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Abstract Cover crop species represent an affordable and
effective weed control method in agroecosystems; nonethe-
less, the effect of its use on arbuscular mycorrhizal fungi
(AMF) has been scantily studied. The goal of this study was
to determine root colonization levels and AMF species
richness in the rhizosphere of maize plants and weed species
growing under different cover crop and weed control
regimes in a long-term experiment. The treatment levels
used were (1) cover of Mucuna deeringian (Muc), (2)
"mulch" of Leucaena leucocephala (Leu), (3) "mulch" of
Lysiloma latisiliquum (Lys), (4) herbicide (Her), (5) manual
weeding (CD), (6) no weeding (SD), and (7) no maize and
no weeding (B). A total of 18 species of AMF belonging to

eight genera (Acaulospora, Ambispora, Claroideoglomus,
Funneliformis, Glomus, Rhizophagus, Sclerocystis, and Scu-
tellospora) were identified from trap cultures. Muc and Lys
treatments had a positive impact on AMF species richness
(11 and seven species, respectively), while Leu and B treat-
ments on the other hand gave the lowest richness values (six
species each). AMF colonization levels in roots of maize
and weeds differed significantly between treatment levels.
Overall, the use of cover crop species had a positive impact
on AMF species richness as well as on the percentage of
root colonized by AMF. These findings have important
implications for the management of traditional agroecosys-
tems and show that the use of cover crop species for weed
control can result in a more diverse AMF community which
should potentially increase crop production in the long run.
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Introduction

In the state of Yucatan (Mexico), as in other regions of
Mexico and Latin America, herbicides are commonly used
to control weeds in maize agroecosystems. As a result, herbi-
cide application has been selected for resistant individuals of
many species of weeds which eventually reduce the effective-
ness of weed chemical control (Caamal-Maldonado 1995).
One alternative to chemical control is the use of mulch or cover
crop species which reduce light penetration and temperature,
limit weed establishment (Caamal-Maldonado et al. 2001;
Castellano and Molina 1989), and favor the presence of herbi-
vore insects which feed on their seeds (Pullaro et al. 2006).

The use of legumes as mulch or cover crops has been
shown to promote a greater and more sustained maize
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production in traditional agroecosystems in Yucatan (e.g.,
700 kg/ha to >1,000 kg/ha) (Caamal-Maldonado et al. 2001).
Nonetheless, the effect of cover crops on soil community
diversity has been scantily studied. For instance, there are
few studies on the effect of cover crop use on belowground
mutualisms such as plant–arbuscular mycorrhizal fungi
(AMF) interactions (Baumgartner et al. 2010; Boswell et al.
1998; Houngnandan et al. 2001; Kabir and Koide 2000),
which may in turn also inhibit or reduce the establishment of
weeds in crop fields (Jordan et al. 2000; Rinaudo et al. 2010;
Veiga et al. 2011). Since most crop species cultivated in the
tropics are associated to AMF (Schroeder and Janos 2004) and
given the potential role of mycorrhizal interactions in main-
taining crop diversity and productivity (Mohammad et al.
1998; Oehl et al. 2004), it is important to better understand
the effect of cover crops on AMF–plant interactions.

Agroecosystem management practices have been shown
to produce changes in AMF communities, generally causing
a decrease in spore abundance and diversity (Oehl et al.
2004). The use of fertilizers or herbicides may contaminate
the soil and also negatively impact on AMF communities
(Abd-Alla et al. 2000; Allen and West 1993; Kurle and
Pfleger 1994; Lekberg and Koide 2005; Mathimaran et al.
2007; Pasaribu et al. 2011). The use of mycorrhizal cover
crop species such asMucuna pruriens (L.) DC (Houngnandan
et al. 2001) and Trifolium repens L. cv. Huia (white clover)
(Deguchi et al. 2007) represents an alternative method which
could circumvent such negative impacts while stimulating AMF
root colonization in crops.

In spite of the importance of AMF in agroecosystems
(Oehl et al. 2003, 2004) and their potential use in sustainable
agricultural practices (Gianinazzi et al. 2010; Gosling et al.
2006; Leake et al. 2004) and for weed control (Bethlenfalvay
et al. 1996; Jordan et al 2000, but see Daisog et al. 2011), few
studies have looked at changes in soil AMF spore composition
and mycorrhizal colonization levels under agricultural man-
agement regimes involving weed control. The main goal of
the present study was to investigate the effect of different
weed control methods on AMF species richness and mycor-
rhizal colonization levels in maize and species of weeds,
in a long-term experiment in the state of Yucatan, Mexico.
AMF species richness in the rhizosphere of maize and asso-
ciated weeds was determined by taking soil samples and using
trap plants to propagate spores and isolate the indigenous
AMF.

Methods

Experimental design

The experimental site was located at the Campus de Cien-
cias Biológicas y Agropecuarias (CCBA) of the Universidad

Autónoma de Yucatán (Yucatan, Mexico—20°51′57″ N, 89°
37′23″ W). The study region is of karstic geological origin,
with abundant rock outcrops. The soil type is Leptosol,
which ranges in depth from 0 to 25 cm (Díaz-Garrido et
al. 2005). Climate is warm sub-humid with rains during
summer and winter. Mean annual precipitation is of
900 mm and the mean annual temperature of 27.5°C (García
1973). The dominant vegetation type is low-height tropical
deciduous forest (Flores and Espejel 1994).

The experimental site has been used for the last 13 years
to grow maize under different conditions: (1) in association
with a cover crop Mucuna deeringiana (Bort.) Merr. (Muc);
(2) with the application of mulch of Leucaena leucocephala
(Lam.) De Witt. (Leu); (3) with the application of mulch of
Lysiloma latisiliquum (L.) Benth. (Lys); (4) with paraquat
herbicide application (1, 1-dimethyl-4, 4-bipyridylium
dichloride) (Her); (5) manual weeding (CD); (6) no weeding
(SD); (7) without maize and no weeding (B). The experi-
mental site consisted of a 35×60 m plot divided into 21
subplots (experimental units) each of 5×10 m, separated by
1 m, and with three replicate subplots per treatment (see
Caamal-Maldonado et al. 2001).

Maize is cultivated in an annual cycle with planting in
March (dry season) and harvesting in November (rainy
season). Since 1990, the experimental site has received a
traditional Mayan management regime each year which
involves first the cutting down of arboreal vegetation, then
the chopping of lower-height vegetation and, finally, burning
of deposited plant material (Caamal-Maldonado 1995;
Caamal-Maldonado et al. 2001).

Soil chemical characterization

During March 2003, eight soil samples were taken from
each subplot to determine pH (KCI method), total organic
carbon (TSBF colorimetric method), nitrogen (Kjeldhal
method), and phosphorous (sodium hypobromite oxidation
method) levels (Table 1). Analyses were conducted at the
Laboratorio de Suelos y Plantas of the CCBA (Universidad
Autónoma de Yucatán).

Soil sample processing, AMF propagation, spore extraction,
and isolation

Because most AMF spores found in field soil samples
are usually damaged, spores were isolated and identified
by propagation pots using trap plants in nurseries to
achieve a more reliable identification of AMF species
(Brundrett et al. 1996; Douds and Millner 1999). In March
of 2003, five soil samples were randomly collected at each
replicate subplot to a maximum depth of 10 cm, and all
samples from each subplot were mixed to give a total of 21
soil samples.
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Each soil sample was 2 mm sieved, mixed with an equal
volume of sterile sand (1:1 v/v), and placed in 2-l pots. Ten
seeds of sorghum (Sorghum vulgare L.) were planted in
each pot as trap plants (Sieverding 1991). Pots were ran-
domly placed in a nursery (average temperature and relative
humidity029.1°C and 44.5 %, respectively) and were
watered regularly until week 14, when watering was stopped
in order to stimulate AMF sporulation (Brundrett et al.
1996). At the end of week 16, one 100-g sample was taken
from each pot and AMF spores were extracted based on a
modified of wet sieving and decanting technique (Gerdemann
and Nicolson 1963). The soil was homogenized with solution
of Tween 20 (0.05 %) in water, and the solution was then
filtered across a series of sieves (600 μm, 400 μm, 190 μm,
122 μm, and 73 μm), and the retained fractions were decanted
and AMF spores separated on a sucrose gradient (Sieverding
1983).

AMF species identification was based on spore morpho-
logical characteristics (shape, size, color, wall texture and
layers, ornamentation, type of hyphae, auxiliary structures,
germination shields, and spore configuration), according to
published identification manuals (Schenck and Pérez 1990;
Schüβler and Walker 2010; http://invam.caf.wvu.edu/fungi/
taxonomy/speciesID.htm, http://www.lrz.de/∼schuessler/
amphylo/). Species frequency of occurrence (FO) (Gaur
and Adholeya 1994) was calculated as FO0(number of
samples with a particular AMF species/total number of
analyzed samples)×100.

Root samples, staining, and percent colonization

At the end of the agricultural management cycle (November
2003), secondary roots were collected from five maize
plants (Zea mays) of each subplot (except for the B treat-
ment) as well as from five individuals of the most abundant
weed species: Bidens pilosa L., Sanvitalia procumbens

Lam., Sida acuta Burm., Digitaria insularis (L.) Fedde,
and Priva lappulacea (L.) Pers. In the case of the Her
treatment, roots of the weed Parthenium hysterophorus L.
were also collected as this species was highly abundant in
plots belonging to this treatment level (representing more
than 50 % of plant plot cover). Root samples were rinsed,
labeled, transported to the laboratory, and stained using a
modified Phillips and Hayman (1970) technique without
phenol. Permanent preparations were made and the presence
of AMF structures (hyphae, vesicles, arbuscules, coils, and
spores) was determined using the magnified intersections
method (McGonigle et al. 1990) in order to estimate the
percent of root length containing AM fungal structures
[percentage of colonization0(number of colonized fields/
total number of fields) × 100].

Statistical analyses

Differences between treatment levels in pH, total organic
carbon, total nitrogen, total phosphorous, and AMF species
richness were analyzed with separate one-way ANOVAs
(SigmaStat ver 3.1). When significant differences were
found for each response variable, treatment level means
were compared in a pairwise manner by means of a
Student–Newman–Keuls test (P value significance level
set at 0.05) (Zar 1999). Species composition values for each
treatment were employed to obtain the Jaccard’s similarity
index (Magurran 1989), and the data were grouped based on
a cluster analysis conducted in MVSP ver. 3.13.

The mean percentage of AMF root colonization was
calculated for each treatment level as well as individually
for each plant species across treatment levels. Overall differ-
ences between treatment levels and differences between
treatment levels for each species were analyzed by means
of non-parametric Kruskal–Wallis tests. When significant
differences were found (P value set at 0.05), Dunn’s test

Table 1 Values for pH (n08), total carbon content (C), nitrogen (N), and phosphorus (P) for soil samples of each treatment level used for weed
control (values are means±SE)

Treatments pH C mg/100 g soil N g/kg soil P mg/kg soil

Muc 7.83±0.06 4,209.80±517.65 0.76±0.14 449.79±202.65

Leu 7.785±0.04 4,183.25±678.19 1.28±0.10 475.19±153.67

Lys 7.81±0.06 5,317.97±125.72 1.11±0.10 320.05±35.78

Her 7.72±0.1 6,541.49±1452.69 1.25±0.25 206.19±65.84

CD 7.73±0.06 5,067.58±85.62 0.90±0.10 192.33±37.18

SD 7.706±0.08 5,397.74±91.84 1.25±0.10 685.86±238.25

B 7.71±0.04 5,529.72±65.24 1.38±0.07 693.93±214.89

No differences were found between treatment levels for any of the measured variables

Muc—cover cropMucuna deeringiana, Leu—mulch of Leucaena leucocephala, Lys—mulch of Lysiloma latisiliquum, Her—herbicide application,
CD—manual weeding, SD—no weeding, B—no weeding and no maize
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was conducted to determine which treatment level means
differed significantly using SigmaStat 3.1.

Results

Weed control

All the weed control methods used in this work showed to
be effective at controlling weeds, particularly the cover crop
Mucuna deeringiana, which cause as much as 50 % of the
weed biomass reduction (see Caamal-Maldonado et al.
2001).

AMF spore identification and species richness

A total of 18 AMF species were identified. Species from the
genus Acaulospora were the most abundant (28 % of total),
followed by Funneliformis and Rhizophagus (17 %), Clar-
oideoglomus and Sclerocystis (11 %), Scutellospora (6 %),
and Ambispora and Glomus (5 %). Significant differences in
species richness were found between treatments (F08.51,
df06, P00.0005). Treatments which showed the greatest
AMF species richness average were Muc (10.67 species)
and Lys (7.34), while the Leu and B treatments showed the
lowest number of species (five each) (Fig. 1). Pairwise
comparisons showed that only the Muc treatment level
differed from the other treatments, showing a significantly
greater average number of AMF species (P<0.001).

Similarity analyses indicated the existence of three
groups of treatments based on species composition: (a) CD

and Her (64 % of similarity), (b) B and SD (52 % of
similarity), and (c) the remaining treatments (Fig. 2).

Frequency of occurrence of AMF spores

Scutellospora nigra and Funneliformis geosporum were
found in all treatments (FO0100 %), followed by Funneli-
formis mosseae (FO085.71 %), Rhizophagus intraradices
(FO071.42 %), and Acaulospora scrobiculata, A. undu-
lada, and Claroideoglomus claroideum (57.14 % each).
Rhizophagus (aff. fasciculatum), Ambispora (aff. leptoti-
chum), Rhizophagus (aff. manihotis), and Sclerocystis dussii
were present in only one treatment and thus showed the
lowest frequency values (14.28 % in all cases; Table 2).

AMF root colonization

The overall percent of root colonization by AMF (all plant
species together) was greatest for the Muc treatment (12.14±
8.54 %), while the lowest average value was observed for the
Her treatment (2.55±3.03 %). Colonization levels in maize
plants were highest for treatments SD (11.66±8.38%) and CD
(10.93±5.72 %), and lowest for treatment Her (2 %). In the
case of weed species, greatest AMF colonization levels were
observed for S. procumbens in the Muc (17.83 %), B
(12.20 %), and Leu (9.26 %) treatments, while P. lappulacea
showed highest colonization in the Lys treatment (8.65 %). In
the case of the Her treatment, P. hysterophorus showed great-
est mycorrhizal colonization (5.20 %) and was by far the most
abundant species for this treatment (50 % of plant cover).
Significant differences were observed between treatments for
each species (all statistics values are presented in Fig. 3), as
well as overall for all species between treatments (H0124.4,
df06, P<0.0001) (Fig. 4).
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Fig. 1 Average number of AMF species (+1 SE) found for each
treatment level used for weed control. Muc: cover crop Mucuna deer-
ingiana; Leu: mulch of Leucaena leucocephala; Lys: mulch of Lysi-
loma latisiliquum; Her: herbicide application; CD: manual weeding;
SD: no weeding; B: no weeding and no maize. Different letters indicate
significant differences between treatment level means at P >0.05
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Fig. 2 Dendrogram resulting from the cluster analysis based on sim-
ilarity in AMF species composition for each of the treatment levels
used for weed control. Muc: cover crop Mucuna deeringiana; Leu:
mulch of Leucaena leucocephala; Lys: mulch of Lysiloma latisiliquum;
Her: herbicide application; CD: manual weeding; SD: no weeding; B:
no weeding and no maize
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Discussion

Overall, 18 AMF species were detected by trapping and
morphological spore identification in the present study of
plots under maize cultivation, which is a value similar to
that reported by Mathimaran et al. (2007) for mixed agri-
cultural fields of maize–crotalaria in Kenya. Other studies
conducted in maize monocultures have reported AMF rich-
ness values which range from 13 species in Minnesota
(USA) (Johnson et al. 1991; Kurle and Pfleger 1996) to 15
species in Pennsylvania (USA) (Franke-Snyder et al. 2001).
In Mexico, Guadarrama-Chávez et al. (2007) found 13 AMF
species in maize fields in Oaxaca, including A. scrobiculata,
Funneliformis geosporum (formerly G. geosporum), and
Sclerocystis dussii (formerly G. dussi) which were also
found in the present study. AMF species found in the pres-
ent experimental site under maize belong to eight genera:
Acaulospora, Ambispora, Claroideoglomus, Funneliformis,
Glomus, Rhizophagus, Sclerocystis, and Scutellospora. Al-
though DNA-based molecular tools have the potential to
provide a more complete picture of the AMF identities, we
consider that identification based on trap cultures and spore

morphology remains valid for the purpose of the present
study.

Species belonging to what was previously considered the
genus Glomus (including genera mentioned above) were
most frequent (66.6 % of the total number of AMF species),
and most common among the study subplots (FO050–
70 %). These results agree with previous reports from agri-
cultural fields in Europe (Sjöberg et al. 2004), Africa
(Duponnois et al. 2001), and the American Continent
(Baumgartner et al. 2010; Johnson and Wedin 1997). It
has been suggested that species belonging to this genus
prevail after soil disturbances because their spores are resis-
tant to the effects of both low- and high-impact practices in
managed agroecosystems (Bethlenfalvay 1992). For example,
G. geosporum found in all treatment levels in this study has
also been reported as a dominant species of AMF communi-
ties from both natural (tropical deciduous forest—Allen et al.
1998; wetlands—Landwehr et al. 2002) and modified ecosys-
tems (human-induced pastures—Johnson et al. 1992; agricul-
tural fields—Baumgartner et al. 2005).

Kurle and Pfleger (1996) reported the genus Sclerocystis
to be absent from tropical soils when inorganic fertilizers are

Table 2 Frequency of occurrence (FO) of AMF species for each of the treatment levels used for weed control

AMF species Cover crop Mulch Chemical Traditional management FO (%)

Muc Lys Leu Her CD SD B

Acaulospora delicata Waker, Pfeiffer & Bloss + + 28.57

Acaulospora laevis Gerdeman & Trappe + + 28.57

Acaulospora morrowiae Spain & Schenck + + + 42.85

Acaulospora scrobiculata Trappe + + + + 57.14

Acaulospora undulata Sieverding + + + + 57.14

Rhizophagus (aff. fasciculatum) (Thaxt.) C. Walker & A. Schüßler + 14.28

Ambispora (aff. leptotichum) (N.C. Schenck & G.S. Sm.)
C. Walker, Vestberg & A. Schüßler

+ 14.28

Rhizophagus (aff. manihotis) (R.H. Howeler, Sieverd. &
N.C. Schenck) C. Walker & A. Schüßler

+ 14.28

Glomus aggregatum Schenck & Smith emend. Koske + + 28.57

Claroideoglomus claroideum (N. C. Schenck & G. S. Sm.)
C. Walker & A. Schüßler

+ + + + 57.14

Funneliformis constrictum (Trappe) C. Walker & A. Schüßler + + 28.57

Claroideoglomus etunicatum (W.N. Becker & Gerd.)
C. Walker & A. Schüßler

+ + + 42.85

Funneliformis geosporum (T.H. Nicolson & Gerd.)
C. Walker & A. Schüßler

+ + + + + + + 100

Rhizophagus intraradices (N.C. Schenck & G.S. Sm.)
C. Walker & A. Schüßler

+ + + + + 71.42

Funneliformis mosseae (T.H. Nicolson & Gerd.)
C. Walker & A. Schüßler

+ + + + + + 85.71

Sclerocystis dussii (Pat.) Höhn., Sber. Akad. Wiss. + 14.28

Sclerocystis rubiformis Gerd. & Trappe + + + 42.85

Scutellospora nigra (Redhead) Walker & Sanders + + + + + + + 100

Muc—cover cropMucuna deeringiana, Leu—mulch of Leucaena leucocephala, Lys—mulch of Lysiloma latisiliquum, Her—herbicide application,
CD—manual weeding, SD—no weeding, B—no weeding and no maize
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applied. Nonetheless, Sclerocystis dussii was found in the
CD treatment under maize, and Sclerocystis rubiformis in
the Muc, SD, and B treatments. It has been suggested that
these species are sensitive to agricultural impacts and will
only be found in low-impact agricultural systems such as
those used here, while they will be absent from high-impact
systems (involving the use of herbicides, insecticides, and/
or mechanization) (e.g., Guadarrama-Chávez et al. 2007;

Menéndez et al. 2001; Muthukumar and Udaiyan 2000;
Oehl et al. 2003).

With respect to the Acaulospora genus, a total of five
species were found (A. delicata, A. laevis, A. morrowae, A.
scrobiculata, and A. undulata). This number is greater than
that reported by Cuenca et al. (1998) for this genus in
tropical agroecosystems. Also, species belonging to Acau-
lospora are generally more abundant in acid soils (Allen et
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Fig. 3 Percent of AMF colonization in roots of maize and weed
species under each of the treatment levels used for weed control
(values shown are means+1 SE). Muc: cover crop Mucuna deeringi-
ana; Leu: mulch of Leucaena leucocephala; Lys: mulch of Lysiloma

latisiliquum; Her: herbicide application; CD: manual weeding; SD: no
weeding; B: no weeding and no maize. Different letters indicate
significant differences between treatment level means at P >0.05
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al. 1995), while pH values in the subplots of the present
experimental site were moderately alkaline (7.70–7.84). The
absence of species of this genus from the SD treatment may
be due to them being displaced by more competitive species
such as those belonging to Glomaceae (Dodd 2000; Douds
and Millner 1999).

In the present study, the only member of Gigasporaceae
identified in the experimental subplots was Scutellospora
nigra, which has also been reported in tropical forest soils in
Costa Rica (Johnson and Wedin 1997) and in soils with
different types of vegetation in Nigeria (Old et al. 1973).
When a disturbance occurs, AMF species with larger spore
sizes like those belonging to Scutellospora and Gigaspora
may be more susceptible to physical damage (Allen et al.
2003). However, the low presence of Gigasporaceae in the
present work may also relate to the relatively short time of
trap culturing since members of this family generally exhibit
a long vegetative phase before producing spores (de Souza
and Declerck 2003).

The similarity between the SD and B plots in terms of
AMF species composition may be related to the presence of
roughly the same number and identity of weed species in
both treatments which act as hosts for AMF. It has been
argued that increasing plant diversity in agroecosystems
may lead to an increased number of AMF species in the soil
(van der Heijden 2002). Also, higher density and AMF
species richness in undisturbed vs. disturbed soils has been
reported in tropical monocultures with added organic matter
(Boddington and Dodd 2000a, b).

The highest average AMF root colonization was ob-
served for the Muc and Leu cover treatments. This agrees
with reports that cover crops increase AMF colonization
levels in crops with maize (Boswell et al. 1998; Kabir and
Koide 2000). Differences in percent colonization between
treatment levels involving cover crops may also have been
due to differences in the effect each cover species had on the
community of weed species which are potential AMF hosts
(Baumgartner et al. 2005). The lowest AMF root coloniza-
tion occurred in the Her treatment plots (2.61 %). Although
it has been reported that normal rates of herbicide applica-
tion do not have a negative effect on the establishment and
function of arbuscular mycorrhiza (Smith et al. 1981), other
studies suggest that herbicides can negatively affect the
symbiosis (Allen and West 1993; Abd-Alla et al. 2000).
Mujica et al. (1999) reported a negative effect of two herbi-
cides on AMF colonization in weed species when they were
applied at levels greater than those recommended. Herbi-
cides can inhibit photosynthetic activity in plants, which
causes a reduction in the sugar production and availability
in the plant which may in turn limit the establishment of this
interaction and directly affect AMF (Abd-Alla et al. 2000;
Ocampo and Barea 1982; Trappe et al. 1984). The use of
herbicides may also select for specific weed species which
are resistant to them; this situation was observed for Par-
thenium hysterophorus in this study, which was by far the
most dominant species in Her treatment subplots. The high
abundance of this species may reduce both the abundance
and diversity of AMF due to a lower number of alternative
host plant species (van der Heijden 2002).

A low level of AMF colonization was expected for the
CD treatment level due to the displacement of superficial
soil cover during plant removal (Varma 1995). Nonetheless,
because manual weeding is conducted only once a year (ca.
20 days after maize is planted) AMF species loss is not
significant. On the other hand, greater percent colonization
levels may be expected for the B treatment level compared
to all other treatment levels because this treatment had the
greatest diversity of plants. Nonetheless, because the fallow
period is short, nutrient availability for plants is high
throughout the cycle compared to what occurs in subplots
subject to other treatment levels. This condition results in a
reduced benefit for the plant from the interaction (Gavito
and Miller 1998), which may even limit the establishment of
AMF.

Some authors (e.g., Rosemeyer et al. 2000) have sug-
gested that the use of cover crop species may favor the
presence and abundance of AMF due to increased availability
of organic matter and nutrients. The present study demonstrat-
ed that the use of cover crop species (both mulch and cover
crops) in a long-term maize production system contributes to
the maintenance of high levels of AMF species richness,
which in turn results in high levels of AMF colonization in
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Fig. 4 Overall percentage of AMF colonization in roots of maize and
weeds for each the treatment levels used for weed control (values
shown are means +1 SD). Muc: cover crop Mucuna deeringiana;
Leu: mulch of Leucaena leucocephala; Lys: mulch of Lysiloma latisi-
liquum; Her: herbicide application; CD: manual weeding; SD: no
weeding; B: no weeding and no maize. Different letters indicate
significant differences between treatment level means at P >0.05. In
all cases n035, except for treatment B where n030
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maize (and weeds). These findings are pertinent to sustainable
management practices in agroecosystems where non-
conventional weed control methods should not only contrib-
ute to increase crop production but should also avoid negative
effects on the beneficial biotic components of the agroecosys-
tem which include AMF.
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