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Abstract An in vitro presymbiotic system between
mesquite [Prosopis laevigata (Willd.) M.C. Johnst], a
semi-arid leguminous plant, and pregerminated spores of
Gigaspora rosea Nicol. & Schenck was established. After
characteristic hyphal branching, high performance liquid
chromatographic analyses of methanol extracts from P.
laevigata roots revealed a concentration change in one
ultraviolet-detectable product. This product was identified
by nuclear magnetic resonance and mass spectrometry as
trigonelline, a pyridine alkaloid. The concentration of
trigonelline was constant in the aerial parts of the plant
with or without G. rosea, but its concentration in the roots
increased 1.8-fold when G. rosea was present. Trigonel-
line may be a regulatory factor during early signal events
in the establishment of the arbuscular mycorrhizal
symbiosis in P. laevigata.

Keywords Gigaspora rosea · Prosopis laevigata ·
Trigonelline · Semi-arid legume · Mesquite

Introduction

The symbiosis between land plants and arbuscular
mycorrhizal (AM) fungi is one of the plant-fungus
interactions most widely distributed in nature. Of the
231,000 known angiosperms, 80–90% can form a sym-
biosis with 150 AM fungal species (Koide and Schreiner
1992). This widespread distribution is due to the mutual
benefits for both the plant and the fungus. The fungus
receives photosynthetic products and becomes an exten-
sion of the roots, increasing plant capacity to absorb water
and nutrients such as phosphorus (Smith and Gianinazzi-
Pearson 1988; Brundrett et al. 1996). This close associ-
ation has increased the geographical distribution of plants,
and fossil evidence suggests that it permitted the coloni-
zation of land (Phipps and Taylor 1996).

The interaction between plant host and AM fungus
begins in the presymbiotic phase and the establishment of
mechanisms of signalling/recognition/communication in
each partner determines the intraradical colonization of
the host. The molecular bi-directional mechanisms in-
volved in the recognition between host plant and the AM
fungus in the presymbiotic phase are poorly understood
(Nagahashi et al. 1999). The earliest defined response of
recognition in the fungus is host-induced hyphal branch-
ing, but the trigger compounds released by the plant are
still unknown. In the early 1990s, Giovannetti et al. (1993,
1996) used a membrane to separate a host plant (Ocimum
basilicum L., Latuca sativa L. or Lycopersicum esculent-
um Mill.) and an AM fungus (Glomus mosseae, Glomus
intaradices or Glomus sp.). When the fungus was
physically separated from the host plant, hyphal differ-
entiation occurred in the form of extensive branching.
This was not observed with non-host plants (Gianinazzi-
Pearson 1996). This morphogenetic response without
direct contact between fungus and roots of the host plant
was the first evidence that a soluble factor from the host
plant (Bonfante-Fasolo and Perotto 1992), also called
branching factor (Buee et al. 2000), is involved in hyphal
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differentiation. Many authors proposed flavonoids as the
most likely candidates for the branching factor in the AM
presymbiotic phase (Gianinazzi-Pearson et al. 1989;
B�card et al. 1992), as flavonoids play a key role in
presymbiotic communication between leguminous plants
and rhizobia (Spaink 1998).

The results of recent studies, however, suggest that
flavonoids are not essential as a branching factor in AM
presymbiosis. Buee et al. (2000) found hyphal branching
in a bioassay with pregerminated spores of Gigaspora
gigantea and exudates of a maize mutant deficient in
chalcone synthase, which is essential in the biosynthesis
of flavonoids. These results suggest that other metabolites
are involved in the presymbiotic communication between
plant host and AM fungus. Secondary metabolites like
polyacetates, terpenoids or alkaloids play a key role in
plant-microbe interactions and are essential for survival of
a plant in its natural environment (Paiva 2000). In
mycorrhizal roots of barley colonized by Glomus in-
traradices, Peipp et al. (1997) found fungus-induced
accumulation of secondary metabolites such as amides
and sesquiterpenoid cyclohexenone derivatives. The ac-
cumulation of these compounds was also confirmed in
wheat and maize colonized by Glomus intraradices,
Glomus mosseae or Gigaspora rosea Nicol. & Schenck
(Vierheilig et al. 2000) and in the non-gramineous plant
Nicotiana tabacum with Glomus intraradices (Maier et al.
1999). However, the accumulation of these cyclo-
hexenone derivatives appeared to be related to the
establishment of a functional mycorrhiza.

We investigated secondary metabolites in mesquite
(Prosopis laevigata (Willd.) M.C. Johnst), a semi-arid
leguminous plant, during the presymbiotic phase. P.
laevigata is known to form symbioses with both rhizobia
and AM fungi, such as Gigaspora rosea (Stutz et al.
2000). We established an in vitro presymbiotic system in
which the roots of P. laevigata were placed close to
pregerminated spores of Gigaspora rosea and a control
treatment in which no spores were present. Spectroscopic
data, including nuclear magnetic resonance (NMR), mass
spectrometry (MS) and ultraviolet (UV) spectroscopy,
identified trigonelline as the component in the roots
showing the greatest change in concentration when in
contact with the spores of Gigaspora rosea.

Materials and methods

Plant material

Undamaged and uniform seeds of P. laevigata were scarified by
submerging in 98% sulphuric acid for 8 min, rinsed five times in
distilled water and then submerged in 30% hydrogen peroxide to
disinfect the seeds. The scarified and disinfected seeds were
germinated on nutritive agar for 3 days. The plantlets free of
microorganisms were aseptically transferred to Magenta GA-7
vessels (Sigma, St. Louis, Mo., USA) and cultivated in solid M
medium (B�card and Fortin 1988) until the root and cotyledons
developed after 3 days.

AM fungus preparation

Spores of Gigaspora rosea (BEG 9; La Banque Europ�enne des
Glomales; International Institute of Biotechnology, UK) multiplied
in leek pot cultures (Allium porrum L.) were isolated by wet
sieving, surface sterilized according to B�card and Fortin (1988)
and stored on magnesium sulphate heptahydrate, 0.1% gelrite
upside down at 4�C until used. Healthy cream-coloured spores were
selected with the aid of a stereomicroscope and aseptically
transferred to Petri dishes containing solid M medium without
sucrose for germination.

In vitro presymbiotic system

Plants with 2-cm roots and well-developed cotyledons cultivated in
Magenta GA7 vessels were transferred under sterile conditions to
upright perforated 90-mm-square plastic sterile Petri dishes with
80 ml of solidified 5% gelrite M medium. The Petri dishes were
wrapped in sterile aluminium foil so that the roots developed in the
dark, and placed in sterile sun-transparent bags (Sigma). The plants
were cultured in a growth cabinet (26�C € 0.5, relative humidity
30%, 16–8 h light-dark period, light intensity 3000 lux) for 1 week.
Individual aseptically germinated spores of Gigaspora rosea
obtained as described above were placed under sterile conditions
close to the roots of P. laevigata (ca. 5 mm) and cultivated under
the same growth conditions. Pregerminated spores of Gigaspora
rosea in the in vitro presymbiotic system were monitored daily with
a stereomicroscope to determine the effect of the roots on the
pattern of hyphal elongation.

The experiments were set up in triplicate and repeated three
times. A control treatment without spores was included.

Extraction of roots and aerial parts and high performance
liquid chromatography

Plants were harvested from the in vitro presymbiotic system after
1 week when hyphal branching occurred. The roots and aerial parts
were submerged separately in liquid nitrogen and mortar crushed.
A subsample of 1 g fresh tissue was extracted twice with 5 ml 80%
aqueous methanol, first for 15 min and then for 30 min. The two
filtrates were mixed and the methanol vacuum evaporated; the
aqueous residue was frozen and lyophilized. The lyophilized
residue was redissolved in methanol, centrifuged at 6000 rpm and
purified over a C18 cartridge (Spe-ed Applied Separations,
Allenton, Pa., USA).

An aliquot of 20 �l was taken from the purified methanol
extract, and injected into a Varian chromatograph ProStar 330 with
a photodiode array detector (Varian, Walnut Creek, Calif., USA)
equipped with a 5-�m silica C18 column (25 � 4.6 mm i.d.;
Supelco, Bellefonte, Pa., USA). Trigonelline was separated using a
modified linear gradient according to Maier et al. (2000) at a flow
rate of 1 ml min–1 for 60 min from solvent A (1% aqueous
phosphoric acid) to solvent B (80% aqueous acetonitrile). Trigo-
nelline was detected by photometry at 265 nm according to the
trigonelline l maximum, which was selected by using a maxplot
between 220 nm and 400 nm.

Identification of trigonelline

The purified methanol extract was concentrated to 500 �l, spotted
on silica gel 60 F254 thin layer chromatography (TLC) plates of 200
�m (Merck, Darmstadt, Germany) and developed in acetone-water
(1:1). The trigonelline band (located by UV light) was compared
with an authentic sample of trigonelline (Sigma). The 1H NMR
spectrum of trigonelline from the purified methanol extract was
registered on a Varian Mercury 300 spectrometer operating at
300 MHz for 1H and using a tetradeuterated methanol solution in a
5-mm tube. The solvent residual peak at d 3.34 was used as internal
reference. This spectrum was compared with the 1H NMR spectrum
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of an authentic sample of trigonelline. The mass spectra of the
trigonelline standard and the trigonelline from the purified meth-
anol extract were registered on a Varian Saturn 2000 spectrometer.
Trigonelline concentrations were determined from the high perfor-
mance liquid chromatography data employing a calibration curve.

Results and discussion

In previous experiments in our laboratory, we established
monosporic cultures of P. laevigata and pregerminated
spores of Gigaspora rosea (BEG 9; La Banque Eu-
rop�enne des Glomales; International Institute of Bio-
technology, UK) and confirmed their mycorrhizal
association (data not shown).

The fungal response was observed 1 week after contact
between the roots of P. laevigata and the Gigaspora
spores and was characterized by stimulated hyphal growth
and an intense hyphal branching with the formation of
many clusters of short and curled hyphae. HPLC of the
methanol extract of the roots in contact with Gigaspora
rosea spores showed a significant 1.8-fold increase
(P<0.05) in trigonelline concentration relative to the
control treatment (Fig. 1, Table 1). In contrast, there was
no change in trigonelline concentration in the aerial parts

of P. laevigata (Table 1). Our system did not allow
investigation of trigonelline in root exudates of P.
laevigata. Trigonelline (1-methylpiridinium 3-carboxyl-
ate) was identified by comparison of its retention factor
(Rf) in TLC, retention time (Rt) in HPLC, UV spectrum,
1H NMR spectrum and electron impact mass spectrometry
(EIMS) data with those of an authentic sample (Fig. 2).
The two substances showed identical Rt and Rf values (Rt
= 3.33 min, Rf = 0.54) and UV spectrum (l =265 nm)
when processed by HPLC using a photodiode array-UV
detector. Similarly, the 1H NMR signals of trigonelline
from the purified methanol extract showed a signal
pattern identical to that found in the 1H NMR spectrum of
the standard [d 9.25 (1H, br s, H-2), 8.95 (1H, br d, J =
8.0 Hz, H-4), 8.93 (1H, br d, J = 6.0 Hz, H-6), 8.11 (1H,
dd, J = 8.0, 6.0 Hz, H-5) and 4.40 (3H, s, Me)]. The mass
spectra of the two trigonelline samples were similar [m/z
(rel. int.) 153 [M+O]+(5), 152(10), 138[M+1]+(18),
137[M]+(14), 136(15), 124(13), 123(24), 106(63),
105(40), 94(10), 80(100), 79(44), 65(3)].

Trigonelline has been found in a wide range of plant
species and is particularly abundant in seeds and roots of
leguminous plants (Tramontano et al. 1986), but it has not
been reported in P. laevigata (Bisby et al. 1994).
Trigonelline is present in legume root exudates and
induces nodulation gene (nod) transcription in Rhizobium
meliloti by activating the regulatory protein NodD2
(Phillips et al. 1992). Trigonelline is also known to
regulate the cell cycle in the roots of legumes (Tramon-
tano et al. 1982). Thus it appears that trigonelline, like
other plant secondary metabolites (e.g. phenolic com-
pounds), has multiple functions, both in the plant and
associated microorganisms. Goldmann et al. (1991)

Fig. 1 High performance liquid chromatography (30 min,
l=265 nm) of methanol extracts from roots of Prosopis laevigata
in contact with Gigaspora rosea spores and a control treatment

Table 1 Trigonelline concentration (mg g –1 fresh wt.) in roots and
aerial parts of Prosopis laevigata after 1 week in an in vitro
presymbiotic system (n.s. not significant according to the Student
test at P<0.05)

Presymbiotic system Trigonelline

Root Aerial part

In contact with spore 2.112 1.500
Control 1.169 1.510

** n.s.

**Significantly different according to the Student test at P<0.05

Fig. 2 Structure of trigonelline
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suggested that trigonelline accumulation in the legume
host only occurs during the first stages of seed germina-
tion and plays a role in early plant-microbe interaction.
Additionally, the simultaneous presence of trigonelline in
the legume host plant and its corresponding catabolic
genes in the pSym megaplasmid of Rhizobium meliloti
suggested that trigonelline is used as nutrient by rhizobia
strains (Boivin et al. 1991). This characteristic might be
beneficial for rhizosphere survival, increase efficiency of
plant infection, and perhaps serve as a signal in the early
stages of seedling colonization.

Communication signals in the presymbiotic phase may
depend on the presence of multiple compounds in the
exudates of the host plant, e.g. flavonoids, terpenoids and
alkaloids, or possible synergistic effects between them
and/or changes in their concentrations. In the P. laevigata
– Gigaspora rosea in vitro presymbiotic system, changes
in the concentration of trigonelline, a pyridine alkaloid,
may be an important regulatory mechanism during early
signalling events.
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