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Abstract
Capacitive and optical-based pressure sensors are considered for wide application in industries and R&D labs due to their

superior performance. In general, these sensors use a diaphragm as a sensing element that needs to be designed accurately

to achieve the desired level of accuracy for a higher operating range of the sensor. To design such a diaphragm, the

conventional strain-based model cannot be used efficiently as the strain gradient starts dominating to introduce non-linear

deformation with respect to the applied load when the diaphragm thickness reduces or the operating range increases beyond

a certain value. Thus, there is a need to establish a comprehensive understanding and accurate modeling method to

establish the underlying mechanism of the strain gradient. In view of this, a finite element analysis is carried out with

moving-mesh to investigate the effect of the strain gradient phenomenon extensively in this paper. For the investigation, a

few parameters are studied such as strain, strain gradient, bending rigidity, and deflection. It shows that the strain gradient

spreads radially on the diaphragm and its zone of influence depends on the thickness as well as the applied pressure. This

increases the bending rigidity significantly and the diaphragm deflection becomes non-linear as compared to the classical

theory of bending. For validation of the present model, the bending rigidity and the deflection behavior are also compared

with an earlier developed mathematical model as well as experimental results, and the same is discussed in this paper. The

present work is useful for an accurate design and optimization of a diaphragm or a flexure for small size or/and higher

operating range of pressure sensors and actuators.

1 Introduction

In the present era of engineering, a wide range of pressure

sensors and vacuum gauges are extensively being used for

various fields to monitor and control any processes related

to chemical engineering, semiconductor, micro-fabrication,

biomedical, Petro-chemical, etc. (Li et al. 2022; Wang

et al. 2022; Hu et al. 2022; Sanli et al. 2022).

To date, researchers have developed numerous tech-

niques for pressure sensing applications. In general,

capacitance type and optical type pressure sensors have

gained more popularity due to their superior performance

(Eswaran and Malarvizhi 2013; Jiang et al. 2017). The

capacitive pressure sensor is widely used to measure

pressure or vacuum in which force due pressure difference

deflects the sensing diaphragm and the capacitance

between the diaphragm and a fixed electrode changes (Lei

et al. 2012; Chen and Mehregany 2008; Catling 1998).

There are a few factors that have made the capacitive

sensors popular such as simple structural design (Zhou

et al. 2005), low-temperature sensitivity (Young et al.

2004; Lee and Wise 1982), radiation resistance (Gabrielson

1993), high sensitivity (He et al. 2018), and low response

time (Wan et al. 2017). On other hand, Fabry–Perot

Interferometer (FPI) based optical pressure sensors are also

being widely explored (Kim and Neikirk 1995; Yin et al.

2014). The FPI sensors need to maintain an FPI cavity

which consists of two mirror planes. One mirror plane of

the cavity is a partially reflective surface of an optical fiber

that is used to carry optical light and the other mirror plane

is a full reflective diaphragm to respond to the applied

pressure. The change in pressure leads to the change in the

gap between these two planes which is detected based on
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the FPI technique to measure the pressure (Ghildiyal et al.

2019).

Based on these two techniques of capacitive and FPI, the

pressure is sensed by the means of capacitance and

deflection respectively. As far as the sensing physics is

concerned, the capacitance sensor computes capacitance

between electrodes by surface integration of local capaci-

tance, and the optical sensor senses the gap at a local point

of the central portion within a micro-domain. Hence, the

capacitance sensor takes care of the diaphragm deflection

on the entire surface which includes the diaphragm

deflection in global form. However, optical does not. But

these two sensors work by sensing the diaphragm deflec-

tion only. In short, the diaphragm deflection is the key to

designing the sensor’s performance in terms of sensitivity

and accuracy (Catling 1998; Perić et al. 2018; Jena et al.

2021).

Nowadays, technology demands to miniaturize every-

thing which also requires micro-scale sensors and this is

how micro-electromechanical systems (MEMS) and

nanoelectromechanical systems (NEMS) are taking shape

for technology development (Lou et al. 2011; Xu et al.

2021). Thus, the manufacture of more sensitive sensors

plays a significant role in miniature sensors to cater to the

demand for pressure measurement on a micro-scale (Wil-

son et al. 2007). When the diaphragm miniaturization

comes into the picture, it needs to reduce its diameter

which further reduces the deflection sensitivity exponen-

tially. To overcome this issue of sensitivity, the designer

needs to reduce the thickness of the diaphragm and the

reduction in the thickness needs one more order higher to

diameter as the diaphragm deflection is proportional to 4th

order polynomial of diameter and inverse proportional to

the 3rd order polynomial of thickness (Jena et al. 2021;

Bao 2000). It means that the proportion of reduction in

diameter and thickness shall not be the same. Although, the

diaphragm demands more reduction in thickness and this

introduces the size effect on the diaphragm deflection

which changes the characteristics of the diaphragm

deflection (Li et al. 2018).

Given this, miniaturization of the sensing diaphragm is

one of the challenging attributes for the diaphragm design

to match with actual or experimental results (Jiranusornkul

et al. 2020). In general, the diaphragm deflection behaviors

become non-linear or highly non-linear as the conventional

elasticity theory of bending does not predict the deflection

due to strain gradient. In these conditions, the effect of the

strain gradient phenomenon starts dominating. In the last

decade, little work has been carried out to develop a

mathematical model to include the strain gradient phe-

nomena into the diaphragm deflection with few assump-

tions. However, these models also consist of some errors as

they are simplified with the help of a few assumptions for

avoiding higher-order on non-linearity terms, and their

applicability to design thin diaphragm is not accurate.

Hence, a modified strain gradient elasticity theory consid-

ering the size effect was developed by (Lam et al. 2003).

This study reveals the size effect at various levels of

Poisson ratio on the bending rigidity and they found that a

non-dimensional bending rigidity due to strain gradient

reduces with an increase in thickness or Poisson ratio. The

strain gradient also affects a small amount of nonlinearity

on the deflection with respect to the applied load. However,

this theory does not account for the effect of operating

pressure range on the bending rigidity. (Ma et al. 2012)

have reported that the deflection of the diaphragm is highly

non-linear to the applied pressure when the thickness is on

a nanometric scale. While comparing the deflection

behavior with pressure, it is clear that the thin diaphragm

results in non-linearity. When the thickness is further

reduced up to nanometric scale, applied pressure introduces

non-linearity as shown in the experimental results (Ma

et al. 2012). This study indicates that there could be a

strong influence of pressure on the strain gradient. (Akgöz

and Civalek 2015) had implemented Navier solution pro-

cedure to derive analytical solutions for deflection of beam

to study the size-effect. In this, a new size-dependent beam

theory was developed by using hyperbolic shear deforma-

tion beam and modified strain gradient theory considering

the minimum total potential energy principle. A higher-

order equation is solved based on the strain gradient elas-

ticity theory through Hamilton’s principle for the equation

of motion of a micro-scaled bar to investigate the effects of

the length scale parameters on natural frequencies of the

bar (Akgöz and Civalek 2014). This work found that the

size effect is more significant when the ratio of the micro-

bar diameter to the length scale parameter is small. Fur-

thermore, higher-order shear deformation micro-beam

models in conjunction with modified strain gradient theory

is used to study the bending response of single-walled

carbon nanotubes (SWCNTs) embedded in an elastic

medium (Akgöz and Civalek 2016). For this study, ana-

lytical method was proposed through the Navier-type

solution for the simply supported embedded SWCNTs.

This study shows that the bending behavior of SWCNTs is

dependent on the small-size with slenderness ratio and

stiffness of the elastic foundation. Another work was car-

ried out for the bending analysis on single-walled carbon

nanotubes (CNT) based on modified couple stress and

strain gradient elasticity theories and Euler–Bernoulli beam

theory. The size effect is taken into consideration using the

modified couple stress and strain gradient elasticity theo-

ries. This work shows the significant effect of small-scale

on the bending of CNT (AkgÖz and Civalek 2012). (Van

Hieu et al. 2022) have developed a model of an electro-

static functionally graded (FG) micro-actuator based on the
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nonlocal strain gradient theory (NSGT) incorporated the

thickness effect and the Euler–Bernoulli beam theory

(EBT) with the von-Karman’s assumption for micro-beam

application. They proposed an analytical solution which is

solved by applying Galerkin and He’s Laplace methods. In

the same view, (Thai et al. 2017) have reviewed on the

development of higher-order continuum models for the size

effects in micro- and nano-structures such as beam, plate

and shell using the nonlocal elasticity theory, modified

couple stress theory and strain gradient theory. They have

discussed higher-order continuum theory for the size-effect

based on the classical theory, first-order shear deformation

theory and higher-order shear deformation theory. The

review indicates that the amount of work in the field of

finite element analysis is relatively less compared with the

analytical work. Moreover, analytical methods are limited

to beam and plate structures only.

Based on the literature, the diaphragm bending rigidity

behavior gets affected in a non-linear fashion due to the

variation in size or thickness of the diaphragm and applied

pressure. To date, the literature does not show a funda-

mental mechanism of inducing strain gradient due to the

size effect on the diaphragm. Thus, there is a need to study

the size effect and the mechanism of ‘strain gradient’ in

depth so that the diaphragm can be accurately designed and

optimized for its superior performance.

Hence, a set of finite element analysis is carried out to

investigate the mechanism of the strain gradient due to the

size effect and the same is discussed in the following

sections.

2 Modeling for finite element analysis

In this paper, a circular diaphragm is selected for a wide

range of pressure (0 to 1000 mbar) so that it can be suit-

able for both pressures as well as vacuum sensing. To

investigate the size effect on the diaphragm deflection

characteristics, the FEA model is constructed in COMSOL

multi-physics software as shown in Fig. 1a, b. Where, ‘Un’

is displacement along normal direction, ‘u’ is the dis-

placement along the x-direction, ‘v’ is the displacement

along the y-direction, ‘w’ is the displacement along the

z-direction, ‘ur’ is the displacement along the radial

direction, and ‘nx, ny and nz’ indicate normal unit vector

along x, y, and z-direction respectively.

Figure 1a shows a model in 2-dimensional axisymmet-

ric geometry to reduce the computation time significantly.

However, this model may not include the effect of strain

gradient due to circumferential stretching stress and

bending moment. In view of this, a 3-dimensional model is

also constructed to understand the effect due to the pres-

sure-induced circumferential stretching as shown in

Fig. 1b. Figure 1a, b also show boundary conditions of

displacement components of (u, v, w) which is used to

allow the mesh deformation of the diaphragm.

Governing equation for FEA simulation in COMSOL is

derived from force equilibrium as presented in Eq. 1. In

general, this equation is being solved to predict the

deflection and stress on the diaphragm without deforming

or changing cross-sections and their orientation to the axis

of the diaphragm. This geometric condition with Eq. 1

leads to another derived differential equation of a beam

along the X-axis as presented in Eq. 2 which is also derived

from the Euler–Bernoulli theory (Öchsner 2021). Equa-

tion 2 is further simplified for a circular diaphragm and

presented in Eq. 3.

r � rþ Fv ¼ 0 ð1Þ

where ‘r’ is stress and Fv is the volume force in the

structure respectively.

d2

dx2
EI

d2w

dx2

� �
þ Cf ¼ q ð2Þ

where ‘E’ is the modulus of elasticity, ‘I’ is the second

moment of inertia, ‘w’ is deflection, ‘Cf’ is the elastic

foundation modulus and ‘q’ is the distributed transverse

load.

Dor4w ¼ q

Do ¼
Et3

12ð1� m2Þ ð3Þ

Fig. 1 Model of FEA

simulation. a Two-dimensional

axisymmetric model. b Three-

dimensional model
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where ’t’ is the thickness, ’m’ is the poison’s ratio and ‘DO’

is the bending rigidity or flexural rigidity of the diaphragm

(Landau and Lifshitz 1986).

The Eqs. (1–3) do not account for the strain gradient

effect on the diaphragm. To incorporate the strain gradient

effect or other possibilities of physics due to the size effect,

it is essential to deform the geometry of the diaphragm as

per the computed value of the displacement components of

the diaphragm deflection. This is possible by allowing the

mesh deformation during FEA simulation simultaneously.

The effect of mesh deformation needs to be fully coupled

with the FEA computed deformation parameters and the

same is presented in Fig. 2 for better clarity.

Initially, the displacement (u, v, w) in all directions (x,

y, z) are computed as per the governing Eq. 1, and the

boundary conditions like applied pressure and clamping

condition shown in Fig. 1a, b. These displacements are

further used to deform or move the mesh of the diaphragm.

After the mesh deformation, resisting forces, tractions or

stresses induces bending moment (M1 and M2) to resist the

diaphragm displacement. This effect tries to reverse the

diaphragm displacement which is recalculated after mesh

deformation due to M1and M2. If the error or change in the

deflection due to the mesh deformation (by 1step size of the

iteration) is not less than 0.1%, FEA calculation works on

an iterative loop until the error gets settled below 0.1%. If

it is also not getting reduced below0.1%, the solver reduces

Fig. 2 Flow diagram to

implement moving-mesh to

study the strain gradient effect

on the diaphragm. The dotted

line indicates the geometry

before geometry or mesh

deformation
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the iterative step size automatically to converge the solu-

tion. Thus, full coupling of solid mechanics and mesh

deformation is implemented as per the flow diagram of

Fig. 2 in COMSOL 5.5. The relevant parameters for the

FEA simulation are listed in Table 1. In this table, length

scale parameter is used to define the diaphragm thickness

from the non-dimensional value of the thickness ratio ‘n’ to

identify thinner and thicker diaphragm. Where, the dia-

phragm thickness equals to the length scale multiplication

to the thickness ratio. Hence, higher value of ‘n’ indicates

thicker diaphragm and lesser value indicates thinner

diaphragm.

As far as meshing is concerned, it plays a critical role in

the accuracy of the computed data as FEA is an approxi-

mation method whose quality of results depends on mesh

size. In general, the solution of FEA would be ideal if mesh

size is infinitesimally small. However, a smaller mesh size

leads to an increase in the computation efforts and requires

prolonged computation time. Because of this, a set of

simulations is carried out to evaluate convergency on the

deflection of the diaphragm and the computation time for

three different thicknesses of 0.5 lm, 1.0 lm, and 1.5 lm
as shown in Fig. 3a–c.

Figure 3a–c shows that the change in convergencies due

to the mesh size is 65%, 14%, and 03% for the diaphragm

thickness of 0.5 lm, 1.0 lm, and 1.5 lm respectively.

In the case of a thin diaphragm, the change in the con-

vergency reduces drastically when the mesh size increases.

This result indicates that the phenomenon of the strain

gradient makes this model highly non-linear, and due to

this, the solver for the FEA model is set to highly non-

linear (Newton) (Lampron et al. 2021). Here, the analysis

shows that the effect of mesh size is very sensitive to the

diaphragm diameter to thickness ratio. For example, the

diaphragm diameter to thickness ratio of more than 1000

requires mesh optimization. Thus, the designer has to

consider mesh optimization when they are modeling any

structure whose ‘diameter to thickness’ ratio is more than

1000 or aspect ratio (t/D) of any feature is less than 0.001.

Thus, the optimum mesh size is an important parameter

to investigate the size effect accurately. Hence, the mesh

size is optimized for convergence accuracy better than 95%

with reasonably low computation time, which are suit-

able for the present work as shown in Fig. 3a. The opti-

mized mesh size of [maximum size = 0.1 mm and

minimum size = 0.01 mm] takes 85 s to solve FEA model

in Intel(R) Core
TM

i3-9100F CPU @ 3.60 GHz processor.

3 Results and discussion

As per the classical bending theory of a diaphragm or a

beam, radial stress and strain become higher on the surface

and it reduces while moving towards mid-plane. Where the

mid-plane exists at the middle of thickness, i.e., at ‘Z’

equal to half of the thickness. To investigate the theory of

strain gradient by the size effect, radial strain along the

mid-plane is calculated at an applied pressure of 100 Pa

and mapped for the thickness ratio from1 to 7 as presented

in Fig. 4a, b. Figure 4a shows the radial strain at the mid-

plane for the 2D axisymmetric model and Fig. 5b is plotted

for the 3D model. The magnitude of strain is of the order of

10–4 which is very small but they are non-zero. It is seen

that both models show the same amount of strain for all

ranges of thickness. The magnitude of strain is significantly

depending on the thickness. In the case of a thinner dia-

phragm (thickness ratio = 1), strain is much higher. On

other hand, the strain reaches zero as the thickness

increases. The strain along the radial position is also not

uniform. It shows a combination of linear and quadratic

decrement which will cause to induce bending moment to

change the deflection shape and size of the diaphragm to

the classical theory of bending. Because of this, strain

gradient along the radial direction is computed and plotted

in Fig. 5a, b.

Figure 5a shows radial strain gradient for the 2D-ax-

isymmetric model at various levels of thickness. The strain

gradient is zero at the center of the diaphragm as the dia-

phragm shape gets retained at the center due to the

axisymmetric geometric and boundary condition of the

model. The result also shows that the maximum value of

the strain gradient shifts radially outward with the decre-

ment of the thickness. This indicates that the induced

bending moment on the diaphragm is higher at the

periphery when the diaphragm is sufficiently thin. The thin

diaphragm has a low moment of inertia against bending

which helps to deflect the diaphragm easily near the central

portion without inducing strain gradient and this is how the

gradient significantly appears near the periphery. On other

hand, the thick diaphragm comparatively exhibits a high

moment of inertia which helps to shift the maximum strain

gradient near the central portion. The amplitude of strain

gradient is less in the case of a thick diaphragm which is

due to the relatively high stiffness of the thick diaphragm

which resists deflection.

Figure 5b shows radial strain gradient for a 3D model

which also shows the same behavior and same amplitude. It

means that both models are similar as far as strain gradient

is concerned. However, few deviations near the center and

periphery are observed when Fig. 5a is compared with

Fig. 5b. Thus, bending rigidity is also analyzed for both
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models as the strain gradient affects the bending behavior

of the diaphragm due to the deflection-induced bending

moment on the diaphragm to suppress the deflection.

Hence, bending rigidity is computed and plotted in

Fig. 6a, b. The bending rigidity increases exponentially

with the diaphragm thickness. This can be explained by

Eq. 3 where the bending rigidity is proportional to the 3rd

order polynomial of the thickness as per the classical

bending theory. The results also show that the applied

pressure increases it linearly and it is insignificant in the

case of the thick diaphragm. It is due to the development of

strain gradient over a large area of the diaphragm. The

thinner diaphragm results in an increased zone of influence

for the strain gradient as shown in Fig. 5a, b, which leads to

highly non-linear deflection with pressure. Thus, the

bending rigidity is getting affected significantly on the thin

diaphragm due to the change in pressure. Hence, modeling

of a diaphragm with conventional theory yields erroneous

results (Li et al. 2018; Lam et al. 2003).

Figure 6a shows bending rigidity for the 2D-axisym-

metric model and Fig. 6b shows the same for the 3D

model. Both exemplify the same trend and magnitude of

bending rigidity. This result does not show any significant

changes between these two models. Hence, the ratio of

bending rigidity for both models are further computed and

plotted for various level of pressure and thickness as pre-

sented in Fig. 7. It is seen that the effect of pressure is

within 1.2% (i.e., from 0.994 to 1.008). This small varia-

tion might be happening due to the variation in the mesh of

the 3D model to 2D. Thus, both models yield similar

results provided the 3D model’s mesh is optimized as per

Fig. 1. Hence, the 2D model can be used if the model is

axisymmetric (geometry and boundary conditions) as it

takes a very low time of computation. In other cases, a non-

symmetric, 3D model with optimized mesh needs to be

selected.

The analysis study till now is not very clear about the

effect of size on the bending rigidity. Hence, it is essential

to compare the bending rigidity due to the effect of strain

gradient to the classical bending theory. Therefore, a

parameter called non-dimensional bending rigidity (Lam

et al. 2003) is computed and studied further for the thick-

ness as well as pressure. Here, the non-dimensional bend-

ing rigidity is the ratio of bending rigidity with ‘moving-

mesh’ and without moving-mesh, where, moving-mesh

implies in the bending rigidity with strain gradient and

without moving-mesh belongs to the classical bending

theory.

Hence, bending rigidity with moving-mesh (for strain

gradient) and without moving-mesh are evaluated and their

ratio is plotted in Fig. 8. It is observed that the magnitude

of the non-dimensional bending rigidity is more for the thin

diaphragm (n = 1). It is also found that the thicker dia-

phragm tries to converge at 1 which means that higher

thickness does not have any effect on the strain gradient.

This increase in non-dimensional bending rigidity at the

low thickness and higher pressure is happening due to a

large strain gradient which further induces a large resisting

Table 1 Parameters for FEA simulation

Sr. 
No.

Parameters Value Remark

1 Pressure 0-1000 Pa
Study parameters

2 Stretching stress 0 MPa
3 Diameter 1 mm

Geometric 
parameters

4 Length scale 0.5 μm
5 Thickness ra�o (n) 2-7
6 Thickness nx0.5 μm
7 Material (Silicon, single-

crystal, isotropic)
Density: 2329 kg/m3, Modulus of 
elas�city: 170 GPa, Poisson’s ra�o: 0.28

Materials 
parameters

8 Mesh deforma�on Mesh smoothing type: hyperelas�c

FEA solver details

9 Type of study Sta�onary (steady-state)
10 Rela�ve tolerance 0.001
11 Linearity Nonlinear: Highly nonlinear (Newton)
12 Solver PARDISO
13 Pivo�ng perturba�on 10-9
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bending moment (M1 and M2 as shown in Fig. 2). Thus,

the diaphragm deflects less than the classical theory, and

the modified bending rigidity (Li et al. 2018) increases.

This increment in the rigidity significantly depends on the

diaphragm thickness and it also depends on applied pres-

sure up to some extent which was not addressed so far.

Hence, the sensor’s diaphragm designers need to address

the modified bending rigidity for both attributes of thick-

ness as well applied pressure.

3.1 Comparison with literature

The non-dimensional bending rigidity is compared with the

theoretical values from the literature (Li et al. 2018; Lam

et al. 2003) and compared with the present FEA model at

100 Pa and 1000 Pa. Figure 9a, b show the literature val-

ues are lying within the band of 100 to 1000 Pa of pressure

level for a wide range of thickness. Moreover, the trend of

the bending rigidity shows a good agreement. In the case of

a lower thickness (i.e., at n = 1–4), the bending rigidity of

literature is tending towards 100 Pa as the theoretical

model ignores the effect of pressure at higher-order and

which reduces the bending rigidity to the actual value. In

the case of the thick diaphragm (n = 4–7), the bending

rigidity moves towards 1000 Pa, this is due to the effect of

a linear relation of deflection with pressure which domi-

nates at classical bending theory of large thickness. In

short, n = 1–4, the effect of thickness dominates which

Fig. 3 Mesh optimization for convergency of FEA result to the analytical solution. a With the diaphragm thickness = 0.5 lm, b diaphragm

thickness = 1.0 lm and c diaphragm thickness = 1.5 lm

Fig. 4 Radial strain at

z = thickness/2 to measure the

strain along the mid-plane. a In

the case of the 2D axisymmetric

model. b In the case of the 3D

model

Fig. 5 Radial strain gradient

along the mid-plane, at

z = thickness/2. a For the 2D

axisymmetric model. b For 3D

model
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allows more rigidity with pressure. Moreover, at n = 4–7,

the effect of pressure dominates and the actual rigidity

reduces and tries to approach near to the classical bending

theory.

To further validation about the diaphragm deflection

with experimental results, the FEA model is modified as

per the literature model in 3D form of literature (Jiranu-

sornkul et al. 2020). The results of the FEA model are

compared with experimental results of literature (Jiranu-

sornkul et al. 2020) for benchmarking of the present FEA

method as shown in Table 2 and also presented in Fig. 10.

The maximum deviation of the present model from the

literature data is within 20 microns and accuracy is less

than 1%. It shows a non-linear behavior of the deflection,

but a good agreement between the proposed model with

experimental result. This supports the accuracy and cor-

rectness of the FEA model presented in this paper. Thus,

the presented FEA model has the potential to model,

optimize and predict diaphragm behavior for pressure

sensors or actuators more accurately.

Moreover, the presented FEA modeling method has the

capability to evaluate or study the following attributes of

the diaphragm design more accurately such as ‘effect of

thickness and pressure on linearity’, ‘improvement of lin-

earity due to stretching (radial stretching of the dia-

phragm)’ and ‘improvement of linearity due to introducing

island or micro-features’.

Fig. 6 Bending rigidity vs thickness with various levels of pressure. a For a 2D axisymmetric model. b For 3D model

Fig. 7 Ratio of bending rigidity Vs thickness with various levels of

pressure to compare for the 2D axisymmetric model and the 3D

model

Fig. 8 Non-dimensional bending rigidity vs thickness with various

levels of pressure
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4 Conclusion

In the present work, a diaphragm for a pressure sensor is

modeled and simulated to investigate the effect of strain

gradient on bending rigidity and deflection characteristics.

Based on the modeling and simulation work, the following

are the main conclusions drawn.

• Mesh size significantly introduces convergency error

for an FEA model to investigate the phenomenon of the

strain gradient. The convergency error starts dominat-

ing when the aspect ratio of the diaphragm is less than

0.001 and it makes the model highly non-linear.

• To design and optimize the diaphragm for micro-scale

sensors through FEA modeling, a highly non-linear

(Newton) solver with optimized mesh is essentially

required.

• The strain gradient is zero at the center and periphery,

and maximum on other portions which leads to induce

resisting bending-moment to increase actual or

Fig. 9 Comparison of non-dimensional bending rigidity with the strain gradient theory. a The plot in logarithmic scale. b The plot in linear scale

Table 2 Benchmarking

table for FEA simulation wit

respect to the literature value

Sr. no. Pressure (kPa) Deflection (mm) Deviation (lm)

Experimental (Jiranusornkul et al. 2020) Simulation

1. 1.72 0.067 0.059 8

2. 3.49 0.118 0.115 3

3. 5.21 0.163 0.165 - 2

4. 6.98 0.198 0.211 - 13

5. 8.66 0.239 0.251 - 12

6. 10.47 0.284 0.292 - 8

7. 12.24 0.326 0.331 - 5

8. 13.92 0.377 0.368 9

9. 15.64 0.418 0.402 16

10. 17.37 0.444 0.435 9

Fig. 10 Validation of FEA simulation with experimental results taken

from literature
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modified bending rigidity. The extent of strain gradient

spreads on the diaphragm due to low thickness as well

as high pressure.

• The bending rigidity depends on thickness as well as

pressure. The bending rigidity keeps changing for all

ranges of applied pressure when a specific thickness is

selected.

• In the case of a thinner diaphragm (aspect ratio\
0.001), the effect of thickness dominates which allows

more rigidity with pressure. On other hand, the effect of

pressure dominates for higher thickness (aspect ratio[
0.001) and the actual rigidity reduces which tries to

approach near to the classical bending theory.

• Diaphragm deflection shows non-linear behavior with

applied pressure and the same is experimentally vali-

dated with literature and they found a good agreement.

• The presented method of finite element analysis can

model sensors at a micro-scale as well as meso-scale

more accurately to improve the linearity, sensitivity,

and accuracy of a pressure sensor.
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