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Arbuscular mycorrhiza facilitates the accumulation of glycyrrhizin
and liquiritin in Glycyrrhiza uralensis under drought stress
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Abstract
Liquorice (Glycyrrhiza uralensis) is an important medicinal plant for which there is a huge market demand. It has been reported
that arbuscular mycorrhizal (AM) symbiosis and drought stress can stimulate the accumulation of the active ingredients,
glycyrrhizin and liquiritin, in liquorice plants, but the potential interactions of AM symbiosis and drought stress remain largely
unknown. In the present work, we investigated mycorrhizal effects on plant growth and accumulation of glycyrrhizin and
liquiritin in liquorice plants under different water regimes. The results indicated that AM plants generally exhibited better growth
and physiological status including stomatal conductance, photosynthesis rate, and water use efficiency compared with non-AM
plants. AM inoculation up-regulated the expression of an aquaporin gene PIP and decreased root abscisic acid (ABA) concen-
trations under drought stress. In general, AM plants displayed lower root carbon (C) and nitrogen (N) concentrations, higher
phosphorus (P) concentrations, and therefore, lower C:P and N:P ratios but higher C:N ratio than non-AM plants. On the other
hand, AM inoculation increased root glycyrrhizin and liquiritin concentrations, and the mycorrhizal effects were more pro-
nounced under moderate drought stress than under well-watered condition or severe drought stress for glycyrrhizin accumulation.
The accumulation of glycyrrhizin and liquiritin in AM plants was consistent with the C:N ratio changes in support of the carbon-
nutrient balance hypothesis. Moreover, the glycyrrhizin accumulation was positively correlated with the expression of
glycyrrhizin biosynthesis genes SQS1, β-AS, CYP88D6, and CYP72A154. By contrast, no significant interaction of AM inoc-
ulation with water treatment was observed for liquiritin accumulation, while we similarly observed a positive correlation between
liquiritin accumulation and the expression of a liquiritin biosynthesis gene CHS. These results suggested that AM inoculation in
combination with proper water management potentially could improve glycyrrhizin and liquiritin accumulation in liquorice roots
and may be practiced to promote liquorice cultivation.
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Introduction

Liquorice (Glycyrrhiza uralensis Fisch.) is a perennial legumi-
nous species widely grown in the world. As a plant well adapted
to low-fertility soil and arid environments, liquorice is expected
to be used for ecological restoration of degraded ecosystems in
arid and semi-arid areas (Liu et al. 2007; Chen et al. 2017).
Glycyrrhizin, an important bioactive triterpenoid saponin, and
liquiritin, the main flavonoid compound in liquorice plants, both
secondary metabolites, are derived from the roots and stolons.
These compounds confer several health benefits and have sub-
stantial economic and pharmacological values (Kitagawa 2002;
Hayashi and Sudo 2009). As a result, liquorice also is among the
most important raw materials for crude herbal drugs, and the
market demand for liquorice has been increasing rapidly in
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recent years (Hayashi 2009; Hayashi and Sudo 2009). Currently,
liquorice cultivation is developing rapidly because of gradual
extinction of wild liquorice plants. Low yield and low concen-
trations of active ingredients (mainly glycyrrhizin and liquiritin)
in cultivated liquorice plants, however, largely have limited the
development of the liquorice industry (Wei et al. 2003; Hayashi
and Sudo 2009). Therefore, approaches that could stimulate the
accumulation of glycyrrhizin and liquiritin in liquorice plants
become critically important to promote liquorice cultivation.

In liquorice plants, glycyrrhizin is mainly synthesized
through the mevalonic acid (MVA) pathway and is regulated
by many enzymes (Seki et al. 2008, 2011; Mochida et al.
2017; Fig. 1). Presently, most of the key genes involved in
the biosynthesis of glycyrrhizin have been cloned and charac-
terized successfully. 3-Hydroxy-3-methylglutary CoA reduc-
tase gene, HMGR, which encodes the first rate-limiting en-
zyme involved in the MVA pathway, largely determines the
carbon flow and accumulation of glycyrrhizin (Chappell et al.
1995; Aquil et al. 2009). Several reports have shown that

overexpression of the HMGR gene induced the accumulation
of terpene in plants (Kim et al. 2006; Dai et al. 2011).
Squalene synthase gene, SQS, which is involved in the early
stage of glycyrrhizin biosynthesis and encodes the enzyme to
catalyze farnesyl diphosphate (FPP) into squalene, plays an
important role in the formation of triterpenoid (glycyrrhizin)
skeletons (Hayashi 2009; Nasrollahi et al. 2014). β-amyrin
synthase gene, β-AS, and lupeol synthase gene, LUS, are sit-
uated at a branch point to catalyze 2,3-oxidosqualene into β-
amyrin and lupeol, respectively, which also play important
roles in triterpenoid (glycyrrhizin) skeleton formation and ac-
cumulation (Hayashi 2009; Shen et al. 2009; Mochida et al.
2017). Liu and Liu (2012) revealed that the β-AS gene is
expressed only in plant roots, not in the leaves or stems, which
is consistent with the accumulation pattern of glycyrrhizin in
plants. Moreover, cytochrome P450 monooxygenase 88D6
(CYP88D6) and cytochrome P450 monooxygenase 72A154
(CYP72A154), two enzymes involved in the multiple oxida-
tion reactions that catalyze β-amyrin to glycyrrhetinic acid,
the precursor of glycyrrhizin, play crucial roles in the final
step of glycyrrhizin biosynthesis (Seki et al. 2008, 2011).
Like the β-AS gene, both CYP88D6 and CYP72A154 only
are expressed in the roots, corresponding to the accumulation
pattern of glycyrrhizin (Seki et al. 2008, 2011). Similarly, as
the representative flavonoid in liquorice plants, liquiritin bio-
synthesis also involves several enzymes, including chalcone
synthase gene, CHS (Winkel-Shirley 2002; Zhang et al. 2009;
Chen et al. 2017; Fig. 1). Several reports have shown that the
expression level of these key genes was highly correlated with
the accumulation of glycyrrhizin and liquiritin in plants
(Hayashi 2009; Nasrollahi et al. 2014; Li et al. 2017).

In natural environments, drought stress is considered as the
most common abiotic stress affecting plant growth and develop-
ment (Golldack et al. 2014; Ruiz-Lozano et al. 2016).
Nevertheless, plants have evolved various mechanisms to cope
with drought stress including biosynthesis of secondary metab-
olites (Selmar and Kleinwächter 2013). Drought stress can in-
duce the formation of reactive oxygen species (ROS) in chloro-
plasts and mitochondria and cause oxidative damage (Liu et al.
2011; Selmar and Kleinwächter 2013). It has been found that
triterpenoids, including glycyrrhizin, display antioxidant activity
and play an important role in ROS scavenging, resulting in a
significant reduction of oxidative damage (Okubo and Yoshiki
2000; Kim and Lee 2008). In addition, the production of sec-
ondary metabolites is strongly associated with plant growth con-
ditions. Plants that are exposed to drought stress usually exhibit
higher concentrations of proline and abscisic acid (ABA), higher
aquaporin gene PIP expression, lower photosynthesis rate, di-
minished nutrient uptake, and ultimately decreased biomass
(Javot and Maurel 2002; Chitarra et al. 2016; Ruiz-Lozano
et al. 2016). Accordingly, plants that suffer from drought stress
usually increase secondary metabolite production (Selmar and
Kleinwächter 2013). For example, it has been reported that

Fig. 1 Glycyrrhizin and liquiritin biosynthesis pathways in liquorice
plants. Each arrow represents a one-step catalytic reaction, and double
arrows represent multi-step catalytic reactions. Acetyl-CoA, acetyl coen-
zyme A; HMG-CoA, 3-hydroxy-3-methylglutaryl coenzyme A; HMGR,
3-hydroxy-3-methylglutary coenzyme A reductase; MVA, mevalonate;
IPP, isopentenyl diphosphate; DMAPP, dimethylallyl diphosphate; FPP,
farnesyl pyrophosphate; SQS, squalene synthase; β-AS, beta-amyrin syn-
thase; CYP88D6 and CYP72A154, cytochrome P450 monooxygenases;
LUS, lupeol synthase; CHS, chalcone synthase
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drought stress can increase phenolic compound concentrations
inHypericum brasiliense and tanshinone concentration in Salvia
miltiorrhiza partially due to reduced biomass (de Abreu and
Mazzafera 2005; Liu et al. 2011). Nevertheless, Nowak et al.
(2010) demonstrated that the increase of monoterpenes in sage
induced by drought stress was out of proportion to the corre-
sponding decrease in biomass, indicating specific mechanisms
underlying plant secondary metabolism. As reported by
Nasrollahi et al. (2014), drought stress up-regulated the expres-
sion of key genes involved in the biosynthesis of triterpenoid
saponins in liquorice and increased glycyrrhizin concentrations.

Arbuscular mycorrhizal (AM) fungi, as the most wide-
spread symbiotic partners for higher plants, can improve plant
mineral nutrition and growth and also affect the accumulation
of secondary metabolites in host plants (Chitarra et al. 2016;
Welling et al. 2016; Kapoor et al. 2017). For instance, AM
inoculation significantly increased shoot biomass and
artemisinin concentration in Artemisia annua (Kapoor et al.
2007) and facilitated the accumulation of phenol compounds
in Medicago sativa and tomato (López-Ráez et al. 2010;
Zhang et al. 2013). Liu et al. (2007) reported that inoculation
with Glomus mosseae or Glomus versiforme increased the
glycyrrhizin concentration in the roots of Glycyrrhiza
uralensis. In general, the increases of secondary metabolites
and plant dry weight of AM plants have been associated with
improved photosynthesis rates, nutritional benefits, especially
in phosphorus (P) nutrition, and hormonal balance, including
ABA (Zeng et al. 2013; Welling et al. 2016; Kapoor et al.
2017). It has been found that AM inoculation could alter plant
ABA level (Li et al. 2016a; Ruiz-Lozano et al. 2016; Chitarra
et al. 2016), which could induce the biosynthesis of secondary
metabolites, including terpenoids (Mansouri et al. 2009; Yang
et al. 2012). The relation between ABA and terpenoid biosyn-
thesis, however, has not been demonstrated yet. In addition,
the development of AM symbiosis demands photoassimilates,
and host plants therefore allocate carbon to the fungi which
might disturb plant carbon-nutrient ratio and consequently
carbon allocation for terpenoid synthesis (Kapoor et al.
2017). Nevertheless, the effects of AM inoculation on the
accumulation of terpenoids have not been examined in rela-
tion to carbon-nutrient ratio in any studies. How AM fungi
regulate the expression of genes involved in glycyrrhizin and
liquiritin biosynthesis also is largely unknown. Taken togeth-
er, further investigation is required to reveal the physiological
mechanisms corresponding to the alteration in plant secondary
metabolism by AM symbiosis.

AM inoculation could alleviate drought stress in plants
through several mechanisms including alteration of ABA lev-
el and regulation of stress-responsive genes, such as aquaporin
gene PIP and antioxidant gene SOD in host plants (Ruiz-
Lozano et al. 2016; Chitarra et al. 2016; Li et al. 2016a). It
is possible that the positive effects of drought stress on the
accumulation of plant secondary metabolites might be

counteracted or even disappear because of AM symbiosis.
On the other hand, drought stress also could affect mycorrhiza
establishment and development by influencing spore germi-
nation, hyphal growth, and arbuscule formation (Al-Karaki
et al. 2004; Neumann et al. 2009; Sun et al. 2017) which could
ultimately affect mycorrhiza function and plant secondary me-
tabolism. Actually, different factors may antagonize each oth-
er, leading to negative outputs, especially for the combination
of biotic and abiotic factors (Schenke et al. 2011; Babikova
et al. 2014; Gorelick and Bernstein 2014). For instance,
ultraviolet-B (UV-B) light induced the production of flavonols
in Arabidopsis and this accumulation was attenuated by si-
multaneous application of the bacterial elicitor flg22
(Schenke et al. 2011). Drought stress and AM symbiosis could
individually facilitate the accumulation of secondary metabo-
lites in liquorice plants, but to the best of our knowledge, no
information is available regarding the interactive effects of
AM inoculation and drought stress on glycyrrhizin and
liquiritin accumulations in liquorice plants.

Consequently, in this study, we hypothesize that AM inoc-
ulation could improve plant growth and facilitate the accumu-
lation of glycyrrhizin and liquiritin in liquorice plants, and the
mycorrhizal effects could be more pronounced under moder-
ate drought stress. In a pot experiment carried out in a
controlled-environment growth chamber, we examined the
interactive effects of inoculation with the AM fungus
Rhizophagus irregularis and drought stress on (1) plant
growth, (2) plant photosynthesis, (3) plant mineral nutrition,
(4) glycyrrhizin and liquiritin concentrations, and (5) the ex-
pression of genes involved in the biosynthesis of glycyrrhizin
and liquiritin. We expected to unravel the underlying mecha-
nisms for the interactions of AM inoculation and drought
stress on liquorice growth and secondary metabolite accumu-
lation, and also to check the feasibility of introducing AM
fungi together with proper water management to promote li-
quorice cultivation.

Materials and methods

Biological materials and growth medium

Seeds of liquorice (Glycyrrhiza uralensis Fisch.) were provid-
ed by China National Traditional Chinese Medicine
Corporation, Beijing, China. The seeds were immersed in
50% H2SO4 for 30 min to break the thick seed coat and then
surface-sterilized for 10 min by using 10% H2O2,
pregerminated on a moist sterilized filter paper at 25 °C in
the dark until the emergence of radicles. After 2 days, uniform
seedlings with about a 2-cm-long radicle were selected for the
experiment.

The AM fungus Rhizophagus irregularis (R. irregularis)
Schenck & Smith BGC AH01 was obtained from the Institute
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of Plant Nutrition and Resources, Beijing Academy of
Agriculture and Forestry. The fungus was propagated in pot
culture on SorghumbicolorL. in a sandy soil for about 12weeks.
The inoculum consisted of sand, spores (approximately 60
spores per gram), mycelia, and colonized root fragments.

The growth medium was a 1:2 (w:w) mixture of sand (<
2 mm) and soil collected from Erdos (39° 53′ N, 110° 1′ E),
Inner Mongolia, China. The soil was passed through a 2-mm
sieve and then sterilized by radiation (γ rays, 20 kGy, 10-MeV
electron beam); the sand was autoclaved at 121 °C for 1 h on 2
consecutive days. The soil had a pH of 8.70 (1:2.5 soil to water),
organic matter content of 10.79 g/kg, and an extractable Pi (with
0.5 MNaHCO3, pH 8.5) content of 4.46 mg/kg. Before sowing,
basal nutrients of 30 mg/kg Pi (KH2PO4), 120 mg/kg N
(NH4NO3), and 120 mg/kg K (KH2PO4 and K2SO4) were care-
fully mixed into the growth medium. For convenience, this
growth medium is hereinafter referred to as Bsoil.^

Experimental procedure

Plastic pots (15-cm diameter × 14-cm height) were first filled
with 800 g soil and then 400 g soil containing 40 g of inocu-
lum (c. 2400 spores) for AM inoculation. For the non-
inoculated controls, equivalent sterilized inoculum together
with 5 ml of filtrate (< 20 μm) from the AM inoculum was
mixed with the soil to ensure the same microbial populations
(except for AM fungi) in different inoculation treatments.
Each pot was sown with three pregerminated liquorice seeds.
Seedlings were thinned to two per pot at 14 days after emer-
gence. Before water treatment, all the pots were maintained
under well-watered conditions (WW, 16% water content
equating to 75% field water capacity). Two months after sow-
ing, one-third of the pots (both inoculation and non-
inoculation treatments) were maintained under well-watered
conditions throughout the entire experiment, while another
one-third of the pots were subjected to moderate drought
stress (MD, 11% water content equating to 55% field water
capacity), and other pots were subjected to severe drought
stress (SD, 7% water content equating to 35% field water
capacity). Plants were allowed to grow for 1 more month
before harvest. Water loss was daily supplemented with de-
ionized water to maintain the desired moisture content by
regular weighing. There were six treatments (full factorial
combination of mycorrhizal status and water regimes) with
five replicates of each treatment, giving a total of 30 pots,
which were set up in a randomized block design.

The experiment was carried out in a controlled-
environment growth chamber under a light intensity of
700 μmol m−2 s−1, 16:8-h light:dark photoperiod, temperature
of 25 °C (light) and 20 °C (dark), and 70% relative humidity.

Photosynthesis and water use efficiency

The day before experimental harvest, net photosynthesis rate
(Pn), leaf transpiration rate (Tr), and stomatal conductance
(Cond) were measured on the third mature leaf from the top of
the intact plants with a portable photosynthesis system (Li-
6400X, Li-COR Biosciences, USA). During the measurements,
a 6400-40 source provided a photosynthetic photon flux density
(PPFD) of 800 μmol m−2 s−1. CO2 concentration in the sample
chamber wasmaintained at 400 gm−3 and relative humidity was
kept at about 65%. Measurements were performed in a random
order during the late morning (09:00–11:00 a.m.). Four repli-
cates per treatment were selected randomly and both plants per
pot were measured. During the measurement, there was approx-
imately 0.4–0.6% water loss (based on dry soil) for all the treat-
ments. Water use efficiency (WUE) was calculated according to
the following equation: WUE=Pn / Tr.

Plant biomass and mycorrhizal colonization

Plant shoots and roots were separately harvested and washed
carefully with deionized water, and fresh shoot and root bio-
mass were recorded. Subsamples (0.5 g fresh weight) of roots
from each pot were stored at − 80 °C for RNA extraction and
ABA analysis, and subsamples (0.5 g) were used for root
staining and determination of mycorrhizal colonization. In
brief, fresh roots were cleared in 10% KOH and stained with
0.05% trypan blue in lactic acid (v/v). Thirty pieces of ran-
domly selected stained root fragments were observed with a
light microscope to confirm the presence of fungal structures
(intraradical mycelia, vesicles, and arbuscules). Intensity of
mycorrhizal colonization (M%) and arbuscule abundance
(A%) in the whole root system were assessed by the method
described by Trouvelot et al. (1986) using MYCOCALC soft-
ware (www2.dijon.inra.fr/mychintec/Mycocalc-prg/
download). Shoots and the rest of the roots were dried at
60 °C for 72 h to record dry weights (DW) and used for
determination of elemental concentrations and root active in-
gredients (glycyrrhizin and liquiritin). The mycorrhizal
growth dependency (MGD) of liquorice plants under each
water regime was calculated based on whole plant dry weight
by using the following formula (Smith et al. 2003):

MGD %ð Þ ¼ DW of mycorrhizal plant−mean DW of non−inoculated plantsð Þ=DW of mycorrhizal plant� 100:
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Leaf proline concentration and root ABA
concentration

The extraction and determination of proline was performed
according to Bates et al. (1973) with minor modifications. In
brief, approximately 0.2 g leaf samples were extracted with
3% aqueous sulfosalicylic acid in a boiling water bath for
10 min. After centrifugation at 3000×g for 10 min, 1.5 ml of
supernatant was added to 2 ml glacial acetic acid and 2 ml
acid-ninhydrin and then incubated for 30 min at 95 °C. Five
milliliters of toluene was added to extract the product after
cooling. Proline concentration was measured with a spectro-
photometer (UV-1700 PharmaSpec, Shimadzu, Japan) at
520 nm and calculated on the basis of a proline standard curve.
Root ABA concentration was quantified following the method
of Li et al. (2016a) with a plant ABA ELISA kit (Rapidbio,
West Hills, USA). Briefly, frozen root samples were immersed
in 2 ml distilled water and incubated for 24 h at 4 °C in the
dark. After centrifugation (3000×g for 10 min), the superna-
tant was used for a horseradish peroxidase (HRP)-tetramethyl
benzidine (TMB) chromogenic assay according to the manu-
facturer’s instructions. ABA concentration was measured with
a SpectraMicroplate Reader (SPECTRAmax190, MD, USA)
at 450 nm.

Root C, N, and P concentrations

Root C and N concentrations were directly determined by an
Elemental Analyzer (Vario MAX, Elementar, Germany). For
determination of root P concentrations, about 0.2 g dried
ground root sample was digested in HNO3 (guaranteed re-
agent) for 12 h, followed by a microwave-accelerated reaction
for 35 min in a Microwave-Accelerated Reaction System
(Mars, CEM Corp., USA). The P concentrations were deter-
mined by ICP-OES (Prodigy, Teledyne Leeman, USA).
Blanks and internal standards of bush leaves (GBW07603,
China Standard Research Center) were used to ensure the
accuracy of chemical analysis.

Glycyrrhizin and liquiritin concentrations in liquorice
root

The dried root samples of liquorice plants were ground into
powder with a mortar and pestle and passed through a 60-
mesh sieve. Approximately 0.1 g sample was weighed accu-
rately and extracted in 15 ml 67% methanol for 45 min in an
ultrasonic bath (250 W, 40 kHz) at room temperature. The
extract solution was cooled to room temperature and filtered
through a 0.45-μm filter. A 10-μl aliquot of the filtered solu-
tion was injected into an injection loop and separated by high-
performance liquid chromatography (HPLC, Agilent-1200,
USA) through an Agilent ZORBAX-Eclipse XDB-C18 col-
umn (250 mm× 4.6 mm, 5 μm). The mobile phase comprised

a gradient of deionized water:phosphoric acid (100:0.05, v/v)
and acetonitrile. The separation was operated in the gradient
elution mode as follows: 0–8 min, acetonitrile: 0.05% phos-
phoric acid at 19:81 (v/v); 8–35 min, 19–50:81–50 (v/v); 35–
36 min, 50–100:50–0 (v/v); 36–40 min, 100–19:0–81 (v/v);
and 40–45 min, 19:81 (v/v). The detection wavelength was
237 nm for both glycyrrhizin and liquiritin. The column tem-
perature was 30 °C with a flow rate of 1.0 ml/min. Standard
substances of glycyrrhizin and liquiritin were bought from the
National Institute for the Control of Pharmaceutical and
Biological Products (Batch Nos. 110731 and 11610). Stock
solutions were diluted with methanol to appropriate concen-
trations for calibration purposes (Li et al. 2016b).

Gene expression analysis

Total RNA from roots was isolated by using CTAB (2%
CTAB, 2% PVP-40, 0.1 mol/l Tris-HCl, 0.25 mol/l EDTA,
2 mol/l NaCl) following a purification procedure with a
MicroElute RNA Clean-Up Kit (Omega Biotek, USA) and a
DNase treatment. cDNAs were synthesized from the RNA
samples using a RevertAid First Strand cDNA Synthesis Kit
(Thermo Fisher Scientific Inc., USA) following the manufac-
turer’s instructions. Quantitative real-time PCR (qRT-PCR)
was performed on the cDNAs with at least four independent
biological replicates and three technical replicates for each
biological replicate in a Bio-Rad iQ5 Optical system (Bio-
Rad, Hercules, CA, USA), monitored by SYBR Green I fluo-
rescence (TAKARA Biotechnology Co. Ltd). The reaction
medium (25 μl) contained SYBR Green I PCR Mix,
400 nM of gene-specific primers, and the cDNA templates
diluted fivefold. For plant gene expression analysis, 1.5 μl
of the diluted cDNAs were added to the reaction medium.
The qRT-PCR primers used are listed in supplementary
Table S1. Negative control reactions (using RNA or water
instead of cDNA) were included to avoid genomic DNA con-
tamination and to exclude primer-dimers. The qRT-PCR pro-
gram consisted of an initial step at 95 °C for 10 s, followed by
40 cycles of denaturation at 95 °C for 15 s, annealing at 56 °C
for 60 s, and extension at 72 °C for 30 s. Data collection was
performed at 72 °C. To test the amplification specificity, a
melting curve was produced according to the following pro-
gram: 10 s at 70 °C, and heating to 100 °C at a rate of 0.5 °C/s,
and data were collected continuously. The data were analyzed
by the 2-ΔΔCt method (Pfaffl 2001). β-actin was used to nor-
malize the results as the reference gene (Xu et al. 2016).

Statistical analysis

All data were checked for normality using Shapiro-Wilk test
and for homoscedasticity using Levene’s test prior to statisti-
cal analysis. Percentage values (root colonization rate,
arbuscule abundance, and MGD) were arcsine [square-root
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(X)] transformed. Other values were Box-Cox transformed to
fulfill the requirement for ANOVA normality and homogene-
ity of variance when necessary (Box and Cox 1964). When
the transformation did not improve the structure of the data, a
non-parametric Kruskal-Wallis test was performed.

A two-way analysis of variance (ANOVA) was performed
to examine the effects of mycorrhizal inoculation, drought
stress, and their interactions on plant dry weights; photosyn-
thetic parameters; ABA concentration; C, N, and P concentra-
tions; C:N:P stoichiometric ratios; and gene expression, as
well as glycyrrhizin and liquiritin concentrations. One-way
ANOVA was performed to examine the effects of drought
stress on mycorrhizal colonization and mycorrhizal growth
dependency (MGD). As an exception, leaf proline concentra-
tions of all the six treatments were compared by using a non-
parametric Kruskal-Wallis test. Differences between treat-
ments were analyzed by Duncan’s multiple range test or
Kruskal-Wallis test at a 0.05 probability level. Correlations
between glycyrrhizin or liquiritin concentrations and gene ex-
pressions were examined by Pearson correlation analyses. All
the statistical analysis was carried out by using the software
IBM SPSS Statistics v. 19.0 (IBMCorp., Armonk, NY, USA).

Results

AM root colonization

No mycorrhizal colonization was detected in non-inoculated
plant roots regardless of water regime, while roots of inocu-
lated plants were extensively colonized by R. irregularis
(Table 1). There were no significant differences in M% or
A% among water regimes.

Plant growth

Plant shoot and root dry weights decreased with drought stress
regardless of inoculation treatment (Table 2). For AM plants,
both moderate and severe drought stress significantly reduced

plant shoot and root dry weights. For non-AM plants, howev-
er, the significant reduction was only observed under severe
drought stress. On the other hand, AM inoculation significant-
ly increased shoot and root dry weights under all the water
regimes (Table 2). An increase in root dry weights of 14-, 8-,
and 8-fold was observed in mycorrhizal plants compared to
non-AM plants under well-watered conditions, moderate
drought stress, and severe drought stress, respectively, corre-
sponding to the high mycorrhizal growth dependency (MGD)
of liquorice plants under our experimental conditions
(MGD> 89%, Table 2). The interactions of AM inoculation
and drought stress were significant for both shoot and root dry
weights (Table 2). The growth differences induced by AM
inoculation were weakened by drought stress, with a signifi-
cant decrease of MGD values under drought stress (Table 2).

Leaf proline and root ABA concentrations

The leaf proline concentrations generally increased upon
drought stress, and this increase was statistically significant
under severe drought stress in AM plants (Table 3).
Mycorrhizal inoculation decreased proline concentrations ver-
sus non-AM plants by 81.47 and 80.83% under well-watered
conditions and moderate drought stress, respectively.

Unlike proline, drought stress significantly increased root
ABA concentrations regardless of mycorrhizal status
(Table 3). In contrast, AM inoculation generally decreased
ABA concentrations and the decrease became significant un-
der severe drought stress (Table 3).

Stomatal conductance and photosynthesis

Stomatal conductance was negatively affected by drought
stress in AM plants, while no significant difference among
water regimes was observed for non-AM plants (Fig. 2a,
Table S2). Drought stress decreased net photosynthesis rate
regardless of mycorrhizal status (Fig. 2b, Table S2), while AM
symbiosis significantly increased stomatal conductance and
net photosynthesis rate regardless of water regime (Fig. 2a,
b, Table S2). A 3.4-fold increase of stomatal conductance and
6.7-fold increase of net photosynthesis rate in AM plants com-
pared to non-AM plants under well-watered conditions were
detected (Fig. 2a, b).

WUE and expression of aquaporin gene

There were no significant changes in WUE among the water
regimes for non-AM plants, while drought stress increased
WUE for AM plants, this increase being significant under
moderate drought stress. AM symbiosis markedly increased
WUE under all the water regimes (Fig. 2c, Table S2). The
expression of root aquaporin gene PIP was significantly up-
regulated by severe drought stress in non-AM roots and by

Table 1 Mycorrhizal colonization (M%) and arbuscule abundance
(A%) of inoculated liquorice plants under different water regimes

Water regimes (W) M% A%

WW 67.94 ± 2.31 40.43 ± 1.89

MD 66.07 ± 2.66 32.07 ± 1.37

SD 69.13 ± 1.24 33.55 ± 4.21

Significance F2.12 = 1.01
ns F2.12 = 2.94ns

WW, MD, and SD represent well-watered condition, moderate drought
stress, and severe drought stress, respectively. Data are presented as
means ± standard error (SE)

ns, not significant
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moderate drought stress in AM roots. AM symbiosis only
induced an increase of PIP expression under moderate
drought stress (Fig. 2d, Table S2); thereby, a significant inter-
action of AM inoculation with drought stress was observed for
PIP expression (Fig. 2d, Table S2).

Root C, N, and P concentrations and stoichiometry

Drought stress steadily increased root C concentrations for
both non-AM and AM plants, this increase being significant
under severe drought stress in non-AM plants and under mod-
erate drought stress in AM plants versus well-watered

conditions. In contrast, AM inoculation induced a decrease
in root C concentrations under all the water regimes versus
non-AM plants (Table 4). In non-AM plants, root N concen-
trations were not changed by drought stress while root P con-
centrations significantly decreased under severe drought stress
versus well-watered condition (Table 4). In AM plants, how-
ever, drought stress significantly increased root N but de-
creased root P concentrations, and the maximum N concen-
tration and minimum P concentration were recorded under
severe drought stress. In contrast with the influence of drought
stress on root N and P concentrations, AM symbiosis signifi-
cantly decreased root N but increased root P concentrations

Table 2 Shoot and root dry
weights and mycorrhizal growth
dependency (MGD) of liquorice
plants as affected by mycorrhizal
inoculation and water regimes

Inoculation (I) Water regimes (W) Shoot dry weight (g/pot) Root dry weight (g/pot) MGD (%)

−M WW 0.13 ± 0.00d 0.24 ± 0.01d –

MD 0.11 ± 0.01de 0.27 ± 0.02d –

SD 0.10 ± 0.01e 0.19 ± 0.01e –

+M WW 2.18 ± 0.10a 3.63 ± 0.09a 93.68 ± 0.20a

MD 1.75 ± 0.11b 2.43 ± 0.17b 90.62 ± 0.39b

SD 1.08 ± 0.07c 1.72 ± 0.18c 89.57 ± 0.48b

Significance I F1,24 = 1695** F1,24 = 1880** –

W F2,24 = 18.93** F2,24 = 29.02**
F2,12 = 36.7-
7**

I ×W F2,24 = 4.750* F2,24 = 12.15** –

−M and +M represent non-inoculated control and inoculation with mycorrhizal fungus R. irregularis.WW, MD,
and SD represent well-watered condition, moderate drought stress, and severe drought stress, respectively. MGD
was calculated based on whole plant (root and shoot) dry weight. Data are presented as means ± standard error
(SE). Two-way ANOVAwas performed on shoot and root dry weight and one-way ANOVA on MGD. Means
followed by the same letter in the same column do not differ significantly at P < 0.05 by Duncan’s multiple range
test

*P < 0.05; **P < 0.01

Table 3 Leaf proline and root
ABA concentrations of liquorice
plants as affected by mycorrhizal
inoculation and water regimes

Inoculation (I) Water regimes (W) Proline concentrations (mg/g FW) ABA concentrations (ng/g FW)

−M WW 0.46 ± 0.06a 416 ± 44c

MD 0.57 ± 0.08a 617 ± 63a

SD 0.74 ± 0.38a 638 ± 44a

+M WW 0.09 ± 0.01c 357 ± 27c

MD 0.11 ± 0.01bc 570 ± 64ab

SD 0.26 ± 0.09ab 459 ± 20bc

Significance I – F1,24 = 6.415*

W – F2,24 = 11.64**

I ×W – F2,24 = 1.047
ns

FW represents fresh weight. −M and +M represent non-inoculated control and inoculation with mycorrhizal
fungus R. irregularis. WW, MD, and SD represent well-watered condition, moderate drought stress, and severe
drought stress, respectively. Data are presented as means ± standard error (SE). A Kruskal-Wallis test was
performed on proline concentrations and two-way ANOVA on ABA concentrations. Means followed by the
same letter in the same column do not differ significantly at P < 0.05 by Duncan’s multiple range test or
Kruskal-Wallis test

ns, not significant

*P < 0.05; **P < 0.01
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regardless of water regimes (Table 4). Significant interactions
of AM inoculation with drought stress were observed for both
root N and P concentrations (Table 4).

Root C:N, C:P, and N:P ratios all were significantly affect-
ed by drought stress and mycorrhizal inoculation (Table 5).

C:N ratios were steadily decreased by drought stress in AM
plants, while no changes in C:N ratios were detected in non-
AM plants. AM inoculation resulted in a significant increase
of C:N ratios regardless of water regimes (Table 5). Drought
stress increased root C:P and N:P ratios both in non-AM and

Fig. 2 Stomatal conductance (a), net photosynthesis rate (b), water use
efficiency (WUE) (c), and relative expression of the aquaporin gene PIP
(d) of liquorice plants as affected bymycorrhizal inoculation (I) and water
regimes (W). −M and +M represent non-inoculated control and inocula-
tion with the mycorrhizal fungus R. irregularis. WW, MD, and SD

represent well-watered condition, moderate drought stress, and severe
drought stress, respectively. The error bars represent the standard error
(SE). Treatment effects were tested by two-way ANOVA and are shown
as P values in the figure. The same letter above the error bars indicates no
significant difference at P < 0.05 by Duncan’s multiple range test

Table 4 Root C, N, and P
concentrations of liquorice plants
as affected by mycorrhizal
inoculation and water regimes

Inoculation (I) Water regimes (W) C (mg/g DW) N (mg/g DW) P (mg/g DW)

−M WW 435.10 ± 1.74d 29.51 ± 0.34a 0.69 ± 0.02c

MD 441.08 ± 0.14 cd 29.59 ± 0.78a 0.67 ± 0.00c

SD 442.48 ± 0.74bc 31.05 ± 0.87a 0.63 ± 0.01d

+M WW 429.81 ± 0.91b 11.37 ± 0.44d 2.59 ± 0.05a

MD 432.07 ± 0.99a 14.88 ± 0.34c 2.23 ± 0.08b

SD 434.21 ± 0.28a 23.63 ± 0.75b 2.00 ± 0.10b

Significance I F1,24 = 92.98** F1,24 = 794.4** F1,24 = 4504**

W F2,24 = 20.00** F2,24 = 102.2** F2,24 = 14.45**

I ×W F2,24 = 2.116
ns F2,24 = 76.70** F2,24 = 6.133**

DWrepresents dry weight. −Mand +M represent non-inoculated control and inoculation with mycorrhizal fungus
R. irregularis.WW, MD, and SD represent well-watered condition, moderate drought stress, and severe drought
stress, respectively. Data are presented as means ± standard error (SE). Means followed by the same letter in the
same column do not differ significantly at P < 0.05 by Duncan’s multiple range test

ns, not significant

*P < 0.05; **P < 0.01
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AM plants, with the maximum ratios recorded under severe
drought stress (Table 5). Conversely, AM inoculation de-
creased root C:P and N:P ratios regardless of water regime.
Significant interactions of AM inoculation with drought stress
were observed for both C:N and N:P ratios (Table 5).

Root glycyrrhizin and liquiritin concentrations

Drought stress significantly increased root glycyrrhizin con-
centrations regardless of mycorrhizal status, this increase be-
ing significant under severe drought stress for non-AM plants
(increase by 46.6%) and under moderate drought stress for
AM plants (increase by 33.4%) versus well-watered condi-
tions (Fig. 3a, Table S3). Unlike the accumulation patterns
of glycyrrhizin, drought stress induced a decrease in liquiritin
concentrations regardless of mycorrhizal status (Fig. 3b,

Table S3). A 1.84-fold reduction of liquiritin in non-AM
plants and 2.08-fold reduction in AM plants were observed
under severe drought stress versus well-watered conditions
(Fig. 3b).

On the other hand, AM symbiosis increased root
glycyrrhizin and liquiritin concentrations regardless of water
regimes (Fig. 3, Table S3). AM symbiosis increased
glycyrrhizin concentrations by 2.0-, 2.5-, and 0.9-folds under
well-watered condition, moderate drought stress, and severe
drought stress, respectively. The increase was about 3.8-, 4.8-,
and 2.9-folds for liquiritin concentrations under the same con-
ditions (Fig. 3). A significant interaction of AM inoculation
and drought stress was observed only on glycyrrhizin concen-
trations (Fig. 3, Table S3). Moreover, the yields (concentra-
tions × root dry weights) of glycyrrhizin and liquiritin of AM
plants were significantly higher than those of non-AM plants,

Table 5 Root C:N:P ratios of
liquorice plants as affected by
mycorrhizal inoculation and
water regimes

Inoculation (I) Water regimes (W) C:N C:P N:P

−M WW 14.75 ± 0.11d 630 ± 12c 42.87 ± 0.71b

MD 14.95 ± 0.39d 656 ± 10b 45.88 ± 1.27a

SD 14.29 ± 0.41d 697 ± 4a 46.75 ± 1.08a

+M WW 38.00 ± 1.40a 166 ± 3e 4.40 ± 0.17e

MD 29.09 ± 0.68b 195 ± 7d 6.72 ± 0.38d

SD 18.45 ± 0.58c 219 ± 10d 11.85 ± 0.34c

Significance I F1,24 = 775.0** F1,24 = 4786** F1,24 = 5581**

W F2,24 = 98.63** F2,24 = 25.82** F2,24 = 77.64**

I ×W F2,24 = 80.37** F2,24 = 0.599
ns F2,24 = 34.85**

−M and +M represent non-inoculated control and inoculation with mycorrhizal fungus R. irregularis.WW, MD,
and SD represent well-watered condition, moderate drought stress, and severe drought stress, respectively. Data
are presented as means ± standard error (SE). Means followed by the same letter in the same column do not differ
significantly at P < 0.05 by Duncan’s multiple range test

ns, not significant

*P < 0.05; **P < 0.01

Fig. 3 Root glycyrrhizin (a) and liquiritin (b) concentrations of liquorice
plants as affected by mycorrhizal inoculation (I) and water regimes (W).
DW, dry weight. −M and +M represent non-inoculated control and inoc-
ulation with the mycorrhizal fungus R. irregularis. WW, MD, and SD
represent well-watered condition, moderate drought stress, and severe

drought stress, respectively. The error bars represent the standard error
(SE). Treatment effects were tested by two-way ANOVA and are shown
as P values in the figure. The same letter above the error bars indicates no
significant difference at P < 0.05 by Duncan’s multiple range test
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and no significant difference in glycyrrhizin yield was detect-
ed between well-watered and moderate drought stress
(Table S4).

Expression of glycyrrhizin and liquiritin biosynthesis
genes

HMGR expression appeared to be differentially regulated by
water treatment and mycorrhizal inoculation (Fig. 4a,
Table S5). In non-AM roots, the expression of HMGR was
significantly up-regulated by drought stress, following a sim-
ilar pattern as glycyrrhizin concentrations (r = 0.569*), but
HMGR expression was unaffected by water regime in AM
roots (Figs. 3a and 4a). AM inoculation significantly up-
regulated HMGR expression in well-watered condition but
down-regulated HMGR expression under moderate and se-
vere drought stress (Fig. 4a). SQS1 expressionwas significant-
ly influenced by drought stress, and moderate drought stress
exhibited the highest gene expression regardless of mycorrhi-
zal status. Significant increase in SQS1 expression was detect-
ed in AM plants, corresponding with the accumulation pattern
of glycyrrhizin in roots (r = 0.731**, Figs. 3a and 4b,
Table S5). In non-AM roots, expressions of β-AS,
CYP88D6, and CYP72A154 were not regulated by water re-
gimes, but drought stress tended to up-regulate the expres-
sions of β-AS, CYP88D6, and CYP72A154 in AM plants
(Fig. 4c–e). AM inoculation markedly up-regulated the ex-
pressions of β-AS, CYP88D6, and CYP72A154 especially un-
der moderate drought stress, also consistent with the accumu-
lation pattern of glycyrrhizin (β-AS: r = 0.679**; CYP88D6:
r = 0.707**; CYP72A154: r = 0.502*, Figs. 3a and 4c–e,
Table S5).

LUS gene expression appeared to be down-regulated by
drought stress both in AM and in non-AM plants, although
the expression of LUS became undetectable under drought
stress in non-AM plants. AM inoculation significantly in-
creased LUS expression regardless of water regimes
(Fig. 4f). CHS was significantly down-regulated by drought
stress regardless of mycorrhizal status. Conversely, AM inoc-
ulation up-regulated CHS expression, following the same pat-
tern as liquiritin accumulation in roots (r = 0.679**, Figs. 3b
and 4g, Table S5).

Discussion

To the best of our knowledge, this study is the first to inves-
tigate the interactive effect of AM inoculation and drought
stress on plant growth and accumulations of glycyrrhizin
and liquiritin in liquorice plants. We showed that AM symbi-
osis increased glycyrrhizin accumulation and this effect was
significantly intensified by moderate drought stress. The ben-
eficial effect of AM inoculation on liquiritin accumulation,
however, was independent of water regimes. Moreover, the
accumulation patterns of glycyrrhizin and liquiritin coincided
with changes in the expression of genes involved in
glycyrrhizin and liquiritin biosynthesis.

AM symbiosis improved plant growth under drought
stress

Drought stress adversely affects plant physiology, growth,
and productivity, while AM symbiosis is a key component
helping plants to cope with drought stress (Ruiz-Lozano
et al. 2016; Chitarra et al. 2016). In this study, drought
stress decreased shoot and root dry weights of liquorice
plants regardless of mycorrhizal status. Drought stress in-
creased leaf proline and root ABA concentrations which
are physiological indictors of drought stress (Szabados
and Savouré 2010; Hong et al. 2013). Consequently, sto-
matal conductance and net photosynthesis rate decreased
upon drought stress, resulting in a reduction of CO2 as-
similation and an inhibition of plant growth. In contrast,
mycorrhizal inoculation induced a decrease of leaf proline
and root ABA concentrations under drought stress as
compared with the non-inoculated treatment. Li et al.
(2016a) reported that mycorrhizal symbiosis could de-
crease root ABA concentration to up-regulate the expres-
sion of antioxidant gene SOD and aquaporin gene PIP
with the latter considered an important mechanism for
plants to regulate water uptake and cope with drought
stress (Javot and Maurel 2002). The enhancement of wa-
ter uptake and antioxidant defense helped AM plants
maintain significantly higher water use efficiency and
dry biomass than non-AM plants under drought stress.
In addition to those mechanisms, AM inoculation also
regulated carbon flow and C:N:P balance to improve plant
drought tolerance. AM plants exhibited higher root P con-
centrations and lower C:P and N:P ratios than non-AM
plants, which were beneficial to increase root respiration
and growth (Zhao et al. 2015; Kapoor et al. 2017). These
results support the growth rate hypothesis that plants al-
locate more P to ribosomes and rRNA to support the rapid
protein synthesis associated with fast growth, and fast-
growing plants exhibit lower tissue C:P and N:P ratios
(Elser et al. 1996; Matzek and Vitousek 2009).

�Fig. 4 Relative expression of HMGR (a), SQS1 (b), β-AS (c), CYP88D6
(d), CYP72A154 (e), LUS (f), and CHS (g) in liquorice roots as affected
by mycorrhizal inoculation (I) and water regimes (W). −M and +M
represent non-inoculated control and inoculation with the mycorrhizal
fungus R. irregularis. WW, MD, and SD represent well-watered condi-
tion, moderate drought stress, and severe drought stress, respectively. nd,
not detectable. The error bars represent the standard error (SE). Treatment
effects were tested by two-wayANOVA (one-wayANOVA for LUS as an
exception) and are shown as P values in the figure. The same letter above
the error bars indicates no significant difference at P < 0.05 by Duncan’s
multiple range test
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Drought stress increased glycyrrhizin concentration
but decreased liquiritin concentration

It has been well demonstrated that plants exposed to drought
stress can accumulate elevated concentrations of secondary
metabolites, including terpenes and flavonoids (Selmar and
Kleinwächter 2013). In the present work, drought stress gen-
erally increased glycyrrhizin concentrations regardless of my-
corrhizal status, which was consistent with previous studies
(Li et al. 2011; Nasrollahi et al. 2014). Under drought stress,
plants accumulated ABAwhich induced partial stomatal clo-
sure and the accumulation of ROS which are thought to have
an adverse impact on plant physiology (Selmar and
Kleinwächter 2013). Consequently, the concentration of en-
zymatic and non-enzymatic antioxidants in plants tended to
increase to scavenge the over-accumulated ROS (Pan et al.
2006). Increasing evidence supports that glycyrrhizin, the
main triterpenoid saponin in Glycyrrhiza uralensis, displays
antioxidant activity and plays an important role in ROS scav-
enging, resulting in a significant alleviation of oxidative dam-
ages (Kim and Lee 2008). In addition, the increase of
glycyrrhizin concentrations under drought stress might be at-
tributed to the decreased root biomass. The same amount of
secondary metabolites as synthesized under well-watered con-
ditions simply might be concentrated due to the reduction in
biomass under drought stress (Selmar and Kleinwächter
2013). In this study, however, we observed that drought stress
steadily decreased the root biomass of AM plants and the
lowest root biomass was recorded under severe drought stress,
which was not consistent with the glycyrrhizin accumulation
pattern, indicating a complex relationship between drought
stress and secondary metabolite accumulation.

In liquorice plants, glycyrrhizin is mainly synthesized
through the MVA pathway, and key genes including HMGR
in this pathway have been cloned and characterized (Liu et al.
2013; Mochida et al. 2017). In non-AM plants, drought stress
appeared to have no significant effect on glycyrrhizin biosyn-
thesis genes except for a significant up-regulation ofHMGR, a
gene encoding the first rate-limiting enzyme in the
glycyrrhizin biosynthesis pathway. That up-regulation of
HMGR seemed sufficient for the accumulation of final prod-
ucts (Harker et al. 2003; Enfissi et al. 2005) because of a
cascading effect on downstream gene expression (Mandal
et al. 2015). The up-regulation of HMGR by drought stress
also has been observed in non-AM roots of various other plant
species (Yang et al. 2012; Zhang et al. 2016).

In addition to the reduced biomass and up-regulation of the
HMGR gene leading to an increased glycyrrhizin concentra-
tion, drought stress also induced changes in the nutrient
source-sink relations (C:N:P stoichiometry) of the plant and
thereby affected the synthesis, translocation, and accumula-
tion of secondary metabolites (Selmar and Kleinwächter
2013). Drought stress inhibited plant growth and decreased

root biomass, simultaneously increased root C concentrations
and C:P and N:P ratios in non-AM plants, and as a result,
possibly stimulated the carbon-based secondary metabolism
and increased total yield of glycyrrhizin and liquiritin at the
cost of biomass (Elser et al. 1996;Matzek and Vitousek 2009).
In AM plants, however, the highest accumulation of
glycyrrhizin was detected under moderate drought stress.
The highest biosynthesis gene expressions (SQS1, β-AS,
CYP88D6, CYP72A154) also were induced under moderate
drought stress in AM plants, suggesting that the increase of
glycyrrhizin concentrations under drought stress in AM plants
was due to up-regulation of the glycyrrhizin biosynthesis
genes.

Drought stress steadily decreased liquiritin concentrations
regardless of mycorrhizal status. The inhibitory effect by
drought stress was highly correlated with the suppression of
liquiritin biosynthesis gene CHS. Moreover, as liquiritin and
glycyrrhizin biosynthesis both derive from acetyl coenzymeA
(Acetyl-CoA), it appears that the plant potentially stimulated
production of glycyrrhizin at the expense of liquiritin produc-
tion under drought stress.

AM inoculation increased glycyrrhizin and liquiritin
concentrations

AM inoculation has been demonstrated to affect the accumu-
lation of secondary metabolites, including terpenes and phe-
nolics in plants (Zeng et al. 2013; Welling et al. 2016; Kapoor
et al. 2017). In this study, we found that AM inoculation
markedly increased root glycyrrhizin and liquiritin concentra-
tions of liquorice plants regardless of water regimes, suggest-
ing a positive effect of AM inoculation on root secondary
metabolism. This was consistent with previous studies show-
ing that AM inoculation increased the glycyrrhizin and
liquiritin accumulations in liquorice plants (Liu et al. 2007;
Orujei et al. 2013; Chen et al. 2017). According to the carbon-
nutrient balance hypothesis, the balance between carbon and
nutrient availability controls carbon-based secondary metabo-
lism in plants (Bryant et al. 1983; Hamilton et al. 2001). The
present study showed that AM symbiosis altered the balance
between N and P, resulting in lower root N:P ratios and N
limitations for plant growth. Consequently, AM plants exhib-
ited higher root C:N ratios than non-AM plants and could
allocate more carbon to synthesize glycyrrhizin and liquiritin,
the main carbon-based secondary metabolites in liquorice
plants. These results suggested that AM symbiosis might
cause the plant to reallocate carbon to regulate secondary me-
tabolism. Moreover, improved plant P nutrition by AM sym-
biosis also has been thought to positively influence the bio-
synthesis of terpenoids (Kapoor et al. 2017). Phosphorus
could stimulate terpenoid biosynthesis by augmenting the accu-
mulation of pyrophosphate compounds, including isopentenyl
pyrophosphate (IPP) and dimethylallylpyrophosphate
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(DMAPP), the most important precursors of terpenoid biosyn-
thesis, that contain high-energy phosphate bonds (Kapoor et al.
2017). Phosphorus also is involved in the biosynthesis of other
precursors, including acetyl-CoA, ATP, and NADPH in the
MVA pathway and glyceraldehyde phosphate and pyruvate in
themethylerythritol phosphate (MEP) pathway, that are essential
for terpenoid biosynthesis. Additionally, the increased accumu-
lation of an individual secondary metabolite could be attributed
to increase of substrates involved in the biosynthesis and/or up-
regulation of genes encoding metabolite synthases (Shrivastava
et al. 2015). In the present study, AM inoculation markedly up-
regulated the expression of glycyrrhizin biosynthesis genes
SQS1, β-AS, CYP88D6, and CYP72A154, and liquiritin biosyn-
thesis gene CHS, which were consistent with the glycyrrhizin
and liquiritin accumulation patterns. It is interesting to note that
despite the significantly elevated concentrations of glycyrrhizin
in AMplants, the expression level ofHMGR remained unaltered
under all water regimes. The non-responsiveness of the HMGR
gene to AM inoculation also was observed in Artemisia annua
(Mandal et al. 2015). This might be because AM inoculation
changed the upstream pathway of terpenoid biosynthesis from
the MVA pathway to the MEP pathway and the latter became
the main provider of precursors (IPP/DMAPP) to synthesize
terpenoids (Mandal et al. 2015; Kapoor et al. 2017). Actually,
the common isoprenoid precursors IPP/DMAPP involved in
terpenoid biosynthesis could be influenced by metabolic cross-
talk between the plastidMEP pathway and cytosolicMVA path-
way (Laule et al. 2003; Rodríguez-Concepción 2006). In addi-
tion, the higher expression of downstream genes in the
glycyrrhizin biosynthesis pathway of the AM plants might com-
pensate for a lack of the universal precursor IPP (Kapoor et al.
2017).

The interactive effect of drought stress and AM
inoculation on glycyrrhizin and liquiritin
accumulation

There have been many studies focusing on drought stress or
AM inoculation alone influencing plant growth and secondary
metabolism (Selmar and Kleinwächter 2013; Zeng et al. 2013;
Kapoor et al. 2017), but the potential interaction between
drought stress and AM fungi has not been characterized. In
this study, we hypothesized that the accumulation of
glycyrrhizin and liquiritin in liquorice plants could be regulat-
ed by an interaction of drought stress and AM symbiosis. In
agreement with our hypothesis, the highest glycyrrhizin con-
centration was recorded in inoculated liquorice plants under
moderate drought stress. Drought stress and AM inoculation
independently affected the accumulation of liquiritin, howev-
er, which failed to support our hypothesis.

AM hyphae directly link soil and plant roots and serve as
the channel of water and nutrient absorption and transporta-
tion with arbuscules, a hallmark of the AM symbiosis,

transferring nutrients to root cells and, in return, transferring
carbohydrates to the AM fungi. The abundance of intact
arbuscules could reflect the effectiveness of the AM symbiosis
(Gianinazzi-Pearson 1996; Helber et al. 2011). As reported,
drought stress can induce arbuscule collapse (Sun et al. 2017),
which could lead to malfunction of the symbiosis.
Furthermore, drought stress also could directly decrease the
mobility of soil mineral nutrients and reduce P uptake both by
roots and by AM hyphae (He and Dijkstra 2014; Kapoor et al.
2017). As has been demonstrated, improved P nutrition by the
AM symbiosis contributed to biosynthesis of terpenoids
(Kapoor et al. 2017); therefore, drought stress can potentially
counteract the positive mycorrhizal effects on secondary me-
tabolite accumulation in liquorice through negative effects on
AM symbiosis development and effectiveness in improving
plant P nutrition.

It has been well demonstrated that AM inoculation can
enhance plant drought tolerance and regulate carbon alloca-
tion through multiple physiological mechanisms. Extraradical
hyphae of AM fungi can enter fine soil pores and thus enhance
uptake and transport of water to plants (Neumann et al. 2009).
It has recently been demonstrated that two functional aquapo-
rin genes (GintAQPF1 and GintAQPF2) from R. intraradices
were responsible for a significant increase in the relative root
water content of maize plants (Li et al. 2013), supporting the
direct involvement of AM fungi in improving plant water
relations under drought stress. AM symbiosis also lowered
ABA concentrations in plant roots, which in turn can up-
regulate the expression of stress-related genes including pro-
line biosynthesis gene p5cs (Porcel et al. 2004) and superox-
ide dismutase biosynthesis gene SOD (Li et al. 2016a) to al-
leviate oxidative stress. In addition, AM inoculation can stim-
ulate root respiration and augment root growth, and thereby
enhance plant adaption to drought stress and nutrient limita-
tion (Chen et al. 2010; Zhao et al. 2015). Taken together, such
results suggested that the positive effect of drought stress on
the accumulation of plant secondary metabolites could poten-
tially be counteracted or even disappear in response to AM
inoculation. In this study, severe drought stress exhibited no
significant influence on glycyrrhizin concentrations in AM
plants.

The plant hormone ABA is a chemical signal involved in
plant response to both drought stress and AM inoculation, and
it also is involved in the biosynthesis of secondary metabo-
lites, including terpenoids (Mansouri et al. 2009; Yang et al.
2012). Under drought stress, the expression of ABA-
biosynthesis gene NCED, encoding a 9-cis-epoxycarotenoid
dioxygenase, was significantly up-regulated, resulting in an
increase of ABA concentration (Aroca et al. 2008; Ruiz-
Lozano et al. 2016), which would induce stomatal closure to
reduce water loss and increase ROS accumulation. AM inoc-
ulation could down-regulate NCED expression and decrease
ABA accumulation, however, and subsequently activate
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downstream stress-responsive genes and alleviate oxidative
stress (Porcel et al. 2004; Chitarra et al. 2016; Li et al.
2016a). The altered ABA levels could further regulate the
production of reactive oxygen species andHMGR expression,
which ultimately influence the biosynthesis of secondary me-
tabolites (Yang et al. 2012; Sivakumaran et al. 2016).
Therefore, drought stress and AM fungi might interact
through altering plant ABA balance in the host plant to affect
secondarymetabolism. Our experimental results indicated that
AM inoculation had no significant influence on ABA accu-
mulation under moderate drought stress; however, a marked
decrease of ABAwas observed under severe drought stress. In
contrast, the highest accumulation of glycyrrhizin was
achieved in AM plants under moderate drought stress. This
inconsistency of ABA and glycyrrhizin accumulation patterns
might suggest that glycyrrhizin accumulation is regulated by
complex interactions between drought stress and AM symbi-
osis, but further research is needed to test this hypothesis.

In conclusion, we showed that AM symbiosis not only
improved the growth of liquorice plants but also increased
the accumulation of glycyrrhizin and liquiritin through several
mechanisms (Fig. S1), and this beneficial effect for
glycyrrhizin production was most pronounced under moder-
ate drought stress. The experimental results confirmed an in-
teractive effect of drought stress and AM inoculation on sec-
ondary metabolite accumulation in liquorice plants.
Subsequent research should further investigate the effects of
additional AM fungus species besides R. irregularis on the
accumulation of secondary metabolites in liquorice plants,
and also should test the effectiveness of AM fungi in combi-
nation with proper water management in promoting liquorice
cultivation under field conditions.
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