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Abstract A significant challenge facing the study of
arbuscular mycorrhiza is the establishment of suitable non-
mycorrhizal treatments that can be compared with mycorrhi-
zal treatments. A number of options are available, including
soil disinfection or sterilisation, comparison of constitutively
mycorrhizal and non-mycorrhizal plant species, comparison
of plants grown in soils with different inoculum potential
and the comparison of mycorrhiza-defective mutant geno-
types with their mycorrhizal wild-type progenitors. Each op-
tion has its inherent advantages and limitations. Here, the po-
tential to use mycorrhiza-defective mutant and wild-type ge-
notype plant pairs as tools to study the functioning of mycor-
rhiza is reviewed. The emphasis of this review is placed on
non-legume plant species, as mycorrhiza-defective plant ge-
notypes in legumes have recently been extensively reviewed.
It is concluded that non-legume mycorrhiza-defective mutant
and wild-type pairs are useful tools in the study of mycorrhiza.
However, the mutant genotypes should be well characterised
and, ideally, meet a number of key criteria. The generation of
more mycorrhiza-defective mutant genotypes in agronomical-
ly important plant species would be of benefit, as would be
more research using these genotype pairs, especially under
field conditions.

Keywords Arbuscular mycorrhiza . Mycorrhiza-defective
mutant genotype . Reducedmycorrhizal colonisation (rmc) .
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Introduction

Arbuscular mycorrhiza are associations formed between the
majority (80 %) of terrestrial plant species and arbuscular
mycorrhizal (AM) fungi in the soil (Smith and Read 2008).
The formation of mycorrhiza can benefit plants through en-
hanced acquisition of nutrients such as phosphorus (P), nitro-
gen, (N) and zinc (Zn) (Cavagnaro 2008; Clark and Zeto
2000; Gyaneshwar et al. 2002; Marschner and Dell 1994;
Rillig 2004a; Smith and Read 2008). In addition to their ben-
eficial effects on plant nutrition, mycorrhiza provide other
ecosystem services: for example, improvement of soil struc-
ture (Miller and Jastrow 1990; Rillig 2004b; Rillig and
Mummey 2006; Tisdall 1991; Tisdall and Oades 1980), re-
duction of soil nutrient losses through leaching (Asghari and
Cavagnaro 2011, 2012; Asghari et al. 2005; Bender et al.
2015; Bender and van der Heijden 2015; van der Heijden
2010) and the suppression of weeds (Rinaudo et al. 2010;
Veiga et al. 2011), improvement of plant acquisition of nutri-
ents from compost (Cavagnaro 2014, 2015), as well as other
benefits in the context of a changing climate and increased
abiotic stress (Smith et al. 2010). Consequently, mycorrhiza
have an important role in influencing plant communities, eco-
system productivity and potentially agricultural productivity
(Hartnett and Wilson 1999; O’Connor et al. 2002; van der
Heijden et al. 1998a, b; Wagg et al. 2011).

In mycorrhizal legume species, where plants can be
colonised bymycorrhizal fungi and nodulating bacteria simul-
taneously, common signalling pathways for the formation of
mycorrhizal and rhizobial associations have been well studied
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(Hirsch and Kapulnik 1998; Horváth et al. 2011; Parniske
2008). This work has resulted in the identification of numer-
ous genotypes defective for AM colonisation (referred to as a
‘mycorrhiza-defective mutants’ hereafter) in model legume
species. While the present review focuses on non-legume my-
corrhiza-defective mutant genotypes, it is important to men-
tion that much of the research on the genetic basis of the
AM symbiosis has been conducted using legume mu-
tants (Ané et al. 2004; Endre et al. 2002; Imaizumi-
Anraku et al. 2005; Lévy et al. 2004; Stracke et al.
2002), and thus they have been invaluable to the study
of the AM symbiosis. For example, a symbiotic ‘toolkit’
has been collated using model legume species, contain-
ing 25 molecular components that work in concert to
control AM colonisation (Delaux et al. 2013; Table 1).
This symbiotic toolkit provides useful information for
developing mutant genotypes in non-legume plant spe-
cies by looking for orthologues of genes in non-legumes
that have a known function in AM symbiosis.

The advantage of using non-legume mycorrhiza-defective
mutant genotypes is that they do not form associations with
nodulating bacteria, thereby avoiding complications of multi-
trophic interactions (Barker et al. 1998; Cavagnaro et al.
2004a). As well as being important tools for investigating
the molecular basis of AM colonisation (Barker and Larkan
2002), the mutant and wild-type pairs are also useful for
studying the functioning of mycorrhiza because it is possible
to compare mycorrhizal and non-mycorrhizal plants in native
soil without any other experimental manipulation or
intervention.

The intention of this review is to explore the potential for,
and advantages of, using pairs of mycorrhiza-defective mu-
tants (as non-mycorrhizal controls) and corresponding wild-
type genotypes to study the role of mycorrhiza in various
aspects of plant and soil ecology, with the aim to stimulate
more work using such genotype pairs. In this context, various
alternative methods for establishing non-mycorrhizal controls
are summarised, before describing different non-legume plant
species that have mycorrhiza-defective mutant genotypes
characterised and the nature of the research they are used
for. Emphasis is placed on non-legume mycorrhiza-defective
mutants as legume mycorrhiza-defective mutants have been
reviewed in detail previously. The review concludes with a
brief discussion of research activities that could benefit from
the use of mycorrhiza-defective mutant and wild-type pairs of
non-legumes.

Non-mycorrhizal treatments in physiological
and ecological studies

Most information on the functioning of mycorrhiza has come
from studies in which plants colonised by AM fungi are

compared to those that are not colonised by AM fungi (Rillig
et al. 2008; Smith and Smith 1981b). However, there is no
universally accepted method for establishing treatments in
which AM fungi are absent but the remainder of the soil biota
are present. This is especially challenging under field condi-
tions, where the elimination of a single group of soil biota is
extremely difficult (Carey et al. 1992; West et al. 1993). The
various techniques used in an attempt to overcome this chal-
lenge include soil disinfection or sterilisation, comparison of
constitutively mycorrhizal and non-mycorrhizal plant species,
comparison of plants grown in soils with different inoculum
potential and the comparison of mycorrhiza-defective mutant
genotypes with their mycorrhizal wild-type progenitors. Each
option has its inherent advantages and limitations, but in many
cases, they are the only option available and are therefore most
appropriate.

The most widely used method for establishing non-
mycorrhizal control treatments is that of modifying the soil
via soil disinfection or sterilisation to inactivate the AM fungal
propagules (Endlweber and Scheu 2006; Koide and Li 1989;
Smith and Smith 1981a, b). While these methods effectively
suppress viable AM fungi, they also adversely affect or elim-
inate other members of the soil biota. Consequently, such soil
manipulation approaches introduce non-target effects into ex-
periments, which may be potentially confounding (Koide and
Li 1989; Rillig 2004a) and should be taken into account when
interpreting results.

Using a mutant approach to control AM development, by
comparing a mycorrhiza-defective mutant plant genotype to
its mycorrhizal wild-type counterpart, avoids the need to
sterilise or disinfect soil, or compare different plant species
(Rillig et al. 2008). A number of mycorrhiza-defective mutant
and wild-type genotype pairs have been described, both in
legume and non-legume plant species (see Table 1). The pres-
ent review focuses on non-legume mycorrhiza-defective mu-
tants since the use of legume mutants to compare interactions
in mycorrhizal and rhizobial symbioses has been amply
reviewed previously (see Barker et al. 2002; Marsh and
Schultze 2001; Paszkowski 2006; Shtark et al. 2010; Stacey
et al. 2006).

Generation and screening of mycorrhiza-defective
mutants

Mycorrhiza-defective mutants can be generated in a number
of ways, including via fast neutron bombardment (Li et al.
2001) and ethyl methanesulphonate (EMS) generally used to
generate mutant plant genotypes (Engvild 1987; Froese-
Gertzen et al. 1963; Koornneeff et al. 1982). Whatever the
method used, M2 generation mutants are screened in the
mutagenised populations for non-mycorrhizal phenotypes by
growing the entire population of plants in soil containing AM
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fungal inoculum, together with the wild-type genotype, in
order to compare their AM colonisation phenotype. Potential
mycorrhiza-defective mutant genotypes are assessed at the
M3 generation and later (up to M9 in David-Schwartz et al.
(2001)) to ensure that a stable non-mycorrhizal phenotype
persists. Paszkowski et al. (2006) screened for mycorrhiza-
defective mutant genotypes in maize (Zea mays) in a novel
manner. Maize roots that are colonised by AM fungi accumu-
late yellow pigment, which can be detected macroscopically
(Klingner et al. 1995). Potential mycorrhiza-defective mutant
genotypes from a mutator-mutagenised population of maize
were grown in soil inoculated with Glomus mosseae. Plants
with roots that displayed altered intensity or distribution of
yellow pigmentation relative to the wild-type genotype
underwent further microscopic visual screening, ultimately
revealing several non-mycorrhizal mutant maize plants.

The fast neutron bombardment method is a classical re-
verse genetics technique (Li et al. 2001). In consequence,
the gene sequence(s) controlling mycorrhizal colonisation is
not known until further research is undertaken. Both map-
based sequencing and transcriptomic analyses have been used
to identify gene sequences that had been disrupted using this
approach in mycorrhiza-defective plant mutants (see below).
Creation of fast neutron mutagenised seed libraries, and their
subsequent screening for desired phenotypes, is a labour-in-
tensive, albeit effective, method for generating and identifying
mycorrhiza-defective mutant genotypes.

There are a number of desirable phenotypes that need to be
considered when identifying potential mycorrhiza-defective
mutant genotypes, and suitable criteria have been
summarised by Rillig et al. (2008) as follows: (1) a non-
mycorrhizal genotype should not, while the mycorrhizal ge-
notype should, be colonised by AM fungi in the presence of a
full suite of soil biota, and (2) the mutant and wild-type geno-
type pair should have matched growth properties, and similar
soil microbial communities, when grown in a soil where AM
fungi are absent. With these criteria in mind, currently report-
ed legume mutant genotypes are first briefly listed (see Marsh
and Schultze (2001) for details), and non-legume mutant ge-
notypes are reviewed in more detail, including their method of
mutagenesis, colonisation phenotype (where relevant) and use
in research.

Currently described mycorrhiza-defective mutant
genotypes

A number of mycorrhiza-defective mutant and wild-type ge-
notype pairs, in both legume and non-legume species, are
available, although many more have been characterised in
legumes. In legumes, mycorrhiza-defective mutants obtained
using different mutagenic approaches have been identified in
several plant species including pea (Pisum sativum) and

fababean (Vicia faba) (Duc et al. 1989), lucerne (Medicago
sativa) (Bradbury et al. 1991), barrel medic (Medicago
truncatula) (Sagan et al. 1995), bean (Phaseolus vulgaris)
(Shirtliffe and Vessey 1996) and Lotus japonicus (Senoo
et al. 2000), but these are not the focus of this review. In terms
of non-legume species, there are currently reports of
mycorrhiza-defective mutant and wild-type genotype pairs in
tomato (Solanum lycopersicum) (Barker et al. 1998; David-
Schwartz et al. 2001; David-Schwartz et al. 2003, Kapulnik
and Bonfante, unpublished), maize (Paszkowski et al. 2006),
rice (Oryza sativa) and petunia (Petunia hybrid) (Chen
et al. 2007, 2008; Gutjahr et al. 2008; Reddy et al. 2007) (see
Table 1).

Loss-of-function mycorrhiza-defective mutant
genotypes

In addition to the identification and characterisation of mutant
genotypes that cannot be colonised by AM fungi, mutants that
are defective in an aspect of mycorrhizal functioning have also
been characterised. A mutant inM. truncatula that is defective
in the gene encoding for the mycorrhiza-induced phosphate
transporter, MtPT4, and affected in colonisation by AM fungi
(Javot et al. 2007), has been used in a number of studies
(Grønlund et al. 2013; Javot et al. 2011, Watts-Williams
et al. 2015a). In rice (O. sativa) and Chinese milk vetch (As-
tragalus sinicus), similar mutants have been characterised for
the genes OsPT11 and AsPT4, respectively, orthologues of
MtPT4 (Xie et al. 2013; Yang et al. 2012). Isotope tracer stud-
ies, used in conjunction with theMtPT4 and OsPT11 mutants,
confirmed that the mycorrhizal pathway of P uptake had been
successfully shut down (Yang et al. 2012, Watts-Williams
et al. 2015a). Future work using these mutants and work on
developing other loss-of-function mutants in mycorrhiza-
induced nutrient transporter genes (including nitrate and am-
monium transporters) will contribute considerably to the un-
derstanding of plant-AM fungus nutrient relations.

Mycorrhiza-defective tomato mutants

76R and rmc

The mycorrhiza-defective tomato mutant rmc (reduced mycor-
rhizal colonisation) was first identified and described by Bark-
er et al. (1998), and it has since been used widely by re-
searchers, alongside its wild-type progenitor 76R, in a number
of field and glasshouse studies covering many aspects of soil
and plant ecology. Field studies have been undertaken on sites
in Australia and the USA, and glasshouse studies have used a
range of AM fungal species and soils containing native AM
fungal communities (from Europe, Australia and the USA).
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The degree to which the 76R and rmc genotypes are
colonised, and the colonisation phenotypes they express, is
highly influenced by fungal identity (Gao et al. 2001). Conse-
quently, a number of different colonisation phenotypes have
been described (see Gao et al. 2001 for photos of colonisation
phenotypes). Before discussing these phenotypes, it is impor-
tant to note that there has recently been a major revision of the
nomenclature of AM fungi (Krüger et al. 2012; Redecker et al.
2013). In this review, for the sake of clarity, the names of the
AM fungi are used as in the original publications; however,
the revised species names are also provided, for ease of com-
parison with future work.

Several species of AM fungi that colonise the wild-type
76R genotype normally are unable to colonise the rmc geno-
type, giving the Pen− phenotype: Rhizophagus irregularis
(formerly known as Glomus intraradices Schenck and Smith
[DAOM 181602]), Glomus fasciculatum [Thaxter] Gerd. &
Trappe emend. Walker & Koske [LPA7] and Glomus
etunicatum Becker and Gerdemann [UT316 A-2]) (Gao
et al. 2001; Manjarrez et al. 2008). The rmc genotype displays
the Coi− phenotype with other species of AM fungi which can
penetrate the root epidermal cells but cannot colonise cortical
cells (Scutellospora calospora [Nicolson & Gerdemann]
Walker & Sanders [WUM12(2)],Gigaspora margaritaBeck-
er and Hall, Glomus coronatum Giovannetti [WUM16], for-
merly known as G. ‘City Beach’, and G. mosseae [Nicholson
& Gerdemann] Gerdemann and Trappe [NBR4-1]) (Gao et al.
2001; Manjarrez et al. 2008). For S. calospora, the AM fungal
symbiosis can be functional (in terms of C transfer from plant
to fungi) but colonisation is of an intermediate morphology
and is restricted to root epidermal cells (Gao et al. 2001;
Manjarrez et al. 2008, 2010; Poulsen et al. 2005). Interesting-
ly, for G. intraradices Schenck and Smith WFVAM23 (re-
ferred to as G. versiforme [Karsten] Berch in (Gao et al.
2001), see (Gao et al. 2006)), full, functional mycorrhizal
development (Myc+) has been shown to occur in rmc roots,
although the rate of colonisation is much slower than in 76R
roots (Gao et al. 2001; Manjarrez et al. 2008; Poulsen et al.
2005).

Recently, a meta-analysis was conducted on 22 published
studies that have compared the 76R and rmc genotype pair in
terms of growth and tissue nutrient concentrations (Watts-Wil-
liams and Cavagnaro 2014). Tissue P concentrations were
generally higher (often significantly so) in the 76R genotype
than the rmc genotype, in both root and shoot tissue, in soils
with low and high P concentrations. A similar trend was re-
corded for tissue copper and sulphur concentrations, with con-
centrations in the 76R plants higher than those in the rmc
plants. Furthermore, the meta-analysis confirmed that the col-
onisation phenotype displayed by the AM fungi had a signif-
icant influence on the extent to which roots were colonised.
The results of the meta-analysis also highlighted that there was
no substantial mycorrhizal growth response in the 76R

genotype relative to the rmc genotype. It is important to note
that, with respect to the criteria for assessing suitable
mycorrhiza-defective mutant and wild-type pairs by Rillig
et al. (2008), the 76R/rmc pair are matched in terms of growth
in the absence of AM fungi in all studies (Cavagnaro et al.
2004a; Facelli et al. 2010; Poulsen et al. 2005) except one
(Marschner and Timonen 2005).

The precise genome location of the Rmc locus has been
identified and found to include a close match to the CY-
CLOPS/IPD3 gene (Larkan et al. 2013). This gene is essential
for intracellular regulation of both rhizobial and mycorrhizal
symbioses in legumes (Larkan et al. 2013). So far, nearly all
cloned legume genes required for nodulation and AM coloni-
sation have their putative orthologues in non-legume plants
(Zhu et al. 2006). This is because the two symbioses share
some signalling pathways (Zhu et al. 2006), suggesting that
the more recent symbiosis between nodulating bacteria and
plants may have evolved from the ancient symbiosis between
AM fungi and plants (Doyle 1998; Parniske 2008; Wang et al.
2010). Further identification of the gene sequences associated
with the Rmc locus will be useful information for past and
future work using the rmc mutant (Larkan et al. 2013).

The 76R and rmc genotypes continue to be valuable for
numerous studies focusing on different aspects of plant nutri-
tion (Cavagnaro et al. 2007b, 2010; Poulsen et al. 2005;
Watts-Williams and Cavagnaro 2012; Watts-Williams et al.
2013, 2014, 2015b), plant competition (Cavagnaro et al.
2004a; Facelli et al. 2010; Neumann and George 2005), my-
corrhizal formation and colonisation phenotypes (Cavagnaro
et al. 2004b; Gao et al. 2001; Manjarrez et al. 2008, 2009,
2010), soil ecology (Cavagnaro et al. 2006, 2007a, 2012;
Hallett et al. 2009; Marschner and Timonen 2005), soil green-
house gas emissions (Cavagnaro et al. 2008, 2012; Lazcano
et al. 2014) and plant genetics (Barker et al. 2005; Gao et al.
2006; Larkan et al. 2007; Ruzicka et al. 2012, 2013).

Micro-Tom mutants

Micro-Tom, a model tomato genotype that has been used ex-
tensively in genetic studies because of its small size and rapid
life cycle (Carvalho et al. 2011; Meissner et al. 1997), has also
been used to create three mycorrhiza-defective mutant geno-
types (David-Schwartz et al. 2001, 2003). The mutants M20
and M161 were obtained by fast neutron bombardment muta-
genesis, while the BC1 mutant is an F2 segregant of the cross
between wild-type and M161 genotypes. All mycorrhiza-
defective mutant genotypes of the Micro-Tom variety are
pre-mycorrhizal infection (pmi) mutants. Specifically, the
M161 mutant displayed the Myc− phenotype and was unable
to form mycorrhiza when grown in soil inoculated with
G. intraradices spores (David-Schwartz et al. 2001). Howev-
er, a low level of AM colonisation (vesicular and arbuscular)
occurred when ‘whole’ inoculum (spores, root segments,
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external hyphae) was applied to the soil or when M161 was
grown in a field soil (Rillig et al. 2008). When the M161
mutant was grown in the presence of its AM-colonised wild-
type progenitor, arbuscules, vesicles and internal hyphae de-
veloped in roots at a rate similar to that of the wild-type.
Similarly, the M20 mutant displayed the Myc− colonisation
phenotype and was able to resist AM fungal colonisation in
the presence of spores or (dead) pieces of mycorrhizal root,
but was not resistant to colonisation in the presence of a live
mycorrhizal wild-type progenitor plant (David-Schwartz et al.
2003). A third Micro-Tom mutant (BC1) has been identified,
which is highly resistant to AM fungal colonisation when
grown in field soil (1.2 % root length colonised) (Rillig et al.
2008). However, this genotype has not yet been tested for
resistance to AM fungal colonisation when grown in the pres-
ence of the mycorrhizal wild-type plant.

That mycorrhiza-defective Micro-Tom mutants can be
colonised when grown in the presence of the wild-type plant
needs to be taken into consideration when using these mutant
genotypes. In contrast to Micro-Tom mutant genotypes, the
rmc mutant genotype cannot be colonised in the presence of
its wild-type progenitor or other nurse plants (Cavagnaro et al.
2004a). Rillig et al. (2008) tested the Micro-Tom mutant ge-
notypes for the selection criteria (see above) for mycorrhiza-
defective mutant plants. They found that only the BC1 mutant
met all the prescribed criteria while the other two mutants did
not, for the following reasons: the M161 plants had a larger
root biomass than wild-type when both were grown in the
absence of AM fungi, and M20 gave rise to more soil micro-
bial biomass than the wild-type. The Micro-Tom mutant
M161 has so far been used in two published studies compar-
ing mycorrhizal and non-mycorrhizal plants for root exudates
involved in signal exchange between host plants and AM
fungi (Gadkar et al. 2003; Sun et al. 2012). These
mycorrhiza-defective mutant and wild-type Micro-Tom pairs
could be of considerable utility in the study of mycorrhizal
functioning.

Other non-legume mutants

In maize, mutator-mutagenised F2 families of the normal line
W64A were screened by Paszkowski et al. (2006) for alter-
ation in yellow root pigmentation compared to wild-type roots
(see above for detail on screening). From this screen, the au-
thors described seven mycorrhiza-defective mutants in maize
and categorised them into three colonisation phenotype clas-
ses: nope1 (no perception 1) mutants, which showed a marked
reduction in intra-radical colonisation by G. mosseae, but
displayed occasional root sectors containing normal mycorrhi-
zal structures (appressoria and arbuscules); taci1 (taciturn 1)
mutants, which had lower colonisation levels than the wild-
type genotype (45 % compared to 86% root length colonised)

and slightly modified fungal structures; and Pram1 (Preco-
cious arbuscular mycorrhiza 1) mutants, which are in fact
colonised more rapidly and intensely than the wild-type, be-
coming saturated with intra-radical fungal structures
(arbuscules and vesicles) much earlier. These maize mutants
represent the first mycorrhiza-defective mutant plants to be
characterised in an agronomically important cereal crop. Fu-
ture research using these mutants will be very useful for re-
search into nutrient uptake in cereal crops, especially in field
trials. However, to our knowledge, no such studies have yet
been reported in the literature.

Reddy et al. (2007) used a transposon-mutagenised popu-
lation of petunia (W138, Gerats et al. 1990) in order to identify
and characterise a mycorrhiza-defective genotype in this line.
The resulting mycorrhiza-defective petunia genotype, pam1
(penetration and arbuscule morphogenesis1), displayed a
strong decrease in AM fungal colonisation compared to its
wild-type progenitor.G. intraradices formed complex appres-
soria on pam1 roots but could not easily penetrate the epider-
mal cells. Where the fungus did penetrate epidermal cells, the
resulting hyphae were distorted compared to those in the wild-
type roots and did not progress further except in the rare in-
stance where hyphae produced lateral branches between cells
and small lateral appendages. In addition, two stabilised pam1
mutant lines (pam1S1 and pam1S2) were isolated and
characterised. The two stabilised mutant lines displayed re-
duced extra- and intra-radical AM fungal colonisation com-
pared to pam1, and thus the pam1S1 line was used for subse-
quent experiments (Reddy et al. 2007). As with the Micro-
Tom mutants, the pam1S1 mutant could be colonised by AM
fungi when grown in the presence of a nurse plant. However,
intra-radical colonisation lacked arbuscule formation, and
there was no contribution to the plant’s shoot P or Cu nutrition
as a result of root colonisation.

In rice, a large number of mycorrhiza-defective mutant ge-
notypes were characterised by Gutjahr et al. (2008), who were
interested in identifying rice lines that were defective in one of
a number of signalling steps in the common SYM pathway
both upstream and downstream of Ca2+ spiking (see Parniske
(2008) for recent review). The authors searched for relevant
insertion lines in both T-DNA and Tos17 databases and found
one insertion in CASTOR, three in POLLUX, two in CCMAK
and three in CYCLOPS (IPD3, see Table 1). The nine sym
mutants were then grown in soil inoculated with spores of
G. intraradices and assessed for colonisation phenotype. Root
colonisation in all the mutants was restricted to hyphal colo-
nisation in the epidermal cells, with no cortical colonisation
and thus no arbuscules or vesicles forming in any of the
mutants.

A gene required for mycorrhizal colonisation in rice,
OsDMI3 (does not make infections 3), has been identified.
Chen et al. (2007) searched a rice Tos17 mutant database for
OsDMI3 insertion lines, identifying two, but ultimately using
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just one (NF8513) for subsequent experiments. When grown
in soil inoculated with G. intraradices, the OsDMI3 mutant
roots showed occasional penetration of the cortical cells, with-
out any arbuscule formation. However, most observed fungal
growth (appressoria and external hyphae) was restricted to the
root surface.

Similarly, Chen et al. (2008) characterised three knockout
mutants defective in AM fungal colonisation (NC0263,
NC2713, NC2794), by searching for putative Tos17 insertion
lines available for OsIPD3, another gene required for mycor-
rhiza formation in rice. When inoculated withG. intraradices,
the root epidermal cells of the threeOsIPD3mutants could not
be penetrated, and there was no intra-radical colonisation of
the roots by the AM fungi (i.e. no hyphae, arbuscules or ves-
icles) except in one root segment of a NC2713 mutant that
displayed aborted intracellular fungal hyphae. There is no ex-
planation given for this observation in NC2713, but it is as-
sumed that the observed aborted hyphae did not confer func-
tionality of the symbiosis. Chen et al. (2008) noted that the
colonisation phenotype displayed by theOsIPD3mutants was
comparable to that of the previously identified OsDMI3 mu-
tant genotype (Chen et al. 2007).

Future directions

Mycorrhiza-defective plant mutant genotypes have the poten-
tial to be used in a broad range of studies. Future uses of both
legume and non-legume mutant genotypes may be extended
to areas of study where mycorrhiza have previously been
shown to improve plant or soil health, but hypotheses have
not yet been tested using a mycorrhiza-defective mutant, such
as soil nutrient cycling (Jeffries and Barea 1994; Read and
Perez-Moreno 2003) and interactions with foliar-feeding in-
sects (Gange and West 1994; Gehring and Whitham 1994;
Wamberg et al. 2003) and foliar pathogens (Campos-Soriano
et al. 2012; Nair et al. 2015;West 1997). Research that directly
compares plant nutrient uptake via the direct (i.e. via root
epidermal cells) and mycorrhizal pathways could utilise ap-
propriate mycorrhiza-defective mutant and wild-type geno-
type pairs (Poulsen et al. 2005), in conjunction with the use
of stable or radioactive isotopes (Merrild et al. 2013; Watts-
Williams et al. 2015b). It would also be useful for future stud-
ies using mycorrhiza-defective mutant and wild-type pairs to
continue to integrate molecular biology methods (e.g. quanti-
fication of gene expression) with more commonly reported
physiological variables (e.g. plant nutrient concentration).

The intention of this review was to explore the potential to
use mycorrhiza-defective mutant genotypes to study the for-
mation and functioning of mycorrhiza in non-legumes. This
approach has both strengths and limitations. Nevertheless,
such mutant and wild-type genotype pairs are proving to be
useful tools in the study of arbuscular mycorrhiza, and it is

hoped that this review will stimulate and inform further re-
search using this approach.
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