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Abstract Soil acidity is an impediment to agricultural pro-
duction on a significant portion of arable land worldwide.
Low productivity of these soils is mainly due to nutrient
limitation and the presence of high levels of aluminium (Al),
which causes deleterious effects on plant physiology and
growth. In response to acidic soil stress, plants have evolved
various mechanisms to tolerate high concentrations of Al in
the soil solution. These strategies for Al detoxification in-
clude mechanisms that reduce the activity of Al3+ and its
toxicity, either externally through exudation of Al-chelating
compounds such as organic acids into the rhizosphere or
internally through the accumulation of Al–organic acid
complexes sequestered within plant cells. Additionally, root
colonization by symbiotic arbuscular mycorrhizal (AM)
fungi increases plant resistance to acidity and phytotoxic
levels of Al in the soil environment. In this review, the role
of the AM symbiosis in increasing the Al resistance of
plants in natural and agricultural ecosystems under phyto-
toxic conditions of Al is discussed. Mechanisms of Al
resistance induced by AM fungi in host plants and variation
in resistance among AM fungi that contribute to detoxifying
Al in the rhizosphere environment are considered with re-
spect to altering Al bioavailability.
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Introduction

Importance and origin of acidic soils

Soil acidity is one of the most important constraints to agri-
cultural productivity worldwide, with acidic soils representing
about 40% of the total arable lands (Sumner and Noble 2003).
Plant growth in acidic soils is limited by a set of conditions,
including the excess of protons (H+), aluminium (Al) and
manganese (Mn) phytotoxicities, and deficiencies of essential
nutrients, such as phosphorus (P), calcium (Ca), magnesium
(Mg) and molybdenum (Mo) (Driscoll et al. 2001; Bolan et al.
2003; Fageria and Baligar 2008). Moreover, the limited agri-
cultural productivity of acidic soils is due to diminished mi-
crobial activity as a consequence of the presence of high
concentrations of deleterious chemical species of Al (Robert
1995; Fageria and Baligar 2003; Dahlgren et al. 2004).

Natural sources of soil acidity include the decomposition
of organic matter, microbial respiration and plant absorption
of cations, especially ammonium (NH4

+), processes that
have a direct impact on soil pH (Martens 2001; Tang and
Rengel 2003). Erosion and leaching of basic cations, such as
potassium (K+), sodium (Na+), calcium (Ca2+) and magne-
sium (Mg2+), also contribute to the acidification of soils,
which is increased in areas with excessive rainfall.
Furthermore, excessive addition of acidifying fertilizers,
especially ammonium salts, and other agricultural practices
are anthropogenic contributors to the acidification of soils
(Bolan et al. 2003). Other human activities, including in-
dustrial emissions of sulphur dioxide (SO2) and nitrogen
oxides (NOx) that generate acid precipitation and mining
that generates acidity in soil/surface substrates, also acidify
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soils (Evangelou 1995; Driscoll et al. 2001; Frazer 2001;
Norton and Veselý 2004; Clair and Hindar 2005). Thus,
natural soil acidification is widespread and is exacerbated
by human activity, which limits plant productivity in many
regions around the world.

Aluminium forms in soil and phytotoxicity

Aluminium comprises approximately 8 % of the earth’s
crust, being the third most abundant element after oxygen
and silicon (Ščančar and Milačič 2006). Most Al is present
as oxides and aluminosilicates, which are solid amorphous
or crystalline minerals that are not harmful to plant roots.
However, many of these Al-containing minerals exhibit pH-
dependent solubility, and the diverse ionic species of Al
exhibit pH-dependent speciation that contributes to Al phy-
totoxicity in varying degrees. In acidic solutions (pH <5.0),
Al exists as octahedron hexahydrate, Al(H2O)6

3+, which by
convention is named Al3+. When pH increases, Al3+ under-
goes successive hydroxylations to form Al(OH)2+, Al
(OH)2

+, Al(OH)3 and Al(OH)4
− at pH 7–8 (Stumm and

Morgan 1996). Acidic soils favour the solubilization of
Al-containing minerals and generate the phytotoxic Al3+

ion, producing the main limiting factor for plant growth on
such soils (Wagatsuma and Ezoe 1985; Pintro et al. 1998;
Watanabe and Okada 2005). Aluminium toxicity to plants
has been convincingly demonstrated only for Al3+ and the
complex AlO4Al12(OH)24(H2O)12

7+ (Al13) (see Kochian et
al. 2005). However, some experimental results also indicate
the toxicity of hydroxylated Al compounds, mainly Al
(OH)2+ and Al(OH)2

+ (Kinraide 1997). The Al3+ ion has a
high affinity for oxyanions and various elements and com-
pounds in the soil solution, such as organic acids, which
modify Al availability and phytotoxicity.

Due to its importance in limiting agricultural and forest
productivity, there have been numerous studies that describe
the toxic effects of Al on plant root growth and physiology.
The sites of these effects within the plant have been broadly
reported to occur in the cell wall matrix of the root tip (Horst
et al. 1999; Jones et al. 2006; Staß and Horst 2009), at the
plasma membrane interface (Rengel and Zhang 2003; Ahn
and Matsumoto 2006; Bose et al. 2010a), within the cyto-
plasm (Rengel et al. 1995; Jones et al. 1998; Rengel and
Zhang 2003; Guo et al. 2007) and within subcellular com-
partments including the cytoskeleton (Vázquez et al. 1999;
Blancaflor et al. 1998; Yamamoto et al. 2001). Many of the
phytotoxic effects of Al induce broad-range secondary
effects, such as disruption of signalling pathways and the
production of reactive oxygen species (ROS). Together,
these primary and secondary effects ultimately disrupt cell
homeostasis and limit cell division, root elongation and the
capacity of Al-sensitive plant genotypes to exploit water and
nutrient reserves in the soil, reducing the health and

productivity of crops and forests growing on acidic soils
(Driscoll et al. 2001; Barceló and Poschenrieder 2002;
Kochian et al. 2005; Ma 2007; St. Clair et al. 2008).

Aluminium tolerance mechanisms in higher plants

Plants markedly differ in their capacity to tolerate Al, and
the mechanisms involved have been the focus of extensive
research in the past 20 years (Delhaize and Ryan 1995; Ma
et al. 2001; Ryan et al. 2001; Kochian et al. 2004, 2005).
Aluminium-resistant plant species and/or genotypes within
species have evolved mechanisms that detoxify Al and
reduce its impact on cell physiology, allowing these spe-
cies/genotypes to grow when exposed to Al in the environ-
ment. The mechanisms fall broadly into two categories that
function within the rhizosphere to alter the chemical form
and toxicity of Al in the environment and/or function within
plant cells to reduce the negative effects of Al on plant
metabolism (Delhaize and Ryan 1995; Jones et al. 1998;
Ma et al. 2001; Barceló and Poschenrieder 2002; Kochian et
al. 2004, 2005; Panda and Matsumoto 2007; Inostroza-
Blancheteau et al. 2012).

Exudation of organic (carboxylic) acids from roots and
the external detoxification of Al by chelation with these
compounds are two of the most widely reported mecha-
nisms used by plants to overcome Al stress (Delhaize et al.
1993; Li et al. 2000; Kollmeier et al. 2001; Piñeros et al.
2002; Shen et al. 2002; Zhao et al. 2003). Exudation of
organic acids leads to the chelation of Al3+ in the rhizo-
sphere and consequently reduces Al uptake by roots and its
subsequent impacts on metabolism and growth. There is a
close relationship between the alleviation of Al toxicity and
the effectiveness of the different carboxylic anions produced
by plant roots in forming stable Al complexes based on their
stability constants (log Ks), ranging between 7.4 and 12.3
for citrate, >6.1–7.3 for oxalate, >5.1–5.4 for malate and
>3.2–4.6 for succinate, among other organic acid anions,
with variations dependent on methods of measurement
(Martel and Smith 1977; Charlet et al. 1984; Hue et al.
1986; Pawlowski 1998).

The Al-activated efflux of organic acids, which is medi-
ated by different systems in different plant species, is often
specific for Al and may exhibit rapid or delayed kinetics
(Ryan et al. 2001; Barceló and Poschenrieder 2002; Panda
and Matsumoto 2007). Organic acid exudation in response
to Al exposure has received considerable attention, and the
underlying physiology and molecular biology are being
elucidated (Wang et al. 2007; Liu et al. 2009; Maron et al.
2010). For example, the release of malate by Al-resistant
Triticum aestivum genotypes reduced the accumulation of
Al in Al-sensitive root tips and allowed root growth under
Al exposure (Delhaize et al. 1993; Ryan et al. 1995). This
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response has been ascribed to the Alt1 gene in T. aestivum
that functions to rapidly release malate into the rhizosphere,
chelating Al3+ and reducing its interactions with the cell
wall, plasma membrane and subsequent uptake into the cell
(Hoekenga et al. 2006). Similar systems have been identi-
fied for a variety of species, including Zea mays (Piñeros et
al. 2002; Maron et al. 2010), Hordeum vulgare (Zhao et al.
2003; Wang et al. 2007) and Arabidopsis thaliana
(Goodwin and Sutter 2009; Liu et al. 2009).

In addition to carboxylic acids, the exudation of diverse
phenolic compounds may confer Al tolerance due to the
ability of phenolic compounds to form stable complexes
with the metal in the rhizosphere (Barceló and
Poschenrieder 2002). Kidd et al. (2001) reported that, while
Al exposure induced oxalate exudation in Z. mays varieties,
patterns of production were not correlated with Al resistance
and were modified by the composition of the rooting media.
However, constitutive or induced Al resistance in these
genotypes was associated with the exudation of catechol,
catechin, quercitin and/or curcumin that quantitatively far
exceeded the exudation of organic acids. The function of
phenolic compounds as an Al tolerance mechanism is not
well characterized, and their lesser affinity for Al3+ com-
pared with organic acid anions, especially at acidic pH
where H+ and Al3+ ions would compete for binding sites
within phenolic compounds, may reduce their efficacy to
chelate Al3+ (Ofei-Manu et al. 2001).

As an alternative to these extracellular Al detoxification
systems, an increase in the production of compounds that
chelate Al intracellularly and reduce its interactions with
plant metabolic processes has been proposed as an internal
Al tolerance mechanism. Internal detoxification of Al is
limited to Al-accumulating species, such as Fagopyrum
esculentum (Ma et al. 2001) and Hydrangea macrophylla
(Ma et al. 1997). In these species, the accumulation of Al to
levels as high as 15,000 μgg−1 was related to high intracel-
lular concentrations of oxalate and citrate, respectively.
Moreover, Klug and Horst (2010) noted that Al exposure
of F. esculentum also led to the exudation of oxalate into
root intracellular spaces and that Al resistance in this species
may rely on both protection of the cell wall from Al binding
and uptake and detoxification of Al internally. In addition,
the up-regulation of ATP-binding cassette type transporters
in many species exposed to Al suggests that there may be a
broad-based expression of metabolic systems that compart-
mentalize metal complexes, in this case Al complexes, in the
vacuole (Sasaki et al. 2002; Larsen et al. 2005; Zhen et al.
2007; Goodwin and Sutter 2009).

In addition to these reported mechanisms of Al resistance
in plants, the vast majority of higher plants form associa-
tions with soil microorganisms that may synergistically
promote or stimulate these mechanisms in the plant host or
confer Al resistance to plant hosts through the operation of

microbial-based systems. Among these microorganisms,
arbuscular mycorrhizal (AM) fungi play a key role in fos-
tering growth of most agricultural species and increase the
productivity and environmental stress resistance of many
ecologically and economically important tree species
(Smith and Read 2008).

Arbuscular mycorrhiza and plant response to soil Al

The AM symbiosis is the oldest and most extensive plant–
fungus association present in the world (Wang and Qiu
2006; Bonfante and Genre 2008), occurring in about 85 %
of all the vascular plants in almost all terrestrial ecosystems
(Öpik et al. 2006). As well as facilitating the acquisition of
nutrients, especially P, from soil to host plants in exchange
for fixed carbon (C) (Marmeisse et al. 2004; Cavagnaro
2008; Javaid 2009; Podila et al. 2009; Plassard and Dell
2010; Smith et al. 2011), the fungal symbionts play a crucial
role in the alleviation of diverse abiotic stresses present in
the soil environment (Jeffries et al. 2003; Evelin et al. 2009;
Gamalero et al. 2009; Gianinazzi et al. 2010), including the
presence of phytotoxic levels of Al (Rufyikiri et al. 2000;
Yano and Takaki 2005; Klugh and Cumming 2007). AM
fungi may increase the capacity of their host plants to
withstand abiotic soil stresses through modulation of the
edaphic environment and detoxification of harmful com-
pounds in the mycorrhizosphere. Their production of low
molecular weight exudates or glomalin and the biosorption
of metals to fungal hyphae will modulate interactions be-
tween plants and soil Al (Barceló and Poschenrieder 2002;
Janouskova et al. 2005; Borie et al. 2006; Gohre and
Paszkowski 2006; Bedini et al. 2009; Podila et al. 2009;
Zhang et al. 2009). In addition, increased host plant stress
resistance may result from elevated uptake of P and other
essential nutrients, changes in tissue metabolite concentra-
tions and/or elevated activity of stress resistance pathways
that are induced by the symbiosis (Tanaka and Yano 2005;
Javot et al. 2007; Andrade et al. 2009; Abdel Latef and
Chaoxing 2011; Karimi et al. 2011; Meier et al. 2012).
These metabolic changes resulting from root colonization
by AM fungi may serve to prime physiological systems
against stress-induced perturbations to homeostasis and so
contribute to conferred Al resistance in higher plants.

Contribution of the AM symbiosis to plant Al resistance

The majority of studies on Al resistance species have utilized
non-mycorrhizal plants or species that do not form the sym-
biosis, e.g. Arabidopsis thaliana. The work on non-
mycorrhizal plants clearly informs on the limits of adaptation
to Al exposure in plants. However, there is a robust literature
on the differences in physiology and environmental stress
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responses between non-mycorrhizal and mycorrhizal plants,
and the ecological, physiological and molecular processes
underlying these differences have the capacity to extend the
limits of Al resistance in higher plants. The first studies of Al
tolerance related with mycorrhizal associations were con-
ducted in ectomycorrhiza and woody species (Denny and
Wilkins 1987; Jones and Hutchinson 1988; Cumming and
Weinstein 1990; Godbold et al. 1998). Ectomycorrhizal asso-
ciations decrease Al toxicity in woody species by improving
nutrient absorption, through Al accumulation in the fungal
mycelia (Ahonen-Jonnarth et al. 2003; Moyer-Henry et al.
2005), and active organic acid production, especially oxalic
acid (Griffiths et al. 1994; Malajczuk and Cromack 1982; Sun
et al. 1999; Eldhuset et al. 2007).

Al binding to hyphae, exudates and glomalin in AM
associations

The AM symbiosis benefits plants in acidic soils because of
the increased access to limiting nutrients and the induction
of general stress resistance metabolism in the host plants. It
is prevalent in well-weathered tropical soils (Cardoso and
Kuyper 2006), deciduous forests (Berliner and Torrey 1989;
Yamato and Iwasaki 2002; Postma et al. 2007; Diehl et al.
2008) and in extremely acidic environments (Cumming and
Ning 2003; Maki et al. 2008; Taheri and Bever 2010), the
soils of which are dominated by Al.

The association of AM fungi with plant roots may extend
the thresholds of Al resistance by extending or augmenting
the resistance mechanisms of their host plants or by provid-
ing new Al-resistance mechanisms that serve to detoxify Al
in the root environment. Limiting the interactions of the
Al3+ ion with sensitive plant physiological and metabolic
processes is a unifying mechanism of Al resistance
(Delhaize and Ryan 1995; Ma et al. 2001; Ryan et al.
2001; Kochian et al. 2004, 2005).

The extensive hyphal networks produced by AM fungi
have the capacity of directly binding Al (Joner et al. 2000;
Gohre and Paszkowski 2006) or creating an expanded
mycorrhizosphere in which Al is detoxified (Li et al. 1991;
Tarafdar and Marschner 1994). Several studies have
reported an increased Al resistance associated with elevated
Al binding in root systems colonized by AM fungi. For
example, when compared to non-mycorrhizal plants, con-
centrations of Al in roots of AM-colonized plants were 51 %
greater for Liriodendron tulipifera colonized by Glomus
clarum and Glomus diaphanum in sand culture (Lux and
Cumming 2001), 210 % greater for Ipomoea batatas grown
with Gigaspora margarita in an acidic soil (Yano and
Takaki 2005) and 210 % greater in Clusia multiflora, a
tropical woody species, inoculated with several
Acaulospora species in soil (Cuenca et al. 2001). In these
cases, Al may be bound extracellularly to AM fungal cell

walls or be sequestered intracellularly in fungal vacuoles by
polyphosphate granules (Toler et al. 2005; González-
Guerrero et al. 2008; Zhang et al. 2009). Such Al immobi-
lization and exclusion mechanisms active in the roots of
AM-colonized plants may contribute to acquired stress re-
sistance in the host plant.

Exudation of metal-binding compounds by mycorrhizal
roots also plays a role in Al resistance facilitated by AM fungi.
While there exists no direct evidence that novel Al-binding
compounds are induced by AM fungi in host plants, several
studies indicate that root exudation is maintained by under Al
exposure by the association with the fungal symbionts. Strong
effects of AM on Al phytotoxicity in the presence of free Al3+

concentrations have been reported in L. tulipifera as a result of
differential organic acid exudation, notably citrate, between
non-mycorrhizal plants and plants colonized by one of four
AM symbionts, with greatest root exudation and Al resistance
being associated with Glomus clarum colonization (Klugh
and Cumming 2007). Altered exudation affected the activity
of Al3+ in the root zone so that across different treatments,
biomass and leaf P concentration were negatively correlated
and leaf Al was positively correlated with free Al3+ in the root
zone (Fig. 1). In Andropogon virginicus, a similar relationship
was noted among six AM fungi and non-mycorrhizal treat-
ments, with citrate again being the dominant organic acid that
was produced under Al exposure (Klugh-Stewart and
Cumming 2009).

The accumulation of Al in root tissues of mycorrhizal
plants is not always associated with induced Al resistance or
reduced Al levels in tissues of host plants, however. Several
studies on L. tulipifera have indicated that AM either in-
creased (Lux and Cumming 2001) or did not affect (Klugh-
Stewart and Cumming 2009) Al accumulation in leaves and
roots. In addition, Cumming and Ning (2003) noted that
colonization by an acidophile AM fungal consortium re-
duced Al concentrations in roots, but not in leaves, of
Andropogon virginicus. In these cases, the patterns of Al
accumulation may reflect changes in the activity of Al3+

caused by plant and/or fungal exudates as well as functional
characteristics of root systems that differ among host spe-
cies. For example, increased translocation of Al to shoots
may occur passively and at an elevated level when AM
fungi stimulate exudation and the formation of Al com-
plexes in the mycorrhizosphere that are subsequently more
mobile within the plant root and more readily enter the
xylem (Lux and Cumming 2001).

In addition to maintaining exudation by host roots under
Al exposure, AM fungi also have the capacity to provide
novel biochemical mechanisms that may confer Al resis-
tance to their plant hosts. Glomalin is a component of
hyphal and spore walls of AM fungi (Driver et al. 2005),
and it quantitatively represents a significant fraction of the
pool of soil protein due to its persistence and recalcitrance in
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native soils (Wright and Upadhyaya 1996; Rillig and
Mummey 2006; Bedini et al. 2007). Since glomalin has
high cation exchange capacity and high affinity for

polyvalent cations, it is of significance when considering
AM fungal-induced metal resistance. In fact, there are
reports that glomalin has the potential to immobilize high
amounts of metals (Gonzalez-Chávez et al. 2004; Vodnik et
al. 2008; Cornejo et al. 2008), and Etcheverría (2009)
showed that glomalin-related soil protein (GRSP) has the
capacity to sequester substantial quantities of Al (4.2 to
7.5 % by weight) in acidic soils of a temperate forest in
southern Chile. Some studies indicate that GRSP production
increases when AM fungi are subjected to adverse soil
conditions (Vodnik et al. 2008; Cornejo et al. 2008), includ-
ing acidic soils with elevated Al (Lovelock et al. 2004).
Aguilera et al. (2011) have recently shown that GRSP can
sequester Al within the glomalin molecule, which may
provide a highly recalcitrant complex since some studies
have indicated a high residence time of glomalin in soils
(Rillig et al. 2001). The accumulation of this protein as an
AM fungal response in soils with high Al content may
represent an Al-binding mechanism that can be very impor-
tant in the reduction of Al toxicity to mycorrhizal root
systems. Thus, the capacity of some AM fungal species
and ecotypes to maintain organic acid or glomalin exudation
in the mycorrhizosphere in acidic soils may offer effective
Al resistance mechanisms that reduce the concentration of
free Al3+ in acidic soil solutions, so reducing directly Al
phytotoxicity and facilitating root growth and exploration of
the soil to support plant productivity.

Al resistance of AM plants—improved nutrient relations

The uptake of plant nutrients is critical to the maintenance of
homeostasis and growth of plants under edaphic stress, and
resistance to Al is often, but not always, reflected in limited
perturbations to P, K, Ca and Mg acquisition as well as
maintained concentrations of these elements in root and
shoot tissues (Andrade et al. 2009).

The interaction between Al3+ and H2PO4
− in the root

zone can lead to the precipitation of AlPO4, reducing the
capacity of the plant to obtain P. AM fungi may permit
plants to avoid such a stress. Numerous studies with a
variety of plant hosts and AM symbionts have reported
mycorrhizal protection of P acquisition in the presence of
Al. Rufyikiri et al. (2000), using Musa acuminata colonized
by Glomus intraradices, noted a positive effect of the AM
symbiosis under Al exposure (78 and 180 μM) where shoot
dry weight of mycorrhizal plants was greater than in non-
mycorrhizal plants and the contribution of the AM fungus to
water and nutrient uptake, including P, was particularly
pronounced. These benefits were associated with a marked
decrease in Al content in roots and shoots and a delay in the
appearance of Al-induced leaf symptoms. In the case of L.
tulipifera, a forest tree species especially sensitive to soil
acidification and Al-induced P limitation, the maintenance
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Fig. 1 Relationships between free Al (Al3+) concentrations estimated
in root zones and a plant biomass, b leaf aluminium (Al) concentration
and c leaf phosphorus (P) concentration of non-mycorrhizal and my-
corrhizal L. tulipifera in the presence of 0, 50 and 200 μM Al. White
diamond, non-mycorrhizal; black diamond, Acaulospora morrowiae;
black square, Glomus claroideum; black circle, Glomus clarum; and
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2007 with permission)
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by Glomus clarum of Pi acquisition under Al exposure (50,
100 and 200 μM) was critical in maintaining plant growth
(Lux and Cumming 2001; Klugh and Cumming 2007). This
strong link between AM-mediated Pi acquisition and Al
toxicity tolerance may be related to the highly mycotrophic
nature of this tree species. In contrast, Al had marginal
effects on root and shoot P concentrations in Andropogon
virginicus (Cumming and Ning 2003; Kelly et al. 2005),
with shoot P often increasing under Al exposure. These
effects were ascribed to growth dilution/concentration
effects, where significant reductions in the growth of non-
mycorrhizal plants without concomitant reductions in Pi
uptake led to elevated tissue P concentrations.

The Al3+ ion, bound within the root apoplast, may also
affect cation uptake by limiting the diffusion of Ca2+, Mg2+

and other multivalent cations to the plasma membrane sur-
face (Huang et al. 1992a, b; Kinraide et al. 2004; de Wit et
al. 2010). Indeed, Ca and Mg limitation are classic Al
toxicity symptoms in non-mycorrhizal plants (Foy et al.
1978). The AM symbiosis may alter these charge-based
interactions within the plant root by the absorption of cati-
ons through fungal symbiont hyphae and their transfer to
host plants (Ryan et al. 2003; Lee and George 2005; Ryan et
al. 2007). In addition, AM fungi may alter reactions of Al3+

with the plant root cell wall through the production of metal-
chelating compounds of fungal or host origin (Klugh and
Cumming 2007; Cornejo et al. 2008). Borie and Rubio
(1999), Rufyikiri et al. (2000) and Lux and Cumming
(2001) all observed that AM fungi moderated Al-induced
reductions in Ca and/or Mg concentrations in roots and
shoots and that these changes were often associated with
reductions in Al accumulation.

It is evident from the above reports that differences in the
accumulation of nutrients in tissues may or may not be a
good indicator of mycorrhizal benefits under Al exposure.
Benefits may result from an increased C flux to and Al
chelation in the mycorrhizosphere, or may reflect greater
nutrient uptake effectiveness by AM fungi or changes in
plant nutrient use efficiency resulting from the AM symbi-
osis (Smith and Read 2008). Differences in plant host, AM
fungal species and Al exposure conditions will all influence
the uptake by and translocation of nutrients within host
plants, so that plant growth may be the best integrated
response of the efficacy of the AM association in providing
Al resistance.

Al resistance of AM plants—elevated host stress metabolism

Interactions between AM fungi and their hosts bring about a
broad range of changes in plant metabolism, which may
prime plant cells to cope with abiotic stresses in the root
zone (Hohnjec et al. 2007; Goodwin and Sutter 2009).
Changes in the regulation of antioxidant enzyme activities

or the induction of specific stress-related systems following
AM fungal colonization would contribute to host plant
stress tolerance to unfavourable levels of soil Al by inducing
metabolic stress resistance pathways that relieve the effects
of Al on plant cell homeostasis (see Ouziad et al. 2005; Zhu
et al. 2010; Abdel Latef and Chaoxing 2011). The induction
in mycorrhizal plant tissues of metal transporters (Repetto et
al. 2002; Ouziad et al. 2005), or antioxidant enzymes (Garg
and Manchanda 2009), as well as the accumulation of sec-
ondary compounds and other metabolites (Peipp et al. 1997;
Garg and Manchanda 2009), may all function to enhance
plant resistance to Al. For example, Garg and Manchanda
(2009) reported the elevated activities of superoxide dismu-
tase, catalase and peroxidase in roots and leaves of Cajanus
cajan colonized by Glomus mosseae, and these were asso-
ciated with reduced lipid peroxidation in roots. Little infor-
mation is available which directly links AM symbiosis and
metabolic priming of host plants against Al stress. However,
the impacts of Al on plants include increased oxidative
stress (Naik et al. 2009; Hossain et al. 2011; Ma et al.
2012) so that the induction by AM fungal colonization of
ROS enzymes or other compounds that would reduce the
toxic effects of Al on metabolism could contribute to ac-
quired Al resistance in mycorrhizal plants. Research in this
area represents a vital avenue for continued investigation.

Variation in Al tolerance of AM fungal species and ecotypes

The benefit of Al tolerance that AM fungi may provide to
plants is variable in terms of Al exclusion, nutrient acquisi-
tion or effects on plant growth (Borie and Rubio 1999; Kelly
et al. 2005; Klugh-Stewart and Cumming 2009). This is a
consequence of a substantial genetic variation among and
within AM fungal species (Bever et al. 2001; Avio et al.
2009). Natural ecosystems contain native populations and
communities of AM fungi that vary in their benefits to
plants and in their response to the environment (van der
Heijden et al. 1998; Clark et al. 1999; Bever et al. 2001).
Changes in the soil environment may modify the fungal
communities, so that those AM fungi able to adapt to the
new environment may become more prevalent, and such
changes may have implications for host plant performance
in ecosystems (Bever et al. 2001; Taheri and Bever 2010). In
general, AM fungi have been found in soils from pH 2.7 to
9.2, but different isolates of the same species vary in toler-
ance to acidity and most AM fungal isolates appear to be
adapted to soil pH conditions close to those from which they
were collected (Siqueira et al. 1984; Sylvia and Williams
1992; Bartolome-Esteban and Schenck 1994; Clark 1997).
This has resulted from natural selection favouring the pres-
ence of better adapted AM fungal ecotypes in acidic soils
and displacing from such environments those with lesser
competitive ability (Ashen and Goff 2000).
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In the case of acidic soils and/or soils with elevated Al
levels, variation can exist among ecotypes of potentially Al-
tolerant AM fungi which is related to differences in sensitivity
of life stage events, such as spore germination, germ tube
growth, hyphal growth, root colonization and persistence.
Data concerning fungal responses to soil acidity and Al are
summarized in Table 1 and Fig. 2. In general, studies related to
the effect of Al on spore germination and hyphal growth are
limited, and results are variable (Table 1). For example,
Lambais and Cardoso (1989) reported that germ tube growth
in Glomus macrocarpum, Gigaspora margarita and
Scutellospora gilmorei decreased in response to Al concentra-
tions ranging from 0 to 130μMAl in sand at pH 4.5. However,
spore germination of Gigaspora margarita was not

significantly influenced by Al, but it was deleterious in
Glomus macrocarpum and S. gilmorei. Glomus macrocarpum
was the most sensitive AM fungus assayed, with no spore
germination or germ tube growth at 90 μMAl or higher levels
(Lambais and Cardoso 1989). In another study assessing spore
germination and germ tube growth, Bartolome-Esteban and
Schenck (1994) found that Gigaspora species exhibited high
Al tolerance, Scutellospora species were variably affected by
high Al levels and isolates of Acaulospora scrobiculata were
relatively sensitive to high Al, consistent with the findings of
Lambais and Cardoso (1989). Recently, Klugh-Stewart and
Cumming (2009) reported that spore germination rates of
Acaulospora morrowiae , Glomus etunicatum and
Scutellospora heterogama were unaffected by exposure to

Table 1 Arbuscular mycorrhizal fungal response to Al exposure. Data from: A) Lambais and Cardoso (1989 as reported in Clark 1997); B)
Bartolome-Esteban and Schenck (1994); C) Klugh-Stewart and Cumming (2009)

A) Aluminium concentration (μM)

0 40 130 0 40 130

Spore germination (%) Germ tube growth ratinga

Gigaspora margarita 81 76 78 3 2.3 2

Scutellospora gilmorei 70 38 31 2.5 1.8 1.3

Glomus macrocarpum 11 3 0 1.5 1 0

B) INVAM Aluminium saturation (%)

Designate 6 27 100 6 27 100

Spore germination (%) Hyphal growth (mm)

Gigaspora albida GABD 185 13 25 65 79 51 46

Gigaspora margarita GMRG 444 70 55 66 210 185 197

Gigaspora gigantea GGGT 109 92 93 67 138 225 304

Gigaspora gigantea GGGT 663 40 19 18 215 240 166

Scutellospora heterogama CHTG 139 35 41 40 97 104 80

Scutellospora pellusida CPLC 288 75 80 75 31 20 16

Scutellospora calospora CCLC 269 30 32 19 39 40 31

Scutellospora calospora CCLC 348 56 46 54 45 40 28

Glomus manihot LMNH 980 86 89 91 40 45 27

Glomus etunicatum LETC 236 83 4 0 27 1 0

Glomus etunicatum LETC 329 60 5 0 8 2 0

Glomus etunicatum LETC 455 80 17 0 22 5 0

Glomus clarum LCRL 551 36 26 3 18 4 2

Acaulospora scrobiculata ASCB 456 14 4 14 1 1 1

C) INVAM Aluminium concentration (μM)

Designate 0 100 0 100

Spore germination (%) Hyphal growth (mm)

Acaulospora morrowiae WV107 45.4 50.9 22.7 12.7

Glomus claroideum WV109E 25.3 6.8 10.1 6.4

Glomus clarum WV234 71.7 44.4 80.2 47.4

Glomus etunicatum VZ103A 33.5 29.6 18.7 9.6

Paraglomus brasilianum BR105 39.4 16.9 24.5 8.2

Scutellospora heterogama WV108 67.5 75.2 177.7 165.6

a Germ tube growth rating: 0 = no growth; 1 = 0–5 mm; 2 = 5–10 mm; 3 >10 mm
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100 μM Al, whereas germination was reduced in Glomus
clarum and Paraglomus brasilianum and greatly inhibited in
Glomus claroideum. However, hyphal length per spore sug-
gested that germ tube growth and spore germination were
differentially affected by Al exposure (Table 1). Such differ-
ences may reflect the variation in genotypes among spores
within a single-species trap culture (Bever and Morton 1999)
and subsequent selection and survival under imposed Al stress
(Klugh-Stewart and Cumming 2009).

Across many studies of AM development in plants exposed
to Al, there is a tendency for fungal colonization to be unaf-
fected or increase of host roots, although some fungal specie-
s/isolates do exhibit reductions in colonization in response to Al
in the environment (Fig. 2). Increased root colonization by AM
fungi could influence C release into the rhizosphere, increasing
the availability of organic acids and other C substrates. In the
study byKlugh-Stewart and Cumming (2009), Al did not affect
mycorrhizal colonization of Andropogon virginicus, which
suggests that Al does not inhibit the formation of the symbiosis

by Al-resistant or Al-sensitive AM fungi (Fig. 2). However,
growth and protection of Andropogon virginicus from Al
among AM fungal species was not associated with any of the
AM fungal resistance traits, suggesting that selection of Al
resistance may occur at the spore germination and hyphal
growth stages but that the Al resistance mechanisms in AM
fungi may not be extrapolated to the life stage in host plants
(Cuenca et al. 2001; Klugh-Stewart and Cumming 2009).

Variation in AM fungal Al resistance—root colonization
and plant performance

Themaintenance of plant growth under exposure to Al may be
the best indicator of AM fungal resistance to Al in soils. In
Fig. 3, data are presented from 13 studies involving different
AM fungi and where Al was a controlled variable. Analysis of
these data indicates that there are significantly different plant
growth benefits (fold increases) from AM depending on both
the Al level (F 179; p<0.001) and the AM fungal ecotype (F
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Fig. 2 Comparison of root colonization (in percent) by AM fungal
ecotypes for plants grown under different low and high Al conditions.
(1) Z. mays grown in an ultisol amended with 12 (low Al) or 0 meq
CaMgCO3 (100 g soil)−1 (high Al) (Siqueira et al. 1984); (2) Manihot
esculenta grown in an acid tropical soil and watered with solutions of
pH 6.3 (low Al) or 3.9 (high Al) (Howeler et al. 1987); (3) Hieracium
pilosella grown in a strongly weathered sandy soil and watered with
nutrient solution with pH 5.5 (low Al) or 2.5 (high Al) (Heijne et al.
1996); (4) Z. mays was cultivated in sand-vermiculite and supplied
with acid rain solution (low Al) or acid solution with 3 mM Al (high
Al) (Vosátka et al. 1999); (5) C. multiflora grown in an ultisol and

watered with distilled water (low Al) or acidified water at pH 3 (high
Al) (Cuenca et al. 2001); (6) Andropogon virginicus exposed to 0 (low
Al) or 400 μM Al (high Al) in sand culture (Kelly et al. 2005); (7)
Malus prunifolia plants grown in limed soil (pH 6, low Al) or unlimed
soil (pH 4, high Al) (Cavallazzi et al. 2007); (8) Eucalyptus globulus
grown in sand/vermiculite/sepiolite substrate amended with 0 (low Al)
or 600 mg Al kg−1 (high Al) (Arriagada et al. 2007); (9) L. tulipifera
exposed to 0 (low Al) or 200 μM Al (high Al) in sand culture (Klugh
and Cumming 2007); (10) Andropogon virginicus was exposed to 0
(low Al) or 100 μM Al (high Al) in sand culture (Klugh-Stewart and
Cumming 2009)
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1,384; p<0.001). Moreover, the positive effect on plant
growth under Al exposure depends on the Al-by-AM fungal
species interaction (F 9,529; p<0.001), reflecting the fungal
species-specific dependence of induced Al resistance.

Several other studies have used a host plant with several
AM fungal ecotypes and assessed different responses reflect-
ing Al resistance. Cavallazzi et al. (2007) showed that mycor-
rhizal colonization of apple plants was significantly
influenced by acidophile selected fungal isolates of Glomus
etunicatum, Scutellospora pellucida, S. heterogama and
Acaulospora scrobiculata in soils varying in pH (4.0, 5.0,
6.0) and Al availability (2.7, 0.3 and 0 cmolckg−1). Under

the highest Al level, plants colonized by S. heterogama had
the greatest leaf P concentration and the lowest leaf Al con-
centration, whereas plants inoculated with Acaulospora scro-
bicalata exhibited reductions in AM colonization, the lowest
biomass and tissue P content and the highest tissue Al content
(Cavallazzi et al. 2007). In studies with L. tulipifera and
Andropogon virginicus, Klugh and Cumming (2007) and
Klugh-Stewart and Cumming (2009) observed different ben-
efits of AM fungal ecotypes to Al in diverse host plants.
Moreover, an early AM colonization can be an important
factor in Al tolerance for agricultural plants cropped in acid
soils (Seguel et al. 2012). In general, their results suggest that
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Fig. 3 Comparison of plant growth benefit (fold increase above non-
mycorrhizal controls) from AM fungal ecotypes for plants grown under
different low and high Al conditions. (1) Manihot esculenta grown in an
acid tropical soil limed to pH 5.3 (low Al) or 3.9 (high Al) (Sieverding
1991 as reported in Clark 1997); (2) Hieracium pilosella and (3)
Deschampsia flexuosa grown in a strongly weathered sandy soil and
watered with nutrient solution with pH 5.5 (low Al) or 2.5 (high Al)
(Heijne et al. 1996); (4) Al-tolerant H. vulgare and (5) Al-sensitive H.
vulgare grown in an acidic andisol that was limed (pH 5.3, low Al) or
unlimed (pH 4.6, high Al) (Borie and Rubio 1999); (6) Z. mays cultivated
in sand-vermiculite and supplied with acid rain solution (low Al) or acid
rain solution with 3 mM Al (high Al) (Vosátka et al. 1999); (7) M.

acuminata plants grown in sand culture with 0 (low Al) or 180 μM Al
(high Al) (Rufyikiri et al. 2000); (8) L. tulipifera exposed to 0 (low Al) or
200 μM Al (high Al) in sand culture (Lux and Cumming 2001); (9) C.
multiflora grown in an ultisol and watered with distilled water (low Al) or
acidified water at pH 3 (high Al) (Cuenca et al. 2001); (10) Andropogon
virginicus exposed to 0 (low Al) or 400 μM Al (high Al) in sand culture
(Kelly et al. 2005); (11) I. batatas plants cultivated in an acidic silty loam
soil that was limed (pH 5.2, low Al) and unlimed (pH 4.2, high Al) (Yano
and Takaki 2005); (12) L. tulipifera exposed to 0 (low Al) or 200 μMAl
(high Al) in sand culture (Klugh and Cumming 2007); (13) Andropogon
virginicus exposed to 0 (low Al) or 100 μM Al (high Al) in sand culture
(Klugh-Stewart and Cumming 2009)
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Al tolerance in host plants depends on the adaptability of the
AM fungi to edaphic conditions, including high Al levels, and
the physiological specificity of the host plant with a particular
AM fungal ecotype, which may explain why, in some cases,
the same fungal ecotype gives different responses in associa-
tion with different plant species.

In a study utilizing several ecotypic isolates of three AM
fungi andAndropogon virginicus at different Al levels, Kelly et
al. (2005) found that Glomus clarum isolates provided the
greatest resistance to toxic levels of Al (400 μM), S. hetero-
gama isolates showed intermediate benefits for plant growth
and plants colonized by Acaulospora morrowiae isolates were
the least Al resistant (Kelly et al. 2005) (Fig. 3). Across these
fungal species and ecotypes, Al resistance measured as plant
biomass was positively correlated with root colonization and

negatively correlated with the accumulation of Al in leaf tissue.
However, there was no association between plant Al Tolerance
Index (biomass with Al/biomass without Al) and pH at the site
of fungal isolation, suggesting that broad patterns of Al resis-
tance behaviour in AM fungal isolates for Andropogon virgin-
icus may override ecotypic variation in Al resistance within
AM fungal species or that Al resistance as a trait is not stable
(see “Stability of Al resistance in AM fungi”).

Variation in AM fungal Al resistance—AM mechanisms
of Al resistance

Differences in Al absorption and translocation by host plants
associated with different AM fungal ecotypes under high Al
levels may reflect underlying mechanisms of Al resistance

Table 2 Accumulation of Al in
plants exposed to low and high
Al levels with and without AM
fungi. Some values extrapolated
from figures in each reference

Plant AM treatment Shoot Al (mg/kg) Root Al (mg/kg) Reference

Low Al High Al Low Al High Al

Hordeum vulgare (Al tol.) G. etunicatum 145 296 Borie and Rubio (1999)
Nonmycorrhizal 246 405

Hordeum vulgare (Al sens.) G. etunicatum 147 312

Nonmycorrhizal 307 252

Musa acuminata G. intraradices 200 700 5,500 5,750 Rufyikiri et al. (2000)
Nonmycorrhizal 300 1,500 7,000 8,500

Liriodendron tulipifera Glomus spp. 180 423 800 930 Lux and
Cumming (2001)Nonmycorrhizal 140 180 500 610

Clusia multiflora S. fulgida 125 160 12,000 12,500 Cuenca et al. (2001)
Glomus spp. 100 95 9,000 20,000

Nonmycorrhizal 220 200 20,000 17,500

Andropogon virginicus G. clarum 10.9 43.2 342 1,868 Kelly et al. (2005)
A. morrowiae 9.9 165.2 416 3,089

S. heterogama 12.5 93.3 334 2,494

Nonmycorrhizal 15.0 225.4 583 2,721

Ipomoea batatas G. margarita 240 360 4,780 4,690 Yano and Takaki (2005)
Nonmycorrhizal 370 480 5,340 2,230

Malus prunifolia G. etunicatum 1.6 5.2 Cavallazzi et al. 2007
S. pellusida 3.1 5.4

A. scrobiculata 2.4 7.6

S. heterogama 3.3 3.2

Nonmycorrhizal 7.1 4.0

Liriodendron tulipifera A. morrowiae 45 240 Klugh and
Cumming (2007)G. claroideum 50 300

G. clarum 43 155

P. brasilianum 30 235

Nonmycorrhizal 40 330

Andropogon virginicus A. morrowiae 25 75 Klugh-Stewart and
Cumming (2009)G. claroideum 15 63

G. clarum 18 70

G. etunicatum 14 72

P. brasilianum 15 91

S. heterogama 10 73

Nonmycorrhizal 14 70
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that vary according to the fungal symbiont. The biosorption
and sequestration of Al in the mycelium (Joner et al. 2000)
and changes in the chemical speciation of Al (Lux and
Cumming 2001; Cumming and Ning 2003), which implies
the production of root exudates (Klugh and Cumming 2007;
Klugh-Stewart and Cumming 2009), are mechanisms that
may vary among different AM fungal species and ecotypes
and may confer Al tolerance to plant plants.

In the studies noted above, a limitation of the absorption and
translocation of Al to host plant shoots is often the variable
associated with AM-mediated Al resistance. This reduction is
often associated with elevated P acquisition, suggesting that
AM fungal species or ecotypes conferring Al resistance alter
the chemistry of the mycorrhizosphere, as already discussed.
As indicated in Fig. 1, the growth of L. tulipifera with several
fungal symbionts could be related to the concentration of Al3+

in the root zone, which also influenced the accumulation of Al
in plant tissues (Table 2). A similar pattern has been noted for
Andropogon virginicus (Klugh-Stewart and Cumming 2009),
with patterns of resistance consistent across multiple ecotypes
within AM fungal species (Kelly et al. 2005). These broad
patterns suggest that the stimulated flux of C, primarily as
citrate, into the mycorrhizosphere may be a major mechanism
of Al resistance in AM plants, just as it functions in numerous
non-mycorrhizal plant species.

Stability of Al resistance in AM fungi

An additional factor that should be considered when assessing
metal resistance of AM fungi is their origin and culture con-
ditions. Many isolates used in studies on the role of AM fungi
in host metal resistance, whether focusing on growth, physiol-
ogy or molecular responses, utilize inocula generated from

common soil trap cultures (Morton et al. 1993). Factors influ-
encing the community composition and genetic makeup of
AM fungi in a trap culture include the host plant species,
seasonality of collection and abiotic factors in the trap envi-
ronment, including substrate chemistry. When assessing metal
resistance and extrapolating from cultured AM fungi, consid-
eration should be made of potential changes in the genetic
make-up of the AM fungal isolates in culture. Bever and
Morton (1999) noted that considerable heritable variation for
spore shape was maintained in cultures of S. pellucida in trap
cultures. In an analogous fashion, trap cultures may enrich
variation over time in field-collected, metal-resistant AM ecto-
types because the selection pressure for metal resistance is
removed and nuclei that do not carry metal-resistant genes
may proliferate. Such a process was suggested by Kelly et al.
(2005) to exist for three AM fungal species that did not exhibit
clear patterns of Al resistance in relation to the pH of the sites
of their original collection. Similarly, Malcová et al. (2003) and
Sudová et al. (2007) noted that metal-free culture of metal-
resistant Glomus ecotypes reduced their resistance to metals
compared to the same lines maintained under metal exposure.
Clearly, care must be taken when culturing metal-selected
isolates for long-term studies of metal resistance in AM fungi.

An integrated model for induced Al resistance by AM fungi

The colonization of roots by AM fungi facilitates Pi acqui-
sition and leads to broad changes in gene and protein ex-
pression in host roots. Together these changes could
contribute to Al resistance in host plants. As has been
discussed in earlier sections, induced Al resistance varies
with the AM fungal species or isolate, and it is possible that
these also affect the underlying changes in host metabolism

Fig. 4 Hypothetical model for Al resistance induced by AM fungi in
higher plants. (1) Colonization increases sink demand and the influx of
fixed C to root cells; (2a) AM fungi enhance Pi uptake and (2b)
transfer to the host, which overcomes potential P limitation resulting
from Al in the rhizosphere; (3) colonization stimulates C processing in
roots through glycolysis and the citric acid cycle, increasing the avail-
ability of organic acids and other C substrates for exudation; (4)

exudation of organic acids chelates Al3+ in the rhizosphere; (5) the
production of glomalin by AM fungi sequesters Al3+ over long time
frames; (6) accumulation of Al in AM fungal structures such as spores
and hyphae. Altogether, these changes in root metabolism and exuda-
tion lead to (7) an enlarged mycorrhizosphere in which Al is chelated
and sequestered
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resulting from root colonization. Increased demand for C
resulting from the symbiotic association (Wright et al. 1998;
Kaschuk et al. 2009) is accompanied by increased process-
ing of photosynthate through glycolysis and the tricarbox-
ylic acid (TCA) cycle in host roots (Fig. 4, steps 1 and 3).
For example, Recorbet et al. (2010) noted that several pro-
teins in these cycles, including enolase and malate dehydro-
genase, were more highly expressed inMedicago truncatula
roots colonized by Glomus mosseae and Glomus intraradi-
ces than in nonmycorrhizal roots. Similar patterns have been
observed in roots of Populus tremuloides (Desai 2012) and
Oryza sativa (Campos-Soriano et al. 2010) colonized by
Glomus intraradices. Increased processing of C through
the TCA would additionally provide substrate for organic
acid exudation (Fig. 4, step 4). The utilization of photosyn-
thate by the fungal symbionts for hyphal growth will ensure
symbiotic Pi acquisition by the host plant under conditions
of Al exposure, which in turn contributes to the maintenance
of photosynthesis and C supply to the symbiotic root system
(Fig. 4, step 2). In addition, glomalin produced by AM fungi
will sequester Al3+ over long time frames (Fig. 4, step 5)
and this, together with Al accumulation in fungal structures
(Fig. 4, step 6), could provide an important Al tolerance
mechanism according Aguilera et al. (2011). Altogether,
changes in C processing and organic acid exudation from
root tissues, Pi acquisition via fungal hyphae and production
of glomalin can contribute to the chelation, sequestration
and detoxification of Al3+ in the mycorrhizosphere.

Conclusions and future prospects

Soil acidity is a major limitation to agricultural production
throughout the world and one of the major causes of Al stress
situations. The AM symbiosis has great potential to increase
plant growth by mediating soil solution chemistry at the root–
soil interface, improving nutrient acquisition and altering plant
stress responses, some or all of which positively contribute to
plant performance in acidic soils. Mechanisms that alter Al3+

bioavailability in the mycorrhizosphere, which will influence
Al impacts on nutrient uptake, may underlie Al tolerance of
plants associated with Al-resistant AM fungi. Current data
suggest that the biosorption of Al to hyphae and probably
glomalin, as well as sustained organic acid exudation from
roots of plants colonized by Al-resistant AM fungi, are at the
basis of Al resistance mechanisms conferred by the AM
symbiosis that are not yet fully understood. Continued re-
search is needed to understand the roles played by AM fungi
in increasing the Al resistance in crops and trees growing in
acidic soils where Al is the principal limiting factor.

In agronomic systems, it is a common practice to apply
amendments, such as lime, gypsum and phosphate fertilizer,
to enhance the quality and quantity of agricultural production

on acidic soils. However, limited reserves of raw material
(rock phosphate) are increasing input prices of phosphate
fertilizers, and sustained inputs of these materials are not
feasible, especially in developing economies. For agricultural
systems on acidic soils, one possible solution is the use of
genotypes of Al-tolerant crop species and/or genotypes with
high P use efficiency when available. Thus, it is possible to
reduce fertilizer inputs, especially on marginal soils or where
the process of P fixation is very intense, as in acid or allo-
phanic soils. Within the same context, the exploitation of AM
fungal ecotypes adapted to high soil levels of Al and their
management or enhancement, by inoculation with native fun-
gi, may provide significant increase to agricultural production
on acidic soils. The use of diverse AM fungal species adapted
to Al in soils as biofertilizers should be considered as part of
integrated crop management, which is projected to be an
important avenue to improve crop yields through better nutri-
ent supply and may be especially important for agriculture on
acidic soils with phytotoxic Al levels.

The use of AM fungal inoculants can, in general, be feasi-
ble in certain types of production systems where crops are
confined to a reduced surface area, such as nurseries, horti-
cultural or ornamental systems established in acidic soils with
high Al3+ levels. In such cases, the cost related to the appli-
cation of inoculants would represent a marginal fraction of all
production costs, and the development of AM fungal inocu-
lants could be a viable alternative for improving the quality,
yields and sanitary status of production. The use of inoculants
might also be beneficially utilized under conditions where
native soils/ecosystems have been severely disrupted, such
as reclamation projects following strip mining or in the instal-
lation of ornamental plants and trees in urban settings where
soils have been stockpiled or soil substrates created as part of
these activities. Several studies have also demonstrated the
high impact of different agricultural practices on the diversity,
density and functionality of AM propagules. In these cases,
the alignment of management inputs and activities with the
goal of maintaining a diverse and functionally beneficial AM
fungal community may foster sustainable agronomic produc-
tion. Thus, the correct choice of agronomic management to be
implemented in acidic soils, particularly when extensive crops
are established, represents a way to increase the positive
effects of AM fungi without requiring elevated inoculations.

In summary, ongoing and future research on AM symbi-
oses and acidic soils with high Al levels should be extended
to include:

– Further characterization of AM fungal contributions to
host plant Al resistance, including the role of fungal-
specific exudates in detoxifying Al3+ in the mycorrhizo-
sphere and broad-scale changes in metabolism induced
by AM fungi that may prime host plants to cope with
perturbations in homeostasis resulting from Al exposure
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– Characterization of Al resistance of natural AM fungal
communities and selection of the most feasible ecotypes
to be adopted as biofertilizers based on parameters
including high native resistance to Al3+ and high ability
to produce significant amounts of hyphae and glomalin

– Development of adequate and easily performable mo-
lecular tools to monitor the persistence and seasonal
cycles of AM fungal isolates used as inoculants in
colonizing roots of host plants

– Analysis, at the local scale, of the effects of different
agronomic practices on the functionality of native AM
fungal communities, particularly when annual extensive
crops are used in rotation, and the selection of agronomic
practices to improve the diversity and functionality of
indigenous AM fungi where the use of inoculants cannot
be implemented due to technical and economic limitations
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