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Abstract
Complex practical system designs pose significant challenges from a research perspective, often resulting in high com-

putational requirements for analysis. Model order reduction (MOR) is a valuable technique to address this issue. This study

provides a comprehensive review of the literature on MOR, focusing specifically on high-dimensional complex systems. It

examines the fundamental theories and limitations of established MOR methods, including the Factor division method,

Pade approximation (PA) method, Stability equation (SE) method, Differentiation method, and Routh approximation (RA)

method. The study also investigates the frequency domain approach for obtaining a reduced-order model (ROM). Among

the MOR methods, the PA method is a widely studied and practical approach that aims to retain the crucial dynamics of a

high-dimensional complex system. This survey presents a detailed discussion of the PA method for obtaining the ROM.

Additionally, six test systems are analyzed to compare the step and frequency responses generated by various MOR

strategies. The integral square error criterion is used to assess the effectiveness of the reduction procedures. Finally, the

study proposes a new system abatement method based on Atomic Orbital Search (AOS) optimization for obtaining the

ROM of large-scale linear time-invariant (LTI) systems and designing controllers based on the reduced order model.

1 Introduction

One of the essential topics in control engineering is the

mathematical modeling of complex systems (Fortuna et al.

2012). The majority of practical system designs are com-

plex from a research standpoint. This often leads to high

computational demands for analysis purposes. Because the

original model is too complex to apply, reduction or

approximation approaches based on mathematical or

physical factors are employed to create a simpler model

than the original and can be utilized for analysis. The topic

of MOR is very significant for engineers and scientists

working in various engineering domains, especially those

working in the field of process control (Gutman et al.

1982). MOR approaches are essential in the design of

controllers for complicated, numerically demanding pro-

cesses in control engineering. Low-order controllers will be

used, with lower hardware requirements for the designer.

Many publications have addressed the method of obtaining

ROM in recent years (Kumar and Sikander 2022; Kumar

and Ezhilarasi 2023; Sikander and Prasad 2017; Sambariya

and Arvind 2016; Chand 2014; Smamash 1981; Chen et al.

1979, 1980a; Krishnamurthy and Seshadri 1978; Chen and

Shieh 1968).

MOR methods approximate low-order transfer functions

whose unknown coefficients are determined by various

factors. Padé-type approximations (Bultheel and Van Barel

1986), Continued fraction expansion (CFE) methods

(Rathore et al. 1979), MOR using the Routh stability cri-

terion (Krishnamurthy and Seshadri 1978), MOR based on

the Routh table criterion (Pal 1979), MOR using stability

equations (Lucas 1985), and mixed approximation methods

(Sikander and Prasad 2015a) are the frequency domain

MOR techniques.

Several recent studies have looked at model order

reduction in detail. Recently (Prajapati and Prasad 2020)

developed a mixed method that combines two conventional

techniques to obtain the reduced-order models. Sikander

and Thakur (2018) proposed a modified cuckoo search

algorithm (MCS) for finding the reduced model of the

complex system. Ghosh and Senroy (2013) developed a
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balanced truncation method for MOR, Sikander and Prasad

(2015b) suggested a basic MOR technique based on

improved Hermite normal form. Desai and Prasad (2013)

has developed a new reduced-order method for LTI

structures based on Routh approximation (RA). Erol and

Eksin (2006) proposed a Big Bang-Big Crunch (BB-BC)

optimization for MOR in 2006. In this reduction approach,

the coefficients of denominator polynomials are calculated

using Routh Approximation to maintain stability, and the

reduced order of numerator is evaluated with the BB-BC

algorithm. Other literature that discussed the MOR con-

cepts could be found in Biradar et al. (2016), Sikander and

Prasad (2015a), Prajapati and Prasad (2023), Duddeti

(2023). The optimization approach is not recent in the new

era of machine engineering. Different researchers working

in the field of model order reduction have taken different

cost functions, such as minimizing the integral square of

impulse response error (Walton et al. 2011), minimizing

integral error, minimizing weighted time integral error

(Eitelberg 1981), or minimizing L1 and L2 norm (El-Attar

and Vidyasagar 1978) for finding the reduced model using

The transfer function thus constructed with each table’s

second The transfer function thus constructed with each

table’s second and third rows is given by optimization

techniques. Nature-inspired optimization methods have

been commonly employed to create the reduced-order

model of complex systems. Goldberg (1989) proposed a

genetic algorithm (GA), which is the most common algo-

rithm inspired by the concept of biology, and Kennedy and

Eberhart (1995) proposed particle swarm optimization

(PSO). In addition, researchers in the other literature have

proposed various mixed approaches for reduced-order

modeling. In these mixed processes, the idea is to retain the

reduced system’s stability. The stability-preserving method

of MOR always leads to a stable reduced model polyno-

mial (Parmar et al. 2007; Sikander and Prasad 2015a;

Vishwakarma and Prasad 2009). Sikander and Prasad

(2015b) suggested a combination of stability equation and

optimization approach to find the reduced model. The

stability equation approach was used to derive the

denominator coefficients, and then PSO was used to cal-

culate the numerator polynomial of the simplified model.

The motivation behind this paper stems from the need to

provide researchers and practitioners with a comprehensive

understanding of MOR methods, particularly in the context

of high-dimensional complex systems. Reviewing the

existing literature, this study aims to consolidate and

summarize the fundamental theories, limitations, and

practical aspects of conventional MOR methods discussed

above.

Moreover, the paper conducts a comparative analysis of

different MOR strategies using six test systems. By eval-

uating the step response and frequency response generated

by these methods, the study aims to assess their efficacy in

reducing system complexity while preserving the system’s

dynamic behavior. The integral square error criterion is

utilized as an objective measure to quantify the accuracy of

the reduction procedures.

Finally, the paper proposes a novel system abatement

method based on Atomic Orbital Search optimization to

enhance the existing MOR techniques. This new approach

leverages optimization algorithms to obtain reduced-order

models for large-scale linear time-invariant (LTI) systems.

Additionally, the proposed method offers insights into

designing controllers based on the reduced order models,

thus enabling practical applications in real-world scenarios.

The remaining sections of this paper are structured as

follows. Section 2 provides an in-depth overview of vari-

ous model order reduction (MOR) techniques applicable to

reducing the order of large-scale linear time-invariant

(LTI) systems. These techniques encompass Factor divi-

sion, Pade Approximation, Stability Equation, Differenti-

ation, and Routh Approximation methods. In Sect. 4, the

proposed methodology is presented. This methodology

entails constructing a reduced-order transfer function that

approximates the original system transfer function, utiliz-

ing the Atomic Orbital Search optimization algorithm. To

showcase the efficacy of the proposed methodology,

Sect. 5 offers a numerical illustration featuring diverse test

systems, employing the MOR techniques described in

Sects. 2 and 4. The numerical results indicate that the

proposed method significantly reduces the computational

time required to simulate large-scale LTI systems while

maintaining the accuracy of the results to a considerable

degree. Lastly, Sect. 6 concludes the paper by summarizing

the key findings derived from the review and underscoring

the importance of MOR techniques in mitigating the

computational complexity associated with large-scale LTI

systems. Additionally, the section presents potential

directions for future research in this area.

2 Model order reduction techniques

2.1 Factor division method

In this method, dominant poles are retained, and the

numerator of G(s) 1 is divided by the factor ðsþ dnÞ and

given in 2.
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GðsÞ ¼ c0 þ c1sþ c2s
2 þ � � � þ cn�1s

n�1

sþ b1ð Þ sþ b2ð Þ � � � sþ bnð Þ
ð1Þ

where bi [ 0ði ¼ 1; 2; 3; . . .; nÞ are considered as real val-

ued variables for simplicity b1 � b2 � b3 � � � � � bn.

Gn�1ðsÞ ¼
d0 þ d1sþ d2s

2 þ � � � þ dn�2s
n�2

sþ b1ð Þ sþ b2ð Þ � � � sþ bn�1ð Þ
ð2Þ

where

d0 ¼ c0=bn

and

di ¼ ci � di�1ð Þ=bn
i ¼ 1; 2; . . .; n� 2

The unknown coefficients of the numerator polynomial of

the ROM GkðsÞ are obtained by the power series expansion

of the following expression about s ¼ 0

b0 þ b1sþ � � � þ bn�1s
n�1

e0 þ e1sþ � � � þ en�ksn�k

The transfer function of ROM is then given by 3

GkðsÞ ¼
a0 þ a1sþ � � � þ ak�1s

k�1

sþ b1ð Þ sþ b2ð Þ � � � sþ bkð Þ
ð3Þ

2.2 Pade approximation method

In this MOR method, higher order polynomial (4) is first

expanded about s ¼ 0 using power series expansion.

Unknown coefficients of ROM are calculated by equating

the coefficients of obtained power series expansion given

(5).

A generalized higher-order system is given in transfer

function form as

GðsÞ ¼ c0 þ c1sþ c2s
2 þ . . .þ bn�1s

n�1

bn þ e1sþ b2s2 þ . . .þ bnsn
ð4Þ

Power series of (4) about s ¼ 0 is

GðsÞ ¼ e0 þ e1sþ e2s
2 þ . . . ð5Þ

Since the original higher-order system is asymptotically

stable, the bi is proportional to the system’s time moments

(Shamash 1975).

Assume it needs a reduced GRðsÞ model of the order k

that maintains the pole at, say, s ¼ �s1.

Let

GRðsÞ ¼
p0 þ p1sþ p2s

2 þ . . .þ pk�1s
k�1

q0 þ q1sþ q2s2 þ . . .þ qk�1sk�1 þ sk
ð6Þ

To simplify the notation, The orders of the numerator of

GRðsÞ and G(s) have been taken as one less than the

denominators. Then for GRðsÞ to be a Pade approximant of

G(s) (7).

p0 ¼ q0e0

p1 ¼ q0e1 þ q1e0

� � � � � � � � � � � � � � � � � � � � �
0 ¼ q0e2k�2 þ q1e2k�1 þ . . .þ ek�1

0 ¼ q0e2k�1 þ q1e2k�2 þ . . .þ ek

9
>>>>>>=

>>>>>>;

ð7Þ

To retain the k poles of the reduced order model, R(s) can

then be written as

RðsÞ ¼ p0 þ p1sþ . . .þ pk�1s
k�1

sþ s1ð Þ sþ dp2ð Þ. . . sþ skð Þ

¼ p0 þ p1sþ . . .þ pk�1s
k�1

q0 þ q1sþ . . .þ qk�1sk�1 þ sk

ð8Þ

where the qiði ¼ 0; 1; . . .; k � 1Þ. pi can be determined

from the first k equations from the (7).

Mathematical computation of this method is straight-

forward, and it provides the consent between the steady

state of the output and the model of the polynomial inputs

belonging to a particular class of the form
P

apiti. Pade
approximations have the major drawback of making the

reduced-order system unstable even if the higher-order

system is stable.

2.3 Stability equation method

In this reduction technique, using the numerator and

denominator polynomial of the original system, an equa-

tion is formed that is known as the stability equation. After

forming the stability equation, only dominant poles and

zeros are retained, and non-dominant poles and zeros are

discarded.

Steps for finding ROM using the Stability equation

method are given below:
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Step 1. Consider original higher order system

FðsÞ ¼ b0 þ b1sþ b2s
2 þ . . .þ bn�1s

n�1

a0 þ a1sþ a2s2 þ . . .þ ansn

¼ FNðsÞ
FDðsÞ

ð9Þ

Generally, order of FDðsÞ is higher than FNðsÞ.
The stability equation is written in the following

form by discarding the non-dominant poles of

pið Þ and zeros zið Þ. The results are given as

F0
DeðsÞ �

Yn=2

i¼ðk=2Þþ1

z2i

0

@

1

A �
Yk=2

i¼1

s2 j z2i
� �

" #

ð10Þ

and

F0
DoðsÞ ¼ s �

Yðn�1Þ=2

i¼ðkþ1Þ=2
p2i

0

@

1

A �
Yðk�1Þ=2

i¼1

s2 þ p2i
� �

" #

ð11Þ

where k is the required order of the reduced

model. The denominator of the reduced order is

obtained as

F0
DðsÞ ¼ F0

DeðsÞ þ F0
DoðsÞ

¼
Xk

j¼0

eis
i ð12Þ

Step 2. In this original step system given in Eq. (9) is

expanded about s ¼ 0 using the power series

expansion method

FðsÞ ¼ c0 þ c1sþ c2s
2 þ . . . ð13Þ

where

c0 ¼ b0=a0

ci ¼
1

a0
bi �

Xi

j¼1

aici�1

 !

i[ 0
ð14Þ

with

bi ¼ 0 fori� n� 1 ð15Þ

Step 3. The ROM obtained by this method is given by

FkðsÞ; of order k.

FkðsÞ ¼
p0 þ d1sþ p2s

2 þ . . .þ pk�1s
k�1

q0 þ e1sþ q2s2 þ . . .þ qksk

ð16Þ

The key benefit of this strategy is that it keeps the original

higher-order system stable. The major downside of this

strategy is that it compromises the correlations between the

original and reduced models to maintain structural

stability.

2.4 Differentiation method

The reciprocal of the numerator and denominator is com-

puted first in this MOR method. Then obtained reciprocal is

differentiated accordingly to obtain the coefficients of the

ROM. Steps to be followed to find the reduced order using

the differentiation method:

Step 1. Obtain the unknown coefficients of kth order of

denominator polynomial using (17)

Dn�kðsÞ ¼ DnðsÞ �
s

n
D0

nðsÞ ð17Þ

where n and k are the order of denominators of

the original and reduced system, respectively.

Now reciprocal polynomial is differentiated n� k times,

and again reciprocal of the differentiated polynomial is

calculated to obtain the final denominator polynomial of

the ROM.

dðsÞ ¼ e0 þ e1sþ e2s
2 þ � � � þ eks

k ð18Þ

Step 2. Unknown coefficients of numerator polynomial

of kth order is obtained using (19)

Nn�kðsÞ ¼ NnðsÞ �
s

n
N 0
nðsÞ ð19Þ

Now differentiate the reciprocal polynomial

equation of numerator n� k times and then

reciprocate back to find the unknown numerator

polynomial of ROM as

nðsÞ ¼ d0 þ d1sþ d2s
2 þ � � � þ dks

k�1 ð20Þ

By putting the n(s) and d(s) polynomial, reduced

order transfer function is then constructed as

GRðsÞ ¼
nðsÞ
dðsÞ ð21Þ

The significant advantage of this method is that it is

mathematically simple and can be applied to any system,

like unstable, minimum phase, or non-minimum phase

systems.
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3 Key limitations of transfer function based
model order reduction method

(1) Frequency Domain Approximation: Transfer

function-based model reduction methods primarily

focus on approximating a system’s behavior in the

frequency domain. However, they might struggle to

accurately represent transient behaviors and time-

domain characteristics.

(2) Neglect of Dynamics: Transfer function-based

reduction techniques often emphasize the dominant

poles and zeros, leading to the neglect of higher-

order dynamics that could be critical in capturing

system behaviors such as resonances, overshoots,

and settling times.

(3) Limited Representation of Distributed Systems:

Transfer function-based approaches are more suit-

able for lumped-parameter systems. These methods

can struggle to capture spatial variations and

distributed effects when dealing with distributed

parameter systems, like those found in some

physical processes.

(4) Parametric Sensitivity Issues: Model reduction

methods that rely on transfer functions might be

sensitive to variations in system parameters.

Changes in system parameters can result in signif-

icant deviations from the original system behavior,

limiting the predictive accuracy of the reduced

model.

(5) Nonlinear Systems Approximation: Transfer

function-based techniques are designed for linear

systems. When applied to nonlinear systems, these

Fig. 1 Flowchart of AOS

Table 1 AOS parameters

Parameters Value

No. of Variables 5/6

No. of Iterations 50

Maximum no. of layers (n) 5

Photon Rate (PR) 0.1
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methods lose accuracy due to the inherent com-

plexity of nonlinear interactions and the inability to

accurately linearize the dynamics.

(6) Frequency Range Limitations: Transfer function-

based reduction is often most accurate around the

dominant poles and zeros in a limited frequency

range. The reduced model might fail to accurately

capture system behaviors and resonances outside

this range.

(7) Loss of Unmodeled Dynamics: Certain system

characteristics might be overlooked during model

reduction, leading to the loss of important dynamics

not captured by the dominant transfer functions.

(8) Poor Representation of Coupled Systems: Trans-

fer function-based approaches might struggle to

accurately capture the interactions and coupling

effects between different subsystems, which are

crucial in complex interdependencies.

(9) Uncertainty and Robustness: Transfer function-

based model reduction might not provide robust

representations in the presence of uncertainties or

parameter variations, limiting their applicability in

scenarios where robustness is crucial.

(10) Difficulty with Multi-Input Multi-Output

(MIMO) Systems: Handling MIMO systems with

transfer function-based reduction methods can be

complex, as accurately capturing cross-couplings

and interactions between inputs and outputs is

challenging.

4 Proposed methodology based on atomic
orbital search optimization

Following steps to be followed to find the optimal values of

the FOPID controller

Step 1: Based on the mathematical relation given in (22),

the initial positions of the electrons within the

electron cloud are determined.

xjið0Þ ¼ xji;min þ rand: xji;max � xji;min

� �

i ¼ 1; 2. . .;m

j ¼ 1; 2; . . .; d

� ð22Þ

where, xjið0Þ is the starting position of a solution

candidate, with xji;min and xji;max being the lower

and upper limits, respectively, for the jth decision

variable of the ith solution candidate. The term

rand refers to a random number that is uniformly

distributed and falls within the range of [0, 1].

The flowchart of AOS for finding the optimal values of

the FOPID controller is given in Fig. 1.

Table 2 Qualitative comparison for Example 1

Techniques Reduced model Overshoot Settling Time ISE ISTE IAE ITAE

Original System 1 3.355 – – – –

Proposed Method 0:0743s2�0:4261sþ0:8679
0:3355s3þ0:8405s2þ1:391sþ0:8679

1.0149 3.3189 0.0017 0.0051 0.1003 0.343

Jain and Hote (2021) 0:0258s2�0:3963sþ1
0:418s3þ1:132s2þ1:668sþ1

1.0214 4.3926 0.0039 0.009 0.1302 0.3676

Prajapati and Prasad (2022a, b, c) �0:9193sþ2:716
s3þ3s2þ4:716sþ2:716

0.9999 3.8951 0.0098 0.0191 0.1814 0.43

Tiwari and Kaur (2020) �0:2389s2�0:4486sþ2:192
s3þ3s2þ4:192sþ2:192

1 4.0765 0.0147 0.0299 0.2259 0.4908

Prajapati and Prasad (2022a, b, c) 0:314s2�0:9193sþ2:716
s3þ3s2þ4:716sþ2:716

0.9999 3.702 0.0149 0.0211 0.2142 0.4007

Sikander and Thakur (2018) 0:001935s2þ0:005725sþ1:073
s3þ1:681s2þ2:183sþ1:073

1.0346 7.8406 0.0166 0.0388 0.2917 0.9798

Kumar and Parmar (2020) 0:01s2þ0:001sþ1:062
s3þ1:646s2þ2:171sþ1:06

1.0323 7.843 0.0167 0.0392 0.2944 0.994

0 2 4 6 8 10
Time (sec)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(A
m

pl
itu

de
)

Original System
Tiwari and Gaur
Philip & Pal
Routh Table
Pade Approximation
Stability Equation
Routh Approximation
Stability & Pade
Routh Approx & Pade

Fig. 2 Step response of Example 1

1182 Microsystem Technologies (2024) 30:1177–1190

123



Step 2: Calculate the binding state BSk and energy BEk

of the kth layer by using the following relations

BSk ¼
Pp

i¼1 X
k
i

p
;

i ¼ 1; 2; . . .; p

j ¼ 1; 2; . . .; n

�

BEk ¼
Pp

i¼1 E
k
i

p
;

i ¼ 1; 2; . . .; p

j ¼ 1; 2; . . .; n

� ð23Þ

where, Xk
i and Ek

i represent the location and

objective value of the ith solution possibility in

the kth stage, with m being the total number of

potential solutions in the search area.

By minimizing the ISE value as an objective function

given in Eq. (24), optimization helps in determining the

reduced-order model GrðsÞ from the nth order complex

plant GnðsÞ:

ISE ¼
Z t

0

ynðtÞ � yrðtÞ½ �2dt ð24Þ

Other performance indices such as integral time multiplied

by squared error (ITSE), integral of absolute error (IAE),

and integral of time multiplied by absolute error (ITAE)

given in Eqs. (25)–(27) are also computed to compare the

closeness of the obtained reduced-order model.

ITSE ¼
Z t

0

t ynðtÞ � yrðtÞ½ �2dt ð25Þ

IAE ¼
Z t

0

j ynðtÞ � yrðtÞ j dt ð26Þ

ITAE ¼
Z t

0

t j ynðtÞ � yrðtÞ j dt ð27Þ

where, ynðtÞ and yrðtÞ are the step response of original and

reduced-order model and t is the simulation time.

Parameters of AOS for obtaining the optimal values of

the FOPID controller are given in Table 1.

5 Numerical illustrations

Example 1 In this example, a 9th order system is taken

from Tiwari and Kaur (2017).

G9ðsÞ ¼
s4 þ 35s3 þ 291s2

s9 þ 9s8 þ 66s7 þ 294s6 þ 1029s5 þ 2541s4

þ1093sþ 1700

þ4684s3 þ 5856s2 þ 4620sþ 1700

0

0.2

0.4

0.6

0.8

1

1.2

Tiwari &
Kaur

Philip &
Pal

Routh
Table

Pade
Approxim

ation

Stability
Equation

Routh
Approxim

ation

Mix :
Stability
& Pade

Mix :
Routh

Approx &
Pade

IAE 0.2219 0.1206 1.0792 0.1314 0.7565 0.3586 0.4297 0.3587

ISE 0.0147 0.0028 0.3919 0.0039 0.1715 0.0288 0.0305 0.0289

Fig. 4 Bar chart representation of performance indices for Example 1
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Fig. 5 Step response Example 2
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Fig. 6 Bode plot Example 2
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Fig. 3 Bode plot of Example 1
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ROM obtained using different techniques are given in the

form of coefficients of numerator and numerator and tab-

ulated in 2. 3rd order ROM is obtained for Example 1. The

step response plot of the original and third-order systems

obtained using different techniques is shown in Fig. 2.

From Fig 2, it is visible that the reduced order system

obtained by Philip & Pal is a close approximation to the

original system. Also, Philip & Pal’s ROM gives the lowest

settling time value, integral square error, and integral

absolute error. A graphical representation of parameters

like integral square error (ISE) and integral absolute error

(IAE) for different techniques is shown in Fig. 4. Table 2

compares various performance metrics, including peak

value, settling time, ISE, ITSE, IAE, and ITAE. These

metrics offer insights into different aspects of system

behavior and allow for evaluating and contrasting their

respective characteristics.

Example 2 An 8th order system is taken from the Krish-

namurthy and Seshadri (1978) for finding the ROM of 5th

order.

G8ðsÞ ¼
35s7 þ 1086s6 þ 13285s5 þ 82402s4

s8 þ 33s7 þ 437s6 þ 3017s5 þ 11870s4

þ278376s3 þ 511812s2 þ 482964sþ 194480

þ27470s3 þ 37492s2 þ 28880sþ 9600

The numerator and denominator coefficients of 5th order

ROM obtained by different techniques, for Example 2. is

given in Table 4. 5th order ROM is obtained for Exam-

ple 2. The step response plot of the original system and 5th

order system obtained using different techniques is shown

in Fig. 5. From Fig. 5, it is visible that the reduced order

system obtained by the mixed method of Routh approxi-

mation and Pade approximation is close to the original

system. Also, ROM obtained by the mixed method of

Routh approximation and Pade approximation gives the

lowest value of settling time, integral square error, and

integral absolute error. A graphical representation of

parameters like integral square error (ISE) and integral

absolute error (IAE) for different techniques is shown in

Fig. 7. Table 3 compares various performance metrics,

including peak value, settling time, ISE, ITSE, IAE, and

ITAE. These metrics offer insights into different aspects of

system behavior and allow for evaluating and contrasting

their respective characteristics.

Example 3 An 8th order system is taken from the Krish-

namurthy and Seshadri (1978) for finding the ROM of 2nd

order.

G8ðsÞ ¼
18s7 þ 514s6 þ 5982s5 þ 36380s4

s8 þ 36s7 þ 546s6 þ 4536s5 þ 22449s4

þ122664s3 þ 222088s2 þ 185760sþ 40320

þ67284s3 þ 118124s2 þ 109584sþ 40320
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Fig. 8 Step response Example 3
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The numerator and denominator coefficients of 5th order

ROM obtained by different techniques, for Example 3. is

given in Table 4. 2nd order ROM is obtained for Exam-

ple 3. The step response plot of the original system and 5th

order system obtained using different techniques is shown

in Fig. 5. From Fig. 5, it is visible that the reduced order

system obtained by the mixed method of Routh approxi-

mation and Pade approximation is close to the original

system. Also, ROM obtained by the mixed method of

Routh approximation and Pade approximation gives the

lowest value of settling time, integral square error, and

integral absolute error. A graphical representation of

parameters like integral square error (ISE) and integral

absolute error (IAE) for different techniques is shown in

Fig. 10. Table 4 compares various performance metrics,

including peak value, settling time, ISE, ITSE, IAE, and

ITAE. These metrics offer insights into different aspects of

system behavior and allow for evaluating and contrasting

their respective characteristics.

Example 4 In this example a 5th order is considered from

Prajapati and Prasad (2019, 2020), whose transfer function

is given below

G5ðsÞ ¼
s4 þ 7s3 þ 42s2 þ 142s þ 156

s5 þ 25s4 þ 258s3 þ 930s2 þ 1441sþ 745

ROM by proposed technique (AOS) given in Sect. 4 is

R2ðsÞ ¼
0:1929sþ 0:0047

s2 þ 0:9257sþ 0:0249

ROM obtained using the Balance Truncation and Routh

Approximation (Prajapati and Prasad 2020) in 2019 is as

follows.

R2ðsÞ ¼
0:1922sþ 0:002387

s2 þ 0:9295sþ 0:0114

ROM obtained using the Stability equation and Pade

Approximation (Chen et al. 1980a) is as follows.

R2ðsÞ ¼
142:0174sþ 156

909:5238s2 þ 1441sþ 745

The step response of a ROM obtained using the sug-

gested AOS method is compared with other previously

published research and shown in Fig. 11. The bode plot of

the original system and the ROM generated by the rec-

ommended AOS approach are presented in Fig. 12. The

suggested AOS technique’s step response and bode plot of

the reduced system are also compared with Prajapati and

Prasad (2020), Chen et al. (1979, 1980a, b). The conver-

gence graph of Example 4 is shown in 13. Table 5 presents

a numerical data comparison of time response parameters

and error indices. Using the suggested method, the ISE

value calculated is 1:35� 10�4, which is smaller than the

recently developed reduced-order by the mixed method of

Balance truncation and Routh approximation (Prajapati and

Prasad 2020). Various metrics demonstrate the proposed

AOS method’s effectiveness, including settling time, peak

value, and performance indices such as ITAE, IAE, and

ITSE. These measures are employed to assess and highlight

the efficacy of the AOS approach.

Example 5 In this example, a 3rd order system of power

system model is considered from Kumar and Sikander

(2020), Saxena and Hote (2013), Kumar and Sikander

(2021), whose transfer function is given below

Table 3 Qualitative comparison for Example 2

Techniques Reduced Model Overshoot Settling Time ISE ISTE IAE ITAE

Proposed Method 33:456s3þ153:1318s2þ222:8486sþ124:2444
s4þ6:044s3þ13:15s2þ14:22sþ6:133

20.3949 1.5917 0.003 0.0153 0.1388 0.6708

Prajapati and Prasad (2022a, b, c) 1390936320sþ3920716800
26994240s2þ145555200sþ193536000

20.3976 1.5126 0.0583 0.0606 0.4247 0.761

Sambariya and Manohar (2016) 890426194:56sþ3920710349
26994240s2þ145555200sþ193536000

20.2583 1.5688 4.8329 2.8192 2.9536 3.757

Kumar et al. (2013) 34:47s3þ184:4S2þ284:7sþ166:1
s4þ6:666s3þ15:42s2þ17:51sþ8:179

20.3799 1.5728 0.0034 0.0026 0.0917 0.1378

Prajapati and Prasad (2022a, b, c) 33:5802s3þ151:6145s2þ219:8063sþ121:55
s4þ6s3þ13s2þ14sþ6

20.58 1.7696 0.9506 1.7963 2.1278 5.2905

Singh et al. (2006) 264907:351sþ194480
20123:7s2þ18116:2sþ9600

20.2583 1.8975 0.2617 0.6019 1.0829 2.9952

Prajapati and Prasad (2020) 30:85sþ30:65
s2þ2:317sþ1:513

21.0231 2.6382 1.5352 2.2846 2.465 5.8605

Gutman et al. (1982) 1390936320sþ39207168000
26994240s2þ1455555200þ193536000

23.041 7.6886 63.266 129.4784 18.4916 53.8613

Shamash (1975) 264906:4545sþ194479:68
20123:7s2þ18116:2sþ9600

23.041 7.6886 63.2658 129.4757 18.4915 53.8607
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G3ðsÞ ¼
250

s3 þ 15:88s2 þ 42:46sþ 106:2

ROM by proposed technique (AOS) given in section 4 is

R2ðsÞ ¼
0:000573sþ 0:2487

s3 þ 1:4330s2 þ 0:9959sþ 0:2487

ROM obtained using Balance Truncation and Routh

Approximation (Prajapati and Prasad 2020) in 2019 is as

follows.

R2ðsÞ ¼
�1:268sþ 17:25

s2 þ 2:391sþ 7:327

ROM obtained using the Routh Hurwitz method (Krish-

namurthy and Seshadri 1978) is as follows.

Table 4 Qualitative comparison for Example 3

Techniques Reduced Model Overshoot Settling Time ISE ISTE IAE ITAE

Proposed Method 16:88sþ5:245
s2þ6:856sþ5:245

2.2274 5.2193 9:78� 10�5 0.0011 0.0585 0.1611

Dinkar and Deep (2019) 1:807sþ0:5609
0:1069s2þ0:7342sþ0:5611

2.2267 5.2242 6:77� 10�4 0.0012 0.0573 0.1542

Goyal and Parmar (2020) 17:2sþ5:347
1:017s2þ6:983sþ5:347

2.2275 5.2156 6:91� 10�4 0.0012 0.0584 0.1594

Sikander and Prasad (2015a) 16:97sþ5:262
s2þ6:893sþ5:262

2.2279 5.2302 6:96� 10�4 0.0013 0.0598 0.1683

Bhatt et al. (2018) 16:14sþ5:036
0:957s2þ6:554sþ5:036

2.2274 5.1978 6:99� 10�4 0.0011 0.0571 0.1496

Sikander and Prasad (2015b) 16:92sþ5:263
s2þ6:893sþ5:262

2.222 5.2252 7:24� 10�4 0.0014 0.061 0.1723

Nasiri Soloklo et al. (2015) 17:5sþ5:546
s2þ7:158sþ5:545

2.2167 5.1582 0.0016 0.0023 0.0738 0.1617

Sikander and Thakur (2018) 16:39sþ4:865
s2þ6:627sþ4:865

2.237 5.4134 0.0033 0.0069 0.1358 0.3662

Jain and Hote (2021) 3:107sþ1
0:2075s2þ1:244sþ1

2.2329 4.9589 0.0039 0.0015 0.0761 0.081

1 1 1 1 0.9999 0.9999 1 0.9999 0.9999 1 0.9999
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Fig. 10 Bar chart representation of performance indices for

Example 3
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R2ðsÞ ¼
250

15:88s2 þ 35:772sþ 106:2

The step response of a ROM obtained using the sug-

gested AOS method is compared with other previously

published research and shown in Fig. 14. The bode plot of

the original system and the ROM generated by the rec-

ommended AOS approach are presented in Fig. 15. The

suggested AOS technique’s step response and bode plot of

the reduced system are also compared with Prajapati and

Prasad (2020), Krishnamurthy and Seshadri (1978),

Sikander and Prasad (2015a). The convergence graph of

example 5 is shown in 16. Table 6 presents a numerical

data comparison of time response parameters and error

indices. Using the suggested method, the ISE value cal-

culated is 7:8� 10�4, smaller than the recently developed

reduced-order system using the MCS algorithm (Sikander

and Thakur 2018). Various metrics demonstrate the pro-

posed AOS method’s effectiveness, including settling time,

peak value, and performance indices such as ITAE, IAE,

and ITSE. These measures are employed to assess and

highlight the efficacy of the AOS approach.

Example 6 In this example, a 6th order system is consid-

ered to design a PID controller using the proposed tech-

nique’s reduced model.

G8ðsÞ ¼
2s5 þ 3s4 þ 16s3

2s6 þ 33:6s5 þ 155:94s4 þ 209:5s3

þ20s2 þ 8sþ 1

þ102:42s2 þ 18:3sþ 1

ROM obtained by the proposed technique is

0:0177sþ 0:1686

0:0177s2 þ 1:7594sþ 0:1686

ROM obtained by Prajapati et al. (2020) is

Table 5 Performance comparison for Example 4

Methods Peak Overshoot Settling Time ISE ITSE IAE ITAE

Original System 0.2094 3.8145 - - - -

Proposed AOS 0.2106 3.5052 1:35� 10�4 1:2115� 10�4 0.0216 0.0717

Balance Truncation and RA (Prajapati and Prasad 2020) 0.2096 4.2608 1:5181� 10�4 1:4755� 10�4 0.0218 0.0443

Routh and PA (Chen et al. 1980a, b) 0.2114 3.2382 1:8358� 10�4 2:5391� 10�4 0.0271 0.0770

Routh Approximation (Chen et al. 1979) 0.2114 3.2386 1:8370� 10�4 2:5397� 10�4 0.0271 0.0770
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5:934sþ 1

101s2 þ 16:23sþ 1

ROM obtained by Routh Stability (Krishnamurthy and

Seshadri 1978) is

7:106sþ 1

87:38s2 þ 15:94sþ 1

ROM obtained by Stability equation method (Chen et al.

1979) is

8sþ 1

101s2 þ 18:3sþ 1

The step plot for the original and ROM obtained by the

proposed method is shown in Fig. 17. It is evident from the

step plot that the ROM obtained by the proposed method is

a very close approximation of the original system given in

Example 4. This work considers this example for designing

the PID controller using the ROM obtained by the pro-

posed method. PID controller using the ROM is designed

using the proposed optimization algorithm. By minimizing

the ISE values, the proposed method finds the optimal

parameters of the PID controller as Kp ¼ 99:9967;Ki ¼
25:1755; Kd ¼ 29:9144;N ¼ 194:8570. Figure 18 shows

the step plot of the closed-loop system with PID controller

in a unity feedback configuration. It is evident from Fig. 18

that the controller’s dynamics almost match when the same

controller is used in the higher-order original system. The

closed-loop step plot of the original system with the

suggested controller developed utilizing the ROM system

damped out relatively quickly compared to the controller

proposed by other authors, as shown in Fig. 18. Table 7

shows the time response parameters and ISE values. It is

evident from Table 7 that the settling time, rise time, peak

time, and peak overshoot values of the closed-loop system

with the proposed controller are lower than the recently

developed controller. Also, the ISE value calculated for the

proposed system is 0.0276, the lowest among the other

proposed controllers (Prajapati et al. 2020; Krishnamurthy

and Seshadri 1978; Langholz and Feinmesser 1978; Chen

et al. 1979).

6 Conclusions

This study addresses the challenges of analyzing complex

practical systems by comprehensively reviewing the model

order reduction (MOR) technique. The research has

focused on high-dimensional complex systems, exploring

conventional MOR methods’ fundamental theories and

limitations. Among the various MOR methods, the Pade

approximation (PA) method has emerged as a widely

studied and practical approach for retaining the crucial

dynamics of such systems.

Furthermore, this study proposes a novel system abate-

ment method based on Atomic Orbital Search (AOS)

optimization. This method offers a promising approach for

obtaining ROMs of large-scale linear time-invariant (LTI)

Table 6 Performance comparison for Example 5

Methods Peak Overshoot Settling Time ISE ITSE IAE ITAE

Original System 2.8074 2.9979 - - - -

Proposed AOS 2.8240 3.1232 7:8� 10�4 0.0035 0.0827 0.1687

Balance Truncation and RA (Prajapati and Prasad 2020) 2.8659 3.1406 0.0062 0.0077 0.1323 0.2060

Routh Hurwitz (Krishnamurthy and Seshadri 1978) 2.8698 3.2341 0.0162 0.0156 0.2122 0.3090

Truncation and SE (Sikander and Prasad 2015a) 2.7077 3.0735 0.0179 0.0220 0.2189 0.3398
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systems and designing controllers based on the obtained

reduced-order model. The accuracy of the reduced order

system has been quantitatively compared using parameters

such as the integral square error (ISE) and integral absolute

error (IAE). The findings of this study provide valuable

insights for researchers and practitioners in model order

reduction, particularly those working with high-dimen-

sional complex systems. This study is a comprehensive

resource for understanding MOR’s core principles, limita-

tions, and practical implications in the context of high-

dimensional complex systems.
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in linear system theory: a survey. J Comput Appl Math

14(3):401–438

Chand M (2014) Reducing model ordering using Routh approxima-

tion method. Int J Emerg Technol Adv Eng 4(8):496–499

Chen C, Shieh L (1968) A novel approach to linear model

simplification. Int J Control 8(6):561–570

Chen T, Chang C, Han K (1979) Reduction of transfer functions by

the stability-equation method. J Franklin Inst 308(4):389–404

Chen T, Chang C, Han K (1980a) Model reduction using the stability-

equation method and the continued-fraction method. Int J

Control 32(1):81–94

Chen T, Chang C, Han K (1980b) Stable reduced-order padé
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