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Abstract The arrival of 454 sequencing represented a major
breakthrough by allowing deeper sequencing of environmen-
tal samples than was possible with existing Sanger ap-
proaches. Illumina MiSeq provides a further increase in se-
quencing depth but shorter read length compared with 454
sequencing. We explored whether Illumina sequencing im-
proves estimates of arbuscular mycorrhizal (AM) fungal rich-
ness in plant root samples, compared with 454 sequencing.
We identified AM fungi in root samples by sequencing
amplicons of the SSU rRNA gene with 454 and Illumina
MiSeq paired-end sequencing. In addition, we sequenced
metagenomic DNA without prior PCR amplification.
Amplicon-based Illumina sequencing yielded two orders of
magnitude higher sequencing depth per sample than 454 se-
quencing. Initial analysis with minimal quality control record-
ed five times higher AM fungal richness per sample with
Illumina sequencing. Additional quality control of Illumina
samples, including restriction of the marker region to the most
variable amplicon fragment, revealed AM fungal richness
values close to those produced by 454 sequencing.
Furthermore, AM fungal richness estimates were not correlated

with sequencing depth between 300 and 30,000 reads per sam-
ple, suggesting that the lower end of this range is sufficient for
adequate description of AM fungal communities. By contrast,
metagenomic Illumina sequencing yielded very few AM fun-
gal reads and taxa and was dominated by plant DNA, suggest-
ing that AM fungal DNA is present at prohibitively low abun-
dance in colonised root samples. In conclusion, Illumina
MiSeq sequencing yielded higher sequencing depth, but sim-
ilar richness of AM fungi in root samples, compared with 454
sequencing.
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Introduction

Arbuscular mycorrhizal (AM) fungi (PhylumMucoromycota,
Subphylum Glomeromycotina, Spatafora et al. 2016) are
widespread soil microorganisms that form a symbiosis with
the roots of the great majority of land plants (Smith and Read
2008). The fungal partner provisions host plants with soil
nutrients and improved resistance to abiotic and biotic stress-
es; in exchange, host plants supply the fungi with carbon
derived from photosynthesis (Pozo et al. 2015; Garcia et al.
2016). Thus, AM fungi play critical roles in global nutrient
and carbon cycling and ecosystem functioning (van der
Heijden et al. 2015; Treseder 2016). Consequently, consider-
able effort has already been made to understand patterns of
AM fungal diversity at different spatial scales (e.g. Davison
et al. 2015; Öpik and Davison 2016) and how AM fungal
diversity relates to ecosystem functioning (van der Heijden
et al. 2015; Treseder 2016).

Detecting and identifying AM fungi in natural systems is
far from straightforward because the organisms are
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microscopic and at best culturable together with a host plant
(Smith and Read 2008). The long-established method for tax-
onomic identification on the basis of spore morphology has
been accompanied, and in some fields replaced, by DNA-
based methods targeting fungal structures in plant roots and
soil (Öpik and Davison 2016). Since the 1990s, cloning and
Sanger sequencing has been used to identify naturally occur-
ring AM fungi, with studies typically generating tens to thou-
sands of sequences and tens to hundreds of sequences per
sample (e.g. Öpik et al. 2008). The early 2000s saw the emer-
gence of 454 sequencing, as well as other next-generation
sequencing (NGS) platforms, which allowed sequencing
depth (number of sequences per sample) to be increased to
hundreds to thousands of sequences per sample (Shokralla
et al. 2012). This technological development has allowed a
substantial increase in sample throughput, finally making it
feasible to study variation in communities of AM fungi and
other fungi (Lindahl et al. 2013; Hart et al. 2015; Taylor et al.
2017). Estimates of AM fungal richness increased concomi-
tantly with increasing sample sizes and sequencing depth per
sample, indicating that the new approaches allowed infrequent
fungi to be detected and the proportions of diversity captured
to increase (Öpik et al. 2006, 2009).

454 Sequencing as a tool is now being replaced by several
high-throughput sequencing platforms, including Illumina,
Ion Torrent and PacBio SMRT sequencing in fungal (Brown
et al. 2013; Glassman et al. 2015; Tedersoo et al. 2015; Cline
et al. 2017) and AM fungal diversity research (Johansen et al.
2016; Schlaeppi et al. 2016). Illumina sequencing represents a
particularly useful approach because of its lower error rate
than 454 sequencing and the further increase in sequencing
depth per sample—by up to two orders of magnitude—it of-
fers (Shokralla et al. 2012). Consequently, it is becoming a
favoured approach in fungal community ecology. However,
the relatively short maximum sequence length returned by
Illumina platforms has been a limitation for AM fungal diver-
sity studies, where commonly used amplicon lengths range
from 540 to 1500 bp (Öpik and Davison 2016). The use of
alternative platforms that allow longer reads, such as PacBio
(Schlaeppi et al. 2016), or the increase in Illumina MiSeq read
length to 2 × 300 bp and approaches, such as tagmentation,
that permit sequencing longer DNA fragments, are partly
overcoming this limitation. Tagmentation incorporates univer-
sal tags into DNA fragments of user-selected size via transpo-
son cleavage (Lee et al. 2016), allowing longer fragments,
such as the full ribosomal small subunit RNA genes of bacte-
ria, to be sequenced (Burke and Darling 2016).

Illumina sequencing has been used to study AM fungal
diversity in field and experimental systems (Cui et al. 2016;
Johansen et al. 2016; Xu et al. 2016; Liu et al. 2017; Orchard
et al. 2017; Wang et al. 2016). In some cases, relatively low
AM fungal diversity has been detected in comparison with the
levels typically returned by 454 sequencing-based studies,

though this could reflect a real effect of the extreme environ-
ments being studied (Cui et al. 2016). On the other hand, a
study of AM fungal communities in dune grass roots showed
that Illumina sequencing can recover AM fungi from most
root samples while providing broad phylogenetic coverage
of clades (Johansen et al. 2016). Results from arid ecosystems
in Northern China (Liu et al. 2017) and from maize roots
(Wang et al. 2016) also showed that the techniques can gen-
erate large quantities of AM fungal reads (>70% of quality-
controlled Illumina paired-end sequences were from
Glomeromycotina). However, it has not yet been assessed
how the Illumina sequencing approach, with increased se-
quencing depth per sample, a change in amplicon length and
associated differences in bioinformatic procedures, affects the
capture of AM fungal diversity and the accuracy of AM fungal
identification compared with the relatively well tested 454
sequencing approach.

Platforms such as Illumina also allow a metagenomic (i.e.
PCR-free) approach to be used when describing microbial
communities. This allows direct identification of the
microbiome without potential PCR-introduced bias, whereby
certain groups are favoured or disfavoured in the amplification
process, for example due to primer bias (Bradley et al. 2016).
Furthermore, metagenomic sequence data includes entire ge-
nomes and is largely quantitative proportionally to the tem-
plate DNA (Thomas et al. 2012), potentially allowing precise
identification, functional profiling and quantification (Randle-
Boggis et al. 2016). While community surveys of AM fungi
still rely almost exclusively on markers derived from the nu-
clear ribosomal operon, it would be informative to assess the
feasibility of applying a metagenomic approach to study the
ribosomal gene diversity of AM fungi in environmental
samples.

Here, we use the Illumina MiSeq sequencing platform
using tagmentation with PCR-based and metagenomic ap-
proaches to describe AM fungal diversity in natural plant root
samples and compare the results with those generated using
454 sequencing. We aim to (1) determine whether the choice
of sequencing approach (IlluminaMiSeq and 454 sequencing)
affects measurements of AM fungal diversity, (2) determine
whether amplicon-based and metagenomic Illumina MiSeq
sequencing capture AM fungal diversity differently, and (3)
identify the most variable region of SSU rRNA gene.

Materials and methods

Plant root sampling

Plant root sampling was conducted in the Järvselja forest re-
serve in south-eastern Estonia (58° 17.916′ N, 27° 15.744′ E),
as described in Saks et al. (2014). We used different plant
individuals from the same sampling event as in Saks et al.
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(2014). Samples were collected from two plots of 30 × 30 m,
ca 50m apart, in June 2009. Two arbuscular mycorrhizal plant
species that were abundant in the plots were sampled for this
study: Convallaria majalis L. and Rubus saxatilis L. Three
random individuals of each plant species per plot were exca-
vated (a total of 12 samples). Plant roots were then carefully
cleaned of soil and other adhering materials as quickly as
possible, wrapped in tissue paper and stored in a plastic bag
with silica gel.

DNA extraction

DNA was extracted from each plant individual from 30 to
80 mg of dried roots (fragments from the root system) using
the PowerSoil-htp™ 96 Well Soil DNA Isolation Kit (MO
BIO Laboratories, Inc., Carlsbad, CA, USA) with some mod-
ifications as in Öpik et al. (2013). In short, in order to include a
sufficient quantity of roots in each DNA extraction, roots were
milled to powder in 2-ml tubes with one or two 3-mm tungsten
carbide beads per tube with Mixer Mill MM400 (Retsch
GmbH, Haan, Germany), instead of milling in the bead plate
as suggested by the manufacturer. Seven hundred fifty micro-
liters of bead solution was added to the tubes, mixed, and the
slurry transferred to the bead plate. Also, to increase the DNA
yield, bead plates were shaken at 60 °C (as suggested by the
manufacturer as a modification of the standard protocol,
which uses room temperature) for 10 min at 150 rpm in a
shaking incubator. Finally, in order to increase DNA yield
but maintain DNA concentration, final elution was performed
twice with 75 μl of Solution C6.

Illumina sequencing

DNA from root samples was subjected to amplicon-based and
metagenomic-based Illumina sequencing on a MiSeq plat-
form, using a 2 × 250 bp paired-read sequencing approach.

Amplicons of the nuclear SSU rRNA gene were generated
with primers NS31 and AML2 (Simon et al. 1992; Lee et al.
2008) for identification of AM fungi as in Öpik et al. (2013).
Amplified DNAwas purified with the Qiagen QIAquick Gel
Extraction kit (Qiagen Gmbh, Hilden, Germany) following
the manufacturer’s protocol. The concentration of purified
DNA was quantified with a Qubit® 2.0 Fluorometer
(Invitrogen, Grand Island, USA).

For both amplicon-based and metagenomic approaches,
1 ng of sample DNAwas processed for the sequencing librar-
ies using the Illumina Nextera XT sample preparation kit
(Illumina, San Diego, USA) following the manufacturer’s pro-
tocol. This approach uses tagmentation to enzymatically frag-
ment and tag the sample DNAwith adapters in random posi-
tions. This step is followed by a 12-cycle PCR in order to add
the sequencing indices, PCR cleanup and normalisation.

Normalised libraries were pooled and sequenced on Illumina
MiSeq with 2 × 250 bp paired-end reads.

454 Sequencing

AM fungal amplicons were generated with the same primers
and PCR conditions as described above. 454 Sequencing was
performed as in Öpik et al. (2013) using the primers NS31 and
AML2 linked to 454 sequencing adaptors A and B, respec-
tively. In order to identify sequences originating from different
samples, we used a set of 8 bp barcodes designed following
Parameswaran et al. (2007). The barcode sequences were
inserted between the A primer and NS31 primer sequences
and between the B primer and AML2 primer sequences.
Thus, the composite forward primer was 5 ′ GTCT
CCGACTCAG (NNNNNNNN) TTGGAGGGCAAGTC
TGGTGCC 3 ′ and the rever se pr imer 5 ′ TTGG
CAGTCTCAG (NNNNNNNN) GAACCCAAACACTT
TGGTTTCC 3′, where the A and B adaptors are underlined,
the barcode is indicated byN-s in parentheses, and the specific
primers NS31 and AML2 are shown in italics. The ten-times
diluted product of the first PCR reaction was used in the sec-
ond PCRwith primers A (5′-CCATCTCATCCCTGCGTGTC
TCCGACTCAG-3′) and B (5′-CCTATCCCCTGTGT
GCCTTGGCAGTCTCAG-3′). The PCR conditions were as
in Öpik et al. (2013). The resulting DNA mix was sequenced
on a Genome Sequencer FLX System, using Titanium Series
reagents (Roche Applied Science, Mannheim, Germany) at
GATC Biotech (Konstanz, Germany).

Bioinformatics

Database and bioinformatics scripts to prepare, clean and an-
alyse the data are available in a GitHub repository (http://
github.com/ut-planteco/ssu-pipeline). Scripts were written in
Python 2.7 using a minimal approach with no dependencies
and external libraries needed. Users need to install the
following third-party software: MAFFT (v7.306, Katoh and
Standley 2013) to generate multiple sequence alignment,
FLASh (v1.2.10, Magoč and Salzberg 2011) to combine
paired-end reads, USEARCH (v7.0.1090, Edgar et al. 2011)
to remove chimeric reads, legacy BLAST with blastclust
(BLAST v2.2.26, Altschul et al. 1990) to cluster sequences
and BLAST (BLAST+ v2.5.0, Camacho et al. 2009) to iden-
tify sequences. The workflow for analysing 454 and Illumina
sequences is summarised in Fig. S1 (Electronic
Supplementary Material).

Quality control and preparation of read sets Illumina and
454 sequences were divided into four sets to incorporate the
most common analysis and cleaning protocols for both se-
quencingmethods. For Illumina amplicon reads, we generated
the following sets: (1) Ill-qf, quality-filtered single reads (R1)
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representing a random collection of forward and reverse di-
rection reads, and (2) Ill-t, paired-end reads that were com-
bined using quality-filtered forward (R1) and reverse (R2)
reads and then trimmed to retain only themost variable section
of the amplicon (170–300 bp). For 454 reads, we generated
partly analogous set: (3) 454-qf, quality-filtered full-length
reads, and (4) 454-t, quality-filtered reads that were trimmed
to retain only the most variable amplicon section.

The Illumina amplicon read set was quality-filtered by re-
moving sequences exhibiting Nextera adapter contamination
(Fig. S2a, S2b) and where average quality was <30
(maximum 41, Cock et al. 2010). The majority of reads
contained Nextera tagmentation-based adapter fragments
(Figs. S2, S3, S4). Adapter fragments were revealed at random
locations (Fig. S2d) dependent on insert size, which some-
times was smaller than MiSeq read length, resulting in palin-
drome reads where adapter read-through occurs (Bolger et al.
2014). Such paired-end reads containing fragments of
adapters were discarded. Sequences were not trimmed based
on quality scores as this results in the loss of combined reads if
overlapping sections are removed, while the criteria required
for read combination themselves provide a quality filter. In our
case, R2 reads were of lower quality compared to R1 (average
quality scores: amplicon R1 29.9% and R2 27.6%;
metagenomic R1 35% and R2 31.9%; Fig. S5). After adapter
removal and quality filtering, reads without the respective
paired read were omitted, as they could not be combined.

Quality-filtered paired-end reads were combined using
FLASh with the default parameters (minimum overlap be-
tween paired reads = 10 bp; maximum mismatch density in
the overlap alignment = 0.25). In case of mismatch in the
overlapping segments of paired-end reads, FLASh compares
the quality scores for both reads and picks the nucleotide with
the highest quality score. The resultant combined paired-end
reads exhibited lengths ranging from 251 to 492 nt (Fig. S2c).
We also tested pairing the reads with Pear (Zhang et al. 2014)
and PANDAseq (Masella et al. 2012). Chimeric reads were
removed using USEARCH in reference database mode (the
MaarjAM database, Öpik et al. 2010) with the default param-
eters. The MaarjAM database contains representative se-
quences covering the NS31/AML2 amplicon from published
environmental Glomeromycotina sequence groups and mor-
phologically described taxa, classified into virtual taxa (VT,
see Öpik et al. 2009, 2014). The fullMaarjAM database (status
October 2016) contains 20,399 SSU rRNA gene sequences
distributed in 352 VT.

454 Sequencing reads were subjected to the bioinformatic
procedures described in Öpik et al. (2013) and Saks et al.
(2014). In short, 454 sequencing reads were retained for anal-
ysis only if they carried the correct barcode (8 bp) and forward
primer sequences (21 bp), and were ≥170 bp long (excluding
the barcode and primer sequence). Barcode and primer se-
quences were trimmed from reads. Sequences longer than

520 bases were trimmed to exclude reverse primer sequences.
Chimeric reads were detected and removed from the data
using USEARCH in reference database mode (MaarjAM da-
tabase) with the default settings.

To validate BLAST search identification of SSU rRNA
amplicon using the reference database, we conducted an in
silico experiment. Two sets of sequences derived from the
MaarjAM database (6405 sequences fitting the full amplicon,
352 VT) with different trimming lengths and starting positions
were produced to test the effect of sequencing the variable
versus the invariable part of the amplicon for 454-based and
Illumina-based approaches (Fig. S6). Sequences simulating
tagmentation-based Illumina reads (251 bp long) with a
starting position 250 bases along the amplicon (after NS31
primer) showed a significant drop in correct identification,
only identifying 60% of fixed length sequences correctly.
For 454 reads the same experiment showed that using the
170 bases following the NS31 primer location is sufficient to
correctly identify AM fungal sequences, confirming findings
made by Davison et al. (2012).

To identify paired Illumina reads and 454 reads spanning
the most variable fraction of the NS31-AML2 amplicon, we
first calculated nucleotide dissimilarities along the NS31-
AML2 amplicon, using sequences from the MaarjAM data-
base. We identified database sequences spanning the entire
amplicon by subjecting all sequences to BLAST searches
against the NS31 and AML2 primer sequences. Only se-
quences without ambiguous nucleotides and receiving a per-
fect match against both primers were retained totalling 3693
database sequences (all 352 VT represented) that included the
full-length amplicon (520 bases). The BLAST output was
analysed and sequences trimmed to exclude primers and sec-
tions falling outside the NS31-AML2 amplicon region. A
multiple alignment using MAFFT with default settings was
used to identify misaligned or poor-quality reads. This yielded
an alignment containing 1187 high-quality reference se-
quences. Trimmed MaarjAM sequences were compared to a
consensus sequence from the alignment to calculate mismatch
for each base. Nucleotide dissimilarities varied considerably
along the amplicon, and the most variable fragment was lo-
cated between positions 70 and 300, with the section from
nucleotides 70 to 170 exhibiting particularly high variation
(Fig. 1d). Variable region filtering was applied to 454 and
Illumina reads by conducting a BLAST search against the
consensus sequence mentioned above to retrieve the read po-
sition on the amplicon, and each read was trimmed according-
ly to include only the variable region (positions 70–300 on
NS31-AML2 amplicon).

Metagenomic Illumina reads were quality-filtered to re-
move reads with q < 30 and orphan reads. We then combined
the remaining paired-end reads using FLASh with the same
parameters as described above. We further filtered paired
reads based on GC% content between 20 and 42% following
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published AM fungal genome data (Tisserant et al. 2013, Lin
et al. 2014) and assembled sequences into contigs with
Newbler (v2.6, the 454 Life Science de novo assembler) using
the default parameters (minimum identity 96%, minimum
length 40 bases, and parameter -large to speed up assembly
and reduce memory footprint). Following assembly, we pre-
dicted potential genes in the contigs and translated these into
proteins using GeneMark-ES (v4.33, Ter-Hovhannisyan et al.
2008) with the prebuilt HiddenMarkovModel for eukaryotes.

Sets of representative filtered paired-end Illumina and 454
sequence reads have been deposited in the EMBL nucleotide
collection (accession numbers KY685085–KY685341 and
KY685342–KY685519 for 454 and Illumina reads, respec-
tively; each set consists of up to two of the longest reads
representing taxa found in each of the two studied plant spe-
cies). Raw metagenomic paired-end sequences are stored in
the Sequence Read Archive (SRA) (accession number
PRJNA377617).

Identification of reads We identified amplicon reads using
BLAST searches (soft masking with the DUST filter) against
the MaarjAM database (3693 sequences, 352 VT) with se-
quences fitting the full amplicon (520 bases) between NS31
and AML2 primers (excluding both primers). Sequence reads
were assigned to VTwith the following criteria required for a
match: sequence similarity ≥97%; the alignment length not
differing from the length of the shorter of the query (454 or
Illumina read) and subject (reference database sequence) se-
quences by more than 5%; and a BLAST e-value <1e−50

(Thiéry et al. 2016). The best hit on the basis of the BLAST
score was recorded for each read. Those reads (no hits) that
BLAST did not match against the MaarjAM database were
investigated by conducting a further BLAST search against
the NCBI (status October 2016, Benson et al. 2013) non-
redundant nucleotide database.

Putative proteins translated from metagenomic Illumina
genes were subjected to a BLAST search against the NCBI
non-redundant protein database (status December 2016) using
protein BLAST with 40% identity (Rost 1999) and a 50%
alignment filter of the shorter read (query or database se-
quence) giving rough estimation of organisms found in sam-
ples. The genome of aGigaspora rosea (Tang et al. 2016) and
a Gigaspora margarita (Salvioli et al. 2016) were missing
from the protein database as they existed only in the nucleo-
tide database, so an additional protein BLAST with tblastn
(BLAST+ v2.5.0, protein against nucleotide) was conducted
to add the missing information. The results were visualised
using Krona (v2.7, Ondov et al. 2011).

Statistics

It is common practice to exclude singleton taxa (i.e. taxa rep-
resented by a single DNA read) or rare taxa (i.e. taxa below a
specified abundance) prior to conducting diversity analyses
using DNA-based community data. This is because singleton
or rare taxa may represent sequencing artefacts (Tedersoo
et al. 2010) or may be of minor interest if a description of
dominant community patterns is intended. We removed
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singleton taxa from 454 results, where each singleton hit rep-
resented 0.01% of all the hits. Using the same proportion, we
removed rare taxa from Illumina reads when they represented
less than 0.01% of total hits. Sampling efficacy was assessed
using individual-based rarefaction (function rarefy from R
package vegan; Oksanen et al. 2016). Richness estimates were
calculated for each sample in each sequence set (Ill-qf, Ill-t,
454-qf, 454-t), and differences between sets and host plant
species were estimated using a mixed-effects model
(function lmer from R package lme4, Bates et al. 2015).
Richness was log-transformed prior to inclusion in the model.
Sample identity was included in the model as a random effect.
The Kenward-Roger approximation was used to estimate
model degrees of freedom (Kenward and Roger 1997), and
Tukey contrasts were used to compare group means. Richness
estimates were also regressed against read number within each
sequence set and against each other between sets. The relative
abundances of different VT in the 454-t and Ill-t sets (samples
pooled within each set) were compared using Pearson’s cor-
relation. Pearson’s correlation was also used to test the rela-
tionships between sample weight and recorded VT richness
and sequence depth.

Results

Amplicon-based Illumina MiSeq sequencing

We obtained a total of 8,461,400 raw reads from 12 samples,
with 164,385 to 1,610,065 reads per sample (Table S1).
Following adapter removal and quality filtering, we detected
and removed 19,469 chimeras among single-end reads (R1,
251 bases), leaving 937,658 quality-filtered sequences (Ill-qf)
distributed randomly along the amplicon (Fig. 1c). Among
paired-end reads, after adapter removal, quality filtering and
combining the reads (R1 + R2, 251–492 bp), we detected and
removed 23,628 chimeric reads.

MaarjAM database SSU rRNA gene amplicon sequences
containing full NS31 and AML2 primers were aligned togeth-
er in order to compare dissimilarities. Nucleotide dissimilar-
ities varied considerably along the amplicon, with the section
from nucleotide positions 70 to 170 exhibiting particularly
high variation (Fig. 1d). Paired reads were quality filtered
and trimmed to the 70 to 300 bp portion of the amplicon
(Fig. 1c), retaining 159,068 sequences (Ill-t) that fully span
variable region of the targeted marker (Fig. 1d). The length
distribution of Illumina reads is shown in Fig. S2.

BLAST against the MaarjAM database identified 862,457
Ill-qf reads (92.0%) as belonging to 216 VT (Fig. 1a) and
152,375 Ill-t reads (95.8%) as 28 VT (Fig. 1b, Table 1, S2).
Mapping Ill-qf reads onto the NS31-AML2 amplicon showed
that reads of the 168 VTs detected only among the Ill-qf reads,
but not in the 454-qf reads, were positioned in the 200 to

520 bp part of the amplicon (Fig. S7). Alternative identifica-
tion of these reads (141,634 reads, 168 VT) by clustering
using blastclust with 97% identity resulted in 29 clusters,
where the largest cluster contained 139,667 reads (96.6% of
the reads). This indicates that BLAST-based identity assign-
ments of similar score alignment matches within the invari-
able region (200–520 nt) were largely random. Illumina
amplicon reads were also paired with Pear and PANDAseq
using same filtering parameters as Ill-t reads, but achieved the
same VT (28) count compared to FLASh with slight changes
in sequences identified (FLASh 152,375 sequences, Pear
159,289 sequences, PANDAseq 156,910 sequences).

Among Ill-t reads, all sequences (30,726 nohits) that did
not receive a match against the MaarjAM database were iden-
tified by BLAST against the NCBI non-redundant nucleotide
collection with 90% identity threshold: of the 29,798 se-
quences, 53% were identified as Metazoa, 44% Fungi (34%
of all reads as Glomeraceae) and 3% Viridiplantae (the host
plant families: 2% Rosaceae and <1% Asparagaceae).

Amplicon-based 454 sequencing

A total of 13,611 reads were successfully demultiplexed using
the 8 bp barcode with 100% identity, generating 372 to 1790
reads per sample (Fig. S8, Table S1). Further quality filtering
by primer identity, average read quality and read length
retained 12,354 sequences. Chimera checking identified and
removed a further 525 sequences, leaving a total of 11,829
cleaned 454 reads (454-qf). Sequence length and quality dis-
tributions are shown in Fig. S9.

A total of 9973 reads (454-qf) were identified as 52 VT
(Fig. 1a, Table 1), including 48 VT also detected in the Ill-qf
set (Table S2). When the 454 reads were trimmed to the 70–
300 bp fragment of the amplicon, 9067 sequences (454-t) in
40VTwere retained, including 26VT in commonwith Ill-t set
(Fig. 1b). The 2079 unidentified sequences from 454-t were
further identified against INSDC with 90% identity threshold:
of the 1670 sequences, 39% were identified as Metazoa, 30%
as Viridiplantae (the host plant families: 17% of all reads as
Rosaceae and <1% Asparagaceae) and 26% as Fungi (10%
Glomeraceae).

Comparison of AM fungal diversity detected by Illumina
MiSeq and 454 sequencing

Rarefaction analysis suggested that the number of AM fungal
reads per sample for 454 sequencing and Illumina sequencing
was generally sufficient to produce asymptotic estimates of
VT richness per sample (Fig. S10). AM fungal richness per
sample differed between sequence data types (F3,33 = 331.15,
P < 0.001; Fig. 2), but not between host plant species
(F1,10 = 0.02, P = 0.90). Specifically, the mean number of
VT per sample was ca 5–10 times higher among Ill-qf reads
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than among Ill-t reads (Fig. 2), reflecting inflated richness
estimation in the former set. Ill-t had higher sequencing depth
but lower observed richness compared with 454 sequencing
(Fig. 2), and neither approach exhibited a positive relationship
between sequencing depth and richness (Fig. S11). There was
no correlation between sample richness estimated using the
454-t and Ill-t approaches (Pearson’s r = 0.19, P = 0.55).
However, the relative abundance of individual VT in 454-t

and Ill-t sets was highly correlated (Pearson’s r = 0.92,
P < 0.001; Fig. 3) and the most abundant VT was VT74
(Glomus) according to both sequencing methods (Table S2).
The ten most abundant shared VT for both sequencing methods
represented 74.8 and 88% of reads for 454-t and Ill-t, respec-
tively. There was no correlation between dry root weight and
sequence depth or recorded AM fungal richness (Fig. S12).

Metagenomic Illumina MiSeq sequencing

Weobtained a total of 63,371,233 rawmetagenomic reads in both
directions from 12 root samples, with 376,428 to 13,057,950
reads per sample. After adapter removal and quality filtering,
combining the forward and reverse reads, a total of 21,640,048
paired reads were retained (34.2% of raw reads), with 32,924 to
4,548,256 paired reads per sample (Fig. S4). Identification against
the MaarjAM database resulted in only 309 hits, on average 26
sequences per sample, to 16 VT, including 5 singleton VT.

We further filtered paired reads for GC content between 20
and 42%, retaining 8,598,087 reads, assembled into 46,653
contigs among 1,334,793 sequences. Contig length ranged
from 7682 to 30,345 bp. Contigs longer than 500 bp were
subjected to gene prediction with GeneMark-ES, resulting in
41,732 potential genes and 2728 protein sequences (Fig. S4).

Table 1 Quantitative aspects of amplicon-based AM fungal SSU rRNA sequencing using 454 and Illumina MiSeq sequencing platforms

454 reads
454-qf

454-t Illumina amplicon reads
Ill-qf

Ill-t

Quality filtered Filtered 70–300 bp Quality filtered R1 Paired reads filtered 70–300 bp

Reads Hits % Reads Hits % Reads Hits % Reads Hits %

Plot 1

CM1 514 450 87.55% 499 425 85.17% 48,177 45,965 95.41% 10,122 10,066 99.45%

CM2 781 709 90.78% 757 629 83.09% 24,906 21,861 87.77% 3484 3200 91.85%

CM3 1290 1018 78.91% 1207 935 77.46% 62,551 47,898 76.57% 9062 8263 91.18%

RS1 1380 1186 85.94% 1335 1099 82.32% 90,021 83,488 92.74% 17,903 16,821 93.96%

RS2 1255 981 78.17% 1234 953 77.23% 73,915 62,765 84.92% 13,498 12,646 93.69%

RS3 1200 992 82.67% 1119 872 77.93% 50,861 46,312 91.06% 9128 8959 98.15%

Plot 2

CM4 1131 1093 96.64% 1120 1024 91.43% 48,899 44,039 90.06% 5882 5609 95.36%

CM5 1328 1070 80.57% 1250 894 71.52% 61,249 52,768 86.15% 7523 6889 91.57%

CM6 294 236 80.27% 277 210 75.81% 72,126 65,651 91.02% 11,402 11,204 98.26%

RS4 465 393 84.52% 434 326 75.12% 163,006 151,810 93.13% 26,842 26,157 97.45%

RS5 1199 1031 85.99% 1139 967 84.90% 146,471 135,712 92.65% 23,862 23,715 99.38%

RS6 992 814 82.06% 957 733 76.59% 114,945 104,188 90.64% 20,360 18,846 92.56%

Total 11,829 9973 84.31% 11,328 9067 80.04% 957,127 862,457 90.11% 159,068 152,375 95.79%

For each data set, the number of quality-filtered and position-filtered reads are shown, with the number of reads identified as AM fungi by BLAST hits in
the MaarjAM database

Proportions of reads getting a hit (expressed as a percentage) are shown in italic type

CM host plant Convallaria majalis, RS host plant Rubus saxatilis, R1 Illumina raw forward reads, 454-qf quality-filtered 454 reads, 454-t trimmed 454
reads, Ill-qf quality-filtered Illumina reads, 454-t trimmed Illumina reads
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amplified by 454 sequencing or Illumina MiSeq paired-end sequencing
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Of the latter, 88% were of plant origin (Fig. 4a), mostly
Rosaceae (28% of all reads) and Asparagaceae (12%), and
11% were fungal (Fig. 4b), of which most had their closest hit
to Rhizophagus irregularis (7%).

Discussion

In this study, AM fungal communities were described from
the same set of plant root samples using Illumina MiSeq se-
quencing of tagmented amplicons (SSU rRNA gene, NS31-
AML2 amplicon), 454 sequencing of the same amplicons and
metagenomic (i.e. PCR-free) shotgun sequencing of DNA
templates on the Illumina MiSeq platform. We obtained rela-
tively similar estimates of AM fungal diversity (richness) with
Illumina MiSeq amplicon sequencing and 454 sequencing of
the same samples, once reads were carefully quality filtered.
This is notable given that Illumina MiSeq sequencing pro-
vides two orders of magnitude greater sequencing depth than
454 sequencing. These results show that the increase in se-
quencing depth per sample with the Illumina approach did not
further increase AM fungal diversity (richness) estimates per
sample or total diversity estimates. This is in strong contrast
with the major improvement in the capture of AM fungal
diversity that accompanied replacement of cloning-Sanger se-
quencing with 454 sequencing (Öpik et al. 2009). Lastly,
metagenomic Illumina sequencing yielded very low numbers
of AM fungal SSU reads, and hence very low estimates of AM
fungal diversity in the samples, which were dominated by
host-plant DNA. This suggests that amendments to the
metagenomic sequencing approach are required for PCR-
free description of AM fungal assemblages to become
feasible.

Sequencing depth vs observed richness

An appropriate number of observations (here, sequencing
depth per sample) is required to adequately describe the diver-
sity of organisms in a sample (Hart et al. 2015; Bálint et al.
2016). This number depends on the complexity of the com-
munity. In the case of AM fungal assemblages, earlier results
have indicated that a few hundreds to thousands of AM fungal
sequences are sufficient to capture most diversity within a root
or soil sample (Öpik et al. 2009; Hart et al. 2015). Here, the
increase of sequencing depth from several hundreds of reads
to over 30,000 reads per sample did not result in a further
increase in the number of detected AM fungal species. Thus,
approximately 300 reads would appear to provide sufficient
sequencing depth to adequately describe AM fungal commu-
nities containing ca 5 to 30 species or VT. However, this was
the case only after careful quality filtering of Illumina MiSeq
reads.

When using tagmentation-based Illumina sequencing and
BLAST-based taxonomy assignment, appropriate quality fil-
tering of data is crucial in order to avoid inflated richness
estimates. We obtained, on average, a five times higher esti-
mate of AM fungal species richness per sample when the
reads were not trimmed to the variable part of the SSU
rRNA gene amplicon. This was due to those tagmented reads
that were located in the less variable part of the amplicon
getting very similar BLAST matches to a broad range of ref-
erence sequences. It is notable that after trimming the reads to
the most variable portion of the NS31-AML2 amplicon,
Illumina and 454 read sets showed similar relative abundances
of individual VT. We did not find a correlation between AM
fungal richness estimates produced by the two groups, per-
haps reflecting the fairly low variability within each group.

Sequencing errors and appropriate read length for correct
AM fungal identification with the SSU rRNA genemarker

Available read lengths from next-generation sequencing
(NGS) platforms have increased with advances in sequencing
technology, but are generally (including in the case of the
Illumina MiSeq platform) still too short to cover the full
amplicon most commonly used in AM fungal ecology, a ca
520 bp amplicon of the SSU rRNA gene (Öpik and Davison
2016). This raises the question of the sufficient sequence
length for correct identification of the target amplicon. An in
silico test using the sequences in the MaarjAM database con-
firmed the importance of identifying reads against the variable
section of the NS31-AML2 amplicon located at positions 70–
300 nt. Identification of relatively short reads against suffi-
ciently variable reference reads is particularly crucial when
BLAST-based closed reference OTU picking is used (sensu
Bik et al. 2012). BLAST hits located in the invariant part of
reference sequences would result in imprecise taxonomy
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assignments and inflated taxon richness estimates. The mini-
mal read length to obtain correct taxonomy assignment with
the same amplicon has been tested earlier with 170 to 400 bp
long (from the NS31 end) 454 reads, i.e. located in the same
variable portion of the amplicon, and indicated that reads
≥170 bp are sufficient for robust AM fungal identification
with this amplicon (Davison et al. 2012). The findings of this
study further confirm earlier conclusion.

Another source of misidentification of reads is sequencing
errors, which accumulate towards the end of reads, as the
quality of the called bases decreases. This phenomenon has
been reported for both Illumina and 454 reads (Perkins et al.
2013; Niklas et al. 2013). 454 Reads are prone to errors in long
homopolymeric regions, where the probability of indel errors
increases with sequence length (Niklas et al. 2013). In con-
trast, substitution errors are the most frequent type of errors for
Illumina platform, constituting 79 to 88% of all errors
(Nguyen et al. 2011). Both sequencing technologies have a
mean error rate of 1% among unfiltered reads (Niklas et al.
2013; Gilles et al. 2011). Errors in 454 reads occur more often
after bases 200–300 (Niklas et al. 2013), where substitutions
and ambiguous base calls accumulate because of a loss of
synchronism during the sequencing process on the multi-
templated beads (Gilles et al. 2011). As the most variable part
of the amplicon used in this study is located in the first 300
bases, the invariant part of the amplicon (300–520 nt of the
NS31-AML2 amplicon) is more error prone, and in our case,
this was removed. To overcome sequencing errors with
Illumina reads, Nguyen et al. (2011) reported a 5-fold decrease
of the error rate (reducing the likelihood of false base call to

<0.1%) by eliminating low-quality (q < 30) sequences,
resulting in loss of 24 to 35% sequences.

Combining Illumina paired-end reads can act as a quality
filter by resulting in the omission of poor quality reads and
improvement of low quality regions, thus vastly improving
diversity estimates (Bokulich et al. 2013). With paired-end
Illumina sequencing, the forward read usually has slightly
better quality than the reverse read (Minoche et al. 2011).
The reads are designed to overlap at the end of both sequences
where the quality is lowest. This helps to improve the quality
of poor regions (the best-supported nucleotides are retained in
the combined reads), but raises the question of how well the
algorithms can combine overlapping regions of such quality
(Parikh et al. 2016). Tagmentation introduced sequences con-
taining Nextera adapters that were removed from the analyses.
However, these removed reads can be used to find further
taxon richness in samples by trimming adapters from the se-
quences. After trimming of the adapter sequences (Bolger
et al. 2014), the remaining sequences are shorter than the
original single-end read, 251 bp. Shorter fragments mean that
the target region in the reference database has to be carefully
selected to ensure correct species identification. Allowing se-
quences that are too short may introduce misidentification of
species, but on the other hand, use of too strict parameters may
lead to rare species being overlooked, thus affecting species
richness estimates. Nextera tagmentation-based Illumina reads
increase the overall complexity of the analysis, as further
study is needed to understand the reference dataset and under-
lying variable region properties when using BLAST-based
closed reference OTU picking.

a b

Fig. 4 Metagenomic Illumina sequences translated into genes and protein BLAST by graph drawing tool Krona. Taxonomic ranks are shown as nested
sectors with higher ranks at the centre. a All identified data. b Fungi
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PCR-based vs metagenomic view on AM fungal
communities

Caution should be exercised when drawing biological mean-
ing from PCR-amplified data sets (Medinger et al. 2010), as
PCR bias (Bradley et al. 2016) and technical sequencing er-
rors can strongly inflate diversity estimates (Reeder and
Knight 2009) and shift the abundances of individual organ-
isms (Schmidt et al. 2013). Furthermore, the choice of the
PCR polymerase can have a strong impact on detected rich-
ness (Oliver et al. 2015). Sequencing errors can be partly
detected and removed by high quality filtering and by using
chimera detection tools (Edgar et al. 2011). Nonetheless, to
overcome PCR and primer bias, metagenomic sequencing that
yields data largely proportional to the template DNAwould be
highly desirable (Thomas et al. 2012).

The metagenomes of plant roots present challenges of
size and complexity. In this study, our workflow detected
only a small fraction of AM fungal sequences in plant root
samples, resulting in a considerably lower detected richness
than with PCR-based approaches. Metagenomic Illumina
has also been reported to have uneven read coverage
(Dohm et al. 2008, Hillier et al. 2008); this bias can result
in gaps in the metagenome without any reads and affect
quantitative assessments. Discarding low-quality reads
can also result in uneven read coverage, introducing poten-
tial bias in quantitative studies (Nakamura et al. 2011). The
great majority of the metagenomic sequences in our dataset
were of host-plant origin, with AM fungi apparently present
at low relative abundance in terms of DNA amount in the
plant root samples. It may be worth testing available ap-
proaches for enrichment of the template DNA or targeted
removal of unwanted DNA, e.g. of the plants (Motley et al.
2014). Additionally, multiple displacement amplification
(MDA) can be used by annealing random hexamer primers
to the template, where DNA synthesis is carried out by a
high fidelity enzyme at a constant temperature (Picher et al.
2016). Non-target sequences can also be filtered out
bioinformatically, e.g. if the GC% content of the target
group is distinct or by aligning reads against a targeted
reference genome.

A further limitation of the metagenomic approach is that
reference databases are insufficiently populated with genomic
data (Santamaria et al. 2012; del Campo et al. 2014). In our
data, AM fungal reads were mostly identified as belonging to
an AM fungal species, R. irregularis for which genome se-
quences (Tisserant et al. 2013; Lin et al. 2014) are available in
INSDC. Although PCR-based data show that many more taxa
are present in these samples, metagenomic approaches for
detecting them will be limited as long as further AM fungal
genomes are not available in public sequence repositories.
Thus, PCR-based approaches for AM fungal detection remain
the viable choice.

Conclusion

Amplicon-based sequencing using Illumina and 454 plat-
forms recorded similar AM fungal taxon richness in samples
and highly correlated relative abundances of individual VT.
Thus, the two approaches yield comparable AM fungal diver-
sity estimates. Although Illumina sequencing using
tagmentation is not common in community surveys, it could
yield valuable data when sequencing and genotyping longer
genomic fragments, such as the entire SSU rRNA gene, or
nuclear ribosomal operon, which are too long for most current
sequencing platforms.

Metagenomic reads from plant root samples included very
few AM fungal sequences. This is because the proportion of
AM fungal DNA in root samples is very low against the over-
whelming background of plant (and other organism) DNA,
but also due to difficulties in assigning sequences to reference
taxa, as representation of genomic AM fungal sequences in
reference databases is very limited. For these reasons,
metagenomic sequencing seems unlikely to replace
amplicon-based analyses of AM fungal diversity in the near
future. Nonetheless, DNA enrichment or advances in se-
quencing approaches (Taylor et al. 2017) may provide oppor-
tunities to better capture AM fungal DNA using PCR-free
approaches.
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