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Abstract Understanding the mechanisms that underlie nutri-
ent use efficiency and carbon allocation along with mycorrhi-
zal interactions is critical for managing croplands and forests
soundly. Indeed, nutrient availability, uptake and exchange in
biotrophic interactions drive plant growth and modulate bio-
mass allocation. These parameters are crucial for plant yield, a

major issue in the context of high biomass production.
Transport processes across the polarized membrane interfaces
are of major importance in the functioning of the established
mycorrhizal association as the symbiotic relationship is based
on a ‘fair trade’ between the fungus and the host plant.
Nutrient and/or metabolite uptake and exchanges, at
biotrophic interfaces, are controlled bymembrane transporters
whose regulation patterns are essential for determining the
outcome of plant–fungus interactions and adapting to changes
in soil nutrient quantity and/or quality. In the present review,
we summarize the current state of the art regarding transport
systems in the two major forms of mycorrhiza, namely ecto-
and arbuscular mycorrhiza.
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IRM Intraradical mycelium
KUP K+ uptake permease
LPC Lyso-phosphatidylcholine
MIP Major intrinsic protein
MP Mycorrhizal pathway
MSTs Monosaccharide transporters
NCBI National Center for Biotechnology

Information
NIP Nod 26-like intrinsic protein
NiR Nitrite reductase
NNP Nitrate/nitrite porter
NO3

- Nitrate
NR Nitrate reductase
NT Nitrate transporter
OPT Oligopeptide transporter
Pi Inorganic phosphate
PIPs Plasma membrane intrinsic proteins
POT Proton-coupled oligopeptide transporter
PTR Peptide transporter
RNAi RNA interference
SULTRs Sulphate transporters
SUTs/
SUCs

Sucrose transporters

TCA Trichloroacetic acid
TIPs Tonoplast intrinsic proteins
WT Wild type
YAT Yeast amino acid transporter

The main resources acquired by plants in natural ecosystems
are light and CO2—through photosynthesis in the leaves—
and mineral nutrients and water—through active and pas-
sive uptake into the roots. Mycorrhizal symbiosis plays a
critical role for plant nutrient use efficiency in natural and
cultivated ecosystems that are usually characterized by nu-
trient limitation, especially with regard to nitrogen and
phosphate (Smith and Read 2008). Efficient mycorrhizal
interactions depend on the ability of the mycobiont to take
nutrients available under an inorganic and/or organic form
in the soil and translocate them (as such or their correspond-
ing metabolites) to the host plant. In turn, organic C derived
from photosynthesis is transferred from the plant to the
fungus, which acts as a sink site (Bago et al. 2003), and
translocated to the growing margins of the extraradical
mycelium and to developing spores. These exchanges main-
ly result in improved host plant growth through increased
nutrient availability (Smith and Read 2008). There is sub-
stantial evidence that rational use of microsymbiont proper-
ties could significantly contribute to decreasing fertilizer
and pesticide use in agriculture (Gianinazzi et al. 2010).
The symbiotic relationship is based on a ‘fair trade’ between
fungus and host plant. As a consequence, transport process-
es across the polarized membrane interfaces are of major

importance in the functioning of the established mycorrhizal
association. Mineral nutrients are barely accessible to the host
roots, but they are efficiently taken up by the extraradical
hyphae that develop through the soil and transported to the
exchange interfaces where they leave fungal cells for the host
transport systems. This suggests a unique reorientation of the
fungal ‘nutritional metabolism’ at the interface between the
symbiotic partners: both plant and fungal cells are locally
‘reprogrammed’, including with regard to the differentiation
and polarization of membrane transport functions, to fulfill the
tasks of a massive nutrient transfer between the two partners.
In arbuscular mycorrhiza (AM) and ectomycorrhiza (ECM),
nutrients have to go through several membrane barriers at the
apoplastic interface before being assimilated by the partner’s
cells (Hahn and Mendgen 2001); proton ATPase activity on
the two membranes of the symbiotic interface is a sign of
active membrane transport (Gianinazzi-Pearson et al. 1991,
2000; Harrison 2005). Nutrient and/or metabolite uptake and
exchanges at biotrophic interfaces are controlled by mem-
brane transporters whose regulation patterns are essential for
determining the outcome of plant–fungal interactions and
adapting to changes in soil nutrient quantity and/or quality.
Despite its importance, the release of nutrients taken up by the
extraradical hyphae into the root apoplast occurs through
widely unknown mechanisms. The aim of this review was to
summarize current knowledge about macro- and micronutrient
transport systems in plants in arbuscular and ectomycorrhizal
interactions.

Sugar transporters

Mycorrhizal interactions involve a stable cooperation between
plant and fungal partners. Besides stimulating host plant me-
tabolism and photosynthetic activity, mycorrhizal fungi pro-
vide greater access to nutrients, which are not directly
available for host roots (Bago et al. 2000; Selosse et al.
2006). As a reward, the plant redirects between 4 and 25 %
of its photosynthates towards mycorrhized roots and ex-
changes them with the fungal partner (Graham 2000;
Högberg and Högberg 2002; Hobbie 2006). For four decades,
investigations into plant-to-fungus carbon flows have strongly
suggested that sugars were transferred by means of either
active or passive efflux mechanisms (Ho and Trappe 1973;
Blee and Anderson 1998; Doidy et al. 2012a, b). Isotopic
labelling and nuclear magnetic resonance spectroscopy using
AM-colonized roots showed hexoses, i.e. glucose and, to a
lesser extent, fructose, being taken up by the intraradical
mycelium (Shachar-Hill et al. 1995; Solaiman and Saito
1997; Pfeffer et al. 1999). Boldt et al. (2011) monitored
sucrose and fructose accumulation in tomato roots colonized
by Funneliformis mosseae and confirmed previous evidence
about invertase activity in the apoplast.

598 Mycorrhiza (2013) 23:597–625



The two partners in mycorrhizal interactions seem able to
detect whether the resource supply follows the ‘do ut des’ rule
characteristic of mutualistic duties. The capability to adjust
their own resource allocation according to variations in re-
source exchanges is thought to increase the stability of plant–
fungal mutualistic interactions (Kiers et al. 2011), although the
terms of trade between the partners are still under debate.
Kiers et al. (2011), choosing fungal partners that interact
differently with plants, showed that host plants could discrim-
inate among fungi on the basis of the amounts of nutrients (e.
g. inorganic phosphate, Pi) supplied by AM fungi, and they
selectively reallocated higher amounts of photosynthates as a
reward. Similarly, N uptake by AM fungi, and its transfer to
the host plant, is triggered by C availability at the mycorrhizal
interface (Fellbaum et al. 2012). Additionally, Walder et al.
(2012) reported an unbalanced trade of C and nutrients when
plants interact with different fungal partners. Their experiment
showed that different plant species sharing a common mycor-
rhizal network benefited from increased nutrition. But the
fungal partners F. mosseae and Rhizophagus irregularis
showed different P and N supply patterns when interacting
with plants that provided different amounts of photosynthates
(Walder et al. 2012). Nowadays, the site for photosynthates
exchange between mycorrhizal symbionts is commonly ac-
cepted to be at the arbuscular interface, as demonstrated for
phosphate transport (Pumplin and Harrison 2009). Some au-
thors also suggest that intercellular hyphae could also be an
important C exchange site (Helber et al. 2011; Smith et al.
2001). Evidence of glucose and xylose uptake by the intra- or
extraradical mycelium was reported more than a decade ago
(Pfeffer et al. 1999; Bago et al. 2000; Helber et al. 2011).
Although a few transport proteins have been identified at the
plant–fungus interface (Fig. 1), the mechanisms that underlie
sugar transport and partitioning towards the specialized inter-
face membranes still remain largely unknown.

Sucrose partitioning in arbuscular mycorrhiza

In different plant species, the AM interaction generally
augments photosynthetic activity to support the increased
sink strength. In accordance with these observations, in-
creased transcript amounts of Medicago truncatula sucrose
synthase (MtSucS2) were observed during the interaction
with the AM fungus R. irregularis (Corbière 2002); more-
over, MtSucS1 was shown to play an important role in
arbuscule maturation and maintenance in M. truncatula
roots mycorrhized by F. mosseae (Baier et al. 2010).

When sucrose reaches colonized roots, the phloem is
unloaded by means of sucrose transporters via the apoplasmic
pathway (Fig. 1), where SUT1-loading proteins (ZmSUT1;
Carpaneto et al. 2005) are thought to unload the phloem
towards arbusculated cortical cells; besides, sucrose is
unloaded via the symplasmic pathway through cell

plasmodesmata (Doidy et al. 2012a). In addition, mechanisms
of sucrose retrieval towards plant cells via SUT importers can
also be assumed. Strikingly, in parallel to the previously de-
scribed exchanges within host roots, extraradical hyphae have
been shown to take up sugars (glucose (Glu) and xylose (Xyl))
in vitro through a proton-coupledmechanism; this opens a new
path for the axenic culture of such fungi (Helber et al. 2011).

Higher transcript levels of sucrose transporters (SUTs), as
well as accumulation of sucrose and monosaccharides in sink
organs, were observed in mycorrhized roots of tomato
(Solanum lycopersicum) and white clover (Trifolium repens)
plants, indicating an increased movement of sucrose from
photosynthesizing leaves (Wright et al. 1998; Boldt et al.
2011). Interestingly, overexpression of the phloem-loading
SoSUT1 in potato (Solanum tuberosum) increased R.
irregularis colonization compared to WT plants when high-
phosphate conditions were applied (Gabriel-Neumann et al.
2011). The absence of an effect on the mycorrhization rates in
low-Pi conditions—even when antisense inhibition lines of
SoSUT1 were assessed—and previous evidence showing al-
tered leaf and tuber C partitioning when the gene was
overexpressed (Leggewie et al. 2003) suggest a non-direct
effect of SoSUT1 on the AM interaction. Additional evidence
of the transcriptional regulation of genes involved in sucrose
transport were reported in the AM interaction between tomato
plants and Rectipilus fasciculatus (Tejeda-Sartorius et al.
2008), and more recently between M. truncatula and R.
irregularis (Doidy et al. 2012b). Contrasting evidence on
SUT regulation has also been reported for LeSUT1 of tomato,
which is downregulated in AM roots (Ge et al. 2008).
Therefore, muchwork still has to be done to understand which
plant SUTs or regulatory mechanisms play key roles in su-
crose partitioning during mycorrhization.

Concerning the fungal partner in AM symbiosis, experi-
ments on C fluxes support the hypothesis that sucrose is not
taken up by the mycobiont in AM symbiosis (Solaiman and
Saito 1997; Pfeffer et al. 1999; Bago et al. 2000). Nevertheless,
a glomeromycotan sucrose transporter (RiSUC1) was identi-
fied from R. irregularis expressed sequence tag (EST) contigs
by Helber et al. (2011). A full characterization and localization
of this transporter will shed light onto sugar exchanges be-
tween arbuscular mycorrhizal partners.

Sucrose partitioning in ectomycorrhiza

Enhancement of host photosynthetic activity, sucrose synthe-
sis and sugar transfer towards roots is also reported in ECM
interactions (Nylund and Wallander 1989; Loewe et al. 2000;
Corrêa et al. 2011). In particular, the estimated loss of carbon
reaches 20–25 % of the total sugars fixed during photosyn-
thesis when plants interact with ECM fungi (Hobbie 2006;
Nehls et al. 2010), much higher than the 3–5 % loss measured
for non-mycorrhized plants.
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Recently, a transcriptomic approach to determine the
metabolome of the ECM interaction between quaking aspen
(Populus tremuloides) and Laccaria bicolor (Larsen et al.
2011) showed a general stimulation of the carbohydrate me-
tabolism. In particular, increased expression of the plant genes
associated with starch and sucrose metabolism was observed,
as well as increased expression of different sugar transporter
genes. In the same work, L. bicolor carbohydrate metabolism
was also enhanced, although no evidence of sucrose transport-
er genes from ECM fungi is yet available in the currently
sequenced genomes (Martin et al. 2008, 2010; Larsen et al.
2011). Earlier works showed that sucrose utilization by the
ECM fungi Amanita muscaria and Hebeloma crustuliniforme
depended on their host’s cell wall-bound invertases (Salzer and
Hager 1991). Similarly, Chen and Hampp (1993) showed that
sucrose and mannitol were not taken up by protoplasts of the
ECM fungus A. muscaria. These results suggest that mono-
saccharides are the prevalent C form taken up by ECM fungi.

Monosaccharide partitioning in arbuscular mycorrhiza

During AM symbiosis, due to the fact that most AM fungi
lack invertase machinery (Hatakeyama and Ohmasa 2004;
Daza et al. 2006), it is commonly accepted that sucrose is
hydrolyzed evenly into glucose and fructose by plant-derived
sucrose-cleaving enzymes (i.e. cell wall invertase CWIN;

Schaarschmidt et al. 2006). Although evidence suggests that
sucrose cleavage can be done either in the intercellular
apoplast or inside the host cell by sucrose synthases and/or
invertases (SucS: Hohnjec et al. 2003; Ravnskov et al. 2003;
Baier et al. 2010; cytosolic CIN and vacuolar VIN:
Schaarschmidt et al. 2006, 2007), the exact site of sucrose
cleavage is not yet directly identified (Fig. 1). Although the
upregulation of AM-affected sucrose-cleaving enzymes has
been evidenced in different plants (Blee and Anderson 2002;
Hohnjec et al. 2003; Ravnskov et al. 2003; Schubert et al.
2004; Schaarschmidt et al. 2006; Garcia-Rodriguez et al.
2007; Tejeda-Sartorius et al. 2008), few works have addressed
transcript accumulation or the promoter activity of these genes
during AM symbiosis (Tejeda-Sartorius et al. 2008).

Wright et al. (1998) observed increased photosynthetic and
invertase activity in white clover, coupled with sugar accumu-
lation in sink organs, indicating a mycorrhizal-driven in-
creased sink and C allocation for root and mycobiont
development. Similarly, Schaarschmidt et al. (2007) observed
an altogether enhanced metabolism in mycorrhized tomato,
but the increased invertase activity and hexose levels in the
roots did not affect R. irregularis colonization; therefore, C
supply through sucrose breakdown may not be the limiting
factor for a functional interaction.

Following hydrolysis, monosaccharides can be taken up
by the host plant or the mycorrhizal fungus. Plant

Fig. 1 Current knowledge about sugar fluxes in arbuscular mycorrhi-
zal symbiosis: Different compartments such as the soil solution, exter-
nal and internal fungal cells, interfacial apoplast, plant root and leaf
cells can receive differential C allocation. To simplify the schematic
representation, interactions between M. truncatula and R. irregularis

are mainly reported. Ri Rhizophagus irregularis, Mt Medicago
truncatula, Zm Zea mays, MST monosaccharide transporter, SUC/
SUT sucrose transporter, Hext hexose transporter, Chi chitin, Gal
galactose, Glu glucose, Gly glycogen, Man mannose, TAG
triacylglycerol, Tre trehalose, Xyl xylose
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monosaccharide transporters (MSTs) are a vast group of
transporters whose phylogenetic classification and clade
nomenclature remain ambiguous (for a comprehensive re-
view, see Doidy et al. 2012a). Although the roles of MSTs in
hexose partitioning have been extensively studied, reports
on AM-specific or induced/regulated MSTs are still scarce.

Mtst1 of M. truncatula encodes a transport protein with
high affinity for glucose and fructose. It is regulated in re-
sponse to colonization by Diversispora epigaea (Harrison
1996). Increased transcript levels were observed in M.
truncatula and Medicago sativa following mycorrhizal colo-
nization, but not in myc mutants of the two plants, suggesting
thatMtst1 upregulation is potentially linkedwith a functioning
symbiosis. Greater differences in cell type-specific expres-
sion, particularly in arbusculated and adjacent cortical cells,
suggest that Mtst1 is involved in sugar supply to the AM
interaction (Fig. 1; Harrison 1996). Moreover, the recently
identified family of sucrose and monosaccharide uniporters
defined as ‘SWEET transporters’ seems to play a role in
mediating sugar efflux from plant cells in plant–microbe in-
teractions (Baker et al. 2012; Chen et al. 2012; Fig. 1), so a
role in mycorrhizal associations can be speculated.

The complex expression pattern of monosaccharide trans-
porters in tomatowas recently assessed byGe et al. (2008): the
hexose transporter LeHT2 was downregulated in tomato roots
colonized by the AM fungi Glomus caledonium or R.
irregularis, whilst different responses of the putative MST
LeST3 were observed when plants were mycorrhized by dif-
ferent fungi (Garcia-Rodríguez et al. 2005; Ge et al. 2008).
Interestingly, when plants were cultivated at high Pi (0.5 mM)
levels, reduced transcript accumulation of LeHT2 and LeST3
was observed in the roots, whilst increased transcripts of
LeHT2 were measured in the leaves (Ge et al. 2008). Other
results highlight the effect of human selection on crop plants;
indeed, the maize transporter ZmMST1was found upregulated
at sub-micromolar P concentrations in an African cultivar
adapted to low nutrient, but not in the European cultivar
usually grown in high-input agricultural systems (Wright et
al. 2005b). MSTs were also found differentially regulated in
the non-arbusculated cortical cells of colonized roots. Indeed,
plasma membrane glucose transporters from the STP clade
(MtHext1 and Mtst1) were activated in non-colonized cells
neighbouring arbusculated cells (Gaude et al. 2012). The
activation of the monosaccharide import pathway, coupled
with the reallocation of sugars stored in vacuoles, may result
in cytosolic sugar enrichment in non-arbusculated cells and,
thus, indirectly feed arbusculated cells through symplasmic
pathways (Fig. 1).

Interestingly, the monosaccharide transporter CAD31121,
isolated in the detergent-resistant membrane fraction of M.
truncatula roots, was downregulated upon mycorrhization
(Lefebvre et al. 2007). Raft-associated proteins, and along
with them the membrane dynamics, could therefore play a

role in the regulation of trophic exchanges during AM inter-
action. This opens new perspectives for future research.

The phylogenetic reconstruction of the invertase gene fam-
ily in numerous fungal phyla highlighted a strong negative
correlation between the presence of invertase genes and the
degree of mutualism of the interaction (Parrent et al. 2009).
AM fungi have a low cell wall-degrading activity compared to
ECM and ericoid mycorrhizal fungi, and they lack invertase
activity. Altogether, this makes them strongly dependent on
their plant host (Smith and Read 2008). This could be a tool
for the photobiont to control and tune this type of interaction.
There are many demonstrations that AM fungi can take up
glucose and fructose at the plant–fungus interface (Shachar-
Hill et al. 1995; Solaiman and Saito 1997; Pfeffer et al. 1999).
Within glomeromycotan fungal species, the first symbiosis-
related glucose transporter was identified in Geosiphon
pyriformis in interaction with Nostoc punctiforme (Kluge et
al. 1991; Schüßler et al. 2002, 2006). This unique symbiotic
model allowed for the isolation of GpMST1 (Schüßler et al.
2006, 2007), characterized as an H+ glucose transporter with
highest affinity for glucose and mannose, followed by galac-
tose and fructose. The information obtained from this model,
together with the available glomeromycotan genomic data,
recently led to the isolation of three MSTs (RiMST2,
RiMST3 and RiMST4; Fig. 1) from the widely used model
species R. irregularis (Helber et al. 2011), which predomi-
nantly transports glucose and, to a lower extent, fructose
(Shachar-Hill et al. 1995; Solaiman and Saito 1997; Pfeffer
et al. 1999; Boldt et al. 2011). Therefore, the excess of fructose
in colonized roots may be redirected towards other sink
organs.

RiMST2 has been characterized as a high-affinity function-
al H+ glucose transporter expressed in arbuscules and
intraradical mycelium (Fig. 1). It is also present in intraradical
hyphae, where it could mediate the uptake of monosaccha-
rides (including Glu, Xyl, galactose and mannose) resulting
from plant cell wall degradation (Schüßler et al. 2007; Helber
et al. 2011). RNAi silencing of RiMST2 by HIGS resulted in
impaired mycorrhizal formation, malformed arbuscules and
reduced MtPT4 expression, suggesting that RiMST2 acts as
the major component for hexose uptake by R. irregularis and
seems indispensable for a functional AM symbiosis.

Monosaccharide partitioning in ectomycorrhiza

In ECM interactions, as in AM, the regulation of carbohydrate
delivery via an apoplastic pathway and more specifically the
regulation of cell wall-bound invertases provide an efficient,
flexible and demand-oriented way to adjust C supply to the
fungal partners (Roitsch et al. 2003; Roitsch and Gonzalez
2004). Controversial results were found about changes in
invertase activity due to ECM interactions in birch (Wright
et al. 2000) and Norway spruce (Schaeffer et al. 1995).
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Interestingly, Schaeffer et al. (1995) reported changes in
mycorrhized Norway spruce invertase activity mainly in the
meristem and the elongation zone, whilst no difference was
observed at the active symbiotic interface.

Enhanced expression of invertase genes and related en-
zymatic activities were also observed in ectomycorrhized
Populus trichocarpa plants (Nehls et al. 2010). Unaffected
glucose import capacity, coupled to increased invertase gene
expression, was observed in ectomycorrhizal plants (Nehls
et al. 2010). Repressed expression of hexose transporters,
which can take up fructose, led to enrichment of the apoplast
in fructose, and the apoplast in turn became a possible extra
carbon source for the hyphae of the fungal sheath that
surrounds the infected root tip. This hypothesis is consistent
with the accumulation of glycogen in the fungal sheath of
Paxillus involutus colonizing silver birch (Jordy et al. 1998).

In addition to the control of sucrose transporters and su-
crose hydrolysis, the regulation of hexose transporter genes
upon ECM formation enhances the competition for mono-
saccharides at the symbiotic interface. Such competition gives
the plant an additional tool to control sugar supply at a local
level (Nehls et al. 2010). Several observations point out how
trees can restrict carbohydrate support when mineral nutrients
are not sufficiently provided by the fungal partner (Nilsson
and Wallander 2003; Nilsson et al. 2005; Hendricks et al.
2006). Moreover, the increase in transcript levels of hexose
transporter genes in Poplar plants seems to corroborate this
hypothesis (Grunze et al. 2004; Nehls et al. 2007). The impact
of ECM formation on monosaccharide transporter genes has
been investigated in different plant species. Compared to non-
mycorrhized roots, the expression of hexose transporters from
birch (BpHEX1, BpHEX2), poplar (PttMST1.2, PttMST2.1)
and Norway spruce (PaMST1) was suppressed upon ECM
establishment (Nehls et al. 2000;Wright et al. 2000; Grunze et
al. 2004), whilst PttMST3.1 from poplar was strongly
upregulated. As a higher expression of PttMST3.1 compared
to the other hexose transporters was also observed in non-
mycorrhized plants and the heterologous expression experi-
ments failed to confirm its transporter activity, the authors
argued about a direct regulation of this gene upon ECM
interaction and suggested a posttranscriptional mechanism
(Nehls et al. 2007). More recently, and in agreement with
the general understanding of the biological basis for ECM
interactions, Larsen et al. (2011) reported higher activity for
the enzymes of the carbohydrate metabolic pathway in quak-
ing aspen, including starch and sucrose degradation enzymes,
during mycorrhizal interactions with L. bicolor.

A. muscaria protoplasts can take up glucose and fructose,
with much higher affinity for glucose than for fructose.
Although sucrose did not inhibit monosaccharide uptake,
fructose uptake was strongly inhibited by glucose, but no
effect on glucose uptake was observed when fructose was
added to protoplasts (Chen and Hampp 1993). Similarly,

preferential uptake of glucose over fructose was observed in
other ECM fungi such as Cenococcum geophilum and
undefined mycorrhizal species associated to Picea abies
(Salzer and Hager 1993; Stülten et al. 1995). Two MSTs from
A. muscaria (AmMST1 and AmMST2) and one from Tuber
borchii (Tbhxt1) have been characterized as having a high
affinity for glucose, but different regulatory systems and lo-
calizations among plant tissues (Nehls et al. 1998; Wiese et al.
2000; Nehls 2004; Polidori et al. 2007). Whilst AmMST1 and
AmMST2 were stimulated by the extracellular monosaccha-
ride concentration and putatively located at the plant–fungus
interface, Tbhxt1 expression was stimulated during carbohy-
drate starvation of fungal hyphae and is probably involved in
supplying sugar to the soil-growing mycelium.

L. bicolor genome sequencing (Martin et al. 2008) allowed
for the identification of 15 putative MSTs (Fajardo Lopez et al.
2008). Transport properties assessed through competition ex-
periments showed that glucose was the choice monosaccharide
taken up. Moreover, MST gene expression patterns confirmed
a strong induction under carbon-limiting/starving conditions,
most likely to allow the fungus to compete with the host for
monosaccharide uptake from the plant–fungus interface.

Other works have investigated the ECM basidiomycete
L. bicolor S238N-H82 (Deveau et al. 2008). The author
attempted to construct a comprehensive inventory of path-
ways involved in primary carbohydrate metabolism, thus
shedding light onto the steps following hexose assimilation
at the plant–fungus interface. Several genes and gene fam-
ilies were annotated and the transcriptional regulation of the
glycolysis, pentose phosphate, TCA, trehalose and mannitol
metabolism pathways was studied using whole-genome ex-
pression oligoarrays and qPCR techniques in the L.
bicolor/Pseudotsuga menziesii interaction. Differential tran-
script regulation of the glycolytic, mannitol and trehalose
metabolisms was observed upon mycorrhizal and sporocarp
development (Deveau et al. 2008).

More recently, Tuber melanosporum sequencing and
comparison with other ECM fungi showed a lower dependen-
cy on the host for monosaccharides (Martin et al. 2010). In
fact, the presence of an invertase-encoding gene suggests the
capability for the mycobiont to hydrolyze the sucrose deliv-
ered by the plant at the apoplastic interface. This could repre-
sent an advantage compared to the mycorrhizal symbionts that
lack invertase-encoding genes, such as L. bicolor.

Nitrogen transporters

Nitrogen transport in arbuscular mycorrhiza

Although the role of N in AM symbiosis is less clear than
that of P, it is now established that AM can play a major role
in N uptake (Smith et al. 2010). Although AM fungi can
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take up both NO3
− and NH4

+, a clear preference for NH4
+ is

at least partly explained by the extra energy the fungus has
to spend to reduce NO3

− to NH4
+ before it can be incorpo-

rated into organic compounds (Marzluf 1997).
Molecular evidence for N uptake by AM fungi was

obtained through the characterization of an ammonium trans-
porter (AMT) in R. irregularis (Lopez-Pedrosa et al. 2006).
GintAMT1 encodes a functional, high-affinity NH4

+ transport-
er that is expressed in the extraradicular mycelium (ERM;
Lopez-Pedrosa et al. 2006). GintAMT1 transcription increased
after adding 30 μM NH4

+, but decreased after adding 3 mM
NH4

+. The authors therefore hypothesized that this gene
played a key role in NH4

+ acquisition by the ERM when the
surrounding environment was characterized by ammonium-
limiting conditions, such as in acid soils. A second R.
irregularis AMT, functionally different from GintAMT1, has
recently been isolated and characterized (Pérez-Tienda et al.
2011).GintAMT1 andGintAMT2were differentially expressed
during the fungal life cycle and in response to N. In contrast to
GintAMT1, GintAMT2 transcript levels were higher in the
intraradical fungal structures than in the ERM (Fig. 2).
However, transcripts of both genes were detected in
arbuscule-colonized cortical cells. GintAMT2 showed consti-
tutive expression in N-limiting conditions and transitory in-
duction after N resupply (either NO3

− or NH4
+). It was then

suggested thatGintAMT2 could be involved in retrievingNH4
+

leaked out along with fungal metabolism. Interestingly, the
expression of both genes was downregulated after adding
either glucose or acetate to the root or hyphal compartment
of a split Petri dish, respectively, suggesting the existence of C-
dependent mechanisms of gene regulation. Fellbaum et al.
(2012) investigated whether or not a reward strategy existed
for nitrogen delivery in the exchange for increased sugar
supply, such as the one already described for Pi (Kiers et al.
2011). By manipulating carbon availability to host and fungus
in root organ cultures, the authors showed that C supplied to
the host induced changes in fungal gene expression that
resulted in increased nitrogen uptake and transport.
Interestingly, although genes involved in N assimilation or
arginine biosynthesis were induced in the ERM in response
to C supply to the root compartment, a fungus NTexpressed in
the ERM in response to exogenous NO3

− supply (Tian et al.
2010) was downregulated, suggesting once again that AM
fungi preferentially take up NH4

+, which is energetically less
costly than NO3

−.
Besides inorganic N uptake, AM fungi can obtain substan-

tial amounts of N from decomposing organic materials, in
particular amino acids, and that 3 % of plant N comes from
that material (Hodge and Fitter 2010). Such a process could
involve, among other transporters, amino acid permeases
(AAP). A functional AAP from F. mosseae has been charac-
terized.GmosAAP1 expressionwas detected in the extraradical
mycelium and its activity increased upon exposure to organic

nitrogen (Cappellazzo et al. 2008; Fig. 2). GmosAAP1 can
transport proline through a proton-coupled and pH- and
energy-dependent process and displays a relatively specific
substrate spectrum since it binds non-polar and hydrophobic
amino acids. GmosAAP1 may play a role in the first steps of
amino acid acquisition, allowing direct amino acid uptake from
the soil and extending the range of molecular tools AM fungi
use to exploit soil resources.

In plants, several transcriptomic analyses reveal that AM
establishment can induce the expression of plant N trans-
porters, mainly in arbusculated cells. However, data relying
on the functional validation of putative transporters are still
scarce. The first evidence of a plant functional AMT involved
in N uptake during AM symbiosis was provided in Lotus
japonicus colonized with Gigaspora margarita by Guether
et al. (2009a). LjAMT2;2 is exclusively expressed in mycor-
rhizal roots, and its transcripts are preferentially located in
arbusculated cells. Interestingly, transport experiments using
Xenopus laevis oocytes indicate that, unlike other plant
AMTs, LjAMT2;2 transports NH3 instead of NH4

+. The au-
thors suggest that LjAMT2;2 recruits NH4

+ in the acidic peri-
arbuscular space and releases the uncharged NH3 into the
cytoplasm of the arbuscule-containing root cortical cell. That
way, protons coming from the deprotonation process remain
in the peri-arbuscular space and reinforce the gradient for H+-
dependent transport processes. Moreover, NH4

+ sensing and
NH3 transport can avoid the accumulation of NH3/NH4

+ at
potentially toxic levels. Transcript profiling revealed another
AM-induced AMT (IMGAG|1723.m00046) detected exclu-
sively in arbusculated cells (Gomez et al. 2009). Two putative
ammonium transporters were identified in M. truncatula
(Gaude et al. 2012). Interestingly, one (medtr7g075790.2)
was induced in non-colonized cortical cells, whereas the other
(medtr7g140920.1) was strongly induced in arbusculated cells
(Fig. 2). This latter AMTsequence is different from that of the
ammonium transporter expressed in arbuscule-containing
cells described recently (Gomez et al. 2009), indicating that
several transporter proteins of the same family may be in-
volved in symbiotic ammonium transfer. In contrast to L.
japonicus and M. truncatula, five AM-inducible AMTs were
found in Glycine max, and one of them was downregulated
(Kobae et al. 2010). In Lotus, the most abundantly transcribed
AMT gene, GmAMT4.1, an ortholog of LjAMT2;2, is specif-
ically expressed in arbusculated cells. Moreover, the protein
was localized only on the peri-arbuscular membranes sur-
rounding arbuscule branches, but not on the trunk regions,
indicating that active ammonium transfer occurs around the
arbuscule branches (Fig. 2).

Recently, two new AMTs were identified in tomato
(LeAMT4 and LeAMT5) and reported to be exclusively
expressed in mycorrhizal roots, but not regulated by NH4

+,
whilst the non-symbiosis-specific LeAMT2 was induced by N
treatment (Ruzicka et al. 2012). Interestingly, both LeAMT4
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and LeAMT5 are expressed in low-N conditions, concomitant-
ly with the transcriptional repression of direct root N uptake
pathways.

The AM-induced Nod 26-like intrinsic protein (MtNIP1),
an aquaporin, was reported to act as a low-affinity ammo-
nium transporter in AM instead of facilitating water uptake
(Uehlein et al. 2007). Recently, MtNIP1 was reported to be
AM-activated exclusively in arbusculated cells, whilst an-
other NIP was activated in hyphae-containing cortical cells,
suggesting that fungal hyphae could also be involved in
plant N uptake (Hogekamp et al. 2011).

Although nitrate is unlikely the main form in which N is
supplied to the plant by AM fungi, the AM-induced
upregulation of nitrate transporter genes in various systems
suggests the presence of a mechanism that supports the
assimilation of nitrate by AM. In addition to the AM-
induced nitrate transporter reported in tomato (Hildebrandt

et al. 2002), four genes encoding nitrate transporters were
also upregulated inM. truncatula and L. japonicus (Hohnjec
et al. 2005; Guether et al. 2009b). However, transcriptional
profiles of M. truncatula roots also revealed that two nitrate
transporter genes were repressed (Hohnjec et al. 2005). This
modulation of transporter gene expression is likely to be
related to a switch in nutrient supply from direct root uptake
to symbiotic uptake following changes in internal concen-
trations. Interestingly, in M. truncatula, one of the induced
high-affinity nitrate transporter genes was also induced in
response to high phosphate.

AM is also likely to modulate organic N transport. Among
the metabolic changes observed in AM, high levels of certain
amino acids (Glu, Asp, Asn) was reported in mycorrhized
roots (Schliemann et al. 2008). Three genes of the AAP family
were upregulated in L. japonicus (Guether et al. 2009a, b). In
Lotus, ten differentially expressed genes related to di-

Fig. 2 Current knowledge about N transfer mechanisms in mycorrhizal
interactions. Five compartments for N-compound transfer (ammonium,
nitrate, amino acids and peptides) can be differentiated: the soil solution,
external and internal fungal cells, the interfacial apoplast and the plant
cell. The different molecules are reallocated across the different ECM
compartments by several transporters that are not yet fully characterized.
Hence, putative uncharacterized transporters are indicated by a question
mark, fungal transporters in black and plant transporters in green, respec-
tively. NRT nitrate transporter, AMT ammonium transporter, AAP amino

acid transporter, OPT oligopeptide transporter, PTR peptide transporter,
GAP1 general amino acid permease, ATO ammonia (ammonium) trans-
port outward, AQR aquaporin, APC amino acid–polyamine–
organocation, Am Amanita muscaria, Gint Rhizophagus irregularis, Gm
Glycine max, Hc Hebeloma cylindrosporum, Lb Laccaria bicolor, Le
Solanum lycopersicum, Lj Lotus japonicus, Mt Medicago truncatula, Tb
Tuber borchii, Pta Populus tremula×alba, Ptt Populus trichocarpa, Pp
Pinus pinaster

604 Mycorrhiza (2013) 23:597–625



tripeptide transporter (PTR) genes were detected (Guether et
al. 2009a, b); nine were upregulated whilst one was down-
regulated in mycorrhized roots. Noteworthy is that the expres-
sion of the highest induced PTR gene was exclusively located
in arbuscule-containing cells.

Peptide transporters belong either to the di- and tripeptide
transporter (PTR) family, also named proton-coupled
oligopeptide transporter family (POT; Paulsen and Skurray
1994), or to the oligopeptide transporter (OPT) family,
which transports larger peptides (Hauser et al. 2001). AM
induction of four putative proton-dependent oligopeptide
transporter (POT/PTR) genes was also reported in M.
truncatula (Gomez et al. 2009; Benedito et al. 2010;
Hogekamp et al. 2011). Additionally, 11 POT genes were
induced in roots colonized by either R. irregularis or F.
mosseae (Hogekamp et al. 2011); two of them (Mtr.7741.
1.S1_at and Mtr.4863.1.S1_at) were specifically expressed
in arbusculated cells.

Nitrogen transport in ectomycorrhiza

In boreal and northern temperate forests, where plants
interacting with ECM fungi dominate, nitrogen is the most
important growth-limiting factor and is mainly present in an
organic form (Read and Perez-Moreno 2003; Smith and Read
2008). The capacity of ECM fungi to mobilize polymeric N
compounds as well as take up amino acids is well documented
(Wallenda and Read 1999, Plassard et al. 2002). N compounds
have to pass through three membrane barriers before being
assimilated into the plant cells: the soil/fungus membrane, the
fungus/apoplast membrane and the apoplast/plant root mem-
brane (Chalot et al. 2006; Fig. 2). Despite a crucial role of
ECM interaction in plant N nutrition, little is known about the
molecular details and, in particular, about the regulation of
nitrogen transporters of the two symbionts at the three in-
terfaces. Analysis of the L. bicolor genome (Martin et al.
2008) uncovered the genetic repertoire of the transportome
of an ECM fungus (Lucic et al. 2008; Chalot and Plassard
2011). The following paragraphs summarize the current data
about the transporters involved in N uptake and the N com-
pounds transferred among symbionts.

Peptide and amino acid transporters

Peptide transporters from ECM host plants are not yet func-
tionally characterized. Nevertheless, a comprehensive geno-
mic analysis shows that the Populus genome contains 20
OPT-encoding genes; several of them cluster together, but
no expression data on mycorrhized root tips are yet available
(Cao et al. 2011). Gene expression regulation and the uptake
capacity of two PTR transporters of the ECM fungus
Hebeloma cylindrosporum indicate that HcPtr2A is involved
in high-efficiency peptide uptake under conditions of limited

N availability, whereas HcPtr2B is constitutively expressed
(Benjdia et al. 2006; Fig. 2). The L. bicolor genome contains
two PTR-encoding genes which are constitutively expressed
in free-living tissues, one of them at a high level (Lucic et al.
2008). An oligopeptide transporter has also been isolated from
an EST library of H. cylindrosporum mycelium (Lambilliotte
et al. 2004), but has not been characterized yet (Müller et al.
2007). Nine putative OPT orthologs were identified in the L.
bicolor genome, and expression analyses revealed different
functional profiles. Four of themwere constitutively expressed,
two were highly and specifically upregulated in sporocarps,
and two others were upregulated in sporocarps and ECM-
involved mycelium. These genes could be involved in the
constitutive uptake of peptides by the mycelium either in the
free-living conditions or in ECM associations (Lucic et al.
2008; Fig. 2).

Amino acid uptake in mycorrhized root tips is improved,
as demonstrated in Pinus sylvestris and Fagus sylvatica
ECM plants (Wallenda and Read 1999). Transcriptomic data
analyses from root tips of aspen colonized by L. bicolor
revealed that organic N compounds such as glycine, gluta-
mate and, likely, allantoin could be the forms of exchange
between ectomycorrhizal symbionts (Larsen et al. 2011).

Most of the fungal amino acid transporters (AAT) have
been classified into the amino acid/polyamine/organocation
(APC) superfamily (Saier et al. 1999). They mediate the
transfer of a broad spectrum of amino acids with
overlapping specificities. The L. bicolor APC superfamily
includes a larger number of genes (29 members; Fig. 2)
compared to saprophytic or parasitic fungi (Lucic et al.
2008). These differences could be related to the dual life-
style (symbiotic and/or saprophytic) of this ECM fungus
and to its higher capacity to use organic N resources
(Martin et al. 2008). AATs with high affinity for basic amino
acids and lower affinity for neutral and acidic amino acids
were identified in A. muscaria (AmAAP1; Nehls et al.
1999) and H. cylindrosporum (HcGap1; Wipf et al. 2002).
Furthermore, HcGAP1 was undetectable in ECM, so the
authors hypothesized that this minimized the reuptake of
excreted amino acids, assuming that a competition for
nitrogen-based nutrients exists at mycorrhized root tips.
Lucic et al. (2008) pointed out the remarkable expansion
of the YAT family in L. bicolor and, according to their
expression analysis, suggested that several of these genes
could be key determinants of ECM functioning.

The mechanisms of amino acid excretion in ECM remain
to be elucidated. The process could be ensured by trans-
porters homologous to yeast AQR1 (Acids Quinidine
Resistance 1), which is involved in amino acid excretion
(Chalot et al. 2006; Müller et al. 2007; Fig. 2). It is worth
noting that Aqr1 homologs have been identified in both L.
bicolor and H. cylindrosporum genomes and appear to be
expressed in colonized root tips.
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Nitrate and ammonium transporters

Nitrate is internalized by specific plasma membrane trans-
porters via an energy-dependent uptake process. A large
group of nitrate transporters, from both prokaryotes and
eukaryotes, belongs to the Major Facilitator Superfamily
and specifically to the NNP family. The best-characterized
members of this family in ECM fungi are NRT2 from H.
cylindrosporum (Jargeat et al. 2003) and NRT2 from T.
borchii (Montanini et al. 2006; Fig. 2). They are clustered
with NR- and NiR-encoding genes (Jargeat et al. 2003;
Guescini et al. 2003, 2007). TbNRT2, HcNRT2, TbNir1
and HcNir1 were all upregulated in the presence of NO3

−

as the sole N source and under N starvation, whereas TbNir1
was only upregulated in the presence of NO3

− (Jargeat et al.
2000; Guescini et al. 2007). TbNir1 and TbNrt2 were
strongly expressed in the Hartig net and the mantle, but
weakly expressed in the free-living mycelium (Guescini et
al. 2003; Montanini et al. 2006). Gobert and Plassard (2002,
2007) showed that the ECM fungus Rhizopogon roseolus
displayed only high-affinity NO3

− uptake kinetics. A single
nitrate transporter is probably responsible for nitrate uptake
in ECM fungal species, in contrast to plants that exhibit
several nitrate transporters (Lucic et al. 2008). As recently
reviewed (Chalot and Plassard 2011), direct NO3

− uptake
and transfer in ECM is under debate since measurements in
field experiments demonstrated that ECM communities dis-
criminated against NO3

− (Clemmensen et al. 2008), whilst
microcosm experiments showed ammonium to be the pre-
ferred N form transferred (Chalot and Plassard 2011).
Interestingly, all the fungi that possess a single nitrate per-
mease have multiple AMTs.

Though the soil concentration of the poorly mobile ammo-
nium ion is generally lower than that of nitrate, ammonium is
often preferred as a nitrogen source because of its lower
assimilation cost (Marschner 1995). ECM fungi indeed have
a preference for ammonium over nitrate in vitro (Rangel-
Castro et al. 2002; Guidot et al. 2005) and in field experiments
(Clemmensen et al. 2008). In addition, ammonium was pro-
posed as a good candidate for transfer between fungal and
plant cells at the apoplast interface (Chalot et al. 2006).
Ammonium transport is mediated by a family of ubiquitous
membrane proteins, the Mep/Amt/Rh family, found through-
out all kingdoms of life (Huang and Peng 2005) and
subdivided into two subfamilies in plants, AMT1 and
AMT2. Analysis of the poplar genome revealed the existence
of 14 AMT genes, 6 AMT1 and 8 AMT2 genes, respectively
(Couturier et al. 2007). Among all these transporters,
PtaAMT1;2 is ammonium-specific, with high affinity, and is
highly expressed in roots (Couturier et al. 2007). More inter-
estingly, as also observed for its homolog gene PttAMT1.2, it
was overexpressed in ectomycorrhized roots (Selle et al. 2005;
Couturier et al. 2007). Three other poplar genes coding for

putative ammonium transporters were also overexpressed in
ECM (Selle et al. 2005).

Three genes encoding ammonium transporters have been
cloned from H. cylindrosporum (Javelle et al. 2001, 2003).
HcAMT3 is a low-affinity AMT, whilst HcAMT1 and
HcAMT2 are high-affinity ammonium transporters/sensors;
the latter is induced by both N deficiency and NO3

− supply
and is repressed by glutamine. High-affinity AMTs isolated
from T. borchii (TbAMT1) and A. muscaria (AmAMT2) were
upregulated in N-deprived mycelium (Montanini et al.
2002) and strongly repressed when N was added
(Willmann et al. 2007). The six L. bicolor AMT-encoding
genes displayed various expression profiles (Lucic et al.
2008; Fig. 2). One was constitutively expressed in all tissues
and did not respond to N starvation. It could therefore
ensure a basal level of ammonium uptake independently of
the external N status, as already demonstrated for the H.
cylindrosporum ortholog HcAMT3 (Javelle et al. 2003).
Willmann et al. (2007) showed that in functional ECM, the
transcript level of the high-affinity ammonium transporter
AmAMT2 of A. muscaria was reduced in both hyphal net-
works (sheath and Hartig net) and increased in the ERM.
Furthermore, two genes homologous to a putative ammoni-
um export protein of Saccharomyces cerevisiae, Ato3, are
found in A. muscaria (Selle et al. 2005) and L. bicolor
(Lucic et al. 2008). Such genes could be involved in the
ammonium release from the fungal cells into the apoplast
interface. Recently, a study highlighted the involvement of
fungal aquaporins in ammonium transfer into ECM (Dietz et
al. 2011). The authors described three L. bicolor aquaporins
able to transport ammonium/ammonia—two of which are
upregulated in ectomycorrhized root tips. Finally, in addi-
tion to specific AMTs, voltage-dependent cation channels
such as those possibly involved in the export of fixed NH4

+

from rhizobial bacteria to leguminous host plants (Roberts
and Tyerman 2002) could be involved in the export of
inorganic N to the apoplast (Chalot et al. 2006), as also
supported by molecular data.

Phosphate transporters

ECM and AM fungi are known to take up Pi from the soil
solution and to transfer P to the host plant. The first dem-
onstration of Pi uptake by extramatrical hyphae and its
subsequent transfer to the host plant was carried out using
32Pi supplied to young P. sylvestris plants grown under
sterile conditions (Melin and Nilsson 1950). Further exper-
iments demonstrated that this P transport is unidirectional,
from fungal cells to host root cells (Finlay and Read 1986).
Recent results demonstrate that the so-called mycorrhizal
pathway (MP), characterized by Pi transporters exclusively
or predominantly induced during AM interaction (Harrison
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et al. 2002), can contribute from 20 to 100 % of the plant P
uptake, depending on the plant and fungal species involved
and independently of the effect of fungal association on
plant biomass (Smith et al. 2004, 2010; Facelli et al. 2010).

Pi transporters were first described in yeast (Persson et al.
2003), characterized as high-affinity Pi transporters encoded
by the PHO84 and PHO89 genes (Bun-ya et al. 1991;
Martinez and Persson 1998). Interestingly, PHO84 and
PHO89 are respectively H+- and Na+-dependent trans-
porters, a difference that is still used for classification pur-
poses; indeed, the Pi:H

+ transporters are associated with the
Pht1 family and Pi:Na

+ with the Pht2 family. High- and low-
affinity transporters are found in the two families.

Phosphate transport in arbuscular mycorrhiza

AM-inducible plant Pi transporters have been identified in
many monocot and dicot species, including perennial trees
(Javot et al. 2007a; Loth-Pereda et al. 2011; Fig. 3 and
Electronic supplementary material (ESM) Table S1). In di-
cots, the signal perception and the transduction pathway that
mediate mycorrhiza-specific regulation of Pi transport have
been described in several plant orders such as Solanales,

Apiales, Fabales (Karandashov et al. 2004) and Malphigiales
(Loth-Pereda et al. 2011). They cluster in subfamilies I and III
of the plant Pht1 family (Fig. 3). In situ hybridization and
promoter:GUS fusion studies showed that some of these AM-
inducible Pht1 transporters were predominantly or exclusively
expressed in arbusculated cortical cells (Rausch et al. 2001;
Harrison et al. 2002; Glassop et al. 2005; Nagy et al. 2005;
Maeda et al. 2006). Subfamily I Pht1 genes are only
expressed in mycorrhizal cells in perennial and annual
plants, whilst subfamily III Pht1 genes, such as MtPT3 in
M. truncatula and LjPT3 in L. japonicus, have a basal
expression in non-mycorrhized roots, but are specifically
induced in cortical cells during AM symbiosis (Maeda et
al. 2006; Rausch et al. 2001; Fig. 5). Transporters from
the two subfamilies were immunolocalized in the peri-
arbuscular membrane at the branches of arbuscules in M.
truncatula (MtPT4; Harrison et al. 2002; Pumplin and
Harrison 2009) or Oryza sativa (OsPT11; Kobae and
Hata 2010). Interestingly, in tobacco plants colonized
by AM fungi, H+-ATPases and AM-induced Pi trans-
porters (H+-Pi transporters) displayed arbuscule-specific
expression and distinct localizations in the plant mem-
brane around the arbuscules (Gianinazzi-Pearson et al.
2000; Krajinski et al. 2002). Moreover, polar targeting
of AM-inducible Pht1 transporters, such as MtPT4, is
mediated by precise temporal expression coupled with a
transient reorientation of secretion (Pumplin et al. 2012).

Analysis of the promoter region revealed the presence of
the highly conserved CTTC motif in AM-inducible Pht1
genes in dicots (Karandashov et al. 2004; Chen et al.
2011; Loth-Pereda et al. 2011). However, the attempt to
characterize AM-inducible Pht1 transporters by heterolo-
gous expression in yeast or by overexpression in
suspension-cultured tobacco cells did not yield a clear-cut
picture: the P. trichocarpa PtPT10 mutant exhibits a growth
defect at low-Pi conditions (Loth-Pereda et al. 2011), M.
truncatula MtPT4 is a low-affinity Pht1 transporter
(668 μM; Harrison et al. 2002), and S. tuberosum StPT3
has a higher affinity (64 μM; Rausch et al. 2001) than
MtPT4.

AM-induced Pht1 transporters are essential for Pi uptake
via the mycorrhizal pathway. In a tomato mutant resistant to
colonization by most AM fungi, LePT3 and LePT4 are only
expressed when arbuscules are developing (Poulsen et al.
2005). The downregulation of MtPT4 (subfamily I) caused
premature arbuscule death, decreased colonization levels and
ultimately led to the end of the AM relationship (Javot et al.
2007b), but also affected nitrogen metabolism (Javot et al.
2011). The mutants exhibited low total shoot P contents and
an accumulation of poly-P in the arbuscules probably caused
by the impairment of the symbiotic pathway. In contrast,
knocking out the LePT4 gene (subfamily III) in tomato did
not inhibit arbuscule development or Pi uptake via the AM

Fig. 3 Neighbour-joining tree of Pi:H
+ symporters. Members of the

Pht2 family were used as an outgroup. They share high similarity with
mammalian Pi:Na

+ co-transporters, but function as Pi:H
+ co-trans-

porters in plant plastids. Subfamily I clustered the AM-inducible Pi
transporters from both monocot and dicot species, suggesting they
evolved before dicots and monocots separated. Some proteins from
both monocots and dicots fall into the highly divergent subfamily II.
Genes from plant groups were found in subfamilies III and IV, indi-
cating their evolutionary divergence after the separation of flowering
plants from their common ancestor
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pathway, probably due to a functional overlap with the other
AM-induced Pht1 transporter LePT3 from subfamily I (Nagy
et al. 2005). The LjPT3 knockdown mutant (subfamily III)
showed reduced arbuscule development and AM-mediated P
uptake (Maeda et al. 2006). Finally, mutant studies with
reduced expression of the two types of AMF-inducible Pht1
from subfamilies I and III reveal that the two subfamilies are
important for AM symbiosis. However, in rice, Yang et al.
(2012) showed that only OsPT11 from subfamily I was nec-
essary and sufficient for symbiotic Pi uptake.

In addition to the effect of AM symbiosis on gene expres-
sion, Pht1 gene expression also depends on P status. Besides
AM-inducible Pht1 transporters, some other Pht1 are
downregulated, in particular those thought to be involved in
direct Pi uptake. This interplay between Pht1 transporters re-
flects the balance between the direct and symbiotic pathways
of Pi uptake. Pi absorption by root hairs and epidermis is
substantially reduced in AM plants, even if the AM fungus
does not provide additional Pi to the plant (Smith et al. 2003).
It is currently not clear yet whether downregulation (1) is a
plant-only dependent process, (2) is a direct response of the
plant to symbiosis or (3) indirectly results from the AM-
induced improvement of plant P acquisition (Smith and
Read 2008). In M. truncatula, the expression of MtPT4 was
induced by Gigaspora rosea, F. mosseae and R. irregularis,
and the other five genes coding for Pht1 transporters showed
different degrees of repression that mirrored the functional
differences in P nutrition by the three fungi (Grünwald et al.
2009). Furthermore, the downregulation of AM symbiosis by
P is accompanied by a systemic regulation of strigolactone
production, which probably affects hyphopodia differentiation
and subsequent arbuscule development (Balzergue et al.
2011). Moreover, posttranscriptional regulation appears to be
an important control point in response to different P condi-
tions, meaning that transcript abundance and protein accumu-
lation are not necessarily related, as shown by the
contradictory results in M. truncatula (Chiou et al. 2001)
and O. sativa (Tran and Plaxton 2008).

A series of promoter truncation and mutation analyses
combined with phylogenetic footprinting of Pht1 promoters
revealed that at least two cis-regulatory elements—the mycor-
rhiza transcription factor-binding sequence (Chen et al. 2011)
and P1BS (Rubio et al. 2001; Schünmann et al. 2004)—
mediated the transcriptional activation of AM-mediated Pi
transporter genes. Deletion or partial mutation of either of
the two motifs in the promoters caused a remarkable decrease,
or even complete absence, of promoter activity in solanaceous
species (Chen et al. 2011). The requirement of P1BS for AM
inducibility of Pi transporters could explain the absence of
induction under high P supply in AM plants with low coloni-
zation levels (Nagy et al. 2009; Chen et al. 2011). But other
mechanisms could sustain AM symbiosis at a high P status,
such as PHO2 repression mediated by miR399 accumulation

in mycorrhized roots (Branscheid et al. 2010). Additionally,
Mt4, a non-coding RNA homologous to M. truncatula IPS1,
is rapidly downregulated in AM symbiosis (Burleigh and
Harrison 1998). Therefore, components shared between P
starvation signalling and AM signalling can also be differen-
tially regulated due to AM interaction.

In AM fungi, the first Pi:H
+ transporter was described in

D. epigaea (DePT on Fig. 4, subgroup III, and ESM Table
S2) and had a Km value of 18 μM Pi (Harrison and van
Buuren 1995). Later, one partial cDNA (FmPT) and one
full-length cDNA (RiPT) putatively coding for Pi:H

+ trans-
porters were identified in F. mosseae and R. irregularis,
respectively (Fig. 4, subgroup IV; Maldonado-Mendoza et
al. 2001; Benedetto et al. 2005). The recent sequencing of
the R. irregularis genome yielded three other genes. Two
predicted polypeptides (RiPT1 and RiPT2) cluster in the
PHO89 subgroup (Fig 4, subgroup I), suggesting the puta-
tive presence of Pi:Na

+ transporters. However, their function
is questionable as they are also very close to ScPho86, a
protein involved in targeting and packaging ScPho84 in
yeast (Bun-Ya et al. 1996). The third predicted polypeptide
(RiPT3) clusters with the PHO87 subgroup (Fig 4, subgroup
IV). It can mediate Pi uptake when expressed in quadruple-
mutant yeast (pho84Δ, 89Δ, 90Δ, 91Δ) with low affinity

Fig. 4 Neighbour-joining tree of fungal Pi:H
+ and Pi:Na

+ transporters
based on realigned amino acid sequences. Bootstrap values are from
1,000 replications. Sequence names consist of species code (first letter
of the genus name and first letter of the species name, and gene name).
Accession numbers of the predicted proteins are given as supporting
information. The tree consists of five subgroups: subgroup I corre-
sponds mainly to Pi:Na

+ transporters, whereas subgroups II–V corre-
spond to Pi:H

+ transporters. Subgroup V mainly clusters Pi:H
+

transporters from ascomycetes
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(216 μM; Wykoff and O’Shea 2001), suggesting that RiPT3
could encode a low-affinity Pi:H

+ transporter.
Besides Glomeromycetes, an Ascomycete species,

Oidiodendron maius, which forms AM symbiosis with
ericaceous plants (Martino et al. 2007), showed the
highest number of putative Pi transporters, (http://
genome.jgi.doe.gov/Oidma1/Oidma1.home.html), with
nine members (OmPT1–OmPT9; Fig. 4 and ESM Table
S2) classified as Pi:H

+ transporters.
Most fungal transcripts were predominantly detected in

ERM, with their expression levels enhanced by low P avail-
ability, as in R. irregularis (Maldonado-Mendoza et al.
2001; Olsson et al. 2006) and F. mosseae (Benedetto et al.
2005). As a whole, these data suggest a role in Pi acquisition
from the soil solution. Yet, Benedetto et al. (2005) and
Balestrini et al. (2007) report that FmPT transcripts are also
detected in intraradical mycelium (IRM) and in cells
containing arbuscules, suggesting that the regulation of P
uptake and transfer from fungal cells to host cells is far more
complex than previously expected. Transcript profiling
using oligoarray revealed that R. irregularis Pi:H

+ and Pi:
Na+ transporters were not differentially expressed in germi-
nating spores, in the extra- and intraradical mycelium
(Tisserant et al. 2012). It also appears that P delivery from
the AM fungus to the plant is highly dependent of the C
pool delivered by the plant, as shown for R. irregularis
associated with root organ cultures (Hammer et al. 2011).
This is confirmed by the constitutive overexpression of a
potato sucrose transporter (SoSUT1), which increases my-
corrhizal root colonization under high P availability only
(Gabriel-Neumann et al. 2011).

Phosphate transport in ectomycorrhiza

In ECM fungi, several genes putatively encoding Pi trans-
porters have been identified (Fig. 4 and ESM Table S2;
http://genome.jgi.doe.gov/Mycorrhizal_fungi/Mycorrhizal_
fungi.info.html): three in H. cylindrosporum (HcPT1.1,
HcPT1.2 and HcPT2; Tatry et al. 2009), in P. involutus
(PiPT1–PiPT3), and in T. melanosporum (TmPT1–TmPT3;
Martin et al. 2010) and five in L. bicolor (LbPT1–LbPT5;
Martin et al. 2008) and in A. muscaria (AmPT1–AmPT5).
Most of these transporters belong to the Pht1 subfamily (Pi:
H+ transporters), suggesting that the efficiency of Pi uptake
by the fungus strongly relies on external pH values. Only T.
melanosporum stands apart, with genes encoding Pi trans-
porters that cluster with Pi:Na

+ transporters (TmPT3; sub-
group I in Fig. 4). This specificity could be related to the
ecology of this fungal species, which can live in soils with
alkaline pH values and does not strictly depend upon proton
gradients thanks to these Pi transporters.

Among all Pi transporters identified so far in ECM fungi,
only HcPT1 (HcPT1.1 in Figs. 4 and 5) and HcPT2 have been

characterized by yeast complementation (Tatry et al. 2009).
HcPT1 and HcPT2 exhibited different affinities for Pi, with
Km values of 55 and 4 μM, respectively. The apparent Km of
HcPT2 was therefore comparable to that reported for ScPho84
and even lower than that of GvPT (18 μM). It is also close to
the few apparent Km values of Pi uptake measured in
ectomycorrhized pines, which ranged between 2 and 13 μM
depending on the fungal species (Van Tichelen and Colpaert
2000). These two transporters differ in their kinetics, but also
in their regulation according to Pi availability; H.
cylindrosporum could use HcPT1 to mediate Pi uptake when
soil P availability is low and HcPT2 when soil P availability is
high (Tatry et al. 2009). The divergent phylogenetic relation-
ships of HcPT1 and HcPT2, which cluster in subgroups II and
IV (Fig. 4), respectively, and their differential transcriptional
regulation suggest different functional characteristics (i.e. dif-
ferent affinities for Pi and/or to different regulation patterns of
gene expression with Pi availability).

So far, only one study has reported the regulation of plant Pi
transporters in ECM interactions. It was carried out in poplar
(P. trichocarpa) associated with L. bicolor (Loth-Pereda et al.
2011). The authors showed that an alternative Pi uptake path-
way distinct from AM-interacting plants allowed
ectomycorrhized poplar to recruit PtPT9 and PtPT12 (both
upregulated in poplar AM and ECM) to cope with limiting P
concentrations in forest soils (Loth-Pereda et al. 2011; Fig. 5).
Due to structural differences between AM and ECM roots,
whether the direct and mycorrhizal uptake pathways work
simultaneously in ECM has to be shown. Indeed, the presence
of the fungal sheath may hinder Pi uptake by the root cells
(Bücking et al. 2007), especially if the fungus is hydrophobic.
However, to transfer P from the external solution to the xylem
through ECM, P has to be taken up by cortical cells. That step
could be mediated by specific plant Pht1 transporters such as
PtPT9 and PtPT12 in poplar. On the other hand, the capacity
of Pinus pinaster roots for Pi uptake strongly depends on
whether ectomycorrhizae can take up Pi from the solution or
not (Tatry et al. 2009). Decreased and increased net Pi uptake
was measured in root portions without any ECM tips and in
root portions with ECM tips, respectively, and compared to
non-mycorrhized roots. The decrease in P uptake capacity in
P. pinaster root areas grown with the symbiotic fungus but
without any ectomycorrhizae could be due to the
downregulation of high-affinity plant Pi transporters in the
cortical cells of the whole root system, as described previously
in AM plants. This suggests the occurrence of a mycorrhizal
uptake pathway in ECM plants (Fig. 5).

Overview of the phosphate transportome in mycorrhized
roots

Finally, gathering the data published on AM symbiosis, a
simplified diagram of the possible phosphate transportome
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of mycorrhized roots is given in Fig. 5. The first impact of
mycorrhizal symbiosis is the formation of a MP that can
contribute to most of P uptake in mycorrhized plants (Smith
et al. 2003, 2004) at the expense of the direct pathway (DP).
This first effect could bemediated through the downregulation
of plant Pht1 transporters located in epidermal root cells, such
as reported in M. truncatula (MtPT1 and MtPT2; Liu et al.
1998a, b) and potato (StPT1 and StPT2; Leggewie et al. 1997;
Rausch et al. 2001; Nagy et al. 2005; Fig. 5). TheMP pathway
first involves the uptake of Pi from the soil solution by the
ERM far away from the roots. In most cases, fungal P uptake
is mediated by Pi:H

+ transporters. However, the exact role of
the putative Pi:Na

+ transporters identified in the R. irregularis
genome (RiPT1 and RiPT2) remains to be established. After
uptake, Pi is rapidly transferred to vacuoles under the form of
polyphosphate chains. Vacuoles can move from cells to cells
to reach the IRM. Javot et al. (2007b) showed that polyphosphates

did not accumulate in functional arbuscules, whereas they
accumulated in the fungal hyphae that bear the arbuscules,
suggesting that polyphosphates are degraded inside
arbuscules. We can hypothesize that this recycling is under
the control of plant cells, although the nature of the signals
remains to be determined. This degradation of polyphosphates
sustains the Pi flux delivered from the fungal cells towards the
apoplastic interface between the symbionts, through as yet
unknown mechanisms (Smith and Smith 2011). The detection
of fungal Pht1 in mRNA extracted from arbusculated cortical
cells (Balestrini et al. 2007) strongly suggests thatPht1 plays a
role in Pi delivery at the symbiotic interface. Moreover, as
shown by Koegel et al. (2013), SbPt11 from Sorghum bicolor
was slightly but significantly and systemically induced, indi-
cating that a signal could be transferred to the non-colonized
roots and prepare the roots for potential future colonization, as
described by Gaude et al. (2012). The activity of these

Fig. 5 Phosphate transportome during mycorrhizal interactions and P
transfer mechanisms towards host cells. Expression of plant Pht1 trans-
porters from the direct pathway could be strongly reduced in mycorrhized
plants compared to non-mycorrhized plants, leading to the activation of
the mycorrhizal P uptake pathway (Smith and Smith 2011). In the
mycorrhizal pathway, after inorganic phosphate uptake from the soil
solution through the plasma membrane, fungal Pht1 is energized by the
H+ symport (a), cytoplasmic Pi is accumulated in the vacuoles as
polyphosphates (b) and transferred through hyphae via motile vacuoles
(c) towards the intracellular fungal cells (d). PolyPs are probably degrad-
ed under the control of a plant signal to supply cytosol Pi which leaves the
fungal cell through as yet unknown mechanisms (e). The mechanism
could be the same fungal Pht1s whose activity is also regulated by

posttranscriptional modifications, leading to the lack of apoplasmic Pi
reuptake by fungal cells (e) and leaving Pi available for plant P uptake (f)
through mycorrhizal-inducible Pht1 transporters. These plant mycorrhi-
zal-inducible Pht1 transporters could be induced by lyso-phosphatidyl-
cholines of plant or fungal origin (g), as shown in tomato (Drissner et al.
2007). Plant Pi uptake is energized by the proton symport resulting from
plant ATPase activity (h) (Smith et al. 2011). Pi inorganic phosphate,
PolyP polyphosphates, LPC lyso-phosphatidylcholine, DP direct path-
way, MP mycorrhizal P uptake pathway, Am Amanita muscaria, De
Diversispora epigaea,Hc Hebeloma cylindrosporum, Lb Laccaria bicol-
or, Le Solanum lycopersicum, Lj Lotus japonicus, Mt Medicago
truncatula, Os Oryza sativa, Pt Populus tremula, St Solanum tuberosum
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transporters could be regulated by posttranslational mod-
ifications leading to an absence of apoplastic Pi reup-
take by the fungus and leaving Pi available for plant P
uptake via mycorrhiza-inducible Pht1 transporters (Fig.
5). Interestingly, the expression of plant mycorrhizal-
inducible Pht1 transporters was induced by lyso-
phosphatidylcholine (LPC) from plant or fungal origin
(Drissner et al. 2007). Due to the fact that LPCs are highly
mobile within cells, these molecules could be the cytoplasmic
messenger that activates downstream processes and gene ex-
pression in the nucleus (Bucher et al. 2009). However, roots
from plants exhibiting a high Pi status are insensitive to LPC
(Nagy et al. 2009), suggesting that Pi control is dominant over
LPC signalling (Bucher et al. 2009). Overall, the P
transportome from mycorrhizal plants appears to represent a
rapid translocation system for delivering P taken up far away
from roots by the external fungal cells directly into cortical
cells. However, some decisive steps remain to be elucidated,
especially the nature of the transport mechanisms that ensure
the release of Pi from the fungal cells.

Sulphate transporters

Sulphur is a crucial macronutrient for photosynthetic organ-
isms’ growth, development and response to various abiotic
and biotic stresses. It is needed to synthesize amino acids
(cysteine and methionine); glutathione; thiols of proteins
and peptides; membrane sulfolipids; cell walls; and second-
ary products like vitamins, cofactors and hormones (Foyer
and Noctor 2009; Popper et al. 2011). Therefore, deficiency
due to reduced S availability can have dramatic impacts on
plant growth and development.

Sulphur is acquired from the soil in the form of sulphate,
through an H+-dependent co-transport process (Davidian et
al. 2000), and then transported towards the sink organs
under the control of different sulphate transporters classified
into four groups (Fig. 6 and ESM Table S3). Due to its

solubility in water, sulphate is commonly leached from soils
by rainfalls (Eriksen and Askegaard 2000); as a conse-
quence, 95 % of soil S is bound to organic compounds after
being metabolized by soil microorganisms (Scherer 2001)
and then no longer available for plants (Leustek 1996). S
starvation or other nutrient starvation can have deleterious
effects on plants, similarly to the use of increasing amounts
of fertilizers on natural ecosystems (Foley et al. 2005).
Therefore, different approaches to access the unavailable
organic S pool present in the soil must be investigated, such

�Fig. 6 Rooted phylogenetic tree of plant sulphate transporters
(SULTRs), adapted from Casieri et al. (2012). The evolutionary history
was inferred using maximum parsimony on 53 aligned amino acid
sequences. Numbers next to branches represent the percentages of
replicate trees in which the associated taxa clustered together in the
bootstrap test (3,000 replicates). The evolutionary distances were com-
puted using the Jones et al. (1992) w/freq. method and are expressed as
the number of amino acid substitutions per site. Rate variation among
sites was modelled with a gamma distribution (shape parameter=2). A
total of 586 parsimonious informative positions were considered in the
final dataset. Evolutionary analyses were conducted in MEGA5
(Tamura et al. 2011). Squares, AM host species; diamonds, ECM host
species; inverted triangles, rooting outgroup of the tree, represented by
S. cerevisiae sulphate permeases. Species code: At Arabidopsis
thaliana, Lj Lotus japonicas, Mt Medicago truncatula, Os Oryza
sativa, Zm Zea mays, Ptr Populus tremula, Ptric Populus trichocarpa,
Ptr-Pal Populus tremula×Populus alba, Psi Picea sitchensis
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as the use of symbiotic microorganisms (i.e. AM and ECM
fungi) in interaction with plant roots.

Sulphate transport in arbuscular mycorrhiza

In plants, the cross talk with AM fungi and the increased
amount of available nutrients trigger a series of events such
as the activation of specific mycorrhizal uptake pathways;
this affects already-expressed transporters of the direct up-
take pathways and increases nutrient exchanges and
reallocation (Javot et al. 2007a, b; Sawers et al. 2008;
Smith and Smith 2011; Smith et al. 2011).

Noteworthy is that although several papers address the
importance of S uptake and of the transport of its oxidized
forms or metabolic derivates inside the plant (Yoshimoto et
al. 2007; Lewandowska and Sirko 2008), few studies on the
effects of symbiotic interactions with AM fungi on the
transcriptional regulation of plant SULTRs are reported.
Growth parameters and element (C, N, S) contents of M.
truncatula plants showed increasing S availability and star-
vation resistance in plants interacting with the AM fungus R.
irregularis (Casieri et al. 2012). In the same study, transcript
accumulation analysis of eight putative M. truncatula sul-
phate transporters (MtSULTRs) revealed differential regula-
tion due to S starvation conditions (≤10 μM) and to AM
interactions. It is noteworthy that the induced transcription
of two transporters (MtSULTR1.1 and MtSULTR1.2 in Fig.
6), preferentially found in root tissues, was observed at all
sulphate concentrations upon AM interaction. Similarly,
other transporters (MtSULTR2.1 and MtSULTR2.2) were
also upregulated. Comparisons between mycorrhized and
non-mycorrhized conditions, showing putative SULTRs in
leguminous plants affected by AM interactions, highlighted
their possible contribution to the direct or mycorrhizal-
sulphate uptake pathways (Casieri et al. 2012). Although S
uptake and assimilation pathways are repressed by normal
or high sulphate concentrations (Vauclare et al. 2002;
Buchner et al. 2004), contrasting evidence appears in
mycorrhized plants where S content and uptake are en-
hanced whatever the sulphate concentration. Differences
from the derepression mechanism observed at the transcrip-
tional level, observed in Arabidopsis after supplying sul-
phate to S-deprived plants (Maruyama-Nakashita et al.
2003; Nikiforova et al. 2005), could suggest differences in
the mechanisms that regulate plant S sensing, S assimilation
and/or feedback repression due to S-containing compounds
occurring in AM-interacting plants.

The ability of mycorrhizal fungi to transfer N and P from
organic compounds has been shown by different authors
(Banerjee et al. 2003; Guo et al. 2007). Recently, the possible
S uptake from organic sources by mycorrhized plants was
investigated by means of 35S-labelling experiments performed
on transformed carrot roots (Daucus carota) andmonoxenically

grown R. irregularis (Allen and Shachar-Hill 2009). More
generally, sulphate transfer through AM fungi was studied
earlier, but different studies report contrasting results. In fact,
the increase in 35SO4

2− uptake in mycorrhized red clover and
maize plants was shown by Gray and Gerdemann (1973)
using the AM fungus F. mosseae. In agreement with their
report, Rhodes and Gerdemann (1978) showed mycorrhizal
induction of sulphate uptake by onion using R. fasciculatus.
However, Cooper and Tinker (1978), using white clover and
onion as model plants, failed to confirm F. mosseae-induced
35SO4

2− transfer in two-compartment plates. The S uptake
mechanisms used by the AM fungus and the specific com-
pounds that are transferred through the fungal mycelium to
allocate sulphur are still unknown. Another interesting aspect
to address is how the mycobiont regulates the transfer of S-
rich compounds at the plant–fungus interface. The future
unraveling of the genome of the most studied AM fungus,
R. irregularis DAOM-197198, will probably shed light on
these questions and may open new perspectives regarding
plant–fungus S-based nutrient exchanges.

Sulphate transport in ectomycorrhiza

Most works concerning plant nutrition and ECM interactions
address the fundamental questions of how plant P and N
uptake is improved thanks to the mycobiont and how much
fixed C is given by the plant in return for these nutrients. Great
efforts have been made to unravel the mechanisms of nutrient
exchanges (see other chapters in this review), but sulphate and
in general S-containing compounds have not been deeply
investigated so far.

Figure 6 shows putative sulphate transporters (SULTRs)
from ECM host plants and their phylogenetic relationships
with AM hosts. Amino acid sequences from Arabidopsis
thaliana SULTRs were aligned and used to construct a con-
sensus sequence. Part of this consensus sequence, 131 amino
acids with sequence identity ranging from 75 to 100 %, was
blasted on the NCBI server (http://blast.ncbi.nlm.nih.gov/
Blast.cgi) in order to retrieve amino acid sequences from the
AM and ECM hosts most commonly used in mycorrhization
experiments. The phylogenetic analysis included 61 aligned
amino acid sequences, and evolutionary history was inferred
using the maximum parsimony method out of a total of 785
parsimonious informative positions. In order to evaluate the
number of replicate trees in which the associated taxa clus-
tered together, bootstrap analysis (1,000 replicates) was
performed. S. cerevisiae sulphate permeases (ScSUL1 and
ScSUL2; Cherest et al. 1997) were used as an outgroup to
root the plants’ SULTRs phylogenetic tree (Fig. 5).

ECM host SULTRs (diamonds in Fig. 6) were distributed
among the four SULTR groups (as defined by Takahashi et
al. 2011). Populus tremula interacts with different ECM
fungi and, from our results, is the host species with the
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highest number of putative SULTRs: two candidates in
groups 1 and 4, three candidates in group 2 and eight
candidates in group 3. The close phylogenetic relationship
with the group 1 and 2 SULTRs from Medicago and Lotus
(MtSULTR1.1; MtSULTR1.2; LjSULTR-p chr6.CM0314.
360; MtSULTR2.1; and MtSULTR2.2), which are differen-
tially expressed during mycorrhizal interactions (Casieri et
al. 2012; Guether et al. 2009b), could indicate putative Myc-
inducible SULTR candidates that play a role in sulphate
uptake during ECM interactions.

Although genome-wide approaches of some ECM fungal
species have been carried out (i.e. L. bicolor; Martin et al.
2008), there is still a knowledge gap regarding genes that
control S uptake. Unraveling the contribution of ECM fungi
to plant S uptake would shed light onto the complexity of
nutrient exchanges during ECM interactions. For this reason,
the putative SULTRs of different ECM fungi were retrieved
by blasting the most conserved part of the consensus sequence
from S. cerevisiae sulphate permeases (ScSULP) against pub-
lic databases. The coding sequences were aligned and the
phylogenetic relationships between SULTRs of different
ECM fungi were calculated (Fig. 7 and ESM Table S4). The
characterization and localization of these putative SULTRs
and the sequencing and annotation of new ECM fungal spe-
cies could help understand whether sulphate is the exchange
form of S during plant–fungus symbiosis and how the fungus
senses S and manages its allocation.

Ion transport systems—channels and transporters

In addition to the extensively described improvement of
plant N and P nutrition by symbiotic fungi, physiological
studies also highlight an improvement of the absorption of
other ions such as potassium or various secondary macro-
and microelements (Marschner and Dell 1994; Buscot et al.
2000; Cairney 2005; Smith and Read 2008). Clearly, all
these nutrient exchanges between the two partners require

�Fig. 7 Unrooted phylogenetic tree of sulphate transporters (SULTRs)
from ECM fungi. The evolutionary history was inferred using maxi-
mum parsimony (MP) on 42 aligned amino acid sequences. The
percentages of replicate trees in which the associated taxa clustered
together in the bootstrap test (3,000 replicates) are shown next to the
branches (Felsenstein 1985). The MP tree was obtained using the
Subtree-Pruning-Regrafting algorithm (Nei and Kumar 2000), in
which the initial trees were obtained by the random addition of se-
quences (100 replicates). The tree is drawn to scale, with branch
lengths calculated using the average pathway method. A total of 352
parsimonious informative positions were considered in the final
dataset. Evolutionary analyses were conducted in MEGA5 (Tamura
et al. 2011). Species code: Am Amanita muscaria, Hc Hebeloma
cylindrosporum, La Laccaria amethystina, Lb Laccaria bicolor, Pr
Paxillus rubicundulus, Pc Piloderma croceum, Pm Pisolithus
microcarpus, Pt Pisolithus tinctorius, Sc Scleroderma citrinum, Sl
Suillus luteus, Tb Tuber borchii, Tm Tuber melanosporum

Mycorrhiza (2013) 23:597–625 613



a number of transport systems, both on the fungal membrane
sites that take up mineral nutrients from the soil and deliver
them to plant root cells and on the plant membrane interface
(Smith et al. 1994; Hahn and Mendgen 2001). These mem-
brane transport systems include ion channels and trans-
porters that differ in their transport mechanism, selectivity,
affinity and regulation. Such channels or transporters—es-
pecially for ECM fungi—have been identified (Chalot et al.
2002). In the last decade, identification has been faster
thanks to the use of EST libraries from H. cylindrosporum
(Lambilliotte et al. 2004; Wipf et al. 2003) or P. involutus
(Morel et al. 2005; Wright et al. 2005a) and, more recently,
of whole-genome sequencing data (Martin et al. 2008, 2010;
Plett and Martin 2011). However, characterization of the
various transport systems and assignment of their physio-
logical roles within the symbiotic context is far from being
completed. Interestingly, symbiotic ion transport has to be
assessed not only in the context of nutrition but also in
relation to signalling between fungi and host plants
(Ramos et al. 2011a). More particularly, Ca2+ spiking and
oscillations have been reported to be induced in host plant
cells by AM fungi (Kosuta et al. 2008).

Potassium transport

Potassium, which represents the third primary mineral mac-
ronutrient and the most abundant cation in a plant cell, is
pivotal for plant nutrition and growth. Its accumulation by
plants is ensured by a whole set of different transport sys-
tems that contribute to maintaining cytosolic concentrations
of 60–150 mM (Leigh and Jones 1984). K+ plays a role at
both cellular and whole plant levels. Potassium uptake by
symbiotic fungi leading to increased plant K+ absorption has
been reported for both ECM and AM associations
(Marschner and Dell 1994). However, putatively involved
K channels and transporters have so far only been identified
in ECM. Potassium transport has been rather well described
on a molecular level in yeast and plants (Rodrìguez-Navarro
2000; Ramos et al. 2011b).

Potassium transport in arbuscular mycorrhiza

Increases in potassium uptake in AM-interacting plants have
been reported (Smith and Read 2008). For example, greater
K+ uptake has been shown in mycorrhizal plants upon inter-
action with R. fasciculatus (Huang et al. 1985). Up to 10 % of
the K+ uptake in mycorrhized couch grass (Elymus repens)
was mediated by ERM uptake (Li et al. 1991a). Significant
improvements of K+ acquisition by olive trees upon AM
interaction with R. irregularis, Claroideoglomus claroideum
and F. mosseae were 3.4-, 3.7- and 6.4-fold, respectively, and
contributed to enhanced resistance against salt stress (Porras-
Soriano et al. 2009). The interaction between plant K+ status

and hydraulic properties was recently studied in the AM
between Zea mays and R. irregularis (El-Mesbahi et al.
2012). The authors showed that K+ supply caused an increase
in hydraulic conductivity, indicating K+ uptake only in AM-
mycorrhized plants. A specific co-localization and similar
K+/Pi ratios between in R. irregularis spores, hyphae
(Olsson et al. 2008) and vesicles (Olsson et al. 2011) suggest
an interaction between these elements and therefore a tight
regulation of transport processes.

Improvement of K+ nutrition upon AM interaction could
be due to enhanced expression and activity of plant K+

transport systems and/or the presence of efficient K+ trans-
porters in the ERM that extends through the soil. Indeed, a
plant K+ transporter belonging to the K+ uptake permease
(KUP) family was found 44-fold upregulated in mycorrhizal
roots of L. japonicus (Guether et al. 2009b), whereas in M.
truncatula a K+ transporter from the same KUP family (Mtr.
32208.S1_at) was 28-fold induced by nodulation, but not by
AM (Benedito et al. 2010).

However, direct molecular identification and characteriza-
tion of K+ transport systems for AM fungi is as yet missing.
The available EST sequences from R. irregularis (http://
mycor.nancy.inra.fr/IMGC/GlomusGenome) allow for the
identification of seven short sequences related to K+ transport
systems. The BlastX on the ECM fungus H. cylindrosporum
genome database suggests that four sequences could belong to
the voltage-gated K+ channels of the Shaker-like family, two
sequences are probably related to β-subunits that putatively
interact with K+ channels of the Shaker family, and one
sequence seems to be close to the KUP/HAK transporter
family. Complete full-length cloning is necessary to unravel
the mechanisms of K+ transport systems in R. irregularis.

Potassium transport in ectomycorrhiza

The beneficial effects of ECM symbiosis for plant K nutri-
tion are widely described (Rygiewicz and Bledsoe 1984;
Smith and Read 2008). Net K+ uptake was measured for
three different ECM fungi to determine their kinetic param-
eters and their interaction with NH4

+ (Jongbloed et al.
1991). Potassium uptake by the fungus was also shown
using 86Rb as the tracer (Finlay 1992). Jentschke et al.
(2001) reported that at least 5–6 % of total K+ in Norway
spruce seedlings is provided by the ECM fungus.
Improvement of K+ homeostasis by P. involutus in
mycorrhized poplar under salt stress has also been reported
recently (Li et al. 2012). Mobilization of K+ (and other
minerals) by ECM fungi represents a possible mechanism
involved in the observed improvement of K+ nutrition
(Jongmans et al. 1997; Wallander and Wickman 1999;
Landeweert et al. 2001). Expression regulation of plant K+

transport systems upon ECM interaction can be assumed,
but has not been reported so far. In addition, the presence of
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high-capacity K+ absorption transporters in fungi can be
assumed too.

Recent sequencing data confirm the presence of a whole
set of K+ transporters in ECM fungi. Members of the K+

transporter families Trk/Ktr/HKT (Corratgé et al. 2007;
Corratgé-Faillie et al. 2010) previously identified in yeast
(Gaber et al. 1988; Ko and Gaber 1991), KUP/HAK de-
scribed in Neurospora crassa, yeast and plants (Haro et al.
1999; Grabov 2007), as well as K+ channels from the TOK
family or from the Shaker-like family (Lambilliotte et al.
2004) were identified partly from EST libraries and are
represented in the sequenced genomes of ECM fungi. Both
K+ channel families are structurally distinct from each other.
Members of the Shaker-like family are characterized by the
presence of six transmembrane domains including a K+-
selective pore, whereas members of the TOK family harbor
eight transmembrane domains and two K+-selective pore
domains. Interestingly, voltage-dependent K+ channels from
the Shaker-like family, originally described in animals
(Papazian et al. 1987; Jan and Jan 1997) and later in plants
(Sentenac et al. 1992; Gambale and Uozumi 2006), have, to
our knowledge, not been found in yeast or in higher fungi.

In contrast, the TOK family was first reported in yeast
(Ketchum et al. 1995), but never in animals or plants, and
seems to be specific for yeast and higher fungi. Nevertheless,
functional characterization has so far only been achieved for
H. cylindrosporum K+ transporter Trk1 (Corratgé et al. 2007).
HcTrk1 complemented a K+-deficient yeast mutant and
transported K+ and Na+ when expressed in Xenopus oocytes.
Functional characterization of fungal members of the Shaker-
like family has failed so far, but functional expression of
members of the TOK family is currently under investigation
(Zimmermann, unpublished data). Further studies are needed
to understand the localization and physiological function of
these K+ transporters in the context of symbiotic interactions.
The identification of this set of K+ transporters and channels
allows us to state that Trk and KUP transporters could be
involved in K+ absorption from the soil and K+ channels from
the TOK and the Shaker-like family for its secretion towards
the host plant.

Transport of other ions

Ca and Mg absorption and transport has been shown, e.g.
for ECM mycelium (Jentschke et al. 2000, 2001). Ca accu-
mulation as Ca-oxalate was observed in ERM from
ectomycorrhized roots of Pinus radiata and Eucalyptus
marginata (Malajczuk and Cromack 1982). Using a vibrat-
ing probe to measure net fluxes along non-mycorrhized and
mycorrhized roots of Eucalyptus globulus colonized by
Pisolithus sp, Ramos et al. (2009) found that colonized roots
had a higher capacity for Ca2+ uptake. In addition, Ca2+

oscillations, which are generally involved in signalling

during plant–microbe interactions, have been described as
part of the signalling between symbiotic partners of the AM
symbiosis betweenM. truncatula and R. irregularis (Kosuta
et al. 2008). Copper and zinc uptake was also increased in
AM-interacting plants (Manjunath and Habte 1988). Li et al.
(1991b), using T. repens, estimated that the AM interaction
accounted for up to 62 % of the total Cu uptake.
Transcriptional analysis of M. truncatula mycorrhiza-
induced transporters revealed the upregulation of a zinc–
iron permease and of a Ca2+ channel from the TRP-CC
family (Benedito et al. 2010). Besides the increased Zn
uptake in deficient conditions, increased protection against
toxicity was also demonstrated (Li and Christie 2001; Zhu et
al. 2001). Burleigh et al. (2003) suggested that one protec-
tion mechanism could be the downregulation of the plant Zn
transporter (in M. truncatula) when the root is colonized by
AM fungi. Less is known about anion transport. Among the
few pieces of evidence available, a chloride channel, be-
longing to the ClC family, was upregulated upon
mycorrhization in M. truncatula (Benedito et al. 2010).

The first Zn transporters from the cation diffusion facil-
itator family were identified in AM fungi (R. irregularis;
Gonzalez-Guerrero et al. 2005) and ECM fungi (H.
cylindrosporum; Blaudez and Chalot 2011). The H.
cylindrosporum transporter HcZnT1 is localized on ER
membranes when expressed in yeast and mediates Zn stor-
age in intracellular vesicles. These transporters could play a
role in Zn homeostasis, protecting both mycobiont and host
plant from Zn stress. Analysis of the T. melanosporum
genome recently allowed for the identification of 58 metal
transporters (Bolchi et al. 2011).

Water channels

Water uptake improvement is a crucial benefit for
mycorrhized plants, mainly because it increases their
drought resistance (Lehto and Zwiazek 2010; El-Mesbahi
et al. 2012). Aquaporins (AQPs) represent a family of chan-
nel proteins that mediate the selective movement of water,
but also a wide range of small neutral solutes, across the
membrane of plants, animals and microbes. Presently, plant
AQPs are classified into seven subfamilies, namely plasma
membrane intrinsic proteins (PIPs), tonoplast intrinsic pro-
teins (TIPs), NOD26-like intrinsic proteins (NIPs), small
basic intrinsic proteins, x intrinsic proteins, hybrid intrinsic
proteins and GlpF-like intrinsic proteins (Johanson and
Gustavsson 2002; Wallace and Roberts 2004; Danielson
and Johanson 2008; Gupta and Sankararamakrishnan
2009). Mycorrhization could stimulate the expression and/or
activity of plant aquaporins (Dodd and Ruiz-Lozano 2012),
but fungal aquaporins could also directly contribute to a
more efficient water transfer from the soil to the host tissues.
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So far, scarce data have been available about the identifica-
tion and the characterization of these water channels in the
mycorrhizal context and on their implication in water and
solute exchanges between fungi and plants. The movement
of water through ERM and between mycorrhizal symbionts
is still little understood.

Water transport in arbuscular mycorrhiza

First evidence of the involvement of plant aquaporins in the
altered water uptake and transport capacities of mycorrhized
plants was reported by Roussel et al. (1997) and Krajinski et
al. (2000), who found mycorrhiza-induced expression of
TIP aquaporins in parsley and M. truncatula. Uehlein et al.
(2007) also found that PIP and NIP aquaporin gene expres-
sion was upregulated by AM symbiosis in M. truncatula. In
contrast to the reports of Krajinski et al. (2000) and Uehlein
et al. (2007), who used well-watered conditions, several
studies deal with the combined influence of AM symbiosis
and abiotic stresses on aquaporin gene expression. The
effect of reduced expression of the tobacco PIP gene
(NtAQP1) was investigated in mycorrhized NtAQP1-anti-
sense tobacco plants under drought stress and well-watered
conditions (Porcel et al. 2005). Reduction of NtAQP1 ex-
pression had no effect on the colonization by AM fungi.
However, under drought stress, the shoot dry weight and the
root fresh weight of the wild-type tobacco plants were
higher than in the NtAQP1-antisense plants. Therefore,
NtAQP1-mediated water transport seems to be important
for the efficiency of symbiosis under drought conditions.
Data from Ouziad et al. (2005) indicate a decrease in the
expression of PIP and TIP aquaporins induced by AM
colonization and salt stress in tomato. Porcel et al. (2006)
observed decreased aquaporin expression in both non-
mycorrhized and mycorrhized soybean and lettuce
plants under drought stress conditions. In common bean
(Phaseolus vulgaris), AM symbiosis interfered with
aquaporin expression under drought, cold and salinity
stresses and prevented stress-induced inhibition of root
hydraulic conductance (Aroca et al. 2007). Under
drought stress conditions, Ruiz-Lozano et al. (2009)
showed that some PIP genes were upregulated by
ABA in non-AM maize plants and downregulated in
AM plants. However, the downregulation of another
PIP gene by ABA was observed in AM plants, whilst
in non-AM plants no significant changes were observed
for that same gene. In contrast to the results regarding
the regulation of host aquaporin expression by AM
symbiosis, very few reports describe fungal aquaporins.
Aroca et al. (2009) cloned the first aquaporin
(GintAQP1) of the AM fungus R. irregularis. Its ex-
pression was increased in the ERM from the root com-
partment of root organ cultures when an osmotic NaCl

stress was applied to the hyphal compartment. Furthermore,
plant aquaporin gene expression increased when the ERM
was stressed by NaCl. The authors assume that there is a
communication mechanism between the extra- and
intraradical mycelia and even between symbiotic partners,
suggesting that a fine dialogue takes place at the plant–fungus
interface to determine the water transport of the two partners
(Maurel and Plassard, 2011). The recent accession of the R.
irregularis transcriptome had allowed for the identification of
two new aquaporin genes (Tisserant et al. 2012).

Water transport in ectomycorrhiza

Although plant AQPs have been extensively studied so far
(Maurel et al. 2008, 2009; Wudick et al. 2009), their implica-
tion in ECM interactions is poorly understood. In a P.
tremula×tremuloides cDNA library, seven aquaporin genes
were identified, and functional expression in Xenopus oocytes
confirmed their water permeability (Marjanovic et al. 2005a).
The transcripts of two of them (PttPIP1.1 and PttPIP2.5) were
increased during symbiosis, suggesting a putative role in
water uptake in symbiotic conditions. In addition, a higher
transcript level of PttPIP2.2 and PttPIP2.4 poplar genes was
described in mycorrhized plants under drought stress
(Marjanovic et al. 2005b). In contrast, two Betula pendula
major intrinsic protein (MIP) drought markers were
downregulated during P. involutus early mantle development
and Hartig net formation (Le Quéré et al. 2005). However, the
expression level of these two genes became equivalent be-
tween non-mycorrhized plants and mycorrhized plants at later
stages. Thus, the drought resistance mechanism that occurs
during the early stage of symbiosis establishment and is
characterized by the downregulation of these two MIPs was
reversed. These data suggest that the protection of plants from
drought stress by mycorrhization is partially mediated by a
reorganization of plant aquaporin expression.

On the fungal side, a recent study deals with the role of
fungal AQPs during the ECM interaction between P.
tremula× tremuloides and L. bicolor (Dietz et al. 2011).
Gene expression, protein function and the putative roles
in symbiosis of several genes (one classical aquaporin,
three Fps-like aquaglyceroporins and two other aquaglycoporins)
were investigated. Five of these six fungal proteins were
water-permeable during heterologous expression in Xenopus
oocytes, whereas the two Fps-like aquaglyceroporins,
Lacbi1:317173 and Lacbi1:391485, which were upregulated
during symbiosis, were permeable to NH3/NH4

+ in yeast cells;
these data suggest an implication of the fungal N transport
towards the plant. This kind of protein was already considered
as part of an alternative N transport system to the host plant
(Chalot et al. 2006). However, this was the first evidence of N
export out of fungal cells by AQPs, confirming the capacity of
these water channels to transport not only water but also low-
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molecular-weight compounds (Wudick et al. 2009). To carry
on with the study of higher fungi AQPs, analyses of their
membrane localization, posttranslational regulation and of
their exact role in mycorrhization remain to be performed
(Maurel and Plassard 2011). Recently, access to the ECM
fungus H. cylindrosporum genome showed a panel of six
AQP-like members, similar to L. bicolor (personal
communication).

In the coming years, it will be critical to study the
localization of plant and fungal AQPs in the context of
mycorrhizal symbiosis to better understand their role in
soil–fungus–plant water continuum fluxes.

Future challenges

Mycorrhizal fungi render a wide range of ecosystem ser-
vices. Unraveling the mechanisms that underlie high nutri-
ent use efficiency by mycorrhizal plants and carbon
allocation in a context of mutualistic biotrophic interactions
is therefore critical for managing croplands and forests
soundly. Indeed, nutrient availability, uptake and exchange
in biotrophic interactions drive plant growth and modulate
biomass allocation. These parameters are central for plant
yield, a major issue in the context of high biomass produc-
tion. Substantial evidence on how the rational use of
mycobiont properties could significantly contribute to de-
creasing fertilizer and pesticide use in agriculture and for-
estry has accumulated. Interestingly, as highlighted in the
present review, in the last decade, several studies focusing
on mycorrhizal interactions have identified some key trans-
porters for nutrient uptake or metabolite transfer at the
biotrophic interface. Knowledge about the transportome
blueprint at the biotrophic interface has drastically in-
creased. For example, huge progress has been made in the
understanding of the P transportome of mycorrhizal plants,
especially in AM symbiosis, with the evidencing of a my-
corrhizal pathway (MP) different from the direct plant path-
way (DP). The MP is mediated by AM-inducible plant Pht1
transporters whose deletion or impaired expression dramat-
ically reduces arbuscule formation and plant P accumula-
tion. In the same trend of thought, it is important to mention
that although several nitrogen (ammonium, nitrate, amino
acid, peptide) transporters are now identified and character-
ized for both plant and fungal partners, the nature of the
nitrogen compounds exchanged between fungi and plant
cells is still unclear. We can also note that in Medicago,
for example, the sucrose transporter family has been identi-
fied, but no study has yet focused on the 50-odd putative
monosaccharide transporters, let alone on their role in my-
corrhizal association.

The transportome map with its highways and crossroads is
still far from complete. Major actors of the mycorrhizal

transportome of nutrient efflux at biotrophic interfaces are still
missing, and the regulation of nutrient exchanges inside and
between organisms is still poorly understood. However, recent
advances are going to help identify and characterize the key
transporters of mycorrhizal interactions. Transcriptomic and
metabolomic analyses at the different interfaces (soil–fungi
versus fungi/plant cells) using laser capture microdissection
will be essential for determining the functional polarization of
transporters at the two interfaces. New studies focusing on (1)
the functional polarization of transporters at the biotrophic
interfaces and (2) the understanding of how plant and fungal
partners regulate reciprocal nutrient exchanges are highly
required.
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