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Abstract Although a number of factors have predictable
effects on mycorrhizal colonization, determining general-
ized patterns for some variables have remained elusive. In
particular, fire has been identified as a major event that may
influence plant–mycorrhiza interactions, yet efforts to date
have yielded contradictory results. Here, we assess the im-
pact of fire on mycorrhizal colonization in Palafoxia feayi, a
plant commonly found in the fireswept, nutrient-poor scrub
community of central Florida. We determined soil nutrient
conditions and percent colonization patterns for plants
growing in replicate plots that were burned 1 to 15 years
previously. The results showed a negative relationship be-
tween mycorrhizal colonization and time since fire, but there
was no effect of fire return interval (lapsed time between
successive fires). Soil nutrient analyses corroborated previ-
ous studies and showed no change in soil nutrients follow-
ing fire. In contrast to previous studies of mycorrhizal
colonization in Florida scrub, we conclude that fire can
affect arbuscular mycorrhizal fungi colonization and we
speculate that this is mediated by light availability.
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Arbuscular mycorrhizal fungi (AMF) are crucial mutualists
of many plant species (e.g., Hart and Klironomos 2002;
Hartnett and Wilson 2002; Parniske 2008; Smith and Read
2008), especially in nutrient-limited ecosystems where
plants may have enhanced mycorrhizal dependency (Harrison
2005; Smith and Read 2008; Johnson 2010). One such
nutrient-limited environment is the scrub ecosystem of the
Lake Wales Ridge in south-central Florida. Scrub is character-
ized by nutrient-poor, well-drained, sandy soils and is domi-
nated by stands of xerophytic oaks, saw palmettos (Serenoa
repens), and pines (Pinus clausa and Pinus elliottii). Not only
are the soils nutrient-poor, but this ecosystem also experiences
natural disturbance caused by relatively frequent fires. Fires are
often stand-replacing, but do not generally affect species com-
position, as many species resprout from roots or regenerate
from seeds (Abrahamson 1984; Schmalzer and Hinkle 1987).

Fire can influence a number of factors important to AMF
colonization, such as the nutrient content of soils by rapid
combustion and release of nutrients from herbaceous vege-
tation and accumulated organic matter. Ash deposition may
create a nutrient pulse following fire (e.g., Kellman et al.
1985; Smithwick et al. 2005; Turner et al. 2007; Galang et
al. 2010), or nutrients can be lost via volatilization and/or
removal of ash by wind or water (Raison et al. 1985; Gray
and Dighton 2006). Ultimately, soil nutrient content follow-
ing fire will depend on fire intensity, duration of soil heat-
ing, and local conditions at a site (Raison et al. 1985; Certini
2005; Gray and Dighton 2006; Galang et al. 2010). In
addition to changes in nutrient content, fire can also influ-
ence mycorrhizal inoculum potential or the ability of prop-
agules to form mycorrhizal associations. Burning can reduce
mycorrhizal inoculum potential (Vilariño and Arines 1991;
Dhillion and Anderson 1993) and spore germination
(Vilariño and Arines 1991) which, in turn, decreases
AMF colonization. Alternatively, studies have also shown
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a range of effects from no change to increases in inoculum
potential with burning (Allsopp and Stock 1994; Korb et al.
2003); thus, the effects of fire on AMF colonization involve a
number of factors and may be ecosystem-specific.

This complexity makes it challenging to identify gener-
alized AMF colonization patterns correlated with fire dis-
turbance (Cairney and Bastias 2007), and not surprisingly,
previous research on the role of fire in mycorrhizal coloni-
zation has yielded contradictory results. For instance, stud-
ies have identified increased colonization (Bentivenga and
Hetrick 1991), decreased colonization (Klopatek et al. 1988;
Vilariño and Arines 1991; Dhillion and Anderson 1993;
Hartnett et al. 2004), and no change in AMF colonization
following fire (Bellgard et al. 1994; Anderson and Menges
1997; Eom et al. 1999; Haskins and Gehring 2004; Treseder
et al. 2004). Part of this variability in plant–AMF response
to fire is likely a result of differences in conditions and
methodology among studies, including the time frame of
the study, study sites, and plant–AMF species involved
(Cairney and Bastias 2007). The next step in resolving this
issue is to tease apart the myriad factors that determine AMF
colonization patterns following fire.

The Florida scrub ecosystem offers an opportunity to ex-
amine the role of fire in AMF colonization. Although fire can
clearly have an impact on soil nutrient dynamics, in scrub,
such changes may be less important in determining the extent
of AMF colonization. Short-term increases in soil nitrogen
and phosphorus have been observed; however, these changes
in nutrient content are ephemeral, lasting only a few months
before returning to pre-burn levels (Abrahamson 1984;
Anderson and Menges 1997; Schafer and Mack 2010). Fur-
thermore, mycorrhizal inoculum potential of Florida scrub
also appears to be unaffected by fire (Anderson and Menges
1997). Consequently, the relatively constant nutrient status of
soils and mycorrhizal inoculum potential of scrub allows us to
examine alternative factors that influence AMF colonization
in pyrogenic ecosystems.

Previous work in Florida scrub has shown no effect of
fire on AMF colonization and three of four species exam-
ined were either not colonized or were only weakly colo-
nized (Anderson and Menges 1997). These results were
somewhat surprising given the expectation that this
nutrient-limited ecosystem would facilitate strong depen-
dency on AMF and that fire would impact colonization.
The root structure of these species suggested that only
Balduina angustifolia would be strongly dependent on
AMF; however, comparisons of colonization before and
after burning were limited by the short-term nature of the
study and that B. angustifolia must regenerate from seed
following fire (Anderson and Menges 1997). Furthermore,
only one burned and unburned site were used in the study.
Consequently, we currently lack statistical power to assess
the effects of fire on AMF colonization in the Florida scrub.

Here, we take advantage of a series of controlled, repli-
cate burns at the Archbold Biological Station (ABS) to
determine the relationship between time since fire and
AMF colonization. We assessed total colonization of Pala-
foxia feayi (Asteraceae), a small, perennial shrub endemic to
the scrub, scrubby flatwood, and pineland ecosystems of
south-central Florida (Carrington 1999). This plant has
adapted to fire by establishing seedlings between fires and
resprouting postfire from the root system (Ostertag and
Menges 1994; Menges and Kohfeldt 1995; Carrington
1999), thus making it an excellent candidate to assess the
impact of fire on AMF colonization. We address three
questions: (1) Is there a relationship between time since fire
(time since the most recent burn) and AMF colonization
patterns? (2) Is there a relationship between fire return
interval (elapsed time between successive burns) and AMF
colonization patterns? (3) Is there a relationship between
AMF colonization and soil nutrient content?

Materials and methods

Site information and sample collection

P. feayi was collected from 24 sites at the ABS, Highlands
County, Florida (27°10′50″ N, 81°21′00″ W). ABS main-
tains a 2,101-ha preserve located on the Lake Wales Ridge
in south-central Florida that is dominated by fire-adapted
scrub habitat with sandy, nutrient-poor soils. The station has
been subdivided into a series of discrete plots of varying
sizes; these plots are independently burned according to the
ABS fire management plan (Main and Menges 1997). The
fire return interval for each plot or the time lag between
successive fires is determined following Abrahamson
(1984) and the intervals range from 2 to 5, 6 to 9, 10 to
14, 15 to 19, 20 to 59, and 60 to 100 years between fires.
Thus, sites with a 6- to 9-year fire return interval are burned
every 6–9 years. The sites selected for this study spanned
the breadth of fire return intervals and ranged from 1 to
15 years postfire (Table 1). As a consequence of the fire
management plan at ABS, fire return interval and time since
fire (the number of years passing since the most recent fire)
vary independently. For example, a plot that was burned 1 year
ago could have a fire return interval of 2–5 or 60–100 years
depending on the prescribed burn schedule for that particular
plot. This independence between the two measures of fire
history was accounted for in our statistical analysis.

To standardize fire intensity, plots were selected that were
heavily burned, with fire consuming surface litter, dead
leaves, small twigs, and palmetto leaf blades (Main and
Menges 1997). At this intensity, the aboveground portions
of P. feayi are completely removed, although the root system
is typically left intact. Plants quickly regrow following fire
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and often reproduce within 1 year (Ostertag and Menges
1994). Due to a paucity of recently burned plots with fire
return intervals of 10–14 and 15–19 years, we combined
these two categories in our analyses. One plot in the 6- to 9-
year fire return interval (plot 18D) was not burned on
schedule due to poor burning conditions.

To test whether time since fire and fire return interval
affect AMF colonization in P. feayi, roots were collected
from approximately 5 plants per plot, sampling across 24
plots differing in fire history. Because the treatment (fire)
was applied at the plot level, plots represent the experimen-
tal unit in this study; thus, replication was achieved by
sampling from 24 plots (Table 1). Multiple plants were
collected per plot to obtain a plot mean. To standardize plant
collections, a line transect was established in each plot. On
each transect, roots were harvested from plants separated by
at least 10 m. Prior to root collection, the maximum height
and number of lateral branches were determined on each
individual to assess plant size. These measures were includ-
ed in subsequent statistical analyses to account for potential
effects of plant size on AMF colonization (see below).
Following measurement, each plant was partially uprooted,
approximately 30 cm of root length was sampled, and each
plant was carefully buried again. This sampling scheme was

used to minimize impact to the P. feayi population at ABS.
Once the roots were harvested, they were placed into plastic
bags and were immediately returned to the laboratory. Roots
were thoroughly rinsed with tap water and stored in 70 %
ethanol at 4 °C until analysis (Brundrett et al. 1996). All
collections were made during late May to mid-June 2009.

Analysis of AMF colonization patterns

Roots were cut into approximately 1 cm pieces and cleared
in 10 % potassium hydroxide by soaking them for 20 min at
121 °C in an autoclave. Once cleared, the roots were stained
by autoclaving at 121 °C for 15 min in a 0.03 % w/v
Chlorazol Black E solution (Brundrett et al. 1996). After
clearing and staining, segments were stored in 50 % glycerol
at 4 °C. Thirty-centimeter segments were haphazardly se-
lected from each plant and mounted in 50 % glycerol, and
each segment was viewed at ×40 magnification using a light
microscope. Following McGonigle et al. (1990), we used
the cross-section intersection method to assess percent root
colonization. Each plant was viewed 150 times (30 seg-
ments viewed 5 times each), with the exception of 1 plant
that had insufficient root material (viewed 105 times on 21
segments). For each view, the presence of AMF intraradical

Table 1 Site information for P.
feayi roots Plot ID No. plants sampled Time since fire (years) Fire return interval (years) Plot size (m2)

49A 5 2 2–5 191,449

49B 5 2 2–5 307,911

60A 5 3 2–5 75,185

OA 5 4 2–5 18,644

61A 4 5 2–5 161,812

41C 2 1 6–9 232,746

42 1 1 6–9 181,894

42A 2 1 6–9 15,084

36 5 2 6–9 42,594

39A 5 3 6–9 138,646

41A 5 7 6–9 582,404

42B 5 7 6–9 92,138

46 5 8 6–9 710,268

18D 5 10 6–9 8,188

26A 5 7 10–19 58,613

26B 5 7 10–19 31,376

45C 5 8 10–19 329,868

30A(4) 5 4 20–59 145,370

45A 5 8 20–59 198,384

17E 5 10 20–59 38,290

30A 5 15 20–59 26,953

13A 5 10 60–100 86,731

19 5 10 60–100 47,673

20 5 10 60–100 51,322
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hyphae, coils, vesicles, and arbuscules were scored separately.
In total, 16,305 views were examined across 109 plants in 24
plots.

Soil analysis

To ensure that soil nutrient content (carbon, nitrogen, and
phosphorus) did not differ significantly across plots, one soil
sample was collected per plot. Samples were taken from the
rhizosphere at approximately the root depth of P. feayi and
were located near the center of the transect line used to
collect root material. Samples were dried at 50 °C before
transport to Syracuse, NY for analysis. Total carbon and
nitrogen in each soil sample was determined by Dumas
combustion in a CE Elantec Flash EA 1112 CN analyzer.
Total carbon was measured to determine if there were any
differences in organic matter and soil quality among plots
differing in fire history. The methods of Bickelhaupt and
White (1982) and Lajtha et al. (1999) were used to determine
the concentration of inorganic (plant available) phosphorus in
each sample.

Statistical analysis

Because the application of the treatment (fire) was con-
ducted at the plot level, the experimental units were the
plots (N024 plots); thus, mean percent colonization per plot
was used as the response variable for the analyses. Percent-
age data were arcsine square root transformed prior to
analysis. A general linear model (GLM) was used to assess
the relationship between the total percent root length colo-
nized by AMF and fire history. The model included time
since fire, fire return interval, and measures of plant size
(height and lateral branching) as factors. An additional
analysis with time since fire, fire return interval, and plot
size was also conducted to ensure that plot size had no
influence on colonization. Similar GLMs were used to de-
termine whether the percentage of root length with arbus-
cules, coils, vesicles, and intraradical hyphae were affected
by fire history. These models also included time since fire,
fire return interval, and plant size as factors. To determine
whether the concentration of carbon, nitrogen, and phospho-
rus varied among plots differing in fire history, we used a
GLM that included time since fire and fire return interval.
Finally, linear regression was used to determine the relation-
ship between soil nutrients andAMF colonization and between
plant size and time since fire.

Results

Palafoxia feayi roots were consistently colonized by AMF,
with more than 98 % of plants colonized. Total colonization

within plants ranged from 0.7 to 29.3 %. Percent root length
containing arbuscules was 0 to 8 %, coils was 0 to 23 %,
vesicles was 0 to 11 %, and intraradical hyphae was 0 to
11 %. The GLM assessing the relationship between total
colonization, fire history, and measures of plant size was
significant (F7,1602.77; P00.04); however, only the time
since fire factor had a significant effect (F1,16010.98; P0
0.004). Fire return interval, plant height, and lateral branch-
ing were nonsignificant (P>0.6 for all factors). There was a
negative relationship between time since fire and total col-
onization (Fig. 1), and there was no relationship between
time since fire and plant height (F1,2202.22; P00.16). Sim-
ilarly, the GLM assessing the relationship between total
colonization, fire history, and plot size was significant
(F6,1703.16; P00.03) with time since fire having the only
significant effect (F1,17010.49; P00.005). Plot size had no
effect on colonization levels (F1,1700.10; P00.75).

Fire history also had significant effects on the presence of
specific AMF structures. The GLMs examining the role of
fire history on the percent root length containing intraradical
hyphae (F7,1603.50; P00.02) and coils (F7,1602.68; P0
0.05) were significant. In both instances, time since fire
and plant height were the only significant effects (all P≤
0.05). The presence of coils and intraradical hyphae de-
clined with increasing time since fire (Fig. 1), and the roots
of taller plants contained fewer of these structures. Neither
of the GLMs examining the relationship between fire history
and percent root length containing vesicles or arbuscules
were significant (vesicles: F7,1601.56, P00.22; arbuscules:
F7,1601.52, P00.23).

Soil nutrient levels were similar across sites. Nitrogen
content ranged from 0 to 0.06 %, carbon content had a range
of 0.17 to 1.23%, and phosphorus content ranged from 3.37 to
9.31 μg/g. The GLMs testing for differences in soil chemistry
associated with fire history were not significant (nitrogen:
F5,1800.81, P00.56; phosphorus: F5,1800.82, P00.55; car-
bon: F5,1800.65, P00.66). There was also no relationship
between soil nutrient content and total AMF colonization
(nitrogen: R200.001, P00.88; phosphorus: R200.003, P0
0.80; carbon: R200.001, P00.86).

Discussion

The results indicated a strong decrease in total AMF colo-
nization with time since fire that cannot be explained by
changes in nutrient availability across sites. Total coloniza-
tion was greatest 1 year postfire, gradually declining as time
since fire increased, and as expected, we observed no differ-
ences in soil nutrients across plots. The decrease in total
percent colonization also cannot be explained by changes in
plant size as we found no relationship between plant height
and fire regime. P. feayi quickly resprouts following
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fire-preventing stratification of plant height across plots
differing in burn history. The decline in total colonization
was also mirrored by a decline in specific AMF structures.
The results showed a negative relationship between fire and
colonization by coils and intraradical hyphae. Interestingly,
not all AMF structures changed with time since fire (e.g.,
arbuscules and vesicles), although the reason for this is
unclear.

In contrast, there was no effect of fire return interval, the
time lapse between subsequent fires. Given that scrub
undergoes no successional change following fire, this result
was expected. Scrub fires can completely eliminate above-
ground vegetation, as was the case in our experimental
plots, but most of the vegetation resprouts from protected
root systems. As a consequence, the regrowth of scrub
vegetation following a fire returns the system to the prefire
community (Abrahamson 1984; Schmalzer and Hinkle
1987); thus, the length of time between successive fires is
unlikely to affect colonization patterns.

One possible explanation for the observed relationship
between time since fire and patterns of colonization is that
fire temporarily removes dominant vegetation and increases
light availability for P. feayi. The sites selected for this study
were heavily burned with aboveground vegetation com-
pletely removed; thus, light availability will be greatest
immediately postfire and will decline as the vegetation
resprouts. Indeed, at our field sites, canopy cover is posi-
tively correlated with time since fire, and plots with in-
creased canopy cover have lower light availability
(Abrahamson 1999). Shading has been shown to decrease
AMF colonization as plants allocate more resources to
aboveground parts and have fewer resources to support
AMF (e.g., Whitbeck 2001; Gehring 2003). Canopy cover
strongly influenced flowering in the scrub plants S. repens
and Sabal etonia, suggesting that light availability is an
important factor limiting growth and reproduction in this
ecosystem (Abrahamson 1999). Furthermore, there is also
evidence that growth patterns of P. feayi change in response

to fire; P. feayi exhibits peak reproduction during the first
year following fire and sharply declines 1 year postfire
(Ostertag and Menges 1994). This growth response may
be caused by the ephemeral nutrient pulse associated with
scrub fires (e.g., Schafer and Mack 2010) and/or by changes
in light availability. The combination of maximal light avail-
ability and a nutrient pulse may explain the increased AMF
colonization patterns immediately following fire, and thus, we
might expect to observe a gradual decline in colonization over
time if plant carbon production is reduced by shading.

Even so, the hypothetical scenario described assumes that
root colonization level reflects the mutualistic functioning of
the interaction. Unfortunately, the relationship between colo-
nization and mycorrhizal function is complex (e.g., Johnson
2010), thus our conclusions are somewhat limited. The colo-
nization levels observed in P. feayi are relatively low, suggest-
ing that the modest changes in colonization following fire may
have little functional consequence for the plant. The present
study is also limited in the sense that we have examined only
one measure of the interaction: root colonization. Assessing
extraradical hyphal abundance or AMF species composition
across the fire timeline may help to explain the observed
patterns in colonization.

The finding of decreased colonization associated with
time since fire was surprising given the results from a
previous study conducted at the same sites. Anderson and
Menges (1997) showed no change in colonization associat-
ed with fire in three scrub herbs (a fourth species was
examined, but plants did not survive the fire). Contradictory
results among studies of AMF colonization have been at-
tributed to a number of factors including differences in plant
community composition, plant adaptation to fire, and soil
nutrient conditions (Cairney and Bastias 2007). However,
since both studies were conducted at the same field sites on
plants that resprout following fire, none of these factors can
explain the strikingly different pattern observed in P. feayi.
Two obvious differences between these studies are plant
growth form and AMF colonization levels. P. feayi is a small

Fig. 1 Relationship between mycorrhizal colonization of P. feayi roots
and time since fire (years). Each circle represents the mean value for a
plot (±SD). a Total colonization (R2

2300.50; P<0.0001), b

colonization by coils (R2
2300.19; P00.03), c colonization by intra-

radical hyphae (R2
2300.29; P<0.01)
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woody shrub in contrast to the herbs examined by Anderson
and Menges (1997). P. feayi also had higher levels of colo-
nization as more than 98 % of plants examined were colo-
nized, and total colonization ranged upwards of 29 %. Very
low (~2 %) colonization was observed in both Liatris ten-
uifolia and Pityopsis graminifolia, and Aristida stricta
lacked AMF completely (Anderson and Menges 1997).
Consequently, differences between the studies may be attrib-
uted to differences in growth form and colonization level.

In addition to the dissimilarities among the study plants
themselves, there also exist several differences in experi-
mental design. Anderson and Menges (1997) compared
colonization of plants in two plots: one site that was burned
about 8 months prior to the final sampling date and one
“unburned” site (burned previously but not as recently as the
burned site). In contrast, the present study used 24 plots
ranging from 1 to 15 years postburn. Since the timing of the
last fire for the unburned site is unknown, comparing these
two studies is challenging. If Anderson and Menges’ (1997)
burned and unburned sites were more similar in burn age
(e.g., the unburned site was burned about 5 years previous-
ly), detecting differences in colonization may have been
difficult. By comparing multiple plots differing in fire history,
the present study has greater statistical power.

Overall, the present study shows a negative relationship
between percent colonization and time since fire in this
pyrogenic ecosystem. We hypothesize that this pattern may
be a result of increased shading as vegetation resprouts after
a burn. Controlled experiments to assess this possibility will
be useful in making progress towards determining the factors
most important in shaping colonization patterns.
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