 2017). This
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association involves mostly trees that dominate woodland
and forest communities in boreal, Mediterranean, and tem-
perate regions and some tropical forests. EM fungi belong to
Basidiomycota, Ascomycota, and more rarely Zygomycota
(Tedersoo et al. 2010), and form a hyphal sheath around
root tips and penetrate the intercellular space forming a net-
work between cortical cells called Hartig net (Smith and
Read 2008). Finally, the last, most recent mycorrhizal types
in plant evolution are OrM and ErM (Strullu-Derrien et al.
2018). In both cases, fungal partners form hyphal coils
within root cells of orchids and Ericaceae species, respec-
tively, but beyond penetration of the cell wall, the cell mem-
brane remains intact and allows exchanges. Whereas orchid
mycorrhizas are present in almost all Orchidaceae (Selosse
et al. 2022), representing 10% of vascular plant species, ErM
are present in some Ericaceae that account for only 1.5% of
vascular plants (Brundrett and Tedersoo 2018). Despite this
relatively low plant diversity, ErtM occupy a broad range of
ecosystems, from heathlands of the Northern Hemisphere,
open forests, Mediterranean woodlands, and tropical cloud
forests, to the dry sand plains of Australia (Cairney and
Meharg 2003). Moreover, ErM plants colonize ecosystems
estimated to hold more than 20% of the terrestrial carbon
stock, playing a pivotal role in the soil carbon cycle (Perotto
et al. 2018). Yet, ErM remains the least studied and the least
understood type of mycorrhizal association (Vohnik 2020).

The Ericaceae family is highly diverse in terms of its
mycorrhizal associations (Lallemand et al. 2016): while the
earliest-diverging genus Enkianthus retained the ancestral
AM (Obase et al. 2013), the subfamilies Monotropoideae
and Arbutoideae form ectendomycorrhizas (a type of EM
with intracellular colonization), and the subfamilies Eri-
coideae, Cassiopoideae, Harrimanelloideae, Styphelioideae,
and Vaccinioideae, a monophyletic clade known as the
“early anther inversion clade” (EAI clade; Kron et al. 2002),
form ErM (Selosse et al. 2007).

The ericoid mycorrhizal fungi (ErMF) include fungi from
the Ascomycetes—typically species from Hyaloscypha s. str.
(formerly known as the Hymenoscyphus ericae aggregate)
and Oidiodendron maius—and from the Basidiomycetes—
including mostly taxa from the Serendipitaceae (Vohnik et al.
2016; Weiss et al. 2016). However, the range of potential
ErMF is much broader than previously believed (Vohnik
2020), arising questions about how accurately our cur-
rent knowledge of ErM symbiosis reflects its true diversity
(Vohnik et al. 2023). ErMF form hyphal coils in the rhizoder-
mal cells of the fine roots (also called hair roots) of Ericaceae,
but some of them are also common root endophytes in non-
ericaceous plants (Almario et al. 2017; Weiss et al. 2016),
i.e., colonize the tissues biotrophically and diffusely without
causing any morphological symptom. In addition, as shown
by their in vitro cultivability and genomic features (Perotto
et al. 2018), many ErMF have strong saprobic capabilities, in
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contrasts to AM and most EM fungi (Miyauchi et al. 2020),
and some also grow as free-living decomposers (Rice and
Currah 2006).

ErM plants are frequently characterized as colonizers of
infertile and acidic soils, with a high content of recalcitrant
polyphenolic compounds and slow decomposition of soil
organic matter (Perotto et al. 2018; Van Geel et al. 2020).
On the other hand, most of the ErM research has focused on
a limited number of species found in cold habitats primarily
in the Northern Hemisphere (Albornoz et al. 2021; Vohnik
et al. 2023), while the highest diversity of Ericaceae plants
is actually found in the Southern Hemisphere, in tropical,
subtropical, and Mediterranean regions, where ErM inter-
actions are highly understudied (Albornoz et al. 2021). For
example, while the vast majority of species of Erica, the
largest genus in Ericaceae, are restricted to the Cape Flo-
ristic Region of South Africa (Linder 2003), little is known
about their mycorrhizal associations in this region (Kohout
and Tedersoo 2017).

South America is one of the regions where mycorrhi-
zal associations remain largely unexplored, despite its vast
plant and fungal diversity and endemism (Mujica et al. 2019;
Bueno et al. 2017). It boasts four notable centers of Eri-
caceae diversity (Luteyn 2002), yet our understanding of
its mycorrhizal associations in these habitats remains lim-
ited. This is at least in part because information published
in Spanish and Portuguese in local journals and databases is
typically not included in global compilations. Indeed, non-
English literature may contain unique knowledge and ignor-
ing it introduces biases in global literature reviews (Konno
et al. 2020; Nufiez and Amano 2021). Hence, here we pre-
sent the first review of existing knowledge about mycorrhi-
zal associations of Ericaceae in South America (for previous
local efforts, see Pacheco Flores et al. 2022). Our aim was
to collect information about the mycorrhizal type and the
diversity of fungal species associated with South American
ericaceous species. Doing so, we hope to contribute to a
broader understanding of the mycorrhizal associations in
Ericaceae on a global scale.

Diversity of Ericaceae in South America

Ericaceae is one of the most diverse families of the Angio-
sperms, with ca. 4500 species globally ranging from sea
level to high mountains over 5000 m (POWO 2023). The
most recent classification system of Ericaceae comprises
eight sub-families, and 20 tribes with 121 genera (POWO
2023; Kron et al. 2002). The family is distributed worldwide,
especially in tropical and temperate regions, except for Ant-
arctica (Kron and Luteyn 2005). The radiation of Ericaceae
is mostly of boreotropical with subsequently more recent
diversification in tropical Asia, Southern Africa, and tropical
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South America (Kron and Luteyn 2005). This radiation is
probably associated with the availability of oligotrophic
habitats, linked to the evolution of low specific leaf areas
and specialized mycorrhizal associations (Schwery et al.
2015). The areas of higher species richness are localized in
the montane tropics of South America, Asia, New Guinea,
Australia, and Africa (Kron and Luteyn 2005). The mem-
bers of this family grow in a wide range of habitats and with
diverse life history strategies ranging from shrubs and trees
to various often ignored kinds of epiphytes: climbing epi-
phyte, climbing shrub, epiphytic shrub, scrambling epiphyte,
scrambling shrub, and true lianas (POWO 2023; Kron et al.
2002). It also includes achlorophyllous, mycoheterotrophic
species relying on their mycorrhizal fungi for carbon nutri-
tion (Merckx 2013).

In South America, the Ericaceae are well represented
with 691 species (POWO 2023), mostly belonging to the
subfamilies Ericoideae, Styphelioideae, and Vaccinioideae
in the EAI clade and one species of the subfamily Mono-
tropoideae (Fig. 1). From the 121 genera of Ericaceae, 33 are
native (27%), and 15 are found exclusively in South Amer-
ica (12.4%). The endemic genera include four monotypic

ERICOIDEAE (ErM /AM?)

Early anther

genera from Chile and Argentina (Lebetanthus), Ecuador
(Periclesia), and Bolivia (Polyclita and Rusbya) (Table 1).
Colombia (277 spp.), Ecuador (229), and Peru (154) con-
tribute to most of the species’ diversity, with approximately
320 species representing about 45% of the total existing in
South America (Table 1). The largest genera, Cavendishia
(83), Thibaudia (78), Psammisia (59), Gaultheria (57), and
Gaylussacia (48), encompass nearly 50% of species found in
South America. Luteyn (2002) identified four biogeograph-
ical regions or centers of diversity of Ericaceae in South
America: the tropical Andes, the Guyana Highlands, South-
east Brazil, and temperate Andes.

The greatest diversity of all described neotropical Eri-
caceae is found in the tropical Andean region, with more
than 500 species (Pedraza-Pefialosa and Luteyn 2015).
These plants have adapted to the moist and cool envi-
ronments at altitudes between 1000 and 3000 m
above sea level (Setaro et al. 2006a; Pacheco Flores
et al. 2022). 95% of them belong to the subfamily Vac-
cinioideae, tribe Vaccinieae, and form the monophyletic
clade known as the “Andean clade” (Kron et al. 2002).
Biogeographical analysis indicates that the ancestor to

inversion
(EAI) clade
CASSIOPOIDEAE (ErM)
(ErM) STYPHELIOIDEAE (ErM /AM?)
VACCINIOIDEAE (ErM, CVM /AM?)
(Erm)
ARBUTOIDEAE (EEM) .m _w
(AM)— . R~ : s
L (EEM) — ~— Monotropeae 1 A
MONOTROPOIDEAE (EEM)
Pyroleae
ENKIANTHOIDEAE (AM) 3
-

Fig. 1 Phylogeny of the Ericaceae subfamilies with the most parsimo-
nious scenario for the evolution of mycorrhizal types (according to
Freudenstein et al. 2016 and Lallemand et al. 2016) and their global
distribution (following Kron and Luteyn 2005). The tribes Pyroleae
and Monotropeae are included in the subfamily Monotropoideae, but
according to Freudenstein et al. (2016) and Schwery et al. (2015),
Pyroleae is a sister group to Monotropeae + Arbutoideae. AM, the
ancestral arbuscular mycorrhiza; CVM, cavendishioid mycorrhizas (a

type of EEM); EEM ectendomycorrhizas; ErM ericoid mycorrhizas.
Note that the acquisition of ErM corresponds to the rise of the “early
anther inversion clade” (EAI clade; Kron et al. 2002). AM reports
are not necessarily functional, further research is needed to confirm
their functionality in ericaceous roots. The geographical distribution
of subfamilies is presented alongside each one, with the same corre-
sponding color. Subfamilies distributed in South America are under-
lined
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Table 1 (continued)
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References

Mycorrhizal
fungal identity

American native

species

(&)Y

Mycorrhizal
type of South

Life form

Distribution Nr. of species in  Countries in S.A  Habitat
South America

Genus

Tribus

Subfamily

Springer

Setaro et al. 2006b
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Tropical
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Vaccinieae Thibaudia Native 78

Vaccinioideae

epiphyte, epi-

America
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phytic shrub,
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shrub, scram-

bling shrub,

shrub
Epiphyte, scram- ErM, AM

Setaro et al.

Sebacinales,

Tropical to

ARG, BOL,

Vaccinieae Vaccinium Native 27

Vaccinioideae

2006b; Setaro

Ascomycetes

bling shrub,
epiphytic

subtropical

America

BRA, COL,

and Kron 2011;

EC, GU, PER,
VEN

Sarmiento 2020;
Lancheros 2012

shrub, shrub
or tree

the Andean + Mesoamerican-Caribbean groups may have
been widespread in the Andes and the mountains of Cen-
tral America and the Antilles (Kron and Luteyn 2005). The
diversification within the Andean clade has been indicated
as very recent (since the late Miocene) and the taxa currently
found in Central America have recently arrived through dis-
persal from the northern Andes (Kron and Luteyn 2005).
However, recent studies have shown that the diversity of
Ericaceae in montane habitats is the result of a higher diver-
sification rate rather than dispersal from non-montane habi-
tats (Schwery et al. 2015). Thus, the Andean orogeny may
account for the current distribution patterns of many species-
rich genera within Ericaceae in South America. This bio-
geographical event is among the most significant factors for
radiation of vascular plants and the biogeographic history of
neotropical species in South America (Luebert and Weigend
2014; Antonelli et al. 2009). Although it has often been sug-
gested that mycorrhizal associations have been crucial for
the diversification of Ericaceae, this has not been evaluated
in South America. This region, where diversification events
are associated with the formation of new habitats, allows to
test for a key role of mycorrhizal associations.

To summarize, South America provides habitats different
from those commonly used to investigate ErM. Furthermore,
the wide variety of life forms of Ericaceae in South America
contrasts with the 85% of shrubs reported to ErM plants
from global compilations (Soudzilovskaia et al. 2020). This
diversity of life forms and habitats positions South America
as a highly important location for studying the functioning
of ErM, to enhance current knowledge extrapolated from
shrubs in cold climates of the Northern Hemisphere.

Mycorrhizal types of South American Ericaceae

We performed a systematic review to gather all available
scientific information (to our best knowledge) about the
mycorrhizal associations of South American ericaceous
species. For each of the 33 genera native to South America,
we conducted thorough searches in multiple scientific data-
bases (Google Scholar, Web of Science, and SciELO) using
the keywords “mycorrhiza,” “ericoid,” “colonization,” and
“fungi” along with the specific genus name. Additionally,
we expanded our search by including the name of each South
American country along with the same keywords to maxi-
mize article findings. Most importantly, we performed the
same search using the keywords in Spanish and Portuguese.
Subsequently, we critically reviewed each publication to
keep only those that examined mycorrhizal types of Eri-
caceae species native to South America or the identity of
their fungal partners, excluding non-native species within
native genera. Our collection of articles considered works
written in English (64%), Spanish (16%), and Portuguese
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(20%; Table S1). Additionally, we included theses that were
available online and provided complete information about
methods and observations.

Our search yielded information on the mycorrhizal type
for 51% (n=17) of the genera present in South America,
while no information was found for the remaining 16 gen-
era (Table 1). Based on our findings, Ericaceae species in
South America exhibit cavendishioid (CVM), ericoid (ErM),
monotropoid, and arbuscular mycorrhizal (AM) associa-
tions. These results partially agree with the phylogenetic
pattern of mycorrhizal types observed in the Ericaceae fam-
ily, with the subfamily Ericoideae displaying ERM, while
the subfamily Vaccinioideae showcases both ERM and
CVM associations (Lallemand et al. 2016; Freudenstein et
al. 2016). However, we also found several reports of AM
associations in Vaccinioideae species, which agrees with
reports of AM in this subfamily in other regions (see below).

AM in ericoid mycorrhizal subfamilies

We found literature suggesting the potential colonization of
AM in five genera of Vaccinioideae (Agarista, Gaultheria,
Gaylussacia, Psammisia, and Vaccinium) in South America.
Although this subfamily is commonly referred to as ErM
(e.g., Kohout 2017; Lallemand et al. 2016), several studies
have reported the presence of AM in some of its species. For
example, Koske et al. (1990) showed the presence of spores,
vesicles, and arbuscules in the roots of Vaccinium calycinum,
V. dentatum, V. reticulatum, and Styphelia tameiameiae from
Hawaii, in addition to the presence of typical ErM structures
(see Figs. 1-4 and 5-7, pages 65-66). Similarly, in addition
to ErM, the shrub Vaccinium oldhamii exhibited AM fungal
mycelium and structures like vesicles and arbuscules in roots,
and the presence of the AM fungus Rhizophagus diaphanous
was detected (Baba et al. 2016; see Fig. S3). Likewise, Lanche-
ros (2012; see Fig. 28, page 50) found AM and ErM structures
in V. meridionale in Colombia, while Santos et al. (1995, no
photos) and Baido and Kasuya (2007, no photos) detected AM
associations in Brazilian Agarista spp. Similarly, John (1980,
no photos) reported AM structures in Satyria sp. in Brazil.
In addition to ErM, AM associations were also observed in
Gaultheria poeppigi in southern South America (Urcelay
2002, see Fig. 1, page 90; Menoyo et al. 2007, no photos)
and in G. myrsinoides from the Colombian Paramo (Guerrero
1996, no photos). The same dual mycorrhizal coloniza-
tion was observed in Indian G. fragantissima by Das and
Kayang (2012, see Fig. 1, page 138). On the contrary, AM
structures were not detected in five Gaultheria species from
Patagonian and temperate Valdivian Forest in Argentina by
Vohnik et al. (2023).

The ability to form AM in addition to ErM appears to
be extended to other subfamilies of the EAI clade that are

thought to be exclusively ErM. For example, in Ericoideae,
Empetrum nigrum var. japonicum and Ledum palustre var.
diversipilosum possessed hyphae and vesicles of AM fungi
(AMF) in addition to ErM in the crater basin of Volcano
Esan in Hokkaido, Japan (Fukuchi et al. 2011, see Fig. 4,
page 9), and several species of Rhododendron presented
AMF hyphal coils, intraradical vesicles, and chlamydospores
in central Himalaya (Chaurasia et al. 2005, see Fig. 1, page
318). Similarly, in Styphelioideade Bellgard (1991) observed
AM in Epacris microphylla and Leucopogon juniperus in
the Hawkesbury Sandstone soils in Australia. Nevertheless,
it is necessary to evaluate whether the AM-like structures
observed in these ErM subfamilies are indeed functional,
i.e., taking part in the mycorrhizal bi-directional nutri-
ent transfer. In fact, non-mycorrhizal plants grown in the
presence of the AM mycelium can exhibit AMF struc-
tures, frequently hyphae and vesicles, but never arbuscules
(DeMars and Boerner 1996; Veiga et al. 2012, 2013; Mnasri
et al. 2017). On the other hand, it is important to acknowl-
edge the possibility of misidentifying roots from adjacent
non-ericaceous AM vegetation as ericaceous roots. Such
misclassification could result in misleading conclusions and
deserves careful consideration.

The high number of reports of AM in the EAI clade from
different sources suggests that at least some species of these
subfamilies may have dual mycorrhizal capacity, like mycor-
rhizal plants forming EM and AM associations (Teste et al.
2020). Ancestral trait reconstruction has shown that the
ancestor of Ericaceae most probably had AM (Selosse et al.
2007; Fig. 1). Enkianthus, the most basal extant ericaceous
genus forms AM (Obase et al. 2013), although the possibil-
ity of also forming ErM has been proposed (Vohnik 2020).
Then, there was an evolutionary transition to ectendomyc-
orrhizal associations, which are present in Monotropoideae
and Arbutoideae (Richard et al. 2005; Selosse et al. 2007),
and a transition to ErM in the five remaining subfamilies
of EAI (Freudenstein et al. 2016; Fig. 1). Vaccinioideae,
however, show an additional acquisition of CVM (Setaro
et al. 2006a, b). This model suggests that AM was lost in the
transition to ectendomycorrhiza (Selosse et al. 2007). How-
ever, the presence of AM in Vaccinioideae (and probably in
other ErM subfamilies) suggests either a partial reversion
to AM (Brundrett and Tedersoo 2018) or the persistence
of an ancestral (plesiomorphic) trait that might have never
been lost in Ericaceae (Freudenstein et al. 2016). Further
genomic, phylogenomic, and ecological research is needed
to test these hypotheses.

Cavendishioid mycorrhiza in the Andean clade
CVM was first described by Setaro et al. (2006a), who

discovered a mycorrhizal association exhibiting a hyphal
sheath, Hartig net, and intracellular colonization in roots
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of Cavendishia nobilis in the tropical mountain rainforest
of South Ecuador. CVM can be classified as an independ-
ent evolution of ectendomycorrhizas, similar to the fungal
associations found in the subfamily Arbutoideae. The inves-
tigated C. nobilis was associated with a remarkable diversity
of Sebacinales, although to a lesser degree, some Leotiales
were also detected (Setaro et al. 2006a). Subsequently, CVM
was observed in 15 species belonging to nine different gen-
era from the Andean clade (Setaro et al. 2006b; Table 1).
Ericaceous species from the same habitat but not belong-
ing to the Andean clade (i.e., Gaultheria spp., Bejaria, and
Vaccinium) did not show CVM suggesting that this type of
association is mostly phylogenetically constrained, rather
than resulting from certain environmental conditions.

Interestingly, almost all examined species belonging
to the Andean clade and presenting CVM have not been
reported to form AM (Table 1), except for the genus Psam-
misia in which Bermudez and Benzing (1989) observed pos-
sible CVM and AM structures in one plant. In contrast, the
Ericaceae species with AM structures were sampled outside
the tropical Andean range, mostly in Brazil and in southern
South America (Table 1). These findings show the variabil-
ity of the mycorrhizas of Ericaceae in South America, as
well as some endemic traits. Further research is needed to
evaluate how environmental conditions and/or biogeographi-
cal and historical drivers determine the type of mycorrhizal
association in Ericaceae.

Monotropoid mycorrhizas in South America?

Monotropa uniflora is a member of Monotropoideae, which
comprises 15 genera and ca. 50 species. They lack chloro-
phyll and are mycoheterotrophic, meaning they depend on
carbon compounds obtained through fungal mycelial con-
nections with surrounding EM host plants (Merckx 2013).
Monotropoideae establish a distinct type of ectendomycor-
rhiza called monotropoid mycorrhiza, characterized by a
hyphal mantle, Hartig net, and intracellular “fungal pegs”
(Massicotte et al. 2005). Monotropoid mycorrhizas display a
high level of specificity, as each lineage of Monotropoideae
associates with specific groups of EM fungi within single
genera (Bidartondo and Bruns 2002).

Monotropoideae has a widespread distribution in tem-
perate regions of the Northern Hemisphere, mostly found
in dense, humid forests characterized by abundant organic
litter and restricted light availability for autotrophic growth
(Leake 1994). Monotropa uniflora is the only species of this
subfamily that occurs in South America. This species is also
predominantly distributed in the Northern Hemisphere, but
in America, its presence aligns with the natural distribution
of Pinaceae, extending from the highlands of Mexico and
Central America into Belize, and further south into northern
South America (Luteyn et al., 2002). In this region, it can
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be found in western Colombia, in native Quercus forests as
well as introduced pine plantations (Luteyn 2002). Although
M. uniflora is classically considered a single species along
its distribution, molecular studies suggest that the popula-
tions from Asia, North America, and Central America are
molecularly divergent and phylogenetically distinct (Neyland
and Hennigan 2004). The South American taxon/taxa may
thus belong to one or several distinct species, which remains
to be assessed.

Surveys across almost all its distribution have shown that
M. uniflora forms specific mycorrhizal associations with
members of the genus Russula (Russulaceae; Bidartondo
and Bruns 2001). Accordingly, in Abies religiosa and Pseu-
dotsuga menziessi forests in Mexico, M. uniflora associates
with several species of Russula (Kong et al. 2015). Cur-
rently, there is a lack of information regarding the mycor-
rhizal associations of M. uniflora in South America, where
the study of mycoheterotrophy, in general, remains largely
unexplored. Considering the distinct climate and floristic
composition compared to the majority of its distribution,
it can be expected that more tropical Russula species could
be involved. Yet, the taxonomic status of M. uniflora and
potential differences in mycorrhizal partners (even among
Russulaceae) await further analyses in South America.

Ericoid mycorrhizal fungal diversity
in South America

Globally, most of the knowledge on the ErMF diversity
comes from the temperate and boreal ecosystems of the
Northern Hemisphere (Vohnik 2020). As stated above,
ericoid mycorrhizal fungi are mainly categorized within
Ascomycota and Basidiomycota (Perotto et al. 2018; Fehrer
et al. 2019; Vohnik 2020). Among Ascomycota, the most
significant ErMF include the Hyaloscypha hepaticicola
aggregate—formerly referred to as the Hymenoscyphus
ericae aggregate and the Rhizoscyphus ericae aggregate
(Fehrer et al. 2019), comprising H. gryndleri (Vohnik et al.
2022), H. hepaticicola, and H. variabilis (Vohnik et al.
2013)—and Oidiodendon maius and various Leohumicola
species (Vohnik 2020). Among Basidiomycota, the family
Serendipitaceae in the Sebacinales (formerly Sebacinales
Clade B, encompassing the single genus Serendipita; Weiss
et al. 2016; Vohnik et al. 2016; Selosse et al. 2007) and
several non-sebacinoid fungi (Vohnik et al. 2012; Kolaiik
and Vohnik 2018) have also been defined as ErMF. How-
ever, despite the increasing identification of potential ErMF
worldwide, the dominant perspective on the identity of
ErMF has been focused on the ascomycetous H. hepaticicola
and Oidiodendon maius (Vohnik et al. 2023).

In South America, the information about the identity of
mycorrhizal fungi associated with Ericaceae is very scarce,
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with only 11 out of 33 genera being assessed. Most of the infor-
mation comes from species in the Andean clade (Setaro et al.
2006a) and from Gaultheria spp. in southern South America
(Selosse et al. 2007; Bruzone et al. 2015, 2017; Vohnik et al.
2023). Most identified fungi associating with Ericaceae belong
to Sebacinales. Specifically, studies conducted by Setaro et al.
(20064, b, 2013), Setaro and Kron (2011), and Kottke et al.
(2008) have identified several Serendipitaceae as the principal
mycorrhizal partners in Ericaceae species from tropical moun-
tain forests in Ecuador. Most of these plant species form CVM,
but plants with ErM in the same habitat also showed associa-
tions with Serendipitaceae (Setaro et al. 2006b). Serendipita-
ceae encompasses species that form mycorrhizas with orchids
(Selosse et al. 2022), grow as nonspecific root endophytic taxa
(Selosse et al. 2009; Varma et al. 2012; Riess et al. 2014), and
form mycorrhizal structures in a wide range of Ericaceae hosts
(Selosse et al. 2007; Vohnik et al. 2016; Weiss et al. 2016).

On the other hand, the diversity of ErMF found in south-
ern South America associated with the genus Gaultheria
includes both basidiomycetous and ascomyceouts ErMF.
Using specific primers for Sebacinales, Selosse et al.
(2007) identified Serendipita spp. as mycorrhizal partner
in G. poeppiggi in the Cordoba Mountain Ranges, Argen-
tina. Later, Bruzone et al. (2015) isolated Sebacinales from
Gaultheria spp. roots, but they were not able to isolate H.
hepaticicola, and the authors suggested this prominent ErMF
could be absent in the Southern Hemisphere (Bruzone et al.
2015). However, in a subsequent study Bruzone et al. (2017)
isolated the commonly reported ErMF H. hepaticicola and
H. bicolor. In addition, Geml et al. (2014) detected the pres-
ence of potential ErMF (Helotiales and Sebacinales) in soils
of the subtropical Andean forests (1500-3000 m a. s. L.).
Recently, species of Gaultheria from different ecosystems
in Patagonia revealed a diverse fungal community, includ-
ing various species with uncertain symbiotic status (Vohnik
et al. 2023) strongly different from ErMF from Northern
Bohemia (Central Europe), and strong differentiation among
the investigated Patagonian sites. Particularly, the archetypal
ericaceous mycobionts H. hepaticicola, H. variabilis, and
O. maius were scarce or even absent in most samples from
Patagonia.

In conclusion, whereas Sebacinales are the dominant
mycorrhizal partners of the Andean clade species from
tropical mountains, some archetypal ErMF are common
partners of some Gaultheria spp. in southern South Amer-
ica. Regional differences could be related to different habi-
tats and/or, more likely, to plant preferences of mycorrhi-
zal fungi. However, further research is needed to draw any
conclusion. First, more studies are needed to understand
how the structure of mycorrhizal fungal communities varies
across different environmental conditions within the same
plant species or genera in South America. For example,
Gorzelak et al. (2012) compared the community structure

of ErMF associated with Vaccinium membranaceum along
an elevation gradient in Canada, showing that vegetation
types influence the distribution of mycorrhizal fungi. Simi-
larly, Bougoure et al. (2007) observed differences in fungal
communities associated with Calluna vulgaris among dif-
ferent habitat types, including forest, heathland, and their
transition zone.

The case of the genus Gaultheria

Gaultheria, a genus comprising ca. 130 species, can be
found across various regions including Australia, Asia,
the Indomalaya region, New Zealand, as well as tropical
and temperate regions of the Americas (Middleton 1991).
In South America, Gaultheria has the broadest distribu-
tion within Ericaceae, comprising 57 species ranging from
northern Venezuela to southern Chile (Fig. 2). This genus
is widely distributed in temperate regions, while in tropical
regions it is more confined to high altitudes in the Andes and
in coastal mountain ranges of Brazil.

Probably due to its broad distribution, Gaultheria is the
ericaceous genus with the highest number of publications
regarding mycorrhizal type and fungal identity in South
America (Table 2). These surveys cover a large portion of the
distribution of the genus, including tropical mountain forests
in Ecuador (Setaro et al. 2006a, b), the Paramo in Colombia
(Guerrero 1996; Sarmiento 2020), temperate forests in South-
ern Chile and Argentina (Godoy and Marin 2019; Bruzone
et al. 2015, 2017; Vohnik et al. 2023), and the Cérdoba Moun-
tain Range in Argentina (Urcelay 2002). In these habitats, the
genus Gaultheria exhibits predominantly ErM associations
and associates with Sebacinales and ascomycetous ErMF
(Table 2). While the species sampled in the tropical mountains
of Ecuador associate mostly with Sebacinales (Setaro et al.
2006b, 2013; Setaro and Kron 2011), the species studied
in Argentina showed a wider diversity of archetypal ErMF,
including H. hepaticicola, H. bicolor, and Oidiodendron aff.
maius (Bruzone et al. 2015, 2017; Vohnik et al. 2023). Yet, in
some Gaultheria species, these archetypal ErMF were low in
abundance or absent (Bruzone et al. 2015, 2017), and some
common ErMF from the Northern Hemisphere, H. variabilis
and O. maius, were lacking (Vohnik et al. 2023). Also, some
Gaultheria species from Argentine Patagonia presented highly
diverse fungal communities and a strong spatial differentiation
across relatively short distances (Vohnik et al. 2023). Remarka-
bly, under certain conditions, Gaultheria establishes additional
AM associations (Table 2), e.g., G. poeppigi in Cérdoba Moun-
tain range (Urcelay 2002) or G. myrsinoides in the Paramo
(Guerrero 1996). Moreover, CVM has also been observed
in the roots of Gaultheria in Costa Rica (Rains et al. 2003),
and probably this type of association was what Sarmiento
(2020) reported as ECM in G. anastomosans.
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In general, extreme temperatures occur in these areas, with
very low temperatures during the winter and warm condi-
tions during the summer (Luebert and Pliscoff 2006). Most
of these habitats are characterized by acidic soils, low nutrient
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availability, and high organic matter content, which is a com-
mon environment for most ErM plants (Smith and Read 2008;
Kohout 2017). Accordingly, ErMF has an enzymatic pool simi-
lar to saprophytic soil fungi, which is crucial for nutrient (N
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«Fig. 2 Diversity of habitats of the genus Gaultheria (Ericaceae) in
South America. a Gaultheria poeppiggi in recent volcanic soils in
Conguillio National Park, within the temperate Andes of south-cen-
tral Chile (photo by Nicolas Arcos). b G. poeppiggi in shrublands
within the Cordoba Mountain Range, located in central Argentina
(photo by Carlos Urcelay). ¢ G. pumila in the high Andean steppe of
Catedral Mountain, near Bariloche, in Argentine Patagonia (photo by
Natalia Fernandez). d G. pumila growing in Sphagnum sp. bogs on
Navarino Island, within the extreme southern Magellan and Chilean
Antarctica Region (photo by Felipe Osorio). e G. reticulata growing
in tropical mountain forests in Loja, Ecuador (photo by Maria Cris-
tina Cérdova). f G. anastomosans in the Paramos of Chingaza, in the
Cundinamarca Department, Colombia (photo by Universidad de Los
Andes, Colombia). g G. eriophylla in the Atlantic Forest of Petropo-
lis, Rio de Janeiro, Brazil (photo by Joey Santoro)

and P) mobilization from recalcitrant organic sources (Martino
et al. 2018). This may explain the presence of Gaultheria in
habitats with soil rich in organic matter in South America. Nev-
ertheless, Gaultheria also occurs in soils derived from recent
volcanic depositions in temperate Andes (Bruzone et al. 2017,
Muiioz et al. 2021) that contain extremely low organic matter,
mainly associated with pioneer species such as Berberis sp.
(Berberidaceae), Orites myrtoidea (Proteaceae), and Acaena
antarctica (Rosaceae). Further research is needed to understand
the role of ErMF in these soils; however, one possible ben-
efit obtained from these fungi could be related to resistance to
high levels of available metals, especially aluminum, in the soil

Table 2 Mycorrhizal type and mycorrhizal fungal diversity of Gaultheria species from South America. ErM Ericoid mycorrhiza, AM Arbuscular

mycorrhiza, EM Ectomycorrhiza

Accepted name Original name Country  Biome Mycorrhizal type Mycorrhizal diversity Reference
observed
Gaultheria anasto- Gaultheria anasto- Colombia Paramo ErM, EM Not evaluated Sarmiento 2020

mosans mosans
Gaultheria antarc- Gaultheria antarc-

tica tica

Argentina Temperate rainforest ErM

H. hepaticicola Hya- Vohnik et al. 2023
loscypha sp.
Helotiales spp.

Sebacinales spp.

Gaultheria caespi- Gaultheria caespi-  Chile Temperate rainforest ErM Not evaluated Godoy and
tosa tosa Marin 2019
Gaultheria caespi- Pernettya minima Chile Temperate rainforest ErM Not evaluated Godoy et al. 1994

tosa

Gaultheria caespi- Gaultheria caespi-
tosa tosa

Gaultheria caespi- Gaultheria caespi-
tosa tosa

Argentina Temperate rainforest ErM

Argentina Temperate rainforest ErM

H. hepaticicola Bruzone et al. 2017

H. bicolor

H. hepaticicola Hya-
loscypha sp.

Helotiales spp.

Sebacinales spp.

Vohnik et al. 2023

Gaultheria erecta Gaultheria erecta Ecuador  Tropical mountain EM Sebacinales Kottke et al. 2008
rainforest
Gaultheria erecta Gaultheria erecta Ecuador  Tropical mountain EM Not evaluated Setaro et al. 2006b
rainforest
Gaultheria erecta Gaultheria erecta Ecuador  Tropical mountain ErtM Sebacinales Setaro et al. 2012,
rainforest 2013
Gaultheria erecta Gaultheria erecta Ecuador  Tropical mountain ErM Sebacinales Kottke et al. 2008;
rainforest Setaro et al.
2006b, 2013
Gaultheria foliolosa  Gaultheria bolivari ~ Colombia Paramo EM Not evaluated Sarmiento 2020
Gaultheria insana Gaultheria insana Chile Temperate rainforest ErM Not evaluated Godoy and Marin
2019
Gaultheria mucro- Gaultheria mucro-  Chile Temperate rainforest ErM Not evaluated Godoy and Marin
nata nata 2019

Gaultheria mucro-
nata

Gaultheria mucro- Gaultheria mucro-
nata nata

Gaultheria mucro-
nata

Pernettya mucronata Chile

Pernettya mucronata Argentina Temperate rainforest ErM

Argentina Temperate rainforest ErM

Temperate rainforest ErM

Not evaluated Fontenla et al. 1998

Hyaloscypha sp. Bruzone et al. 2015
Helotiales spp.
Sebacinales (amplifi-

cated with specific

primers)

Not evaluated Godoy et al. 1994
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Table 2 (continued)

Accepted name Original name Country  Biome Mycorrhizal type Mycorrhizal diversity Reference
observed
Gaultheria mucro- Gaultheria mucro-  Argentina Temperate rainforest ErM H. hepaticicola, Vohnik et al. 2023
nata nata Hyaloscypha sp.
Helotiales spp.
Sebacinales spp.
Gaultheria myrsi- Pernettya prostrata Ecuador  Tropical mountain EM Not evaluated Setaro et al. 2006b
noides rainforest
Gaultheria myrsi- Pernettya prostrata  Colombia Paramo ErM, AM Not evaluated Guerrero 1996
noides
Gaultheria myr- Gaultheria myr- Chile Temperate rainforest ErM Not evaluated Godoy and Marin
tilloides tilloides 2019
Gaultheria phillyrei- Gaultheria phillyrei- Chile Temperate rainforest ErM Not evaluated Godoy et al. 1994,
folia folia Godoy and Marin
2019
Gaultheria phillyrei- Gaultheria phillyrei- Argentina Temperate rainforest ErM Helotiales spp. Vohnik et al. 2023
folia folia Sebacinales spp.
Gaultheria phyllirei-  Gaultheria phyl- Chile Temperate rainforest ErM Not evaluated Castillo et al. 2006
folia lireifolia
Gaultheria poeppigii  Gaultheria poeppigii Argentina Cdrdoba Mountain AM Not evaluated Menoyo et al. 2007
range
Gaultheria poeppigii  Gaultheria poeppigii Chile Temperate rainforest ErM Not evaluated Godoy and Marin
2019
Gaultheria poeppigii  Gaultheria poeppigii Argentina Coérdoba Mountain ~ ErM, AM Not evaluated Urcelay 2002
range
Gaultheria poeppigii  Gaultheria poeppigii Argentina Coérdoba Mountain ~ ErM Sebacinales Selosse et al. 2007
range
Gaultheria poeppigii  Gaultheria poeppigii Argentina Temperate rainforest ErM Oidiodendron cf. Bruzone et al. 2015
maius Helotiales
Spp.
Hyaloscypha spp.
(amplificated with
specific primers)
Sebacinales spp.
(amplificated with
specific primers)
Gaultheria poeppigii  Gaultheria poeppigii Argentina Temperate rainforest ErM H. hepaticicola Hya- Vohnik et al. 2023
loscypha sp.
Helotiales sp.
Sebacinales spp.
Gaultheria pumila Gaultheria pumila Chile Temperate rainforest ErM Not evaluated Godoy and Marin
2019
Gaultheria pumila Gaultheria pumila Chile Temperate rainforest ErM Not evaluated Carrillo et al. 2015
Gaultheria pumila Gaultheria pumila Argentina Temperate rainforest ErM H. hepaticicola Bruzone et al. 2017
Helotiales spp.
Gaultheria pumila Pernettya pumila Chile Temperate rainforest ErM Not evaluated Godoy et al. 1994
var. Leucocarpa
Gaultheria reticulata  Gaultheria reticulata Ecuador  Tropical mountain ErM Sebacinales Setaro et al. 2012,
rainforest 2013
Gaultheria rigida Gaultheria rigida Colombia Paramo ErM Not evaluated Sarmiento 2020
Gaultheria tomen- Gaultheria tomen- Ecuador  Tropical mountain EtM Not evaluated Setaro et al. 2006b

tosa

tosa

rainforest

solution (Oliva et al. 2012; Daghino et al. 2016). Because of its
broad distribution in South America and globally, and due to
its probable capacity to establish different types of mycorrhizal
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associations, Gaultheria offers an excellent model to study
which environmental factors promote the establishment of one
or more mycorrhizal types.
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Discussion

ErM is the least studied type of mycorrhizal association
(Vohnik 2020). Furthermore, the understanding of the
evolution and ecology of mycorrhizal associations within
the Ericaceae family, which encompasses AM, ectendo-
mycorrhizas (including arbutoid, monotropoid, and cav-
endishioid mycorrhizas), and ErM, still lacks a detailed
understanding, even though broad models exist at higher
phylogenetic levels (Lallemand et al. 2016; Freudenstein
et al. 2016). This family is very intriguing in terms of
the fast evolution and diversification of its mycorrhi-
zal associations, about which many dogmas need to be
revisited (Albornoz et al. 2021), particularly since cur-
rent knowledge is predominantly derived from temperate
habitats in the Northern Hemisphere. Here we compiled
all available scientific information about South Ameri-
can Ericaceae mycorrhizal types and mycorrhizal fungal
diversity, revealing a significant lack of studies concerning
ErM in this region, particularly within 15 out of the 33
local genera. The fact that ErM mycorrhizas are under-
studied in South America has been acknowledged in pre-
vious publications (Kohout 2017; Albornoz et al. 2021;
Vohnik 2020). However, our study represents the first
empirical attempt to quantify this information gap. Our
findings align with a similar lack of information for ErM
reported for other non-European regions, such as Africa,
Central Asia, and Oceania (Soudzilovskaia et al. 2020).
Nevertheless, the existing data of mycorrhizal associa-
tions in South American Ericaceae about ErM helps to
contrast some affirmations that can be found in current
mycorrhizal literature, which can be summarized in the
following: (1) “ErM plants mostly occur in cold tundra and
boreal habitats” (Tedersoo et al. 2020). Because ErM plants
are important components of vegetation in these biomes
(Kohout 2017), it has been assumed that they are the typi-
cal habitats for ErM plants at the global scale. However,
here we showed that ErM plant species exhibit remarkable
diversity in tropical habitats in South America. Globally,
the highest richness of Ericaceae occurs in tropical and
subtropical regions of the Southern Hemisphere, where
several species-rich genera are associated with mountain
ranges, such as Rhododendron in New Guinea Highlands,
Vaccinium in the Andes, and Erica in the Cape Floristic
Region in South Africa (Kohout 2017; Schwery et al.
2015). Further studies are needed to expand our knowl-
edge on the functioning of ErM in these habitats. (2)
“ErM plants are predominantly shrubs” (Soudzilovskaia
et al. 2020). Given that ErM research has focused mainly
on shrubs from the Northern Hemisphere, ErM literature
supports a prevailing notion that ErM hosts are mostly
shrubs. Contrary, ErM plant species in South America

display various life forms, from small shrubs to trees,
including different types of epiphytes. However, the func-
tioning of ErM symbiosis across plants with different life
forms has not been assessed yet. (3) “Subfamilies from the
EAI clade form exclusively ErM” (Lallemand et al. 2016).
While these subfamilies of Ericaceae have been regarded
as exclusively ErM, evidence in South America suggests
a high degree of flexibility in terms of their mycorrhizal
types, including species that establish both AM and ErM
associations. However, further research is needed to assess
the functionality of these AM associations.

In conclusion, we showed that including regions that
have been historically less studied contributes to broad-
ening of the generalized understanding of ericoid mycor-
rhiza. We hope that this approach will inspire researchers
from South America and other regions where ErM sym-
biosis remains largely unexplored, i.e., the Amazon basin
and Guiana Highlands in South America (Fig. S1) and the
Cape Floristic Region in South Africa. Additionally, we
have highlighted the value of studying globally distributed
genera, such as Gaultheria, to expand our understanding
of biogeographic patterns of ErM. All these efforts will
improve our understanding of fungal symbioses within
what is arguably the most complex plant family in terms of
mycorrhizal associations.
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