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Abstract The beneficial effects of arbuscular mycorrhizal
(AM) fungi on plant performance and soil health are
essential for the sustainable management of agricultural
ecosystems. Nevertheless, since the ‘first green revolution’,
less attention has been given to beneficial soil micro-
organisms in general and to AM fungi in particular. Human
society benefits from a multitude of resources and processes
from natural and managed ecosystems, to which AM make
a crucial contribution. These resources and processes,
which are called ecosystem services, include products like
food and processes like nutrient transfer. Many people have
been under the illusion that these ecosystem services are
free, invulnerable and infinitely available; taken for granted
as public benefits, they lack a formal market and are
traditionally absent from society’s balance sheet. In 1997, a
team of researchers from the USA, Argentina and the
Netherlands put an average price tag of US $33 trillion a

year on these fundamental ecosystem services. The present
review highlights the key role that the AM symbiosis can
play as an ecosystem service provider to guarantee plant
productivity and quality in emerging systems of sustainable
agriculture. The appropriate management of ecosystem
services rendered by AM will impact on natural resource
conservation and utilisation with an obvious net gain for
human society.
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Introduction

Arbuscular mycorrhizas (AM) constitute a key functional
group of soil biota that can greatly contribute to crop
productivity and ecosystem sustainability in new plant
production strategies. AM fungi, able to establish a
symbiotic interaction with the root organs of 80% of plant
families, not only improve the growth of plants through
increased uptake of available soil phosphorus (P) and other
non-labile mineral nutrients essential for plant growth, they
have also ‘non-nutritional’ effects in stabilising soil
aggregates, in preventing erosion, and in alleviating plant
stress caused by biotic and abiotic factors (Smith and Read
2008). The beneficial effects of AM fungi on plant
performance and soil health are essential for the sustainable
management of agricultural ecosystems (Jeffries et al. 2003;
Barrios 2007). Nevertheless, since the ‘first green revolu-
tion’, less attention has been given to beneficial soil
microorganisms in general and to AM in particular.

Human society benefits from a multitude of resources
and processes from natural and managed ecosystems, to
which AM make a crucial contribution. These resources
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and processes, which are called ecosystem services, include
products like food and processes like nutrient transfer.
Growing human needs and demands have led to an increase
in resource demands imposed on ecosystems, greater global
consumption of natural resources and a significant decline
in ecosystem services. Many people have been under the
illusion that these ecosystem services are free, invulnerable
and infinitely available; taken for granted as public benefits,
they lack a formal market and are traditionally absent from
society’s balance sheet. Since 1997, economists and
ecologists have joined forces to estimate the annual value
of the services that ecosystems provide (Costanza et al.
1997; Daily 1997; Boyd and Banzhaf 2007; Wallace 2007;
Fisher and Turner 2008). Although most services lie outside
the market and are difficult to calculate, minimum estimates
equal or exceed global gross national product (Pimm 1997).
In 1997, a team of researchers from the USA, Argentina
and the Netherlands put an approximative price tag of US
$33 trillion a year on these fundamental ecosystem services.
This is nearly twice the value of the world’s gross national
product. In this study, two major ecosystem services, ‘soil
formation’ and ‘nutrient cycling’, were respectively esti-
mated to represent US $17.1 and 2.3 trillion (Costanza et al.
1997).

Whilst some countries use tax systems to protect the
environment by restraining levels of polluting activities (e.g.
carbon tax) or to stimulate development of environmentally
friendly policies (Ecological Tax Reform), Costa Rica is one
of the first countries to make a national effort to protect
ecosystem services (Pagiola 2007). In 1996, this country
adopted a law (Forestry Law No. 7575) recognising four
critical services provided by the nation’s forests: carbon
sequestration, hydrological services, biodiversity protection
and scenic beauty. This law establishes a framework for
payment for ecosystem services, set forth in a programme
entitled PSA (Pagos por Servicios Ambientales) adminis-
tered by the National Forestry Fund (FONAFIFO), in which
landowners and all future purchasers of the land contract to
provide against payment ecosystem services, for 20 years,
via reforestation, sustainable management, preservation and
regeneration activities.

The supply of agricultural products and ecosystem services
are evidently essential to human existence and quality of life;
however, recent agricultural practices that have greatly
increased global food supply have had inadvertent, detrimen-
tal impacts on the environment and on ecosystem services.
High-intensity agriculture has principally focused on produc-
tivity instead of integrating natural resource management into
food production security; mechanisation, monocultures, and
increased use of synthetic inputs (chemical fertilisers, pesti-
cides) have degraded water quality, reduced arable lands and
forest resources, and soil fertility (Foley et al. 2005). In
consequence, novel and expedient methods are needed to

manage Earth’s ecosystem services, the loss of which
will have important consequences for sustainable food
production in the face of an increasing world population.
Agriculture is the largest interface between humans and
environment, thus reconciling crop production and
environmental integrity, in other words sustainable crop
production, is a major challenge for agriculture and
future farmers (Robertson and Swinton 2005). This
implies the need to develop crop management strategies
that optimise soil fertility, biological diversity and crop
robustness (Altieri 1995) by creating forms of agro-
ecosystems that respect natural ecological processes and
support productivity in the long term (Altieri 1999).

In this context, the ecosystem services rendered by soil
biota in maintaining soil quality, plant health and soil
resilience are extremely pertinent (Smith and Read 2008).
In particular, soil microorganisms that form mutually
beneficial relationships with plant roots have become a
target of increasing interest in agricultural research and
development because they offer a biological alternative to
promote plant growth and reduce inputs in sustainable
cropping systems (Hart and Trevors 2005). The ubiquity of
AM fungi at the interface between soil and plant roots
makes them a key functional group of soil biota which by
their nutritional and non-nutritional activities profoundly
influences ecosystem processes that contribute to the
ecosystem services in agroecology. Our aims in this review
are to highlight the key role that the AM symbiosis can play
as an ecosystem service provider (for an overview see
Table 1) to guarantee plant productivity and quality in
emerging systems of sustainable agriculture. The appropri-
ate management of ecosystem services rendered by AM
will impact on natural resource conservation and utilisation
with an obvious net gain for human society.

Services provided by arbuscular mycorrhiza
in agrosystems

The evolutionary history of land plants is closely entwined
with the evolution of AM fungi; earliest evidence for the
existence of Glomeromycetes comes from spores and
hyphae observed in Ordovician fossils, dating back some
460 million years ago (Redecker et al. 2000). At this time,
land plants were at a very early evolutionary stage (Gensel
2008) and had most likely reached the morphological
complexity of todays liverworts and hornworts.
Arbuscule-like structures in plant fossils from the Devonian
period (400 million years) indicate the probable presence of
AM associations (Remy et al. 1994), although at this time
plants had still not evolved roots as such, so that the
existence of AM is older than that of true roots (Roth-
Nebelsick and Konrad 2003). This early morphological
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integration of plant and fungal tissues is likely to be
reflected in both partners by basic genomic and metabolic
programmes which have persisted throughout the ages.
However, plants have strongly diversified with evolution,
reaching approximately 260,000 extant species, which in
many cases can be assigned to defined ecological niches or
habitats. In contrast, Glomeromycetes appear to have
remained relatively unchanged over hundreds of millions
of years, a situation that has been interpreted as morpho-
logical stasis (Croll and Sanders 2009), and no more than
200 morphospecies of these fungi are known today
(Schüssler et al. 2001; http://www.amf-phylogeny.com).
Most agricultural crop plants develop AM. As the existence
of relatively high diversity of AM fungi and the use of
intensive management practices in agricultural systems are
often but not always incompatible (Hijri et al. 2006), the
question arises as to the agroecological benefit of such
diversity.

It can be hypothesised that a diverse community of AM
fungi may offer a diverse pool of ecosystem services, but
clearly more work is needed on diversity/function relation-
ships in order to be able to answer this question. On the one
hand, AM fungal species/isolates can show clear physio-
logical diversity (Giovannetti and Gianinazzi-Pearson 1994;
Munkvold et al. 2004) whilst, on the other, selection or
breeding for plant varieties under high-nutrient conditions
which ignore symbiotic activity can lead to the generation
of plant genotypes which are less or non-receptive to
mycorrhiza (Hetrick et al. 1993; Toth et al. 1990; Zhu et al.
2001). Similar lose of symbiotic activity due to selection
has been observed for soya bean (Kiers et al. 2007). Such
deleterious effects on symbiotic function, which are likely
to go unnoticed in high-input agriculture, will be highly
relevant under low-input conditions. In this context, efforts
need to be made to elucidate the possible negative impact
of breeding on AM function by comparing conventionally
bred varieties with those adapted to low-input conditions
(Hildermann et al. 2010). However, it should be underlined

that no case is known where a host plant has completely
lost its ability to form AM through regular selection or
breeding activities. It has even been suggested that in the
absence of a positive growth response of the host plant, the
fungal symbionts may still be responsible for a large part of
phosphate uptake in AM plants (Smith et al. 2009). Based
on the finding that plant diversity influences AM fungal
diversity (Johnson et al. 2003), evidence is accumulating
that long-term monocropping may have a deleterious effect
on AM fungal diversity although it may be difficult in each
case to separate direct effects from accompanying factors of
intensive agricultural management such as high-nutrient
and pesticide input, soil disturbance (An et al. 1993; Oehl et
al. 2003; Hijri et al. 2006).

In conclusion, the mycorrhizal symbiosis is an essential
component of most plants and the challenge for agriculture
today lies in the possibility to take advantage of the
numerous ecosystem services of soil stabilisation, bioferti-
lisation, bioprotection, bioregulation offered by this natural
resource.

AM fungi increase soil stability

During development of AM, the fungal symbionts grow out
from the mycorrhizal root to develop a complex, ramifying
network into the surrounding soil which can reach up to
30 m of fungal hyphae per gramme of soil (Cavagnaro et al.
2005; Wilson et al. 2009). This network can make up to
50% of fungal mycelium in soil (Rillig et al. 2002) thereby
representing a major part of the soil microbial biomass
(Leake et al. 2004). This mycelial network can have a
binding action on the soil and improve soil structure. In
addition, the secretion by AM fungi of hydrophobic,
‘sticky’ proteinaceous substances, referred to as glomalin
(Rillig et al. 2002), also contributes to soil stability and
water retention (Bedini et al. 2009). The combination of an
extensive hyphal network and the secretion of glomalin is

Table 1 Overview of the main roles that the AM symbiosis can play as an ecosystem service provider

AM function Ecosystem service(s) provided

Root morphology modification and development of a complex,
ramifying mycelial network in soil

Increase plant/soil adherence and soil stability (binding action
and improvement of soil structure)

Increasing mineral nutrient and water uptake by plants Promote plant growth while reducing fertiliser requirement

Buffering effect against abiotic stresses Increased plant resistance to drought, salinity, heavy metals
pollution and mineral nutrient depletion

Secretion of ‘glomalin’ into the soil Increased soil stability and water retention

Protecting against root pathogens Increased plant resistance against biotic stresses while reducing
phytochemical input (see Tables 2 and 3)

Modification of plant metabolism and physiology Bioregulation of plant development and increase in plant
quality for human health
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considered to be an important element in helping to
stabilise soil aggregates (Andrade et al. 1998; Rillig and
Mummey 2006), thereby leading to increased soil structural
stability and quality (Bedini et al. 2009; Caravaca et al.
2006).

Agronomic practices such as monoculture cropping,
ploughing, or fertilisation have frequently been observed
to have a negative impact on the amount as well as the
diversity of AM fungi present in soils (Helgason et al.
1998; Oehl et al. 2005). A reduction in fungal biomass
will result in a negative effect on soil stability and
consequently increase the risk of soil erosion. This is not
to be underestimated; in the UK, productivity loss due to
soil erosion of agricultural soils has been estimated to 9.99
million €/year (Görlach et al. 2004). Since soil is a non-
renewable resource on a human time-scale, the impact of
erosion is often cumulative and in most instances
irreversible.

AM fungi reduce the need for phosphate fertiliser inputs

Phosphate, which is an essential mineral nutrient for plant
growth, is one of the three main mineral nutrients applied in
agriculture. Rock phosphate sources are limited and on the
basis of the presently known world phosphate reserves,
most of the phosphate mines will be depleted in about
100 years (Herring and Fantel 1993; http://minerals.usgs.
gov/minerals/pubs/mcs/2008/mcs2008.pdf). Although the
consumption of triple-phosphate has been reduced in
developed countries between 2000 and 2006 by 36%,
reaching an annual amount of 0.3 million tonnes, whereas
in the mean time it increased by 36% in the developing
countries reaching an annual amount of 2.1 million tonnes
(www.fertilizer.org/ifa/ifadata/search). Excess application
of phosphate fertilisers is an important cause of water
eutrophication, and therefore improvement of phosphate
uptake efficiency by plants is a priority. Inorganic phos-
phate (Pi) has very limited diffusion capacities in soils and
its rapid absorption from the soil solution by plant roots
generates Pi depletion zones at the root surface resulting in
a decline of directly absorbed Pi by the plant surface
(Marschner and Dell 1994; Roose and Fowler 2004). The
network of fungal mycelium connected to AM roots
increases by several orders of magnitude the soil volume
which can be explored by a plant so that a mycorrhizal root
is more efficient in phosphate uptake than a non-
mycorrhizal root (Smith and Read 2008). Under given field
conditions, it has been estimated that a reduction of 80% of
the recommended phosphate fertiliser could be supple-
mented by inoculation with AM fungi (Jakobsen 1995). It
is evident that such reductions in phosphate application
have important economical and environmental impacts.

AM fungi increase crop plant tolerance against abiotic
stresses

Abiotic stresses cause extensive losses to agricultural
productivity. Mineral depletion, drought, salinity, heavy
metals or heat are serious problems in many parts of the
world, in particular in arid and semi arid areas (Evelin et
al. 2009). It is predicted that two thirds of cultivable land
may disappear in Africa, a third in Asia and one fifth in
South America by 2025 and that arable land area per
inhabitant in the world will be reduced to 0.15 ha in 2050
(http://www.un.org/esa/sustdev/documents/agenda21/
french/action12.htm). In the USA and Spain, one third of
the country is undergoing desertification. The potential
of AM fungi to enhance plant tolerance in abiotic stress
conditions has long been recognised (Smith and Read
2008) and their manipulation in sustainable agricultural
systems will be of tremendous importance for soil quality
and crop productivity under severe edapho-climatic con-
ditions (Lal 2009).

Amongst more recent examples of the use of benefi-
cial soil microbes to improve crop tolerance against
abiotic stress conditions, studies of the synergistic effect
of co-inoculated bacteria and AM fungi from dry
environments on plant growth under drought stress
(Marulanda-Aguirre et al. 2008; Marulanda and Barea
2009) underlines the interest of manipulating autochtho-
nous AM fungal isolates from dry soils for revegetation of
degraded land sites to improve soil quality, and to fight
desertification in Mediterranean ecosystems. For example
an indigenous drought-tolerant strain of Glomus intra-
radices associated with a native bacterium reduced by
42% the water required for the production of Retama
sphaerocarpa (Marulanda et al. 2006). AM fungi alleviate
stress salinity in olive tree plantations in Spain or in arid
North Africa where palm grove yields are considerably
affected by drought and soil salinity (Bouamri et al. 2006;
Porras-Soriano et al. 2009).

Another area where AM fungal inoculation has
become a prospective tool for enhancing plant tolerance
to environmental stress conditions is in the revegetation
of naturally or industrially metal-contaminated soils.
There are many examples in the literature to illustrate
this role of the AM symbiosis, although the underlying
mechanisms are not yet fully understood (Khade and
Adholeyavan 2009). The occurrence of AM in Ni-
hyperaccumulating plant species found naturally on
metal-rich soils offers possibilities of using heavy metal-
hyperaccumulating plants together with AM fungi for
phytoremediation strategies (Turnau and Mesjasz-
Przybylowicz 2003; Gamalero et al. 2009). Furthermore,
many phosphate fertilisers are a major source of soil
contamination by cadmium in agricultural systems
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(Lugon-Moulin et al. 2006; Nziguheba and Smolders
2008) which again pleas for the reduction of crop reliance
on phosphate fertilisers. AM fungi, through their myceli-
um network, not only improve Pi uptake by roots but they
also have a buffering effect on the cadmium uptake,
reducing the toxic effect of cadmium on plant growth
(Rivera-Becerril et al. 2002; López-Millán et al. 2009).

AM fungi protect plants against biotic stresses

To limit the spread of pests causing great yield losses in
cultivated crops, conventional agriculture has been using
large quantities of pesticides as well as plant breeding
programmes in order to obtain disease-resistant plants.
However, pesticides are often only partially effective
against soil-borne diseases. Moreover, they are detrimen-
tal to human health and to the environment and as a
consequence an ever-increasing number of pesticides is
being taken off the market. In addition, disease resistance
obtained by plant breeding programmes is often due to
single plant genes, which can be rapidly overcome by
evolutionary biodiversity in pathogenic agents. Comple-
mentary approaches have therefore to be developed to
ensure durable tolerance of plants to pathogens.

Numerous studies have demonstrated the beneficial
effect of AM fungi in increasing plant tolerance to
biotic stress caused by soil-borne pathogens interacting
with many plant species. This has been consistently
shown for a number of pathogenic fungi or Oomycetes
such as Fusarium, Rhizoctonia, Verticillium, Thievalop-
sis, Aphanomyces, Phytophthora and Pythium, as well as
nematodes from the genera Heterodera, Meloidogyne,
Pratylenchus and Radopholus (reviewed in Harrier and
Watson 2004; Whipps 2004; Hao et al. 2009). Most of the
research has been carried out under very controlled
conditions at early stages of plant growth but a few
studies conducted in the field or in the greenhouse under
real production conditions confirm these results (Bødker
et al. 2002; Newsham et al. 1995; Torres-Barragan et al.
1996; Utkhede 2006). It would be too difficult to present
here all the papers published on this topic. Instead we
have chosen to illustrate this by results obtained for
tomato which is one of the most widely grown vegetables
in the world, and which is susceptible to many insects,
bacteria and nematodes causing significant reduction in
fruit yield (34%) under current production practices
(Engindeniz 2006). Although this plant is not highly
responsive to AM fungi in terms of plant growth (Smith et
al. 2009), it clearly benefits from mycorrhization when
challenged by root pathogens such as Fusarium oxy-
sporum f. sp. radicis-lycopersici, Rhizoctonia solani,
Phythophthora parasitica or Meloidogyne incognita

(Table 2). In this case, root colonisation by AM fungi
can largely reduce root infection and disease severity
caused by the pathogens, resulting in increases in plant
fresh weight (up to 198%) and fruit yield (14.3%) as
compared with pathogen-infected non-mycorrhizal plants
(Table 2). This clearly justifies the comparison of
mycorrhiza to a ‘health insurance’ for plants (Gianinazzi
and Gianinazzi-Pearson 1988). Variation, however, exists
in the efficiency of bioprotection between AM fungal
species or isolates (Martinez-Medina et al. 2009; Pozo et
al. 2002; Thygesen et al. 2004; Utkhede 2006). None-
theless, even where there is no immediate positive effect
on plant growth and yield (Table 2), a reduction in
disease development can be beneficial for decreasing
pathogen populations in the soil and this may have a
positive impact on following crops.

Overall, the greater tolerance of mycorrhizal plants
against root pathogens provides bioprotection as an
ecosystemic service for sustainable agriculture since it can
be active against a wide spectrum of pathogens and could
complement innovative multiple allele quantitative resis-
tance obtained by plant breeding.

AM enhance plant quality for human health

Mineral content and secondary metabolites of crops used as
food or medicinal remedies can be beneficial in preventing
diseases such as cancer, cardiovascular and neurodegener-
ative diseases or microbial infection (Cummings and
Kovacic 2009; Seeram 2008). For example, zinc deficiency
alters the immune and gastrointestinal systems, blood cell
development, thyroid hormone metabolism as well as
pancreas, liver and brain activity, and can increase risks of
diabetes, coronary artery disease and cancer (Cummings
and Kovacic 2009). Approximatively 30% of the world’s
soils are Zn deficient, particularly in tropical areas
(Cavagnaro 2008) and this leads to reduced yields and Zn
content in crop products, resulting in inadequate dietary Zn
intake for many human populations and a negative impact
on human health. Several studies have reported that AM
can increase Zn uptake by plants even under field
conditions (Cavagnaro 2008). For example, the Zn content
in shoots and fruits of field-grown wild-type mycorrhizal
tomato plants was found to be up to 50% higher than in a
mutant with reduced mycorrhizal colonisation (rmc) (Cav-
agnaro et al. 2006).

It is also becoming evident that the AM symbiosis can
stimulate the synthesis of plant secondary metabolites,
which are important for increased plant tolerance to abiotic
and biotic stresses or beneficial to human health through
their antioxidant activity (Seeram 2008). These bioactive
compounds include organosulfides, polyphenols (phenolic
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acids, anthocyanins, flavonoids), phytosterols, stilbenes,
vitamins, lignans and terpenoids including carotenoids
(Hooper and Cassidy 2006; Kirby and Keasling 2009; Stan
et al. 2008). Although it is well-known that AM fungi can
stimulate synthesis of phenolic compounds (phenolic acids,
flavonoids) and activate the carotenoid pathway in roots
(Harrison and Dixon 1993, 1994; Morandi 1996; Schliemann
et al. 2008; Strack and Fester 2006), only a few analyses
have targeted final crop products (leaves, roots or fruits) of
mycorrhizal plants used in food or in medicinal remedies
(Table 3). Nonetheless, these studies indicate that activation
of plant secondary metabolism in response to AM fungi
can result in increases in essential oil concentration of
plant tissues or in the content of individual molecules.
The reported data also show that even under field
conditions AM fungi can enhance leaf, fruit or bulb
accumulation of many molecules with medicinal interest
(Table 3). For example, the 95% increase in artemisinin
concentration in leaves of mycorrhizal Artemisia annua
(Chaudhary et al. 2008) is of both medical and economical
interest since artemisinin, which is highly priced, is
considered as the best treatment for uncomplicated malaria
when used as part of a combination therapy (Kirby and
Keasling 2009).

It is however important to note that the beneficial impact of
AM fungi on plant mineral and secondary metabolite contents
depends not only onAM fungal species or isolates, but also on
plant genotype and fertilisation regime (Chaudhary et al.
2008; Gianinazzi et al. 2008; Khaosaad et al. 2006; Perner et
al. 2008; Sailo and Bagyaraj 2005; Toussaint et al. 2007),
which again underlines the need to develop crop manage-
ment strategies using appropriate plant/AM fungal combina-
tions and culture practices for the production of mycorrhizal
plants with nutritional quality.

Necessary resources for future management of AM
ecosystem services

In the context of fingerprinting AM fungal activity in situ,
international culture collections such as INVAM (http://
invam.caf.wvu.edu), IBG (http://www.kent.ac.uk/bio/beg/)
or GINCO (http://emma.agro.ucl.ac.be/ginco-bel/) which
hold well-defined isolates could help considerably by
acting as a germplasm reference reservoir for managing
the contribution of mycorrhizal fungi to ecosystem services.
The activity of these collections could expand and evolve
towards providing innovative on-request services aimed at
(a) preserving commercial fungal lines, (b) assessing
inoculum quality for industrials and producers (quality
label) (Gianinazzi et al. 1989), (c) exploiting molecular
technologies to elaborate molecular probes to identify (bar-
coding) or monitor AM fungi and (d) providing technicalT
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information and training for industrials and users (http://
www2.dijon.inra.fr/pme/index.htm).

AM fungi vary in their ability to provide ecological
services and suitable tools have to be defined in order to
fully evaluate their contribution. Molecular tools have
considerably improved the possibility to identify and
monitor AM fungi in ecosystems but a quick and reliable
test for evaluating their functionality is still lacking. The
alkaline phosphatase test has represented a first attempt
towards this goal (Tisserant et al. 1993).

Concluding comments

With the development of industrial agriculture, field labour
and chemical input have «substituted» ecosystem services
but the high amounts of energy and chemical products
needed to support this production system have reached a
limit (IAASTD report 2008). If the risk of large, costly,or
irreversible changes is to be reduced or avoided, future
(modern) agriculture should be based on the implementa-
tion of ecological management practices that deliberately
maintain resilience of ecosystem services. This means
integrating the development of crop management strategies
that optimise the impact of beneficial microbes, like AM
fungi, on plant production. Present-day industrial agricul-
tural practices place several constraints on the use of
services provided by mycorrhiza; however in order to
manipulate AM fungi and to achieve their efficient use for
long-term agricultural stability and productivity, we have to
increase our knowledge on the impact of different produc-
tion strategies on both the diversity of AM fungal
communities and its relation to production quantity and
quality. Future work has to focus on the:

– reduction of (a) tillage which disrupts the mycelial
network and reduces AM fungal diversity, (b) bare
fallows which impact on AM fungal diversity by the
absence of host-plants, (c) chemical fertiliser usage
which decreases AM fungal root colonisation, (d) the
use of non-mycorrhizal crops in rotation which
decreases the abundance of AM fungi through allelo-
pathic effects, (e) biocide and soil fumigant treatments
toxic to AM fungal communities;

– development of production strategies, which mimic
natural processes via (a) the use of organic fertilisers
promoting AM fungal colonisation and effectiveness, (b)
the promotion of ley farming periods to increase AM
fungal potential and diversity, (c) the diversification of
crop rotations with limited use of non-mycorrhizal crops
in order to increase AM fungal populations and diversity,
(d) the inoculation with mixed AM fungal inocula to
overcome detrimental effects of management practices on
AM fungal populations.T
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A key point in the application of such management
methods is a change in breeding strategies from the
selection of plants adapted to high fertiliser and biocide
usage to the selection of plants with increased capacities to
exploit AM fungal attributes

The large-scale exploitation of AM fungi into plant
production systems has so far been hampered by (a) the use
of selected crop varieties that are recalcitrant to mycorrhizal
fungi, (b) the decreased implementation of crop rotation
systems and (c) excessive chemical inputs. Additional barriers
to rationally exploiting beneficial soil microbes like AM fungi
as ecosystem services range from economical, technical and
cultural aspects to legislative policy. The development of the
mycorrhiza inoculum producing industry is faced with these
different problems, which limits its contribution to the
development of AM fungi as ecological services in agricultural
soils. Nevertheless, considerable progress has been made in the
last decade towards the use of AM fungi, particularly for the
production of high value crops such as ornamentals or fruit
trees. Furthermore, recent knowledge on the optimization of the
role of AM fungi in the production of health-related biomole-
cules by fruits or vegetables having pharmaceutical properties is
opening a new window for the mycorrhizal industry.
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