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Abstract A pot experiment was conducted to examine the
effect of the arbuscular mycorrhizal (AM) fungus, Glomus
mosseae, on plant biomass and organic solute accumulation
in maize leaves. Maize plants were grown in sand and soil
mixture with three NaCl levels (0, 0.5, and 1.0 g kg−1 dry
substrate) for 55 days, after 15 days of establishment under
non-saline conditions. At all salinity levels, mycorrhizal
plants had higher biomass and higher accumulation of
organic solutes in leaves, which were dominated by soluble
sugars, reducing sugars, soluble protein, and organic acids
in both mycorrhizal and non-mycorrhizal plants. The
relative abundance of free amino acids and proline in total
organic solutes was lower in mycorrhizal than in non-
mycorrhizal plants, while that of reducing sugars was
higher. In addition, the AM symbiosis raised the concen-
trations of soluble sugars, reducing sugars, soluble protein,
total organic acids, oxalic acid, fumaric acid, acetic acid,
malic acid, and citric acid and decreased the concentrations
of total free amino acids, proline, formic acid, and succinic
acid in maize leaves. In mycorrhizal plants, the dominant
organic acid was oxalic acid, while in non-mycorrhizal
plants, the dominant organic acid was succinic acid. All the
results presented here indicate that the accumulation of
organic solutes in leaves is a specific physiological
response of maize plants to the AM symbiosis, which
could mitigate the negative impact of soil salinity on plant
productivity.
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Introduction

Salt-affected soils occupy approximately 7% of the global
land surface (Ruiz-Lozano et al. 1996). In China alone,
salinity affects about 3,630.5×104 hm2 land (Shi 1991). In
general, salinity limits plant growth and productivity,
especially in arid and semiarid regions (Apse et al. 1999).
Arbuscular mycorrhizal (AM) fungi widely occur in saline
environments (Sengupta and Chaudhuri 1990). Many
researchers reported that AM fungi could enhance the ability
of plants to cope with salt stress (Yano-Melo et al. 2003;
Rabie 2005; Jahromi et al. 2008) in improving mineral
nutrient absorption (Cantrell and Linderman 2001; Asghari
et al. 2005), maintaining ion balance (Zandavalli et al. 2004;
Giri et al. 2007), protecting enzyme activities (Giri and
Mukerji 2004; Rabie and Almadini 2005), and facilitating
water uptake (Berta et al. 1990; Ruiz-Lozano and Azcón
1995).

One of the most important responses of glycophytes to
salinity is the accumulation of osmotically active organic
solutes called osmolytes as a result of alterations in
intermediary and secondary metabolism of nitrogen and
carbon (Greenway and Munns 1980; Hasegawa et al. 2000;
Hoque et al. 2007). This response is an important
component of salinity tolerance in plants (Neocleous and
Vasilakakis 2007). Organic solutes, such as proline, free
amino acids, soluble protein, and sugars, maintain the
osmotic balance and protect enzymes in presence of high
cytoplasmic electrolyte concentrations (Greenway and
Munns 1980; Hajlaoui et al. 2010). The regulation of
organic acid metabolism also plays a key role in plant
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tolerance to saline conditions (Guo et al. 2010). The
accumulation of organic acids may serve as counter ions
to cations. They prevent toxic chloride accumulation in
cells, contribute to cytosolic pH regulation (Yang et al.
2007; Hatzig et al. 2010), and are important osmolytes in
plant vacuoles (Guo et al. 2010). Under salt stress,
Francoise et al. (1991) found increased citric acid concen-
tration in alfalfa roots, and Szalai and Janda (2009) found
increased salicylic acid synthesis in the leaves and roots of
young maize plants. It has been reported that AM fungi
could modify the accumulation of soluble sugars in
Trifolium alexandrinum (Khaled et al. 2003), soluble
protein in T. alexandrinum (Khaled et al. 2003), Glycine
max (Abdel-Fattah 2001), Vigna radiata (Rabie 2005),
Vicia faba (Rabie and Almadini 2005), and Lotus glaber
(Sannazzaro et al. 2006), and proline in Lactuca sativa
(Ruiz-Lozano et al. 1996; Jahromi et al. 2008) and T.
alexandrinum (Khaled et al. 2003).

Maize (Zea mays) is a very common crop in saline
soils in China. Salt stress can inhibit the growth of maize,
but this inhibition can be mitigated by the AM symbiosis
(Feng et al. 2000, 2002; Sheng et al. 2008) through the
modification of root morphology, and improvement of
root activity and photosynthetic capacity (Sheng et al.
2008, 2009). Little is known, however, about the effect of
the AM symbiosis on the regulation of organic solute
levels in maize plants under saline conditions. Two
studies reported an increase in maize shoot and root
soluble sugar content (Feng et al. 2002), and a decrease
in maize leaf proline content (Feng et al. 2000). In this
study, we tested the effect of the AM symbiosis on the
accumulation of organic solutes in maize leaves at
different levels of soil salinity. We measured the concen-
trations of proline, free amino acids, reducing sugars,
soluble sugars, soluble protein, and organic acids and
interpreted modifications with relation to possible mech-
anisms involved in the mitigation of salt stress by the AM
symbiosis in maize.

Materials and methods

Plant and soil

The soil (Eum-Orthic Anthrosols) used in this study was
collected from the top layer (0–20 cm) of a field where
maize (in summer) and wheat (in winter) were grown, in
Yangling City, Shaanxi Province, China. The soil (pH 7.6,
soil/water ratio of 1:2.5 w/v) contained 20 g kg−1 organic
matter, 37 mg kg−1 available nitrogen, 12 mg kg−1

available phosphorus, and 207 mg kg−1 available potas-
sium, measured as described by Bao (2000). The soil was
ground, sieved through 2 mm, and mixed with fine sand

(sand/soil, 1:2 v/v). The mixture was autoclaved at 121°C
for 2 h.

Seeds of maize cultivar Shandan 16, which is sensitive
to salinity, were surface-sterilized with 0.1% HgCl2 for
3 min, rinsed five times with sterile distilled water, and
allowed to germinate on moist sterile filter paper at 28°C.
Five pre-germinated seeds were sown in 3-l pot containing
2 kg of the sand/soil mixture. Seedlings were thinned to
two per pot 10 days after sowing. Plants were supplemented
once a week with 50 ml of a nutrient solution containing
6 mM KNO3, 1 mM NH4H2PO4, 2.6 mM MgSO4, 8 mM
Ca(NO3)2, 10 μM H3BO3, 1.6 μM MnSO4, 1 μM ZnSO4,
0.5 μM CuSO4, 50 μM (NH4)6Mo2O4, and 20 μM Fe-
EDTA. The solution pH was adjusted to 6.5±0.3 (Li and
Feng 2001).

AM inoculum

Glomus mosseae (Nicolson & Gerdemann) was isolated
from the rhizosphere of Agropyron cristatum in a saline soil
of the Inner Mongolia Autonomous Region, China, and
multiplied in pot cultures using Z. mays as a host. The
mycorrhizal inoculum consisted of soil containing spores
(306–420 per 100 g dry soil), mycelium, and root fragments
with a colonization level of 94%. Each pot received 30 g of
inoculum or 30 g of sterilized inoculum plus 10 ml
mycorrhizal fungi-free filtrate (1 μm) of inoculum washing
as the non-mycorrhizal treatment. Live and sterile inocula
were placed in a layer 3 cm below the maize seeds prior to
sowing.

Experimental design

The experiment was conducted in a greenhouse under a
temperature of 22–30°C, 12–14 h daylight, and 70–75%
relative humidity, between July and September 2006. Pots
were arranged in a randomized complete block design.
Treatments were factorial combinations of two factors: (1)
inoculation, with G. mosseae or non-mycorrhizal control,
and (2) salinity, with 0, 0.5, and 1.0 g NaCl kg−1 dry soil
mix. Ten pots were prepared for each treatment. In order to
avoid an effect of salinity on fine plants and AM
establishment, maize plants were grown for 15 days before
application of the NaCl treatments, which was achieved by
adding NaCl in irrigation water (0, 10, and 20 g l−1). To
avoid osmotic shock, NaCl was introduced gradually by
successively adding 20 ml of the NaCl solutions in each pot
every day for 5 days, starting at day 15 after sowing. In
total, each pot received 100 ml of a designated saline
solution. This brought the electrical conductivity (EC) of
saturated soil extracts to 0.8, 1.9, and 3.6 dS m−1 in the 0,
0.5, and 1.0 g kg−1 NaCl treatments, respectively. Leaching
was prevented by keeping soil water below field capacity at
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all times. EC of soil extract was monitored using a
conductivity meter (DDS-11A) and adjusted once a month.
Plants were harvested 70 days after sowing. Five pots of
each treatment were used to determine the biomass of
maize plants. The other five pots were used to determine
AM colonization rate and concentrations of soluble protein,
soluble sugars, reducing sugars, proline, total free amino
acids, and organic acids.

Measurement and analysis

The biomass of maize plants was determined after oven-
drying their root and shoot at 70°C for 90 h according to
the method described by Gao (2000).

To estimate AM colonization, roots were collected,
washed gently with tap water, and dried with paper towels.
A subsample of 0.5 g fresh roots was cleared 15 min in
10% KOH at 90°C, bleached in alkaline hydrogen peroxide
for 20 min, acidified in 1% HCl, and stained in lactophenol
blue (Phillips and Hayman 1970). Colonization was
estimated using the gridline intercept method described by
Giovannetti and Mosse (1980).

The reducing sugars, soluble sugars, total free amino
acids, proline, and soluble protein of the second fully
expanded leaf were measured according to the method
described by Gao (2000).

Organic acids were measured on the second fully
expanded leaf. A subsample of 1.5 g fresh leaf material
was selected for organic acid measurement. Organic
acids in maize leaves were extracted using the method
described by Gao (2000) and measured using high
performance liquid chromatography (Waters-510 equipped
with a Variable UV/Vis detector model 481). A hypersil
BDS column (C18, 4.6×250 mm, 10 μm) was used, and
the mobile phase was a 0.5% diammonium phosphate
solution (pH=2.5). The column was held at 30°C, the flow
rate of the mobile phase was 1.0 ml min−1, and the
detection wavelength was 205 nm.

Statistical analysis

The data was subjected to analysis of variance. Treatment
means were compared by Duncan's test at the 5% level
(SAS version 8.0).

Results

AM fungal colonization

Non-inoculated plants had no AM colonization. AM fungal
colonization of inoculated plants ranged from 99% to 79%
root length.

Plant biomass

Maize plants produced more biomass when mycorrhizal,
but plant productivity decreased with increasing salinity in
all plants (Fig. 1).

Soluble sugars, reducing sugars, total free amino acids,
proline, and soluble protein

Concentrations of soluble and reducing sugars were signifi-
cantly higher in mycorrhizal than in non-mycorrhizal plants
regardless of salinity level and decreased with increasing soil
salinity (Fig. 2a, b). At all salinity levels, total free amino
acids and proline concentrations were lower in mycorrhizal
than in non-mycorrhizal plants, although the difference in
total free amino acid concentration was not significant in the
0 g kg−1 NaCl treatment. Concentrations of total free amino
acids and proline increased with increasing salinity in non-
mycorrhizal plants, but not in mycorrhizal plants (Fig. 2c, d).
Regardless of salinity level, soluble protein concentration
was higher in mycorrhizal than in non-mycorrhizal plants,
although the difference between mycorrhizal and non-
mycorrhizal plants was not significant (Fig. 2e).

Organic acids

At all salinity levels, the concentration of total organic acids
was higher in mycorrhizal than in non-mycorrhizal plants,
although the difference was not significant in the 1.0 g kg−1

NaCl treatment. At 0, 0.5, and 1.0 g kg−1 NaCl levels, the
concentration of total organic acids in mycorrhizal plants
increased by 31.4%, 24.8%, and 8.1%, respectively,
compared with the corresponding controls (Fig. 3).

Oxalic, fumaric, acetic, malic, citric, formic, lactic, and
succinic acids were found in all plants, but the concen-
trations of these organic acids differed with plant mycor-
rhizal status. Differences were most striking for oxalic acid
and succinic acid, especially in the 1.0 g kg−1 NaCl
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Fig. 1 Biomass of maize plants inoculated (+M) or not (−M) with G.
mosseae and grown at three NaCl levels. Means (±SD) labeled with
different letters are significantly different (p<0.05, n=5) by Duncan's test
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treatment. The dominant organic acid in mycorrhizal plants
was oxalic acid, while in non-mycorrhizal plants, succinic
acid was dominant.

At all salinity levels, the concentrations of oxalic,
fumaric, acetic, malic, and citric acids were higher in
mycorrhizal than in non-mycorrhizal plants, although the
difference in concentrations of malic and citric acids was
not significant in the 0.5 and 1.0 g kg−1 NaCl treatment.
There were no significant differences in lactic acid
concentration between mycorrhizal and non-mycorrhizal
plants. At 0 and 0.5 g kg−1 NaCl levels, no significant
effect of inoculation on the concentrations of formic and
succinic acids was recorded, while at 1.0 g kg−1 NaCl level,

non-mycorrhizal plants had higher concentrations of both
organic acids (Fig. 4).

Organic solute concentrations and relative abundance

The amount of total organic solutes was higher in mycorrhizal
plants regardless of salinity level (Fig. 5). The AM symbiosis
reduced the relative abundance of free amino acids and
proline in total organic solutes, increased that of reducing
sugars, but did not significantly affect the balance of soluble
protein, organic acids, and soluble sugars (Fig. 6). The relative
abundance of soluble protein was high in the organic solutes
of all plants, while proline only accounted for 0.03–0.05% of
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Fig. 2 Concentrations of solu-
ble sugars (a), reducing sugars
(b), total free amino acids (c),
proline (d), and soluble protein
(e) in leaves of maize plants
inoculated (+M) or not (−M)
with G. mosseae and grown at
three NaCl levels. Means (±SD)
labeled with different letters
are significantly different
(p<0.05, n=5) by
Duncan's test
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solutes in mycorrhizal plants and for 0.27–0.33% in non-
mycorrhizal plants. Soluble sugars, reducing sugars, soluble
protein, and organic acids made up over 99% and 93% of the
organic solutes of mycorrhizal plants and non-mycorrhizal
plants, respectively (Fig. 6). Consequently, soluble sugars,
reducing sugars, soluble protein, and organic acids were the
dominant organic solutes in both mycorrhizal and non-
mycorrhizal plants.

Discussion

Free amino acids are important osmolytes contributing to
osmotic adjustment in plants (Hajlaoui et al. 2010). With
increasing external salt concentration, free amino acids
accumulate in the leaves and roots of maize (Abd-El Baki
et al. 2000; Neto et al. 2009; Hajlaoui et al. 2010). We also
observed the increase of free amino acid levels in maize
leaves under salt stress, but to a lesser extent in AM plants.
Among free amino acids, proline is a contributor to osmotic
adjustment in salt-stressed maize plants (Hajlaoui et al.
2010). Reports on the effect of AM symbiosis on proline
accumulation are somewhat contradictory. Some studies
have shown an increase in proline accumulation in
mycorrhizal plants subjected to salt stress (Khaled et al.
2003; Sharifi et al. 2007). Enhanced proline accumulation
in plant cells can increase plant osmotic potentials (Hajlaoui
et al. 2010) and abscissic acid level (Ober and Sharp 1994),
thereby improving the tolerance of mycorrhizal plants to
salinity. On the contrary, some studies have shown a
reduction of proline levels in AM plants under salt stress
(Duke et al. 1986; Ruiz-Lozano et al. 1996; Jahromi et al.
2008), as we have found in this study. This and the low
relative abundance of proline in total organic solutes
suggest that proline contributes little to osmotic balance
and salt tolerance in mycorrhizal plants. The lower
accumulation of proline in AM plants appears to indicate
a lower level of salt stress in mycorrhizal plants.

We found higher soluble protein concentrations in mycor-
rhizal than in non-mycorrhizal plants under salt stress. Similar
results were reported in L. glaber (Sannazzaro et al. 2006), V.
radiata (Rabie 2005), V. faba (Rabie and Almadini 2005), T.
alexandrinum (Khaled et al. 2003), and G. max (Abdel-
Fattah 2001). Normally, the steady-state levels of soluble
protein in plant cytoplasm depend on the rates of protein
degradation and synthesis (Guo et al. 1999). Thus, AM-
mediated increase in soluble protein has been attributed to
AM-mediated activation of certain plant genes (Ouziad et
al. 2006; Jahromi et al. 2008). However, the observation
of reduced levels of total free amino acids concurrent with
higher levels of soluble protein, in our study, suggests
that the AM-mediated increase in soluble protein concen-
tration is rather due to reduced protein degradation in AM
maize.

In our study, sugar (soluble sugars and reducing sugars)
accumulation in maize leaves decreased when salinity
increased, but at the same NaCl level, the AM symbiosis
favored sugar accumulation. Similar results were observed
in the shoots of V. radiata (Rabie 2005) and in roots and
shoots of maize (Feng et al. 2002). The high levels of
sugars in mycorrhizal plants may be the result of an
increase in photosynthetic capacity (Sheng et al. 2008; Wu
et al. 2009). The accumulation of sugars induced by the
AM symbiosis is a positive response to salt stress since
sugars can prevent structural changes in soluble protein,
maintain the osmotic equilibrium in plant cells, and protect
membrane integrity (Abd-El Baki et al. 2000).

Zhang et al. (2003) reported that AM fungal colonization
could change the concentrations of organic acids in root
exudates, thus causing a decrease in soil pH, soil electrical
conductivity, organic carbon, and an increase in soil
availability of N, P, and K (Hoffland et al. 1992; Dinkelaker
et al. 1997; Usha et al. 2004). With regard to the influence
of AM fungi on organic acid accumulation in plant tissues
under salt stress, our data firstly revealed that AM
symbiosis increases the accumulation of organic acids in
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maize leaves. It is well known that organic acids, as
metabolically active solutes, play a role in osmotic
adjustment (Guo et al. 2010), in the balance of cation
excess (Hatzig et al. 2010), and in pH homeostasis
(Hasegawa et al. 2000; López-Bucio et al. 2000; Hatzig et
al. 2010). Besides, high amounts of organic acids, espe-
cially malic acid, can enhance sugar synthesis through the
C4 pathway since it plays an anaplerotic role in delivering
CO2 to the Calvin cycle (Chollet et al. 1996). Thus, it
appears that AM-mediated accumulation of organic acids is
involved in the mitigation of deleterious effects of salt
stress in maize plants.

In addition, our data also indicated that AM symbiosis
changes the dominant organic acid in maize leaves, elevated
concentrations of oxalic, fumaric, acetic, malic, and citric
acids, decreased formic and succinic acid concentrations, but
did not significantly affect lactic acid concentration. This
suggests that the effect of AM symbiosis on organic acids
differed according to the organic acid. Increases in the
concentrations of oxalic, fumaric, acetic, malic, and citric
acids could compensate for a reduction in formic and succinic
acid levels in mycorrhizal maize and result in an overall
increase in organic acid concentration in the plant. As we
know, the AM symbiosis plays a key role in protecting
enzyme activity under salt stress (Giri and Mukerji 2004;
Rabie and Almadini 2005). This, together with the fact that
the metabolic regulation of organic acids under saline
conditions involves enzymes participating in basal metabolic
pathways—such as the tricarboxylic acid cycle, glyoxylate
cycle, or glycolysis—suggests that the observed changes in
organic acid synthesis result from the influence of the AM
symbiosis on enzyme activities in basal plant metabolic
pathways. In order to clarify the mechanisms of AM-
mediated changes in concentrations of organic acids, further
investigations should be conducted to define the effect of
AM symbiosis on enzyme activities regulating organic acid
synthesis and utilization.
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