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Abstract
Arbuscular mycorrhizal fungi (AMF) are essential components of the plant root mycobiome and are found in approximately 
80% of land plants. As obligate plant symbionts, AMF harbor their own microbiota, both inside and outside the plant root 
system. AMF-associated bacteria (AAB) possess various functional traits, including nitrogen fixation, organic and inorganic 
phosphate mobilization, growth hormone production, biofilm production, enzymatic capabilities, and biocontrol against 
pathogen attacks, which not only contribute to the health of the arbuscular mycorrhizal symbiosis but also promote plant 
growth. Because of this, there is increasing interest in the diversity, functioning, and mechanisms that underlie the complex 
interactions between AMF, AAB, and plant hosts. This review critically examines AMF-associated bacteria, focusing on 
AAB diversity, the factors driving richness and community composition of these bacteria across various ecosystems, along 
with the physical, chemical, and biological connections that enable AMF to select and recruit beneficial bacterial symbionts 
on and within their structures and hyphospheres. Additionally, potential applications of these bacteria in agriculture are 
discussed, emphasizing the potential importance of AMF fungal highways in engineering plant rhizosphere and endophyte 
bacteria communities, and the importance of a functional core of AAB taxa as a promising tool to improve plant and soil 
productivity. Thus, AMF and their highly diverse bacterial taxa represent important tools that could be efficiently explored 
in sustainable agriculture, carbon sequestration, and reduction of greenhouse gas emissions related to nitrogen fertilizer 
applications. Nevertheless, future studies adopting integrated multidisciplinary approaches are crucial to better understand 
AAB functional diversity and the mechanisms that govern these tripartite relationships.

Keywords  Bacterial-fungal interactions · Hyphosphere · Tripartite interactions · Core microbiome · Plant growth–
promoting bacteria · Sustainable agriculture

Introduction

Microbes and higher organisms closely coexist, forming 
beneficial, neutral, and antagonistic relationships. The plant 
microbiome consists of a variety of microorganisms, includ-
ing archaea, bacteria, and fungi, which inhabit different plant 
niches, such as the rhizosphere (soil around roots affected 
by root exudates), rhizoplane (root surfaces), endosphere 

(root interior), and phyllosphere (aboveground parts) 
(Fig. 1). Plants and microorganisms depend on one another 
to maintain their ecological fitness and ability to adapt to 
environmental changes and have been considered holobi-
onts (Parniske 2008; Zilber-Rosenberg and Rosenberg 2008; 
Vandenkoornhuyse et al. 2015; Lee et al. 2019). Arbuscular 
mycorrhizal fungi (AMF), which colonize approximately 
80% of plants, form the oldest known symbiosis and help 
plants to adapt to their land environment (Parniske 2008; 
Bonfante and Genre 2010).

Arbuscular mycorrhizal (AM) symbiosis is established 
upon a nutrient economy in which host plants dedicate a 
portion of their photosynthates to feed AMF colonizing 
their roots in exchange for mineral nutrients, especially 
phosphorus and nitrogen. These are supplied through the 
extraradical hyphae, which serve as an extension of the 
root system to form an alternative route for nutrient uptake 
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called the mycorrhizal pathway (Smith and Read 2008; 
van der Heijden et al. 2015; Diagne et al. 2020). AMF also 
enhance plant resilience under abiotic stresses such as salin-
ity, drought, extreme climate events like heat, elevated CO2, 
and biotic stress involving bacterial and fungal pathogens 
(van der Heijden et al. 2015).

Arbuscular mycorrhizal fungi bridge between the plant 
root internal environment and the surrounding soil, extend-
ing beyond the root’s influence zone, and at the same time 
interacting with diverse microbial communities along this 
continuum of the soil-root system. After successful root  
colonization, the extra-radical mycelium in the rhizosphere 
not only creates a new biotope  that serves as an ecological hot-
spot for microbial interactions but also exerts tremendous  
impacts on the assembly and structure of the rhizosphere 
microbial community. While the rhizosphere microbiome is  
primarily affected by the roots, the hyphosphere microbiome 
—the microbial community thriving in the soil region sur-
rounding the hyphae—is largely influenced by the AMF. 
The hyphosphere is a sub-region of the mycorrhizosphere, 
which encompasses the entire soil region occupied by 
mycorrhizal roots, as opposed to the rhizosphere, which 
refers to the soil region surrounding non-mycorrhizal roots  
(Priyadharsini et  al. 2016; Wang et  al. 2022a). The  
AMF hyphosphere consists of the hyphal surface (hyphop-
lane) and the surrounding soil spanning from 0 to 2 mm 
from the hyphal surface and extending as much as 120 mm  
from the root surface (Fig. 1B), and reaching depths of up 
to 1 m beneath the soil surface (Priyadharsini et al. 2016;  
Wang et al. 2022a).

Several bacterial communities interact directly or indi-
rectly with AMF in the hyphosphere, with many of them 
serving as helpers or bioenhancers  to AM symbiosis. The 
hyphosphere microbiome possesses several functional 
traits, such as organic phosphate (e.g., phytate) and inor-
ganic phosphate mineralization, phytohormone production, 
nitrogen fixation, and pathogen suppression (Frey-Klett 
et al. 2007; Taktek et al. 2015, 2017; Zhang et al. 2016; 
Sangwan and Prasanna 2021). Understanding the physical, 
chemical, and biological interplay occurring at this biotope 
is essential to decipher the various mechanisms underlying 
soil-related functions performed by AMF, such as nutrient 
cycling, carbon sequestration and turnover, soil micro- and 

macro-aggregation and weathering, and nitrous oxide emis-
sion mitigation (Okiobe et al. 2022; Wang et al. 2022a, b, c). 
In addition to the hyphosphere microbiome, a large variety 
of bacterial species thrives directly upon or within fungal 
structures, such as spores, intraradical mycelium, and vesi-
cles. Recently, Zhang et al. (2021) reviewed the hyphos-
phere microbiome, emphasizing the important role played 
by AMF chemical exudates in bacterial recruitment and 
how these bacteria can influence AMF fitness through the 
mediation of nutrient cycling, especially organic nutrient 
mobilization. Knowledge about AMF-associated bacteria is 
still fragmented, however, despite the growing recognition 
of their crucial role in AM symbiosis. Fortunately, advances 
in high throughput sequencing technologies, including next- 
and third-generation sequencing, have enabled scientists 
to execute state-of-the-art experimental designs that have 
allowed exploration of the metagenome, metatranscriptome, 
metaproteome, and metabolome of the three components 
(plants, fungi, bacteria) of AM symbioses, revealing key 
molecular signatures that underpin host-symbiont interac-
tions. Essentially, several ecosystem services rendered by 
AMF are orchestrated by the AMF microbiome acting as 
a “second genome” (Turrini et al. 2018; Giovannini et al. 
2020; Zhang et al. 2021).

This review critically appraises the diversity of AMF-
associated bacteria (AAB), focusing on how these bacteria 
have been studied and characterized across different AMF 
species and ecosystems. We highlight the physical and eco-
logical interplay occurring between AAB and AMF across 
various fungal microniches and discuss the various factors 
influencing AAB community composition, structure, and 
function. Furthermore, we provide insights into the poten-
tial application of these bacteria in agriculture and how the 
functional diversity of the AMF-associated bacteria together 
with AM fungal highways could be used to engineer the 
plant microbiome for improved ecosystem services.

Diversity of AMF‑associated bacteria

Arbuscular mycorrhizal fungal structures, such as spores, 
sporocarps, extra- and intra-radical hyphae, and vesicles, 
are home to a large and diverse population of bacterial spe-
cies, ranging from 2.5 to 6.1 × 106 CFU/ml (Agnolucci et al. 
2019). These fungal-bacterial interactions differ in both 
strength and specificity; bacteria can loosely or strictly col-
onize fungal surfaces or cytoplasm as either facultative or 
obligate symbionts. The biology of obligate endobacteria 
has been studied in detail. Obligate bacterial endosymbionts 
colonize AMF cytoplasm or intracellular structures such as 
vacuoles and belong to either Burkholderiaceae (Proteobac-
teria) or Mycoplasmataceae (Tenericutes) (Araldi-Brondolo 
et al. 2017; Arora and Riyaz-Ul-Hassan 2019). Because 

Fig. 1   A Presents an overview of the multipartite interactions between 
plant roots, the rhizosphere, arbuscular mycorrhizal fungi (AMF), and 
the bacteria living both inside and outside of AMF spores and myce-
lium. Endofungal bacteria can be found residing within spores and 
hyphae, while mycorrhizal helper bacteria are borne on spore and 
hyphal surfaces within the mycorrhizosphere and hyphosphere. B Is a 
closeup of the microbial habitats that can be found on AMF spores and 
hyphae both in the soil and root cortex. B Also shows the rhizosphere, 
rhizoplane, endosphere, mycorrhizosphere, and hyphosphere biotopes

◂
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obligate endobacteria are biotrophic and rely on their hosts 
for carbon, nitrogen (amino acids, nucleic acids, and vita-
mins), and phosphorus, they are difficult to study in vitro 
(Jargeat et al. 2004; Lumini et al. 2007; Alabid et al. 2019). 
Although, multiple OMICS studies involving metagenom-
ics, metatranscriptomics, and metabolomics have revealed 
important details about the influence of obligate endobac-
terial symbionts on hosts’ pre- and post-symbiotic lifestyles 
(Dearth et al. 2018; Venice et al. 2020a, b; Kuga et al. 2021;  
Venice et  al. 2021), the possible roles in plant growth  
remain unclear.

In contrast, the bulk of AMF-associated bacteria is non-
obligate biotrophs and can be cultivated without fungus 
hosts, although a sizeable proportion remains uncultivable in  
standard media. Several studies have demonstrated through 
in vitro culture and a functional assay that these bacteria 
play an important role in AM symbiosis that confers fitness  
advantages to both fungi and plants. Beneficial traits such 
as nitrogen fixation, phosphate solubilization, growth hor-
mone production, and biocontrol against plant pathogens are 
among the several traits positioning this category of AMF- 
associated bacteria as a third component of the tripartite 
symbiosis (Bonfante and Anca 2009). Thus, understanding  
the factors that influence these functions as well as the bases  
of AMF interactions with these diverse bacterial groups may  
be crucial for the successful deployment of AMF bioinocu-
lants in agroecosystems (Gopal et al. 2012; Basiru et al. 
2021). In vitro co-culturing of AMF in transformed roots 
which allows artificial recreation of tripartite symbiosis has 
been instrumental to studying resource flows (from plant to 
AMF and vice versa), and how these resources are deployed 
in recruiting beneficial bacteria microbiomes (St-Arnaud 
et al. 1996; Zhang et al. 2018a, b; Pandit et al. 2022b). By 
coupling in vitro bicompartmental cultivation techniques 
with advanced microscopy, such as transmission and scan-
ning electron microscopy as well as high-resolution second-
ary ion mass spectrometry, a great deal of information can be  
revealed concerning AAB colonization and interaction with 
spores and hyphal structures. AMF-associated bacteria may 
appear as single cells, aggregates, or biofilms (Roesti et al. 
2005; Cruz and Ishii 2012; Iffis et al. 2016; Steffan et al. 
2020; Pandit et al. 2022a, b). Recently, Pandit et al. (2022a) 
demonstrated that in  vitro-propagated AMF mycelium  
harbors a wider variety of cultivable exo- and endobacteria 
than in situ cultures in pots. Of the 109 bacterial isolates cul-
tivated, 69 were identified as ectobacteria, while 40 isolates  
were endobacteria.

Many studies have investigated AMF-associated bacteria 
but often reported only a few cultivable strains with certain 
functional traits. To assess the  diversity of AAB, we examined 
15 studies containing data on the diversity of bacteria hosted by 
AMF structures. Table 1 summarizes the different AMF types  
and their associated bacterial taxa, as well as the method used  

to identify these species. Most studies used crude DNA extracts  
to identify bacterial taxa, while a few used cultivation methods,  
and two employed both approaches (Fig. 2A). Among these 
studies, profiling techniques were the most common, such as 
polymerase chain reaction-denaturing gradient gel electropho-
resis (PCR-DGGE), BOX-PCR, and fatty acid methyl ester  
(FAME). Four studies utilized next-generation sequencing 
(Fig. 2B). Nine phyla (Proteobacteria, Firmicutes, Actino-
bacteria, Bacteroidetes, Cyanobacteria, Plantomycetes, Ver-
rucomicrobia, Acidobacteria, and Chloroflexi) comprised  
about 95% of all genera of AAB reported (Fig. 2C). The 15 
genera most frequently mentioned across all studies were 
Bacillus, Pseudomonas, Sphingomonas, Paenibacillus,  
Arthrobacter, Rhizobium, Streptomyces, Variovorax, Lyso-
bacter, Achromobacter, Burkholderia, Chryseobacterium,  
Leifsonia, Massilia, and Microbacterium, occurring in at  
least five studies (Supplementary Table S1).

As expected, high-throughput sequencing identified 
numerous taxa compared to profiling methods, although a 
significant portion of those bacteria is uncultured, belonging  
to candidate phyla (microbial dark matter) (Agnolucci et al. 
2019; Emmett et al. 2021). Discrepancies in the number of 
taxa identified also could be attributed to the methods used  
to prepare fungal propagules before bacterial culture or DNA  
extraction. Typically, AMF propagules are cleaned with ster-
ile water or disinfectants such as 5% chloramine-T (Walley  
and Germida 1995) or supplied with antibiotics such as strep-
tomycin and chloramphenicol to remove spore wall-dwelling  
bacteria, leaving presumably endobacteria (Xavier and 
Germida 2003; Budi et al. 2013). To isolate endobacteria, 
cultivation in growth media is necessary to ascertain that 
there has been complete removal of the surface-dwelling bac-
teria and to avoid confusion regarding the niches of AAB 
as either exo- or endo-bacteria. For example, Bacillus sp. 
(KTCIGM01), Bacillus thuringiensis (KTCIGM02), and 
Paenibacillus rhizosphere (KTCIGM03) were reported as 
“probable” endobacteria because of a lack of definitive evi-
dence supporting endofungal colonization (Cruz and Ishii 
2012). The choice of culture media is another possible source  
of bias because different media could lead to the cultivation of  
different bacterial isolates. For example, Xavier and Germida  
(2003) reported that yeast extract agar and water agar sup-
ported the growth of a few bacteria, while tryptic soy agar, 
nutrient agar, and Luria–Bertani agar supported diverse 
bacterial communities. Instructively, the combinations of 
multiple growth media, culture conditions, atmospheres, 
and times of incubation have improved the recoverability of 
human gut bacterial species by 50% (Sarhan et al. 2019). 
High-throughput culture approaches such as culturomics rely 
on a diversity of culture media coupled with varied environ-
mental conditions and prolonged incubation periods in order 
to increase the recovery of cultivable AAB. This approach 
also is gaining ground in plant microbiome studies, for which 
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natural culture media based on plants and their inhabiting 
microbes in the form of juices, saps and/or dehydrated pow-
ders, and pellets have improved recovery and isolation of the 
plant microbiomes that once were considered microbial dark 
matter (Sarhan et al. 2018, 2019).

Factors driving the community composition 
of AMF‑associated bacteria

Substrate conditions

The soil comprises the microbial “seed bank” for the recruit-
ment of the plant root microbiome and constitutes a major 
factor influencing the community assembly and functions 
of the bacterial communities associated with both plant 
roots and AMF mycelia (Vandenkoornhuyse et al. 2015; 
Goldmann et al. 2020; Yuan et al. 2021). Although obligate 
endobacteria are inherited or acquired through vertical or 
horizontal transmissions (Anca et al. 2009; Di Fossalunga 
et al. 2017), most AMF-associated bacteria are recruited 
from the soil microbial reservoir; therefore, both taxonomic 
and functional diversity may be influenced by soil type and 
physicochemical properties. The composition and struc-
ture of the plant microbiome can be affected especially by  

soil conditions, particularly under stress conditions such as  
low P-availability (Bulgarelli et al. 2022). AMF commu-
nity composition  are  influenced by soil physicochemi-
cal properties (i.e., moisture condition, pH, salinity, and  
contamination concentrations), agricultural practices, and 
geography (Davison et al. 2015; Sturmer et al. 2018; Higo 
et al. 2020; Yang et al. 2021a). Similarly, AMF-associated 
bacterial community composition is affected by the sub-
strate in which AMF are propagated (Bharadwaj et al. 2008;  
Long et al. 2017; Zhang et al. 2018a; Emmett et al. 2021). 
It was reported, for example, that AMF-associated bacteria 
harbored by Gigaspora margarita spores differed among 
three substrate types, i.e., sand, soil, and vermiculite, or a 
mixture employed for AMF production (Long et al. 2017).

The functional diversity of AAB could reflect prevailing  
conditions of the substrate, with AMF selecting bacterial  
strains able to degrade certain contaminants or facilitate 
tolerance of an abiotic stress (Sato et al. 2019; Wang et al. 
2022a). Massilia sp. RK4 isolated from saline coastal  
reclamation land increased maize plant growth and allevi-
ated salinity stress by reducing plant proline concentration 
(Krishnamoorthy et al. 2016). Similarly, Selvakumar et al. 
(2018) found that AAB isolated from a salt-affected rec-
lamation area displayed improved salinity tolerance in a 
corn field trial in which co-inoculation with Pseudomonas 

Fig. 2   A and B Provide insight into the different approaches and methods applied to genotype AMF-associated bacteria in diverse studies, while 
C displays the percentage breakdown of AMF-associated bacterial genera within each phylum
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koreensis, Gigaspora margarita, and Claroideoglomus 
lamellosum resulted in increased corn dry weight and ele-
vated nutrient concentrations (N, P, K, Ca, Mg, and Na)  
in shoots and roots at all levels. The combined treatment 
of AMF and bacterial symbionts decreased proline and  
stimulated the genes involved in sodium and potassium 
homeostasis ((Selvakumar et al. 2018). High petroleum 
hydrocarbon contaminants shifted the community com-
position of spore-associated bacteria to favor Actinobac-
teria species, such as Streptomyces, which are tolerant to  
high contaminant concentrations, while Proteobacteria 
species (mainly Pseudomonas) that are less tolerant to  
petroleum hydrocarbon contaminants were enriched at  
lower contaminant concentrations (Iffis et al. 2016, 2017).

Plant identity

The plant rhizosphere is the first micro-environment 
encountered by soil microorganisms including AMF, and 
it can act as a microbial filter in which competition occurs 
(Vandenkoornhuyse et al. 2015). For example, crosstalk 
between AMF and potential plant hosts before symbiosis is 
mediated by diffusible compounds, such as strigolactones 
originating from the plant, and Myc factors secreted by pres-
ymbiotic mycelia (Genre et al. 2005; Bonfante and Genre 
2010). Breakdowns in this crosstalk result in the failure of 
the colonization process. Similarly, plants can influence the 
assembly of their root microbiota through root exudates, 
comprising a cocktail of chemical substances such as sug-
ars, amino acids, and other organic compounds which serve 
as nutrients, signals, growth hormones, and inhibitors that 
allow plant roots to coordinate a deterministic assembly of 
the plant root microbiome (Beckers et al. 2017; Stringlis 
et al. 2018; Huang et al. 2019). For example, differential 
resource allocation to AMF species co-colonizing the same 
plant roots has been reported regarding Funneliformis 
mosseae and Claroideoglumus claroideum; under drought 
conditions, the former received more carbon from the host 
plant than C. claroideum (Forczek et al. 2022). Thus, it is 
expected that plant identity exerts a stronger influence on 
community assembly of the root microbiome both in the 
soil and inside roots than do soil chemical properties, such 
as mineral nutrients or contaminant concentrations (Dagher 
et al. 2019; Bulgarelli et al. 2022). The influence of plant 
identity on the rhizosphere microbiome also extends to 
AMF-associated bacteria. Long et al. (2008) reported that 
Gigaspora margarita propagated colonizing tobacco and 
alfalfa roots under the same soil conditions harbored dis-
tinct AAB communities. The Shannon diversity indices of 
the bacterial operational taxonomic units (OTUs) inhabiting 
AMF spores obtained from the rhizosphere of three plant 
species were affected by plant species: Lycopus europaeus 

and Populus balsamifera supported a greater diversity of 
AAB than Solidago canadensis (Iffis et al. 2016).

Interactions between substrate and plant host identity also 
could play an important role in AMF-associated bacterial 
assembly and composition. Different root exudation pat-
terns expressed by distinct plant genotypes can influence 
the composition of AMF-associated bacteria under differ-
ent plant-substrate conditions. Nevertheless, the substrate 
may be most influential in the absence of roots, especially 
in the bulk soil colonized by extraradical hyphae. Accord-
ing to a report by Floc'h et al. (2022), Funneliformis mos-
seae and Rhizophagus iranicus found in a field of canola—
a non-mycorrhizal plant—shared 90% similar bacterial 
cohorts dominated by Vicinamibacteraceae after 10 years 
of canola monocropping. In this case, the host of the AMF 
was unknown since canola is not mycotrophic, and it also is 
unclear whether the bacteria were harbored on fungal struc-
tures or just thriving in their proximity. It was hypothesized 
that these bacteria could have contributed to the survival 
of associated AMF in the absence of a mycotrophic plant 
by supplying carbon compounds to the fungi through the 
decomposition of soil organic matter. Additionally, studies 
by Emmett et al. (2021) concluded that R. irregularis and R. 
clarus shared similar bacterial profiles on their extraradical 
hyphae that reflect host-symbiont adaptation to the physico-
chemical conditions of the substrate, but not fertilization.

AMF identity

Host genetic identity is a strong driver of microbial commu-
nity composition in diverse hosts and different ecosystems 
(Dal Grande et al. 2018; Kivlin et al. 2019; Dove Nicholas 
et al. 2021; Smee et al. 2021). Although AMF physiology 
and functions vary between extraradical and intraradical 
components, the genetic identity of AMF nevertheless is 
expected to play an important role in the assembly of AMF-
associated bacterial communities. Considering that AMF-
bacterial interaction involves different fungal structures, 
i.e., spores and extraradical hyphae occupying multiple 
biotopes along the soil-root continuum, the effect of host 
identity on the assembly of microbial communities along 
the dynamics of these niches and biotopes can differ, just as 
the specificity of the interactions. Multiple lines of evidence 
indicate that spore identity is a stronger predictor of spore-
associated bacteria than plant and substrate types. Using 
denaturing gradient gel electrophoresis (DGGE) profiling 
and 16S rDNA sequencing to study the AMF-associated 
bacterial community harbored by spores of six AMF spe-
cies cultured for 15 years with the same substrate and envi-
ronmental conditions, Agnolucci et al. (2015) reported that 
AMF identity explained 50% of the variation observed in 
AAB community composition. Furthermore, in a petroleum 
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hydrocarbons contaminated site, Iffis et al. (2016) found that 
AMF identity which explained up to 13.3% of the variation 
observed in the spore-associated bacterial community com-
position was more influential than both plant identity (7.4%) 
and contaminant level (6.7%). The composition of 385 AAB 
isolates harbored on the spores of Rhizophagus intraradices 
and Funneliformis mosseae colonizing Festuca ovina and 
Leucanthemum vulgare were largely influenced by AMF 
identity compared with plant identity despite significant 
interactions between both factors (Bharadwaj et al. 2008). 
Bacterial 16S rDNA genotyping also revealed significant 
differences in the diversity of AAB harbored by in vitro root 
organ cultures of Septoglomus deserticola and Rhizophagus 
irregularis, with the former having just 11 OTUs that were 
far less than the 115 OTUs hosted by R. irregularis (Pandit 
et al. 2022a).

The abundance and community composition of AMF-
associated bacteria can be influenced by the size, morphol-
ogy, and chemical composition of the spore wall. AMF spore 
wall structures typically consist of two or three layers, with 
the outer hyaline layer and, to some extent, the inner lami-
nated layer providing a preferred habitat for several exo-
bacterial symbionts (Maia and Kimbrough 1998; Roesti 
et al. 2005). The outer layer is believed to be particularly 
attractive to bacteria, owing to its high chitin concentra-
tion which provides a rich source of carbon and nitrogen 
to bacterial colonizers. This layer may be absent in old or 
mature spores, however, or otherwise replaced with muci-
laginous substances resulting in a low diversity of bacteria 
in old spores (Ames et al. 1989; Sbrana et al. 1995; Filippi 
et al. 1998; Maia and Kimbrough 1998; Roesti et al. 2005). 
Additionally, large spores tend to host more abundant AAB 
than small spores, as evidenced by Racocetra alborosea, 
whose large spore size (400 µm) compared to Funneliformis 
caledonium and F. mosseae’s smaller sizes resulted in abun-
dant spore-associated bacteria. AMF extraradical mycelium 
also releases exudates consisting of various chemical groups 
including amino acids, amines, nucleic acids, and organic 
acids among other compounds, which can serve as effec-
tors, chemo-attractants, and carbon sources, thereby ena-
bling AMF to filter bacteria interacting with them (Filion 
et al. 1999; Toljander et al. 2007; Scheublin et al. 2010; 
Gahan and Schmalenberger 2015; Luthfiana et al. 2021; 
Zhang et al. 2021). Plant secondary metabolites transported 
by AMF also are known to affect the composition and abun-
dance of the hyphal bacterial community in the bulk soil 
(Babikova et al. 2013; Duhamel et al. 2013). The quality and 
quantity of extraradical mycelial exudates can vary signifi-
cantly according to different AMF types and plant hosts, as 
well as substrate conditions which allow each AMF type to 
interact in a distinct way with the soil bacterial community 
(Filion et al. 1999; Kaiser et al. 2015; Zhou et al. 2020; 
Luthfiana et al. 2021).

Although a large portion of the variation in the com-
munity composition of AMF-associated bacteria can  
be  explained by AMF identity, AMF genotypes within  
the same genus or species can harbor distinct AAB com-
munities unrelated to their taxonomic position (Lecomte 
et al. 2011; Selvakumar et al. 2016). AMF taxa growing in 
long-term pot culture under the same substrate and envi-
ronmental conditions harbored distinct AAB assemblages 
(Agnolucci et al. 2015). While the composition of AAB 
harbored by Funneliformis mosseae AZ225C clustered with 
that of Rhizophagus intraradices IMA6 by only 45%; two 
conspecific isolates of F. mosseae, i.e., AZ225C and IMA1, 
displayed drastic heterogeneity (Agnolucci et al. 2015). Two 
conspecific isolates of Rhizophagus irregularis, i.e., MUCL 
41,833 and 43,914, also responded differently to phosphorus 
stress (Wang et al. 2022b).  Whereas R. irregularis MUCL 
41833 produced a greater density of extraradical hyphae and 
increased the expression of phosphate transporter genes in 
response to low P availability;  isolate 43914 recruited an 
abundant alkaline phosphatase-expressing Betaroteobacte-
riaceae community that mediated organic matter mineraliza-
tion, releasing phosphate for hyphal absorption. Compara-
tive genome analysis of the genomes of five Rhizophagus 
irregularis DAOM197198 revealed striking genome varia-
tions, with less than 50% of the genes shared among con-
specific isolates as core genes, while about 11–25% of the 
genes are lineage-specific genes (Chen et al. 2018; Reinhardt 
et al. 2021). Foreign genes purportedly acquired from either 
plants or bacteria have been detected in the genome of Rhiz-
ophagus irregularis (Lee et al. 2018; Li et al. 2018) suggest-
ing that horizontal gene transfer events could occur between 
AMF and bacterial symbionts, contributing to satellite genes 
(non-lineage-specific genes), although studies investing such 
events are scarce.  Taken together, the large discrepancies 
occurring in the genomes of conspecific isolates can have 
tremendous phenotypic implications for physiology, growth, 
and reproduction (Mathieu et al. 2018) which also could 
explain the differential behavior displayed towards other soil 
microbial communities under specific host plant and envi-
ronmental conditions.

Bacterial‑fungal interactions 
along the soil‑root interface

Extraradical spores

In addition to providing long-term reproductive capacity, 
AMF spores also serve as hotspots for bacterial coloniza-
tion. Studies have shown that co-inoculation of R. irregula-
ris with spore-associated bacteria such as Bacillus filamen-
tosus (BF311), Phyllobacterium myrisinacearum (Bf54), 
Izhakiella australiensis (BF372), Bradyrhizobium japonicum 
(1RS), Terribacillus saccharophilus (BF4A4), and Bacillus 
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filamentous (BF370) can improve reproductive fitness, result-
ing in increased spore density (Pandit et al. 2022b). Moreover, 
volatile compounds produced by some bacteria may be able to 
stimulate spore production. For example, Paenibacillus validus 
induced secondary (asymbiotic) sporulation in R. irregularis 
in the absence of a host plant (Hildebrandt et al. 2006). The 
compound was later identified as (S)-12-methyltetradecanoic 
acid, or (S)-anteiso-C15:0. This could potentially have implica-
tions for future inoculant production by eliminating the need 
for the presence of a live plant root (Kameoka et al. 2019)   
but the ability of these secondary spores to colonize host plant roots  
requires further investigation. Furthermore, hydrolytic enzymes,  
such as chitinase, cellulase, and pectinase, produced by spore-
associated bacteria  promote germination and and hyphal penetra-
tion of roots by facilitating the breakdown of fungal and plant cell  
walls (Budi et al. 2013).

In exchange for the beneficial services rendered to AMF, 
spore-associated bacteria obtain their nutrition through extra-
cellular necrotrophy by feeding on the outer hyaline layers, 
extracellularly relying on chemical exudates, and by endo-
cellular biotrophy, or a mix in some cases (Toljander et al.  
2006; Bonfante and Anca 2009). AAB dwelling on spore 
walls can derive nutrients from the outer hyaline layer, which 
is rich in nutrient sources such as chitin, protein, and fatty 
acids (Roesti et al. 2005; Cruz et al. 2008; González-Chávez 
et al. 2008; Selvakumar et al. 2016). The mode of feeding 
among the cultivable endobacteria, however, has yet to be 
studied, although studies have confirmed endocellular bio-
trophy among obligate endobacteria (Ghignone et al. 2012; 
Kuga et al. 2021). The colonization of fungal cytoplasm by 
cultivable bacteria other than heritable obligate endobac-
teria raises questions about mechanisms that govern inva-
sion as well as the integrity of the fungal immune system. 
It also remains unclear whether these bacterial symbionts 
are transferred vertically within fungal generations, although 
that seems to be common among the obligate bacterial sym-
bionts of Mucoromycotan fungi (Mondo et al. 2017; Ingrid 
et al. 2020; Takashima et al. 2020).  Studies have shown 
that AAB possesses the machinery required for fungal inva-
sion including cellulolytic, chitinolytic, pectinolytic, and 
proteolytic enzyme activities and secretion systems, but the  
processes leading to active invasion of fungal cytoplasm 
are poorly understood (Roesti et al. 2005; Budi et al. 2013;  
Moebius et al. 2014; Gahan and Schmalenberger 2015). 
Nevertheless, the possibility of passive invasion cannot be 
ruled out, which is likely to occur at hyphae tips and points 
of damage on the walls of hyphae or lytic holes (Levy et al.  
2003; Boer et al. 2005).

Extraradical hyphae

The extra-radical hyphae (ERH) are the life support system 
for the AM symbiosis, with the primary function of supplying 

nutrients in soluble form to both fungi and plant hosts. Its 
effectiveness and efficiency to scavenge soil nutrients, how-
ever, are hampered by the absence of the saprophytic abil-
ity necessary to decompose soil organic matter, the primary 
reservoir of mineral nutrients such as phosphorus and nitro-
gen (Frey 2019). AMF hyphae also have a limited ability to 
mobilize insoluble phosphate (Taktek et al. 2015). This defi-
ciency alone could force AMF to form symbiotic relation-
ships with other soil organisms possessing such traits. Har-
boring phosphate-solubilizing bacteria enables AMF to gain 
access to recalcitrant phosphate reserves in the hyphosphere, 
such as phytate (Jiang et al. 2021). These hyphae-associated 
phosphate solubilizing bacteria (PSB) are more proficient 
phosphate mobilizers than PSB from other soil environments 
(Taktek et al. 2015). Intriguingly, interactions between AMF 
and these bacteria often result in better plant growth when 
inoculated, resulting in increased plant biomass and phos-
phorus content in Zea mays (Battini et al. 2017), and Solanum 
lycopersicum (Sharma et al. 2020).

The current understanding of extraradical hyphae-associated  
bacteria has been enabled by a range of techniques, encom-
passing both culture-dependent and culture-independent 
approaches as well as a novel experimental design that allowed 
for the separation of plant roots from fungal hyphae, making it 
possible to identify and characterize hyphobacterial communi-
ties. Scheublin et al. (2010) employed in vitro propagation of 
AMF with A. rhizogenes transformed carrot-roots in bicom-
partmental Petri dishes to identify numerous soil bacteria with 
the capability of colonizing fungal hyphae, including members 
of the Oxalobacteriaceae family such as Duganella, Janthino-
bacterium, and Massilia. Furthermore, Lecomte et al. (2011) 
highlighted the potential for spore-associated bacteria to colo-
nize hyphae using R. irregularis in vitro and identified Bacil-
lus, Kocuria, Microbacterium, Sphingomonas, and Variovorax 
that were able to grow on hyphae with no additional nutrients. 
Although the in vitro establishment of tripartite symbiosis 
can provide invaluable insight into the mechanisms driving 
bacterial-fungal interactions, it should be noted that the growth 
conditions may be biased towards highly competitive or rapidly 
growing taxa. This, as Toljander et al. (2007) have demon-
strated, can result in an estimation of bacterial abundance and 
community composition that is not necessarily reflective of 
real-world dynamics.

To study the bacteria directly colonizing extra-radical 
hyphae in the soil, one must overcome the tiny (2–10 µm) 
and delicate nature of hyphae with an innovative technique  
such as laser microdissection approaches. For instance, 
Artursson and Jansson (2003) employed immunocapture  
of bromodeoxyuridine-containing DNA to study the bacte-
ria interacting with AMF in the hyphosphere of a natural 
fallow soil. They also utilized green fluorescent gene tag-
ging (with plasmid pnf8) of one hyphobacterium (Bacillus 
cereus strain VA1) to demonstrate a strong attachment of 
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the bacteria to fungal hyphae. To trap phosphate-solubilizing  
bacteria growing on the hyphae of R. irregularis, Taktek  
et al. (2015) employed Turface clay for the propagation  
of AMF using leek (Allium ampeloprasum). Furthermore, 
Gahan and Schmalenberger (2015) employed density gradi-
ent centrifugation to separate the hyphosphere and hyphop-
lane microbiome revealing significant shifts in the bacterial 
community composition and functions between bulk soil 
and hyphosphere. While the hyphosphere was enriched in 
sulfonate-desulfurizing bacteria compared to bulk soil,  the 
study failed to detect any significant differences between 
hyphosphere and hyphoplane microbiome community com-
position. Recently, Emmett et al. (2021) used next-generation  
sequencing for the first time to study the microbiome harbored 
on the extra-radical hyphae of R. irregularis and D. versi-
formis in different soils. Diverse bacterial taxa were found on  
hyphae of both AMF including Proteobacteria (50%), Actino-
bacteria (10%), Chloroflexi (9%), Acidobacteria (7%), Bacte-
roidetes (6%), and Fibrobacteres (4%). Interestingly, members  
from Betaproteobacteriales, Myxococcales, Fibrobacters, 
Cytophagales, Chloroflexales, Cellvibrionales, Alphapro-
teobacteria, and Gammaproteobacteria were enriched on  
hyphae regardless of AMF type and soil sources.

Intraradical structures

Highly diverse endophytic bacteria reside inside plant roots, 
contributing to the hosts’ physiology and phenology (Santos 
and Olivares 2021). Some endophytic bacteria have been 
demonstrated to colonize intraradical structures such as 
spores, hyphae, and arbuscules in the pioneering work car-
ried out by Iffis et al. (2014). The authors micro-dissected 
mycorrhizal roots of Solidago rugosa growing under petro-
leum hydrocarbon pollution to collect intraradical prop-
agules. Phylogenetic analysis of the total DNA extracted 
from isolated intraradical spores and vesicles of diverse 
AMF (Diversispora eburnea, Archaeospora schenckii, 
Claroideoglomus sp., and Rhizophagus irregularis) led to 
the identification of several bacterial taxa affiliated with 
Sphingomonas, Pseudomonas, Massilia, and Methylobac-
terium. The occurrence of these bacteria also was confirmed 
by scanning electron microscopy, which identified bacte-
ria having coccoid or biofilm structures attached to AMF 
inside the root cortex. Overall, the most abundant bacteria 
were Shingomonas sp. (28.2%), followed by Pseudomonas 
sp. (15.7%), Massilia sp. (14.4%), Methylobacterium sp. 
(11.7%), and unidentified bacterial species (9.8%), whereas 
Bradyrhizobium, Bacillus, Bosea, and Paenibacillus were 
the least abundant. The rationale for this intraradical bacte-
rial-fungal interaction is not clear, although intraradical vesi-
cles are spore-like storage structures that contain lipids and 
could serve as a carbon source for these bacteria. Moreover, 

the functional role of these bacteria to AMF and plant hosts 
is yet to be identified; it also remains elusive whether these 
bacteria were imported by the AMF into plant roots or 
whether they were recruited from plant endophytic bacteria 
already present in host roots (Ujvari et al. 2021).

Harnessing the functional diversity of the AMF 
microbiome for sustainable agriculture

The obligate biotrophy of AMF has been attributed princi-
pally to the absence of saprophytic traits for carbon assimi-
lation, such as lignocellulose degradation and synthesis of 
fatty acids, secondary metabolites, and thiamin (Tisserant 
et al. 2013; Morin et al. 2019; Sun et al. 2019; Venice et al. 
2020a, b, c). Moreover, the AMF genome lacks genes encod-
ing some key extracellular enzymes such as phytases and 
secreted phosphatases, essential to mineralize insoluble 
nutrients and soil organic matter (Frey-Klett et al. 2011; 
Tarkka et al. 2018; Turrini et al. 2018; Emmett et al. 2021). 
These deficiencies can explain the context-dependency of 
the outcomes of introducing commercial AMF inoculants 
in new fields (Basiru and Hijri 2022). AMF-associated 
bacteria affect AMF fitness by facilitating pre-symbiotic 
processes such as sporulation, germination, mycelia growth 
and branching, and root system branching to support AMF 
colonization (Fernández Bidondo et  al. 2016; Ordonez 
et al. 2016). Supplementing AMF isolates with already 
adapted growth-promoting bacteria can enhance the estab-
lishment of AMF inoculants in plant roots. Furthermore, 
these microbes also promote plant growth through nutrient 
fixation, solubilization/mobilization of minerals, biocon-
trol of fungi and plant pathogens, phytohormone produc-
tion, biofilm production, and cellulose/toxics degradation 
(Bharadwaj et al. 2012; Battini et al. 2016; Ordonez et al. 
2016; Lasudee et al. 2018; Pandit et al. 2022a, b). Therefore, 
understanding AMF-bacterial interactions is essential for the 
successful deployment of AMF inoculants. In the following 
sub-sections, we discuss the importance of AMF and associ-
ated bacteria as a tool to engineer the plant microbiome and 
enhance ecosystem services.

Potential role of an AMF core microbiome 
in improving agroecosystem functions

Core microbiomes are increasingly recognized as an 
important tool for promoting plant health and physiology, 
compared to direct pair-wise microbe-plant inoculation 
(Ahmed et al. 2021a, b; Ahmed and Hijri 2021; Ahmed 
et al. 2021a, b). Keystone taxa of the plant microbiome 
that are consistently associated with hosts or under cer-
tain environmental conditions can be used to organize the 
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resident plant microbiome and increase plant fitness (Toju 
et al. 2018). Core bacterial taxa that are shared among  
diverse AMF taxa and soil conditions will not only facilitate  
AMF function but also play a key role in the recruitment 
and structuring of health-promoting microbiomes. One 
study found that adding core bacterial taxa and AMF 
promoted host growth and nutrient acquisition more than 
when separate trials of AMF or core bacteria were used 
(Xu et al. 2022). Nevertheless, the core microbiome must 
be functional regardless of taxonomic diversity especially 
that genes (replicators) encoding specific functional traits 
can be carried on different vehicles (bacteria) whose taxo-
nomic identity  are preselected by the soil microbial res-
ervoir or the frequency of transfer of such genes among 
soil microbes, i.e., horizontal gene transfer (Lemanceau 
et al. 2017). Advances in next-generation sequencing have 
enabled the identification of core taxa across several AMF 
strains (Emmett et al. 2021; Pandit et al. 2022a, b; Wang 
et al. 2022a, b, c) but the functional relevance of these 
core taxa is yet to be explored. Core hyphosphere micro-
biomes from three fields across different climatic condi-
tions were identified using network analysis, and their 
abundance was correlated with increased phosphatase 
activity (Wang et al. 2022c). Pandit et al. (2022a) used 
16S rDNA metabarcoding to identify 16 OTUs shared 
by eight AMF genotypes from different continents. Hier-
archical clustering of cultivable bacteria from in vitro 
and in situ co-culture of AMF from different parts of 
the world generated nine functional clusters based on 10 
functional traits, the taxa of which were highly varied, 
although a certain bacterial taxon usually dominated each 
cluster (Pandit et al. 2022a). In some cases, isolates of the 
same species occupied different clusters. Some clusters 
had very high functional diversity and included bacteria 
such as Rhodococcus jialingiae (BF317) and Terribacillus 
saccharophilus BFA4 which displayed all 10 functional 
traits examined. A functional cluster could be deployed 
as a bioinoculant, together with AMF, to target specific or 
multiple plant traits. Nevertheless, compatibility among 
these strains first must be determined. Compatibility 
among several AAB using the same fungal niche is pos-
sible (Palla et al. 2018), as gram-positive bacteria associ-
ated with AMF spores (e.g., Bacillus and Fictibacillus, 
quorum negative) tolerated their gram-negative neigh-
bor (Sinorhizobium meliloti strain, quorum positive). It 
still is unknown, however, whether compatibility would 
be possible between AAB from different AMF sources.  
Lastly, the consequences of long-term domestication (i.e., 
in vitro co-culture) have been documented on AMF genet-
ics and function  (Kokkoris and Hart 2019), however, tri-
als are still needed to explore the effects this could have 
on the selection and recruitment of functional core micro-
biomes in the field.

The AMF highway as a tool for engineering the plant 
root microbiome

The potential significance of extraradical hyphae—or “fun-
gal highways”—as a tool for engineering both rhizosphere 
and endophytic bacteria recently has been given significant 
attention. Fungal hyphal networks can facilitate the disper-
sal of beneficial bacteria through unsaturated soils where 
their active movement is limited (Or et al. 2007; Jansa and 
Hodge 2021). These networks also help bacteria move to 
organic patches, aided by the exudates of the fungal high-
ways, which provide an environment containing water and 
energy for swimming movement (Jiang et al. 2021). AMF 
fungal highways have been shown to facilitate the move-
ment of beneficial bacteria between two plants connected 
via the same mycorrhizal network (de Novais et al. 2020). 
In addition, they can improve nodulation of leguminous crop 
roots by nitrogen-fixing bacteria, through increased phos-
phorus supply. Selvakumar et al. (2018) have further raised 
the prospect of engineering plant endophytic bacterial com-
munities, after confocal scanning laser microscopy revealed 
several spore-associated bacteria colonizing corn roots in a 
co-inoculation experiment. Mechanisms governing bacterial 
colonization of the root endosphere under AMF influence, 
however, deserve further investigation.

Conclusions

Considering our discussion, it is reasonable to conclude 
that AMF, despite being an important member of the plant 
mycobiome, harbor their own set of microbiomes of which 
community assembly and functions are majorly driven by 
the AMF genotypes, host plant identity, and the conditions 
of the substratum. The AMF microbiome encompasses both 
obligate and non-obligate exo- and endobacterial symbionts 
occupying fungal microniches that span the soil-root con-
tinuum. Although different techniques, including culture-
dependent and culture-independent approaches, have been 
employed to study AAB diversity, consistently, most AMF-
associated bacteria belong to the major four phyla, com-
prising Proteobacteria, Actinobacteria, Bacteroidetes, and 
Firmicutes. AMF-associated bacteria serve as an AMF “sec-
ond genome,” filling important functional gaps occurring in 
the AMF genome. It thus comes as no surprise that many 
services rendered by AMF are choreographed by their bacte-
rial partners. The multiple functional traits such as nutrient 
fixation, inorganic and organic P (phytate) solubilization, 
biocontrol, plant growth promotion, and polymer-degrading 
properties make AAB indispensable for the success of AMF 
in delivering mutualistic benefits to plant hosts. No doubt, 
the next generation of AMF inoculants could benefit a great 
deal from the study of AMF and their associated microbiome 
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as well as the factors driving its community assembly and 
functions. The prospect of an AMF core microbiome, espe-
cially with respect to functional guilds, remains promising 
as shown by recent studies, but compatibility among strains 
will need testing.
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