
ORIGINAL PAPER

Anatomically and morphologically unique dark septate
endophytic association in the roots of the Mediterranean endemic
seagrass Posidonia oceanica

Martin Vohník1,2
& Ondřej Borovec1,2 & Ivan Župan3

& David Vondrášek4
&

Miloslav Petrtýl5 & Radka Sudová1

Received: 8 February 2015 /Accepted: 28 April 2015 /Published online: 10 May 2015
# Springer-Verlag Berlin Heidelberg 2015

Abstract Roots of terrestrial plants host a wide spectrum of
soil fungi that form various parasitic, neutral and mutualistic
associations. A similar trend is evident in freshwater aquatic
plants and plants inhabiting salt marshes or mangroves.
Marine vascular plants (seagrasses), by contrast, seem to lack
specific root–fungus symbioses. We examined roots of two
Mediterranean seagrasses, Posidonia oceanica and
Cymodocea nodosa, in the northwestern Mediterranean Sea
for fungal colonization using light and scanning and transmis-
sion electron microscopy. We found that P. oceanica, but not
C. nodosa, is regularly associated with melanized septate hy-
phae in a manner resembling colonization by the ubiquitous
dark septate endophytes (DSE) in roots of most terrestrial
plants. P. oceanica roots were found to be colonized by sparse
dematiaceous running hyphae as well as dense parenchyma-
tous nets/hyphal sheaths on the root surface, intracellular mel-
anized microsclerotia and occasionally also intra- and intercel-
lular hyphae. The colonization was most prominent in the

thick-walled hypodermis of the thinnest healthy looking roots,
and the mycobiont seemed to colonize both living and dead
host cells. Dark septate hyphae infrequently occurred also
inside rhizodermal cells, but never colonized vascular tissues.
The biological significance of this overlooked marine symbi-
osis remains unknown, but its morphology, extent, distribu-
tion across the NW Mediterranean Sea and absence in
C. nodosa indicate an intriguing relationship between the
dominant Mediterranean seagrass and its dark septate root
mycobionts.
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Introduction

A vast majority of terrestrial vascular plants form mutualistic
root symbioses with a specialized group of soil fungi. These
ancient associations (Redecker et al. 2000), called mycorrhi-
zae (Smith and Read 2008), probably played a crucial role in
the terrestrialization of vascular plants and their subsequent
radiation on dry land (Selosse and Le Tacon 1998; Brundrett
2002). They represent one of the most intriguing plant adap-
tations for nutrient uptake, significantly affecting nutrient cy-
cling in soils (Read and Perez-Moreno 2003; Read et al.
2004). Mycorrhizae vary in anatomy, morphology, ecophysi-
ology and distribution (Read 1991; Brundrett 2004), but are
functionally uniform, with a few exceptions, in that carbon
flows from the photoautotrophic plant to the heterotrophic
fungus and that water and mineral nutrients flow in the oppo-
site direction. This requires the formation of specific exchange
interfaces by the mycobiont inside the host root (Peterson and
Massicotte 2004). It has been estimated that mycorrhizae are
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present in some 86% of angiosperm species (Brundrett 2009),
including freshwater plants (Søndergaard and Laegaard 1977;
Beck-Nielsen and Madsen 2001; Sudová et al. 2011; Kohout
et al. 2012) and plants from salt marshes (Radhika and
Rodrigues 2007; Welsh et al. 2010; Eberl 2011) and man-
groves (Sengupta and Chaudhuri 2002; Kothamasi et al.
2006). On the other hand, certain plant guilds do not require
mycorrhizal symbioses for nutrient uptake (e.g. carnivorous
plants, floating hydrophytes, parasites with haustoria, plants
with cluster roots, etc.). Most of them belong to numerous
families within the Brassicales, Caryophyllales, Lamiales,
Poales and Santanales and also Alismatales, which comprise
many hydrophytes including the only marine vascular
plants—seagrasses (Brundrett 2009).

Besides mycorrhizal fungi, terrestrial plants live in symbi-
oses with a wide spectrum of root endophytes that differ in
their taxonomy, ecology and physiological significance for
their hosts. In the Northern Hemisphere, their communities
in temperate, boreal and subarctic plants are frequently dom-
inated by dark septate endophytes (DSE), a group of miscel-
laneous soil fungi producing dematiaceous septate hyphae and
melanized intracellular microsclerotia (Sieber 2002; Addy
et al. 2005; Grünig et al. 2008). Additionally, some of them
have been reported to form extra- and intraradical hyphal
structures similar to those produced by mycorrhizal fungi for
communication and nutrient exchange with their hosts, in-
cluding dense parenchymatous hyphal nets on the root surface
and intracellular hyphal loops (Vohník et al. 2003; Peterson
and Massicotte 2004; Münzenberger et al. 2009; Vohník and
Albrechtová 2011; Lukešová et al. 2015). Some authors even
proved bi-directional nutrient flow between DSE and their
host plants (Usuki and Narisawa 2007).

Seagrasses are a narrow ecological and taxonomic group of
marine sessile macrophytes that evolved from terrestrial an-
cestors some 100 million years ago (Les et al. 1997). They
comprise about 50–70 species (Hemminga and Duarte 2000;
den Hartog and Kuo 2007) which have adapted to marine life
by adopting several characteristic ecophysiological traits such
as hydrophily and clonal growth. Seagrasses constitute less
than 0.02 % of the angiosperm flora, yet they inhabit ca.
10 % of the coastal ocean area, represent ca. 1 % of the total
marine plant biomass and are responsible for ca. 15 % of the
total carbon storage in marine ecosystems (Hemminga and
Duarte 2000). A recent estimate indicates that seagrasses can
store up to twice as much carbon per square kilometre as
temperate and tropical forests (Fourqurean et al. 2012).
Seagrasses possess certain morphological, physiological and
ecological traits which reduce the chance for symbioses with
symbiotic fungi. Firstly, they take up nutrients through leaves
(Khan and Belik 1995). Secondly, many species possess root
hairs, and their roots develop extensive aerenchymatous sys-
tems in the cortex (Kuo and McComb 1989; Kuo and den
Hartog 2007), i.e. in the tissue with the highest rates of

arbuscular mycorrhizal (AM) colonization, the most common
type of mycorrhiza, in terrestrial plants. Finally, many
seagrasses live in muddy substrates low in available oxygen
(Hemminga and Duarte 2000), which suppresses the develop-
ment of extensive extraradical mycelia characteristic of many
types of mycorrhiza (Nielsen et al. 1999). Congruently, the
few studies focusing on seagrass root mycobionts (e.g.
Cuomo et al. 1985; Nielsen et al. 1999; Panno et al. 2013;
Torta et al. 2014) detected fungal hyphae or mycelia inside or
on the surface of seagrass roots, but provided no clear evi-
dence that seagrasses enter mycorrhizae or root endophytic
associations similar to those occurring on dry land.

The genus Posidonia (Alismatales) is the evolutionary
oldest genus of seagrasses, with the earliest fossil record from
the Cretaceous (den Hartog 1970). It has a uniquely discon-
tinuous distribution with eight of its nine species occurring in
the Southern Hemisphere along the coast of Australia; the
single Northern Hemisphere species Posidonia oceanica is
endemic to the Mediterranean Sea (Green and Short 2003).
Despite being a phanerogam, P. oceanica mostly relies on
vegetative reproduction, which can be quite effective. Large
climax meadows of the species dominate many sublittoral
(depth of ca. 0–40 m) habitats along the Mediterranean coast,
and the largest clones were estimated to spread over some
15 km while being hundreds to thousands of years old
(Arnaud-Haond et al. 2012). Rhizomes, roots and senescent
leaf sheaths of P. oceanica are exceptionally resistant to decay,
which results in the formation of a characteristic peat-like
sediment. This unique organic seabed layer (matte) can be
several metres thick and thousands of years old (Hemminga
and Duarte 2000). Vascular plants cannot effectively access
such stocks of organically bound nutrients without the aid of
symbiotic bacteria or fungi. However, the possibility that
seagrasses in general and the matte-forming P. oceanica in
particular host mycorrhizal or endophytic fungal symbionts
has so far been examined only to a limited extent and with
inconclusive results.

P. oceanica is sometimes accompanied by Cymodocea
nodosa (Alismatales), a seagrass common in, but not restricted
to, the Mediterranean Sea (den Hartog and Kuo 2007). This
species usually occupies shallower waters and often grows in
muddy substrates unsuitable for P. oceanica. Unlike
P. oceanica, C. nodosa does not produce a matte, and its root
system is characterized by vigorous production of root hairs
(Kuo and McComb 1998). To our knowledge, possible root–
fungus associations in C. nodosa have not yet been
investigated.

In their pioneering work, Nielsen et al. (1999) did not find
AM symbiosis in the seagrasses Thalassia testudinum and
Zostera marina along the coasts of Denmark, Mexico and
the USA. They nevertheless concluded that Bit would be in-
teresting to see data on possible AM colonization in seagrass
species without root hairs from P-limited habitats, especially
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for fast growing species with hfaceigh nutrient demands^ and
encouraged other researchers Bto investigate species like
Cymodocea nodosa and Posidonia oceanica in the
Mediterranean Sea^. Here, we report the results of our screen-
ing of these two Mediterranean seagrasses for mycorrhizal/
root endophytic colonization.

Materials and methods

Root sampling

Root samples of P. oceanica (L.) Delile were collected using
free and scuba diving between June and September 2012 at 11
localities in the NW Mediterranean Sea (Fig. 1, Table 1). We
also sampled roots of the co-occurring seagrass C. nodosa
(Ucria) Asch. where present (two localities; Table 1). The
collection depths varied from 0.5 m in Antibes where leaves
of P. oceanica emerged from the water at low tide to 31 m at
Borak (Table 1). C. nodosa was found only at two localities
(Finale Ligure and Sanary-sur-Mer), always occupying
shallower habitats than P. oceanica. The two seagrasses never
grew intermingled. P. oceanica always occurred on the rocky
bottom or in coarse-grained sand whereas C. nodosa occurred
in fine sand partly mixed with silt.

At each locality, roots of five different individuals per spe-
cies (at least 3 m apart) were carefully excavated from the
substrate by bare hands, separated from the shoots and deliv-
ered to the surface. We tried to sample the whole diversity of
substrates present at each locality, including sand, rocks and
the matte. Terminal fine roots (ca. 1–2 mm in diam.) were then
separated and inserted into 50-ml plastic beakers. Roots from
all five individuals per locality were pooled to produce com-
pound samples. The beakers with the roots were filled with
seawater and stored in the dark in a portable refrigerator, and
the seawater was later substituted by 30 % ethanol. The roots

were then transported to the laboratory and stored in a refrig-
erator at 8 °C until processing.

Microscopic observations

Fungal colonization of the roots from each locality was inves-
tigated using an Olympus BX60 microscope equipped with
DIC and anOlympus DP70 camera at magnifications of ×200,
×400 and ×1000. Scanning electron microscopy (SEM) was
performed using a FEI Quanta 200 scanning electron micro-
scope in the Olympus ESEMmode at low temperatures (−6 to
−3 °C). We mainly screened hand-made semi-thin longitudi-
nal (ca. 3–5 mm in length) and transversal root sections. For
each locality, ten longitudinal sections from each of ten ran-
domly chosen roots and five transversal sections from each of
five randomly chosen roots were screened for any fungal
structure. When needed, the sections were stained with
0.05 % trypan blue in lactoglycerol. For transmission electron
microscopy, P. oceanica root segments were fixed in 5 %
glutaraldehyde solution in 0.1 M phosphate buffer (pH 7.2)
and then in 2 %OsO4 in 0.1 M phosphate buffer. The samples
were then dehydrated in increasing concentrations of ethanol,
including a contrasting step with 1 % uranyl acetate.
Infiltration was performed in increasing concentration series
of propyleneoxide and Spurr Resin. Samples were embedded
into Spurr Resin, and ultrathin sections (70 nm) were cut and
contrasted with uranyl acetate and lead citrate. Photographs
were taken with a digital TEM camera (Veleta, Olympus)
using a JEOL 1011 microscope and modified for clarity in
Paint.NET and Adobe Photoshop as needed.

Results

Roots of all sampled plants looked healthy, and the respective
plants did not show any apparent signs of growth stress. There
was no apparent extraradical mycelium in the form of

Fig. 1 Location of the sampling
sites within the NW
Mediterranean Sea. Posidonia
oceanica roots were sampled at
11 localities in Croatia (HR), Italy
(IT), France (FR) and Spain (ES).
The numbering of the localities
follows Table 1. Bar=500 km
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rhizomorphs or sclerotia in the rhizosphere of the screened spec-
imens. Seeking the identity of the respective mycobiont(s)
forming the observed root–fungus association was beyond the
scope of this work.

Light and scanning electron microscopy

The screened P. oceanica roots consisted of the stele
surrounded by endodermis. The thick cortex frequently
contained air lacunae. Its outer parts were formed by hypodermis
with markedly thick-walled cells and rhizodermis without root
hairs (Fig. 2a, b). Only one type of fungal colonizationwas found
in the roots of P. oceanica, comprising characteristic melanized
septate hyphae. Most of the fungal colonization occurred in the
hypodermis, either intra- or intercellularly (Fig. 2c, d), and at the
root surface (Fig. 2d, e). Rhizodermal cells were commonly (but
not always) free of fungal colonization (Fig. 2c–e). The coloni-
zation in the hypodermis was formed either by intracellular
microsclerotia (Figs. 2c, d and 3a) or narrow hyphae, occasion-
ally reducing and expanding their diameter while exploring
neighbouring longitudinally elongated hypodermal cells
(Fig. 3a, b). On the root surface, the melanized hyphae produced
sometimes extensive hyphal sheaths formed either by thick
straight hyphae (Fig. 3c, d), parenchymatous labyrinthine nets
of hyphae/hyphal sheaths (Fig. 3d–f) or a combination of both
(Fig. 3d). Hyphae occurred in both living and dead cells (Fig. 3a,
g), but it was unclear whether cell death resulted from the fungal
colonization or whether the hyphae colonized already dead cells.
This specific fungal colonization was regularly found in roots
from all screened localities but varied in its extent. Infrequently,
the whole hypodermis and outer parts of the root cortex were
heavily colonized by melanized septate hyphae (Fig. 3g).

In contrast to P. oceanica,C. nodosa roots lacked the thick-
walled hypodermis (Fig. 4a, b), and its rhizodermis and root

cortex were commonly free of any visible fungal colonization
(Fig. 4c, d). Rhizodermal cells rarely contained single fungal
hyphae, and single narrow hyphae were sometimes observed
on the root surface. However, these significantly differed from
those found in P. oceanica. All C. nodosa roots possessed
numerous root hairs (Fig. 4e).

Transmission electron microscopy

Inflated rhizodermal cells of P. oceanica had approximately
twice the diameter of hypodermal cells with markedly thick-
ened outer cell walls. The cell walls of hypodermal cells were
of a similar size as the rhizodermal outer cell walls, but much
thicker than the inner rhizodermal cell walls (Fig. 5a). The
spaces between neighbouring rhizodermal cells were usually
occupied by prolonged, pointed, thick-walled, pentagonal to
hexagonal cells which seemed to serve as entry points for
fungal colonization (hence Bentry cells^); the entering hyphae
never seemed to penetrate directly through the thick-walled
outer rhizodermal cell walls (Fig. 5b, c). In heavily colonized
roots, the intraradical fungal colonization was mostly present
throughout the hypodermis (Fig. 5b). However, in roots with
low colonization intensity, intraradical fungal hyphae were
often limited only to entry cells (Fig. 5c). When entering the
root symplast or spreading from one cell to another, the hy-
phae first degraded the cell wall components and then prolif-
erated through the resulting spaces (Fig. 5c, d). Occasionally,
intraradical hyphae grew through intercellular spaces
(Fig. 5e). It was not possible to unambiguously decide wheth-
er the intracellular hyphae were always surrounded by the
host’s cytoplasmic membrane (Fig. 5e). Rather, it seemed that
sometimes they were and sometimes they were not. Although
most colonized and non-colonized hypodermal cells seemed
to be alive, some microsclerotia and intracellular hyphae were

Table 1 A list of the localities sampled in this study

Sampling
numbera

Locality name (country)a GPS coordinates Collection
depth (m)

Cymodocea nodosa
presence

1 Borak, Potomje (HR) N42.92236, E17.34685 8–31 −
2 Kukuljar (HR) N43.75960, E15.63410 9–12 −
3 Cogoleto (IT) N44.38016, E8.63467 4 −
4 Finale Ligure (IT) N44.17337, E8.36765 16 +

5 Antibes (FR) N43.55726, E7.12209 0.5 −
6 Cap Roux, Saint-Raphaël (FR) N43.45026, E6.91951 10 −
7 Sanary-sur-Mer (FR) N43.12054, E5.77545 6 +

8 Anse de Paulilles, Port-Vendres (FR) N42.50236, E3.12456 5 −
9 l’Escala (ES) N42.10744, E3.16892 5 −
10 Tamariu (ES) N41.91756, E3.20761 5 −
11 Llafranc, Palafrugell (ES) N41.89343, E3.19391 5 −

HR Croatia, IT Italy, FR France, ES Spain
a Corresponds to Fig. 1
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evidently formed in already dead cells (also compare with
Figs. 2e and 3b, g). We have not found any structures which
would resemble arbuscules and vesicles typical of AM, fine
intracellular hyphal coils typical of ericoid mycorrhiza or hy-
phal pelotons typical of orchid mycorrhiza.

Discussion

First reports on interactions between seagrasses and root-
inhabiting fungi date back to the 1980s. With respect to the

genus Posidonia, Kuo et al. (1981) provided microscopic ev-
idence for an association between certain fungi and roots of
two Australian species, Posidonia australis and Posidonia
sinuosa. Similarly to our observations in P. oceanica, the fun-
gal colonization was mostly restricted to the thick-walled hy-
podermis. The fungi often lysed cell walls and middle lamel-
lae of colonized hypodermal cells, and although the authors
speculated that the fungi might play a role in the nutrient
uptake of the seagrasses, the reported association resembled
rather a parasitic/pathogenic than a mutualistic interaction.
More recently, García-Martínez et al. (2005) noticed some

Fig. 2 Anatomy of Posidonia oceanica roots possessing the dark septate
endophytic colonization. a A transversal section through a typical
P. oceanica root with the dark septate colonization. The stele (S) is
surrounded by the endodermis (E). The multilayered cortex (C)
contains several lacunae (L) and continues to the darkly brown
hypodermis (H) formed by smaller cells with markedly thickened walls.
The outer part of the root is the single-layer rhizodermis (R) with
markedly inflated cells. Light microscopy with DIC, bar=100 μm. b As
in a but screened with scanning electron microscopy (SEM). Bar=

100 μm. c A transversal section through outer layers of a colonized root.
The whole hypodermis is colonized by intracellular microsclerotia
(arrows). The cortex and rhizodermis are free of any fungal colonization;
an extraradical hyphal sheath is missing. SEM, bar=50 μm. d Fungal
intracellular colonization as in c but accompanied by a layered
extraradical hyphal sheath (arrows). SEM, bar=25 μm. e Intracellular
fungal microsclerotia (arrowheads) accompanied by an extraradical
hyphal sheath (arrows). Light microscopy with DIC, bar=25 μm
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fungal hyphae growing on the root surface while examining
microbial colonization of P. oceanica roots by electron mi-
croscopy, but did not report any intraradical fungal coloniza-
tion. The mycoflora of P. oceanica leaves, rhizomes, roots and
matte has been studied by Panno et al. (2013); however, the
authors did not report any specific fungal colonization pattern
in the screened tissues. Most recently, Torta et al. (2014) re-
ported fungal colonization of P. oceanica roots at two locali-
ties in NW Sicily. The observed septate hyphae and
microsclerotia, however, seemed to lack the dark pigmenta-
tion typical of DSE. Although it was evident that seagrass
roots harbour fungal endophytes, the reported colonization
seemed to be rather random, i.e. resulting from common
non-specific contacts with marine fungi, as the authors
did not report any typical fungal structures attributed to
so far recognized root–fungus associations. In contrast,
here, for the first time, we describe a dark septate as-
sociation in the roots of a seagrass exhibiting all typical

structures, i.e. extraradical and intraradical dark septate
hyphae, dense melanized parenchymatous nets/hyphal
sheaths on the root surface and melanized intracellular
microsclerotia.

DSE associations typically lack fungal structures designed
for nutrient transport and communication with the host plant
(Peterson et al. 2008). On the other hand, certain DSE are able
to form the Hartig net, i.e. the hyphal structure typical of
ectomycorrhizal symbiosis (Danielson and Visser 1990;
O ’Dell e t a l . 1993; Fernando and Currah 1996;
Münzenberger et al. 2009; Lukešová et al. 2015). Moreover,
some authors hypothesized that the dense parenchymatous net
on the root surface (also known as DSE labyrinthine tissue),
detected here for the first time in a seagrass, may functionally
parallel the Hartig net (O’Dell et al. 1993; Fernando and
Currah 1996; Wurzburger and Bledsoe 2001; Vohník and
Albrechtová 2011). Due to its frequency in some of the
P. oceanica roots screened, the functioning of this fungal

Fig. 3 Anatomy andmorphology
of the dark septate colonization in
Posidonia oceanica roots. a The
root hypodermis colonized by
lightly to heavily melanized
septate hyphae (Hy), exploring
hyphae (arrows) and intracellular
elongated microsclerotia (M).
Bar=20 μm. b A longitudinal
section through the hypodermis
colonized by narrow dark septate
hyphae (Hy). Note the transversal
hypha repeatedly reducing and
expanding its diameter while
exploring the longitudinally
elongated hypodermal cells
(arrows). Bar=20 μm. c An
extraradical hyphal sheath (HS)
formed by narrow dark septate
hyphae. Bar=20 μm. d An
upright view through a layered
hyphal sheath (HS) towards the
rhizodermis. At the root surface,
fungal hyphae produce a finger-
like parenchymatous net (arrows)
resembling structures formed by
dark septate endophytic/
mycorrhizal fungi in roots of
terrestrial plants. Bar=50 μm. e, f
Details of the hyphal sheath
(arrows). Bars=20 μm. g The
whole hypodermis and outer parts
of the root cortex are heavily
colonized by melanized hyphae.
Bar=20 μm. All pictures light
microscopy with DIC
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structure apparently deserves further investigation, as it might
play a role in nutrient uptake from the matte or the mineral
substrate. On the other hand, DSE microsclerotia, here com-
monly found in P. oceanica hypodermis, serve as storage and
propagation organs of the mycobiont and most likely do not
play any role in the host’s nutrient uptake (Yu et al. 2001). In
endomycorrhizal symbioses, the intracellular hyphal phase is
always separated from the cell cytoplasm by a plant-derived
membrane (Peterson and Massicotte 2004). As was the case
with other studies on DSE (Peterson et al. 2008), we were
unable to unambiguously decide whether this was always true
for the screened P. oceanica roots. Some intracellular hyphae
evidently occurred in dead host cells, which is not typical of
mycorrhizal symbioses (Peterson and Massicotte 2004); in
some cases, however, DSE may cause host cell breakdown
(Peterson et al. 2008), and host cell death is required for the
proliferation of the mutualistic endophyte Piriformospora
indica within host roots (Deshmukh et al. 2006).

Intriguingly, most of the intraradical colonization appeared
within the hypodermis (cf. Kuo et al. 1981) whereas the rest of
the root cortex usually remained free of fungal colonization.
Hypodermis is commonly defined as a uni- or multiseriate
layer of cells morphologically distinct from those of the
neighbouring cortex formed just below the rhizodermis, and
thus forming the outer layer of the root cortex (Peterson 1989).
Its cell walls usually contain varying amounts of suberin, lig-
nin, carbohydrates and structural cell wall proteins forming an
important apoplastic barrier as well as a barrier against path-
ogenic microorganisms (Schreiber et al. 1999). Kuo et al.
(1981) hypothesized that it may restrict the free movement
of water and ions from sediments to the stele and the diffusion
of root exudates into the rhizosphere in the two Australian
Posidonia species. Given the apparent ability of mycobionts
associated withP. oceanica to lyse even hypodermal cell walls
(cf. Kuo et al. 1981), it is unclear why they do not progress to
the cortex. On the other hand, frequent lysis of hypodermal

Fig. 4 Anatomy andmorphology
of Cymodocea nodosa roots
lacking any typical fungal
colonization. a A transversal
section through a typical
C. nodosa root with no apparent
fungal colonization. Similarly to
P. oceanica, the stele (S) is
surrounded by the endodermis
(E), the multilayered cortex (C)
contains several lacunae (L) and
the outer part of the root is formed
by the single-layer rhizodermis
(R) which cells are however not
inflated as in P. oceanica. The
hypodermis with markedly thick-
walled cells is missing. Light
microscopy with DIC, bar=
100 μm. b As in a but visualized
with SEM. Bar=50μm. cAdetail
of the rhizodermis (R) and the
cortex (C) free of any apparent
fungal colonization. SEM, bar=
50 μm. d As in c but visualized
with light microscopy with DIC.
Bar=50 μm. e An SEM
photograph of the C. nodosa root
surface with numerous root hairs
(arrows). Bar=50 μm
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cell walls may eliminate the hypodermal apoplastic barrier
with as yet unknown consequences for P. oceanica.

The fungal association reported here was absent in the roots
of the neighbouring seagrass C. nodosa, which points at its
host/substrate specificity. Similarly, co-occurring terrestrial
plants may host different spectra of root endophytes (Tejesvi
et al. 2013). The reason for this specificity remains unknown.
It may involve complex molecular mechanisms or simply re-
flect the absence of a root tissue suitable for colonization by

mycobionts, asC. nodosa lacked the thick-walled hypodermis
found in all P. oceanica individuals screened in the present
study. Moreover, in contrast to P. oceanica, roots ofC. nodosa
(at least those sampled) produced abundant root hairs, which
aid nutrient uptake in many terrestrial vascular plants (Gilroy
and Jones 2000) and therefore reduce the need for symbiosis
with fungi facilitating nutrient uptake in exchange for photo-
synthates. As root hairs are usually reduced to absent in my-
corrhizal plants, the absence of root hairs in P. oceanicamight

Fig. 5 Anatomy of P. oceanica roots with the fungal colonization
visualized by transmission electron microscopy. a A transversal section
through the rhizodermis and the hypodermis of a P. oceanica root. The
inflated rhizodermal cells (RC) have thickened outer cell walls whereas
their inner cell walls are very thin (arrowheads). The layers below the
rhizodermis are formed by hypodermal cells (HC) with thickened cell
walls. Each two rhizodermal cells is accompanied by a prolonged
pointed cell which is the entry point for fungal colonization (hence
Bentry cells^, EC). Note several fungal hyphae occurring on the root
surface in the sulci between the rhizodermal cells, right against the
entry cells (arrows). Bar=10 μm. b A transversal section through the
upper layers of a colonized root. The fungal colonization comprises
extraradical hyphal net/sheath (HN) which hyphae penetrate the spaces
between the rhizodermal cells (arrow), and numerous intracellular

hyphae formed first in the entry cells (EC) and then spreading to the
hypodermal cells (HC). The inflated rhizodermal cells (RC) are usually
free of fungal colonization. Bar=10 μm. c A detail of an extraradical
hypha (arrow) penetrating the space between two rhizodermal cells
(RC) and consequently forming vigorous fungal colonization in an entry
cell (EC). The remaining host cells are free of fungal colonization. Bar=
10 μm. d A rare example of a fungal colonization in the rhizodermis: an
intracellular fungal hypha (IH) degrades components of the cell wall
(CW) resulting in a cell wall lysis (CWL) while passing from one cell to
another. Bar=2 μm. e The typical colonization pattern in a thick-walled
hypodermal cell possessing both primary cell wall (PCW) and secondary
cell wall (SCW). Note several intracellular hyphae (IH) as well as one
intercellular hypha (arrow). Bar=2 μm
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also indicate the involvement of the root–fungus symbiosis in
the acquisition of mineral nutrients. This, however, needs to
be addressed in future studies.

Conclusions

Our survey of seagrass roots from 11 localities in the NW
Mediterranean Sea resulted in the discovery of a specific fun-
gal symbiosis in P. oceanica. Its anatomy and morphology are
unique among seagrasses and displays a high degree of simi-
larity to the ubiquitous DSE association occurring in the roots
of most terrestrial vascular plants. Despite its ubiquity and
abundance in healthy looking populations of P. oceanica, it
remains unclear whether the mycobionts engage in nutrient
capture and transport to the host (as suggested by the presence
of parenchymatous labyrinthine hyphal nets/hyphal sheaths
on the root surface and the absence of root hairs) and, more
generally, whether it is of any benefit to the dominant
Mediterranean seagrass.
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