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Abstract
Retinal diseases such as Diabetic Retinopathy (DR), Hypertensive Retinopathy (HR), different types of Occlusions, etc.,

are associated with the deformity observed in the Retinal Vessel Structure (RVS). This paper proposes an automatic

unsupervised vessel segmentation technique to separate the RVS with insignificant change in curvature of the vessel and

eliminate the noises from the vessel structure and the background. The method involves three phases: preprocessing, where

the fundus image is enhanced based on local information, and the noises are separated from the vessels. The second phase

introduces a unique Bel–Hat transformation, which simultaneously uses two different groups of Structural Elements: the

Neighbor Adaptive Line Structuring Element (NALSE) and the 2D Gaussian Structuring Element (2DGSE). These

combined groups of Structural Elements can separate the vessel structure from the background by changing the size and

orientation of the Structural Elements. Lastly, a novel robust statistical threshold is used, based on the statistical distri-

bution of the area of the isolated objects, to segment the accurate noise-free Retinal Vessel Structure (RVS). This proposed

method is more accurate than the recently proposed unsupervised and supervised methods.

1 Introduction

The funduscopic images of the Retina (Abràmoff et al.

2010) are the most valuable resource for analyzing the

health of the eye and related diseases. The funduscopic

image can uncover the anatomy of the Retina (Patton et al.

2006), such as the Optic Disk (OD), Retinal Vessel

Structure (RVS), Macular Region (MR), etc. (Geetha

Ramani et al. 2016). It reveals the pathology present in the

Retina, such as hemorrhage, several types of exudates and

aneurysms, cottonwool spots, etc (Fig. 1). The brightest

disk-like part of the fundus image is called Optic Disk. It is

the entry point of the central part of the retinal blood

vessels. The dark central region of the Retina, surrounding

the Fovea, is called the Macula. It is necessary for a clear

and sharp vision. The tree-like blood vessel structure found

in the Retina, known as RVS, is essential for supplying

resources to the cells of the Retina (Franklin et al. 2014).

The anatomical changes in the retinal vessel structure

are a good prognostic indicator for diverse types of retinal

syndromes such as (i) Hypertensive Retinopathy (HR), (ii)

Diabetic Retinopathy (DR), and (iii) different types of

Occlusions (e.g., Branch Retinal Vein (BRV) and Central

Retinal Vein (BRV) occlusion), etc. The retinal vasculature

variation also helps detect cardiovascular disease and

stroke (Geetha Ramani et al. 2016). The gross deformity in

vessel structure can be a cause of vision loss. So, early

detection of the changes in RVS, which include thickness,

shape, curvature, branching angle between two adjacent

essels, and tortuosity, can prevent the progression of many

eye diseases. The manual segmentation of the vessel

structure requires an expert ophthalmologist, which can be

costly and time-consuming. Moreover, the accuracy of this

type of segmentation depends upon the knowledge of the

ophthalmologist, which means it may be error-prone. The
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automatic vessel segmentation technique can significantly

help an ophthalmologist with the initial screening.

Many important research works are already available in

the literature (Almotiri et al. 2018; Khan et al. 2019) on the

segmentation of retinal vessel structure. The techniques can

be broadly categorized into two following classes.

I. Supervised method: In this approach, a labeled dataset

is used to train the classifier to discriminate the vessels and

non-vessels from the funduscopic images. This method has

mainly two phases such as feature extraction and classifi-

cation. There are various types of classifiers proposed in

the literature. Some classifiers are (i) Neural Network-

based, (ii) AdaBoost, (iii) Gaussian Mixture Model, (iv)

Support Vector Machine, (v) K-nearest neighbor, etc.

Niemeijer et al. (2004) propose K-nearest neighbor-based

classifiers to segment the vessels and non-vessels pixels

from fundus images. The same technique is used by Staal

et al. (2004) for RVS separation, but here a ridge-based

detector is used for feature vector separation. Ricci et al.

(2007) propose a Support Vector Machine (SVM) based

classifier, where the feature vectors are prepared using the

pixel’s intensity with the Rotational Invariant Linear

Operator (RILO). Tang et al. (2015), SVM based classifier

is utilized with the Gabor wavelet and the multiscale vessel

filters for feature extraction. Aslani et al. (2016) use a

multiscale and multi-rotational Gabor filter. Lupascu et al.

(2010) constructed an Adaptive Boosting (AdaBoost)

classifier with a 41-dimensional feature set to segment the

RVS Memari et al. (2017) use a matched filter and Ada-

Boost-based vessel separation method for color fundus

images. Roy Chowdhury et al. (2014) propose Gaussian

Mixture Model, where an 8-dimensional feature vector was

used. Thangaraj et al. (2017) apply a neural network-based

RVS segmentation technique. This method uses a 13-di-

mensional feature vector. Yan et al. (2019) constructed a

three-layer deep learning-based strategy, where the thin

and thick vessels are segmented separately.

The supervised methods are time-consuming and suffer

from overfitting problems. Also, the parameters used to

train the classifiers depend on the size of the input images.

II. Unsupervised method: In this approach, no labeled

data is required for training the system. These methods are

mainly rule-based or dependent on thresholding filter-based

responses. Some unsupervised methods are based on

(i) Multiscale, (ii) Matched filter, (iii) Mathematical mor-

phology, (iv) Adaptive Mathematical Morphology, etc.

Annunziata et al. (2016), a Multiscale Hessian (M.H.)

based RVS segmentation method is proposed, whereas Gou

et al. (2018) use a dynamic multiscale matched filter fol-

lowed by a dynamic multiscale thresholding approach. An

important adaptation of the multiscale line detection tech-

nique is found in Yue et al. (2018). The Matched filter-

based methods are mainly two distinct types of filter kernel

(small and large) to segment the thin and thick vessels.

Zhang et al. (2010) propose a Gaussian first-order match

filter, Whereas Chaudhuri et al. (1989) use a 2-dimensional

Gaussian match filter. The combined filter-based approach

is found in (Oliveira 2016). Azzopardi et al. (2013) propose

an algorithm they called COSFIRE (combination of Shifted

Filter Response) to extract the RVS. Many mathematical

morphology (MM) based vessel segmentation methods are

found in the literature. Zana et al. (2001) propose the

retinal vessels and their curvature evaluation using MM. A

fuzzy morphology (black top-hat) based algorithm is found

in Bibiloni et al. (2019). Recently lots of Adaptive Math-

ematical Morphology (AMM) based methods have been

proposed, where most of the techniques (Nandy et al.

2020, 2021) are used Adaptive Structuring Element (ASE)

to enhance the RVS. The adaptive noise detection and

elimination method are determined by Mondal et al.

(2017). However, most unsupervised methods are rela-

tively slow and prone to noisy output. The following lim-

itations are primarily found in the recently proposed

methods:

i. Most of the present methods are unable to accurately

segment the tiny vessels due to poor contrast with the

background.

ii. The curvature of the vessels is inappropriately

detected due to the predefined (shape and size) filter

kernels.

iii. Some noises are sensed as a part of the vessel

structure due to improper preprocessing and thresh-

olding techniques.

To address the abovementioned limitations, this paper

proposes an unsupervised Adaptive Mathematical Mor-

phology-based segmentation technique named Bel-Hat

Transformation (BHT). A brief description of the procedure

is as follows. Initially, the vessels of an RGB image are

contrast-enhanced by the Local Laplacian Filter (Paris

et al. 2015), followed by grayscale conversion of the image

by giving maximum weightage to the green channel as the

contrast of the blood vessels in the Green Channel is

maximum compared to the other channels. Next, a ‘Dif-

ference of Gaussian’ filter (DoG) is applied to increase the

contrast between the tiny, noisy objects from the edges of

the vessels. Following this, the image is Opened by rotating

a fixed-sized Line Structuring Elements (LSE) starting from

an angle of 0� to 180�. The maximum response is recorded

for each pixel of all resulting images. This image in the last

step is subtracted from a smoothed version with 2-D

Gaussian Structuring Element (2DGSE). This procedure is

continued by increasing the size of both the structuring

elements. Finally, the maximum response is again recorded

amongst all the images produced in the previous steps. The

line structuring elements enhance the thick and thin vessels
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in the respective direction but introduce noise and isolated

artifacts. The noises present with binary vessel structure are

eliminated using a novel robust statistical threshold based

on the frequency of sizes (pixel area) of isolated objects.

The output of this method can produce a clear and accurate

retinal vessel structure.

The rest of the paper includes the following sections:

Sect. 2 elaborates on the details of the proposed method-

ology, while Sect. 3 demonstrates the experimental results

and discussion. Finally, Sect. 4 concludes the paper.

2 Proposed method

This section proposes a unique method for fundus vessel

structure segmentation. The proposed method depends on

three main stages: preprocessing, vessel structure seg-

mentation, and noise elimination. This research paper

introduces a novel unsupervised Adaptive Mathematical

Morphology-based technique named Bel-Hat transforma-

tion (BHT) for segmenting blood vessels and a robust

threshold based on the statistical distribution of isolated

objects for removing noise and other artifacts. A descrip-

tion of the step-by-step detail of this algorithm is elabo-

rated in the following subsections.

2.1 Preprocessing

The main aim of this phase of the algorithm is to enhance

the input RGB funduscopic image (fRGB) and increase the

contrast between the noise and the vessel structure. Due to

unpredictable contrast variations in different parts of the

input images, contrast enhancement becomes essential

before the vessel segmentation. A Local Laplacian Filter

(LLF) (Paris et al. 2015) is employed to enhance the vessel

structure of the RGB retinal image. The LLF is an edge-

aware operator that can enhance the input image using the

Laplacian Pyramid (Burt et al. 1983) without introducing

halos (Li et al. 2005) and artifacts (Fattal 2009). Equation 1

symbolically depicts this operation.

f enhRGB ¼ LLFff RGBg ð1Þ

The result (f enhRGB) is transformed to grayscale by keeping

90% of the green channel (G), as the available contrast is

maximum between a vessel and non-vessel structures for

this channel, and because of its meager information con-

tent, only 10% of the red channel (R) is included to prevent

the loss of information carried by this channel. In contrast,

the blue channel (B) is completely ignored due to its

boisterous appearance. Equation 2 shows this conversion.

f gray ¼ 0:10� f enhRGB Rð Þ þ 0:90� f enhRGBðGÞ þ 0� f enhRGBðBÞ
ð2Þ

The enhanced grayscale retinal image (f gray) contains

considerable noise and some noises attached to the vessel

structure. Noise adjacent to the vessels is separated by

contrast stretching with DoG (Difference of Gaussian)

having standard deviations o1 and o2 respectively (where

o1 [ o2) as is shown in Eq. 3.

Go1;o2 s; tð Þ ¼ f gray �
1

2po21
e
�ðs2þt2Þ

2o2
1 � 1

2po22
e
�ðs2þt2Þ

2o2
2

 !
ð3Þ

Some research works (Nandy et al. 2020, 2021; Mondal

et al. 2017) mentioned that the range of the retinal vessel

thickness varies from three to seven pixels. So, objects less

than 3 pixels can be considered noise. Due to this obser-

vation, for enhancing the vessel structure, a morphological

Top-Hat transformation uses two disk structuring elements

(Bd). The first structuring element (Bd3), with a diameter of

3 pixels, is employed for Morphological Opening to

eliminate the unwanted small objects, and the second

structuring element (Bd8), with a diameter of 8 pixels, is

used for Morphological Closing to join the discontinued

vessels, as shown in Eq. 4. As a result, the output image f

becomes free from unwanted objects less than 3 pixels and

eliminates small discontinuity in the vessels.

f s; tð Þ ¼ uBd8
cBd3

Go1;o2 s; tð Þ
� �� �

� Go1;o2 s; tð Þ
� �

ð4Þ

where cBd3
and uBd8

respectively represents Morphological

Opening and Closing operations.

(a) (b)

Macular 
Region

Optic 
Disk

Venule

Arteriole

Fovea
Hard ExudateSoft Exudate

Microaneurysm
Microaneurysm

Fig. 1 a Original Funduscopic

image. b Fundus image having

pathologies
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2.2 Vessel structure separation
from the background

This section describes the proposed Bel-Hat transformation

(BHT) filter designed to segment the Retinal Vessel

Structure (RVS) from its background. Figure 2

diagrametically summarizes this segmentation technique.

The BHT filter simultaneously uses two groups of operators

(structuring elements) on the image. The first group of

operators containing Neighbor Adaptive Line Structuring

Elements (NALSE) is symbolically represented by Bi
h with

two parameters, viz. integer length i 2 f3; . . .; 7g and

Fig. 2 Summary of the

proposed segmentation

technique
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orientation h 2 0
�
; 180

�� �
. The Bi

h is a line structuring

element with all pixels values ‘1’ and the origin at the

center (Fig. 3a). The second group contain 2-D Gaussian

Structuring Element ( Gr) with variance r 2 ½0:5; 1:5� as a
parameter (Fig. 3c). The size of each Structuring Element

(SE) varies from 3 to 8 pixels because the thickness of the

vessels belongs to the mentioned range (Nandy et al.

2020, 2021; Mondal et al. 2017). For each specific length

i 2 f3; . . .; 7g, the NALSE is rotated with an increment of

10� in the range h 2 0�; 180�½ �, and (morphologically)

Opened the image for each of these angles. The maximum

response is registered at each pixel from the 18 (180/10)

image stack. This method can match the vessels which are

longer than ‘i’ pixels and eliminate the vessels smaller than

‘i’ pixels along the direction ‘h’. The same procedure is

repeated on the output generated in the previous step, with

the increased length (iþ 1) of the NALSE. A stack of five

different output images f iline
� �

i2f3;...;7g are formed, which is

shown in Eq. 5.

f iline
� �

i2½3;7�

¼ maxh2 0�;180�½ � foBi
hj8h and h ¼ hþ 10�

� �
j8i 2 f3; . . .; 7g

� �
ð5Þ

Similarly, a group of 2-D Gaussian Structuring Ele-

ments (2DGSE(Gr)) with variance(rÞ ranging from 0.5 to

1.5, are used for the Morphological Opening of the retinal

image (f ) iteratively. To keep the size of the 2DGSE(Gr)

restricted in 3 to 7 pixels (because the thickness of the

fundus vessels is in this range), the variance(rÞ is restricted
in the interval 0.5 to 1.5 with an increment of 0.25, as

shown in Eq. 6. The sequential openings using the

2DGSE(Gr) with varying variance r 2 ½0:5; 1:5� produce a
stack of five different output images f rG

� �
r2½0:5;1:5�. The

2DGSE(Gr) can eliminate objects less than the size of Gr

and those wider than Gr are preserved. Equation 7 shows

the procedure.

Gr ¼ 2 � d2 � re þ 1 ð6Þ

f rG
� �

r2½0:5;1:5� ¼ f � Grj8r 2 ½0:5; 1:5�f g ð7Þ

Next, the pixel-wise differences are computed between

two images, one coming from the stack of f iline
� �

i2f3;...;7g

and the other coming from the stack of f rG
� �

r2½0:5;1:5� with

the same length for both structuring elements. After taking

the differences, a stack of output images is formed (f i;rdiff Þ,
which is shown by Eq. 8.

Fig. 3 a Rotation of the

Neighbor Adaptive Line

Structuring Elements (NALSE,

B7
h) with respect to the origin

(4th pixel). b At b(i) and b(ii)

The NALSE (B7
h) is not

overlapped appropriately, so

these are considered non-vessel

parts, but at b(iii) B7
h overlapped

appropriately and is considered

the vessel’s structure; therefore,

it is restored. c Adaptive 2-D

Gaussian Structuring Element (

2DGSE, Gr). d Original

intensity profile of a fundus

image. e Gaussian structuring

element (Gr) pushed underneath

the intensity profile. f Result of
the opening using 2DGSE (Gr)
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f i;rdiff

¼ f iline
� �

i2f3;...;7g � f rG
� �

r2½0:5;1:5�

��� ��� : 8i 2 f3; . . .; 7g and r 2 ½0:5; 1:5�
n o

ð8Þ

Lastly, the pixel-wise maximum is counted from the

stack of images ðf i;rdiff Þ and the resultant image (f enh) con-

tains the vessel structure separated from the background, as

shown in Eq. 9.

fenh ¼ max|{z}
i2 3;...;7f g
r2 0:5; 1:5½ �

f i; r
diff

h i
ð9Þ

The above algorithm can be explained as follows: the

structuring elements 2DGSE(Gr) are used to Open the

image f , so that sharp variation of intensity decreases with

suppression of blob-like structures present in the image. On

the other hand, Opening with NALSE(Bi
h) will not affect

the blob-like structures due to their elongated shape. So in

the uniform region or where a blob-like object is present,

the difference in the opened image will further decrease the

intensity level. But if any vessel-like elongated structure is

present, the contrast will increase between the vessel and

background because the NALSE(Bi
h) can enhance the

intensity of elongated structures and 2DGSE(Gr) can

suppress the intensity, as explained diagrammatically in

Fig. 3.

Now, Local Otsu’s (Otsu 1979) threshold is applied to

the enhanced image (f enh) for binarization, and the result-

ing image denoted by f bin. The output binary image (f bin)

still contains some residual noise, which is eliminated in

the next phase.

2.3 Noise elimination from the binary image

The background noises are eliminated in two steps, as

explained below.

2.3.1 Histogram of isolated objects

A Robust threshold is estimated based on the area of the

isolated objects’ frequency distribution to separate the

unwanted objects from the vessels. Assume that the binary

image (f bin) having the size of M � N pixels, and ai denote

the area of ith isolated object and f i denote the corre-

sponding frequency of the objects with the same area ai.

So, the total area (A) of the isolated objects is given by the

following Eq. 10.

A ¼
Xn
i¼1

aif i ð10Þ

Now, the frequencies of the isolated objects of the same

area are calculated from the binary retinal image(f bin) and

the corresponding histogram is shown in Fig. 4.

2.3.2 Elimination of noises using robust statistical
thresholding

The modes of the statistical distribution (histogram) of the

area of the isolated noise and the vessels have a significant

gap, as can be easily observed in Fig. 4b. Small isolated

noises are concentrated near the origin, and large vessel

structures are very scanty and condensed far away. Due to

this considerable gap, the mean area will be shifted toward

the statistical distribution of vessels. Therefore, the

threshold estimation will be erroneously calculated when a

thresholding algorithm depends on the mean (of isolated

objects). Hence, the median is a more robust choice for

estimating location. So, we adopted an automatic thresh-

olding algorithm based on the median of the area distri-

bution for noise separation. The iterative algorithm for

thresholding is described below.

Step 1. Select the median (M) of the frequency distri-

bution of the area of the isolated objects (Fig. 4b) as an

initial threshold.

Step 2. The isolated objects of the binary image are

categorized into two classes C1 and C2 depending on the

threshold M; C1: contains all areas (ai) with values less

than or equal to the threshold value (M), and classC2:

contains all areas (ai) with values more thanM, as

explained in Eq. 11, where ai represent the area of ‘ith’

isolated object.

ith object �C1 if ai �M
ith object �C2 if ai [M

	
ð11Þ

Step 3. Compute the Medians M1 and M2 for each class

C1 and C2, respectively.

Step 4. Compute the new threshold by taking the aver-

age of the medians M1 and M2, as shown in Eq. 12 below.

M ¼ 1=2 M1 þM2ð Þ ð12Þ

Step 5. Repeat steps 2 to step 4 until the absolute dif-

ference (DM) between two consecutive thresholds becomes

less than a small quantity �, as in Eq. 13.

DMj j � � ð13Þ

This algorithm is effective when modes of a mixture

distribution are far from each other. The number of itera-

tions depends on DM and the initial value of the threshold

(M), which is the median of the area-based distribution of

the binary retinal image. The noises are successfully sep-

arated from the vessels using the above median-based

thresholding algorithm.
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3 Experimental results and discussion

3.1 Data set

The performance of the proposed methodology is evaluated

qualitatively and quantitatively using some freely available

Funduscopic datasets (Staal et al. 2004; Hoover et al. 2000;

Owen et al. 2009; Farnell et al. 2008; Odstrcilik 2013), as

summarized in Table 1.

3.2 Results

Figure 5 demonstrates the output of different phases of our

algorithm employed for vessel detection on an image found

in the DRIVE database. Figure 5a exhibits an original color

funduscopic image (fRGB). Figure 5b shows the result

(f enhRGB) of applying the Local Laplacian Filter on the

original image (fRGB). The enhanced RGB image (f enhRGB) is

converted into a greyscale image (f gray) by utilizing the

method described in Eq. 2, and the result is shown in

Fig. 5c. Figure 5d shows the outcome ðGo1;o2
Þ of applying

DoG on the f gray, which increases the contrast between the

vessels and adjacent noises. A morphological Opening and

Closing operation is performed with two disk-shaped

structuring elements (Bd) with diameters of 3 pixels and 8

pixels, respectively, followed by a Top-Hat transformation

on Go1;o2 as described in Eq. 4, the result is shown in

Fig. 5e. This process eliminates all the unwanted objects

with an area of less than 3 pixels and fills the small gaps

between the vessels. Now, to segment the vessel structure

and separate the background noise, the Bel-Hat

Fig. 4 a A magnified region of

the binary funduscopic image,

(i) shows the vessels, where (ii)

to (vi) are the unwanted isolated

objects, b shows the histogram

of the area of isolated objects

Table 1 Overview of some freely available Funduscopic databases used in this paper

Database D Si Field of View (FOV

(�))
Description Resolution

(pixels)

SGT (%)

DRIVE (Staal et al. 2004) Canon CR53 CCD

camera

40 45� Training (20)

Test (20)

565 9 584

540

Two

(12.70,

12.30)

STARE (Hoover et al. 2000) TRV-50 fundus camera 20 35� Normal (10)

Abnormal

(10)

700 9 605

649

Two

(10.40,

14.90)

CHASE_ DB1 (Owen et al.

2009)

Nidek NM-200D 28 30� Left eye (14)

Right eye

(14)

999 9 960

916

Two

(10.10, 9.70)

HRF

(Odstrcilik 2013)

Canon CR-1 fundus

camera

45 60� Healthy (15)

DR (15)

Glaucoma

(15)

2336 9 3504

3262

One

(9.13)

Where, D is the name of the image Capturing devise, Si number of the fundus images in the database, and SGT represent the number of pathologist

with a percentage of the manually segmented vessel pixels with respect to the total number of pixels of the retinal image by the corresponding

experts
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Transformation is used, where the Neighbor Adaptive Line

Structuring Elements (Bi
h) is utilized iteratively by change

of the length (i 2 f3; . . .; 7g) of Bi
h. The NALSE enhances

the vessel structure and the resulting output image (f iline) is

shown in Fig. 5f, where the NALSE is 4 pixels (i.e. i=

4px.) in length. Similarly, 2DGSE(Gr) is applied itera-

tively on the f s; tð Þ to get a smoothed version of the image

(f rG) in different scales according to the change in the

variance (r 2 ½0:5; 1:5�), shown in Fig. 5g, with a variance

r ¼ 0:75. Figure 5h–n shows the resultant enhanced vessel

structure (f enh), after taking the pixel-wise maximum from

the stack (f i;rdiff ) obtained from the differences between the

images f iline and f rG, where the value of the length of (i) in

the Bi
h and the corresponding variance (r) in the Gr are

(3px., 0.5), (4px., 0.75), (5px., 1.0), (6px., 1.25), (7px.,

1.5), (8px., 1.75), and (9px., 2.0), respectively. After cal-

culation of the average Structural Similarity (SSIM) Index

and corresponding Accuracy (Acc) of the output images

using the proposed method plotted in Figs. 6 and 7 clearly

shows that SSIM and the Accuracy of the output images

achieve maximum value when the length (i) of the Bi
h is

kept at 7 pixels, and the variance of the Gr is kept at 1.5.

So, these values are considered optimal for the proposed

methodology, as shown in Fig. 5l. The image is binarized

Fig. 5 Different vessels

detection phases verified on

DRIVE dataset a RGB

funduscopic image (fRGB), b
Enhanced (using Local

Laplacian Filter) RGB image

(f enhRGB). c Converted greyscale

image (f gray). d Resultant image

Go1 ;o2 , after applying DoG on

f gray, e Resultant imagef s; tð Þ,
after using morphological Top-

Hat transformation on Go1 ;o2 . f

Output image f iline, found after

applying NALSE (Bi
h) with i= 4

pixels on the f s; tð Þ. g Output

imagef rG, found after applying

2DGSE(Gr) with r= 0.75 on the

f s; tð Þ, h–n Resultant enhanced

vessel structure (f enh), after
taking the maximum from the

differences between f iline and f rG,
where the value of ‘‘i’’ and ‘‘r’’
are (3px.,0.5), (4px.,0.75),

(5px.,1.0), (6px.,1.25),

(7px.,1.5), (8px.,1.75), and

(9px., 2.0) respectively. o
Converted enhanced binary

image f bin after using local

Otsu’s threshold. p Final binary

vessel structure after

eliminating the residual noise

using Robust Statistical

Thresholding

446 Microsystem Technologies (2024) 30:439–453
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by applying local Otsu’s (1979), and the result f bin is

shown in Fig. 5o.

Lastly, Fig. 5p shows the clear binary vessel structure

after eliminating the residual noise using the Robust Sta-

tistical Threshold. Figure 8 shows the final results after

applying the proposed algorithm to some images found in

the CHASE_DB1, STARE, and HRF databases.

3.3 Evaluation matrics

3.3.1 Evaluation matric based on structural similarity
(SSIM) index

The SSIM index determines the degradation between the

output image found after applying the proposed algorithm

and the corresponding ground truth image. The SSIM index

is applicable where the image pixels are strongly correlated

and spatially closed. This matric has many applications in

the field of image processing and the media industry. To

calculate the SSIM index, a fixed-sized (N � N) window is

chosen around each pixel from the two images for calcu-

lating various local statistical measures. Equation (14)

shows the formula to calculate the SSIM index of the two

corresponding images u and v. Where, lu and lv are the

local means of the images u and v respectively, for each

pixel. r2u and r2v are the local variance of u and v respec-

tively. ruv represent the local covariance in between the u

and v. Lastly, there are two variables k1 and k2 are found

for stabilization of the division.

SSIM u; vð Þ ¼ ð2lulv þ k1Þð2ruv þ k2Þ
ðlu2 þ lv2 þ k1Þðru2 þ rv2 þ k2Þ

ð14Þ

3.3.2 Evaluation matric based on confusion matrix

The proposed algorithm’s outputs (segmented binary vessel

structure) are classified (pixel-based) into two groups. The

pixels of the output images are either part of the vessels or

Fig. 6 Variation of the SSIM vs.

the size of the Structuring

Element (SE) tested on the

HRF, DRIVE, CHASE_DB1,

and STARE datasets

Fig. 7 Variation of the

Accuracy vs. the size of the

Structuring Element (SE) tested
on the HRF, DRIVE,

CHASE_DB1, and STARE

datasets
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the background (non-vessels). The classifications contain

two truly classified groups and two misclassified groups.

Consequently, the predicted pixels are part of the following

four categories, (a) TP (true positive), where the pixels are

classified as a part of the vessels in the segmented images

and the ground truth correctly. (ii) TN (true negative),

where the pixels are correctly identified as a part of the

non-vessels structure in both the segmented fundus image

and the corresponding ground truth image. Two misclas-

sified categories contain. (iii) FP (false positive), here the

pixels are recognized as vessels by the segmentation

technique; but actually, it is not part of the vessel structure

of the corresponding ground truth.

(iv) FN (False Negative), where the segmentation

technique marked the pixels are not of the part of the

vessels, but in reality, it is the part of the vessels. All these

four categories are shown in Table 2.

This paper uses the five most commonly applicable

matric based on the confusion matrix for the evaluation of

the proposed algorithm to other state-of-art techniques. The

metrics are as follows:

(i) Accuracy (Acc)

(ii) Sensitivity (Sen),

(iii) Specificity (Spe),

(iv) F1-Score (F1)

(v) Intersection Over Union (IOU)

Equation (15) measures the True Negative Rate (TNR)

or Specificity, which means how the proposed technique

predicts the negative class, where each pixel of the output

images falls into the negative class.

Specificity Speð Þ ¼ TN

TN þ FP
ð15Þ

Equation (16) measures the True Positive Rate (TPR) or

Sensitivity, which means how the proposed technique

predicts the positive class when each pixel of the output

images falls into the positive class. Equation (17) shows

the correctness (Accuracy) of the proposed method.

Sensitivity Senð Þ ¼ TP

TPþ FN
ð16Þ

Accuracy Accð Þ ¼ TPþ TN

TPþ TN þ FPþ FN
ð17Þ

Equation (18) shows the measurement of the F1 Score

of the proposed method, which is a Harmonic Mean (HM)

Fig. 8 Input funduscopic

images and the corresponding

output images verified on

different databases a–c are the

RGB funduscopic images (fRGB)
randomly taken from the

CHASE_DB1, STARE, and

HRF databases respectively, d–
f are the output images after

applying the proposed algorithm

on (a), (b) and (c), respectively

Table 2 Confusion matrix used

for the estimation of the

performance of the proposed

algorithm

Actual (ground truth class) Predicted class

Part of the vessels Part of the non-vessels

Part of the vessels TP (correctly accepted) FN (type II error)

Part of the non-vessels FP (type I error) TN (correctly rejected)
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of the Precision (¼ TP=ðTPþ FPÞ) and the Sensitivity. F1

Score combines Precision and Sensitivity, so it can be

applied to measure the performance of the different

methods proposed in the literature. Equation (19) shows

the Intersection Over Union (IOU) measure, a ratio

between the intersection and union of the predicted vessel

structure and given ground truth. Figure 9 shows the Per-

formance evolution (Sensitivity, Specificity, Accuracy, F1-

Score, and Intersection Over Union) on different databases

(Table 3).

F1 Score F1ð Þ ¼ 2� Precision� Sensitivity

Precisionþ Sensitivity

¼ 2� TP

2� TPþ FPþ FN
ð18Þ

IntersectionOver Union ðIOUÞ ¼ TP

TPþ FPþ FN
ð19Þ

Tables 4, 5, 6, and 7 shows the performance of the

proposed methodology compared with other RVS seg-

mentation methodologies evaluated on the DRIVE, HRF,

CHASE_DB1, and STARE databases, respectively.

Fig. 9 Performance evolution (Sensitivity, Specificity, Accuracy, and F1-Score) on different datasets (a) DRIVE (b) STARE (c) CHASE_DB1

(d) HRF datasets

Table 3 Average performance calculation of the proposed method evaluated on the different Databases (Spe: Specificity, Sen: Sensitivity, Acc:
Accuracy, F1: F1-Score, IOU: Intersection Over Union)

Name of the database Normal Fundus Image Abnormal Fundus Image

Spe Sen Acc F1 IOU Spe Sen Acc F1 IOU

DRIVE 0.9878 0.9413 0.9813 0.9341 0.8766 0.9870 0.9407 0.9803 0.9329 0.8743

STARE 0.9852 0.9402 0.9787 0.9273 0.8646 0.9862 0.9351 0.9790 0.9269 0.8640

CHASE_DB1 0.9874 0.9411 0.9812 0.9317 0.8723 0.9863 0.9416 0.9802 0.9288 0.8672

HRF 0.9873 0.9431 0.9808 0.9358 0.8794 0.9872 0.9461 0.9812 0.9367 0.8824

Microsystem Technologies (2024) 30:439–453 449

123



4 Conclusion

This study proposes an unsupervised Adaptive Mathemat-

ical Morphology-based technique that simultaneously

applies two groups of structuring elements (NALSE and

2DGSE) to eliminate the noise and enhance the vessel

structure iteratively with minimal deformity. A robust

threshold is proposed based on the frequency distribution

of the area of the isolated objects (statistical Mixture

Distribution Model), that discriminates the residual noises

from the original vessels. The experimental results

demonstrate that this algorithm segments the blood vessels

Table 4 The performance of the proposed methodology is compared with other RVS segmentation methodologies evaluated on the DRIVE

database

Type Methods Specificity (Spe) Sensitivity (Sen) Accuracy (Acc) F1-Score (F1)

Supervised methods Niemeijer et al. (2004) – 0.6898 0.9416 –

Ricci et al. (2007) – – 0.9563 –

Marin et al. (2011) 0.9819 0.6944 0.9526 –

Staal et al. (2004) 0.9773 0.7194 0.9441 –

Fraz et al. (2012) 0.9807 0.7460 0.9480 –

Vega et al. (2015) 0.9612 0.7444 0.9412 0.6884

Orlando et al. (2014) 0.9670 0.7850 – 0.7810

Orlando et al. (2016) 0.9684 0.7897 – 0.7857

Cheng et al. (2014) 0.9778 0.7252 0.9472 –

Mo et al. (2017) 0.9780 0.7779 0.9521 –

Alom et al. (2019) 0.9813 0.7792 0.9556 0.8171

Fan et al. (2016) 0.9788 0.7814 0.9612 –

Fan et al. (2020) 0.9887 0.7957 0.9661 0.8033

Wu et al. (2021) 0.9838 0.8289 0.9697 –

Sathananthavathi et al. (2021) 0.9708 0.7918 0.9545 0.7115

Aurangzeb et al. (2022) 0.9774 0.8491 0.9659 –

Deari et al. (2023) 0.9830 0.8300 0.9700 –

Unsupervised methods Fathi et al. (2014) 0.9759 0.7768 – 0.7669

Fan et al. (2019) 0.9810 0.7360 0.9600 –

Roychowdhury et al. (2015) 0.9782 0.7395 0.9494 –

Nandy et al. (2020) 0.9835 0.7283 0.9521 –

Nandy et al. (2021) 0.9756 0.7587 0.9614 –

Abdushkour et al. (2023) 0.977 0.8130 0.9590 –

Proposed methodology 0.9874 0.9410 0.9808 0.9335

Bold highlights the maximum accuracy of the corresponding measures

Table 5 The performance of the proposed methodology is compared with other RVS segmentation methodologies evaluated on the HRF

database

Type Methods Specificity (Spe) Sensitivity (Sen) Accuracy (Acc) F1-Score (F1)

Supervised methods Kolar et al. (2013) 0.9584 0.7794 – 0.7158

Orlando et al. (2016) 0.9679 0.7874 – 0.7260

Fan et al. (2020) 0.9874 0.8244 0.9763 0.8079

Wu et al. (2021) 0.9823 0.8207 0.9687 –

Sathananthavathi et al. (2021) 0.9799 0.6589 0.9244 0.6786

Unsupervised methods Roychowdhury et al. (2015) 0.9575 0.7615 0.9467 –

Proposed methodology 0.9873 0.9446 0.9810 0.9363

Bold highlights the maximum accuracy of the corresponding measures
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from the fundus images of the Retina with excellent pre-

cision. This novel technique has achieved superior Accu-

racy (DRIVE: 0.9808, STARE: 0.9789, HRF: 0.9810,

CHASE_DB1: 0.9807), Specificity (0.9874, 0.9857,

0.9873, 0.9869), Sensitivity (0.9410, 0.9377, 0.9446,

0.9414), F1-score (0.9335, 0.9271, 0.9363, 0.9303) and

Intersection Over Union (0.8754, 0.8643, 0.8809, 0.8697)

level after applying on the images available in the different

Table 6 The performance of the proposed methodology is compared with other RVS segmentation methodologies evaluated on the CHAS-

E_DB1 database

Type Methods Specificity (Spe) Sensitivity (Sen) Accuracy (Acc) F1-Score (F1)

Supervised methods Fraz et al. (2012) 0.9711 0.7224 0.9469 –

Alom et al. (2019) 0.9820 0.7756 0.9634 0.7928

Fan et al. (2016) 0.9704 0.7656 0.9573 –

Mo et al. (2017) 0.9793 0.7661 0.9581 –

Orlando et al. (2016) 0.9712 0.7277 – 0.7332

Fan et al. (2020) 0.9873 0.8020 0.9714 0.8079

Wu et al. (2021) 0.9839 0.8365 0.9744 –

Sathananthavathi et al. (2021) 0.9653 0.6457 0.9340 0.6508

Aurangzeb et al. (2022) 0.9806 0.8607 0.9731 –

Deari et al. (2023) 0.9837 0.8582 0.9762 –

Unsupervised methods Fraz et al. (2014) – 0.9769 0.7259 0.7488

Roychowdhury et al. (2015) 0.9575 0.7615 0.9467 –

Fan et al. (2019) 0.9730 0.6570 0.9510 –

Nandy et al. (2021) 0.9770 0.7586 0.9644 –

Proposed methodology 0.9869 0.9414 0.9807 0.9303

Bold highlights the maximum accuracy of the corresponding measures

Table 7 The performance of the proposed methodology is compared with other RVS segmentation methodologies evaluated on the STARE

database

Type Methods Specificity (Spe) Sensitivity (Sen) Accuracy (Acc) F1-Score (F1)

Supervised methods Staal et al. (2004) – – 0.9516 –

Ricci et al. (2007) – – 0.9584 –

Fan et al. (2016) 0.9799 0.7834 0.9654 –

Marin et al. (2011) 0.9819 0.6944 0.9526 –

Orlando et al. (2016) 0.9738 0.7680 – 0.7644

Fraz et al. (2012) 0.9763 0.7548 0.9534 –

Mo et al. (2017) 0.9844 0.8147 0.9674 –

Vega et al. (2015) 0.9671 0.7019 0.9483 0.6614

Fan et al. (2020) 0.9870 0.8164 0.9741 0.8250

Alom et al. (2019) 0.9712 0.8292 0.9712 0.8475

Wu et al. (2021) 0.9839 0.8207 0.9736 –

Sathananthavathi et al. (2021) 0.9561 0.8021 0.9445 0.9695

Aurangzeb et al. (2022) 0.9813 0.8573 0.9719 –

Unsupervised methods Fathi et al. (2014) 0.9717 0.8061 – 0.7509

Roychowdhury et al. (2015) 0.9842 0.7317 0.9559 –

Fan et al. (2019) 0.9700 0.7910 0.9570 –

Nandy et al. (2021) 0.9675 0.7564 0.9657 –

Abdushkour et al. (2023) 0.9680 0.8010 0.9510 –

Proposed Methodology 0.9857 0.9377 0.9789 0.9271

Bold highlights the maximum accuracy of the corresponding measures
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databases (DRIVE, STARE, HRF, and CHASE_DB1, etc.).

As mentioned earlier, the results clearly show that the

proposed method can segment the fundus vessel structure

accurately and efficiently without any intervention from

ophthalmologists or experts.
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