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Abstract
This research paper provides a simple and original approach to extend the resonant frequency tuning range for achieving

high-to-low frequencies in electrostatically actuated microelectromechanical systems (MEMS) based resonators. In

microstructures, low frequencies are usually achieved by increasing the effective mass or decreasing the mechanical

stiffness. However, this work intends, assuming a double-sided electrodes design, to control the excited mode of the micro-

system in order to achieve low frequencies through DC bias voltage variations and possibly eliminate the displacement

dependency in capacitive micro-bridges-based structures. The design consists of a flexible microbeam where its equations

of motion are derived within the framework of the nonlinear Euler–Bernoulli beam theory. The equations are then solved

using the reduced-order modeling based on the Galerkin modal decomposition while considering the couple-stress theory.

Simulation results show an improved performance of the proposed structure compared to previous studies. According to

these results, a wide frequency tuning range has been achieved through a proper DC bias voltage arrangement. In addition,

the outcomes of the numerical analysis were validated by comparing them with FEM results obtained by COMSOL

software.

1 Introduction

The growing requirements for high-performance, single-

chip, multi-band and reconfigurable radio-frequency (RF)

solutions for wireless communication systems, mechanical

resonators have been widely explored in recent years.

Because of their high quality-factor (QF), quartz-crystal

and surface-acoustic-wave (SAW) resonators have been

generally employed as the frequency setting elements in

oscillators-based circuitry. Nevertheless, these conven-

tional oscillators can only provide a relatively small fre-

quency tuning whose magnitude is limited up to a few

megahertz. Consequently, to cover a larger frequency

bandwidth, the need for mechanical micro-resonators

turned into a tremendous interest to the RF wireless design

society. Moreover, with the need of high-QF, more metal–

oxide–semiconductor (CMOS) compatibility and multi-

frequency operation on a chip, microelectromechanical

system (MEMS) based resonators provide a feasible

alternative to the bulky quartz crystal and SAW based old

resonators. Also, MEMS resonators represent the best

possibility for integration as oscillators for wider band

transceiver applications (Wu et al. 2020; Chen et al. 2018;

Rinaldi et al. 2011; Zuo et al. 2010).

To be compatible with various applications, MEMS

structures were mainly characterized based on their focal

actuation mechanisms (Azimloo et al. 2014). Even though

many unique actuation methods are developed, the con-

ventional mechanisms can be generally categorized into

Electrostatic and Piezoelectric actuation (Wu et al. 2020).

Indeed, the electrostatic parallel-plates based actuation

process is the most executed mechanism in MEMS which

benefits the systems to have the lowest excitation control,

the largest changes in the measured capacitance, a rela-

tively easier fabrication process and better performance

over the different other methods (Nayfeh et al. 2007;

Siahpour et al. 2018). The micro-resonator consists mainly

of a flexible/movable beam (bridge) suspended over a

fixed/stationary conductor (electrode) (Ghayesh et al. 2013;

Feng et al. 2019) where a combination of DC and AC
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voltages are assumed for actuating/resonating purposes.

Nevertheless, this method suffers from certain non-linear

behaviors (Alsaleem et al. 2010; Zhang et al. 2014;

Masoumi et al. 2021) including hysteresis, sudden jumps in

the response, the pull-in instability, etc.…. These nonlinear

trends were shown to be useful under certain conditions

within systems requiring low frequency applications such

as earthquake detectors and energy vibration based har-

vesting structures (Ghasemi et al. 2020). In such cases, the

static DC voltage can be used to tune the natural frequency

of the micro-resonator to lower values and hence form a

certain type of system called tunable resonator.

Generally, MEMS structures have an unlimited number

of oscillating modes due to the distributed mechanical

parameters of the micro-beams, which are necessary to

label the vibration type of the micro-resonator and partic-

ularly depends on the arrangement/shape of the actuating

electrodes. By differently shaping and arranging these

electrodes, the electric actuating load can be fashioned to

trigger a certain mode of vibration. However, any of these

vibrating systems usually resonate at first lowest mode of

vibration also known as the fundamental mode, a proper

selection of the mode of excitation/actuation, the resonat-

ing condition of the microsystem can be tuned to a desired

wider range of frequency bandwidth. Indeed, numerous

scholars (Prak et al. 1992; Gil et al. 2012) have studied

selective mode of excitations but they conducted that

microbeams assuming electrostatic actuation, the first

mode of vibration is more likely to be excited as compared

to the other higher-order modes, resulting in an oscillator

resonating in a narrow band of frequencies ranging from

the first fundamental frequency to the frequency corre-

sponding to approximately 60–70% of dynamic pull-in

voltage of the first mode.

In the literature, one can find several attempts, such as

(Yao and MacDonald 1995; Pourkamali et al. 2003; Jensen

et al. 2003; Lee et al. 2007, 2008; Morgan and Ghodssi

2008; Zine-El-Abidine and Yang 2009; Mobki et al. 2013;

Madinei et al. 2015; Ghasemi et al. 2020), to design smart

and innovative electrostatic based actuation mechanism for

MEMS devices through shaping the stationary actuating

electrodes. An increase of 5–25% in the frequency tuning

range were reported in the designs of Yao and MacDonald

(1995), Pourkamali et al. (2003), Lee et al. (2007), Morgan

and Ghodssi (2008). On the other hand, there are also

attempts to achieve a wider frequency tuning range. For

instance, in the effort of Mobki et al. (2013) and Madinei

et al. (2015), and by placing the actuating electrodes

asymmetrically on both sides of the microbeam, the second

mode (asymmetric) of vibration has been excited more than

other modes and the frequency range of oscillation

increased accordingly.

Despite these cited numerous efforts devoted into

improving the tuning domain of electrically actuated

MEMS based resonators, there is a need for a compre-

hensive study possibly covering wider frequency tuning

applications ranging from low-to-high band of frequencies.

As a case study, the configuration used in this paper con-

sists of a doubly-clamped flexible microbeam placed

between two stationary electrodes with different symmetric

and asymmetric arrangements. Herein, to attain the first

fundamental frequency, both stationary electrodes have an

equal length with the movable microbeam, whereas the

second oscillating mode is excited when the immovable

electrodes are half the length of the microbeam and placed

asymmetrically on both sides of the microbeam. A

numerical/analytical model is developed, based on multi-

mode Galerkin-based reduced-order model to solve the

static and eigenvalue problems of the micro-beam under

these various electrostatic actuation arrangements and

distributions. A wider range of tunability behavior when

controlling the actuation arrangement are to be analyzed

and compared accordingly. Finite element analysis based

on COMSOL Multiphysics software has been used to

validate the obtained results. The results show that the

obtained tuning range are very sensitive to the actuation

scheme, which can be very supportive for sensing and

harvesting applications. On the other hand, the proposed

analytical model can be used as a guideline for designing

micro-sensors and micro-actuators with low power con-

sumption, high sensitivity, and wide tuning range of elec-

trostatically actuated MEMS.

2 Model description

A schematic drawing of a MEMS resonator illustrated in

Fig. 1 consists of a micro-beam clamped from both sides at

the anchors and is arranged in between two symmetric

upper and lower actuating electrodes. In this study, four

different arrangements of the actuating excited electrodes,

ranging from single-sided or double-sided configurations,

Fig. 1 Schematic of electrostatically actuated doubly-clamped

microbeam resonator
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will be considered depending on which resonating mode is

to be exited:

• Arrangement #1: in the classical model, system con-

sisting of single-sided electrodes, assuming same DC

voltage applied on lower electrodes (1 and 2) or the

higher electrodes (3 and 4). In this case, the first

fundamental mode of the microbeam will be excited.

• Arrangement #2: system consisting of double-sided

electrodes assuming a DC voltage applied simultane-

ously to all actuating electrodes (1, 2, 3 and 4).

Therefore another kind of electrostatic excitation can be

obtained (Mobki et al. 2013; Rezazadeh et al. 2012);

here as well, the first mode of natural frequency will be

excited accordingly.

• Arrangement #3: system consisting of double-sided

electrodes but here assuming an asymmetric DC

actuation to one pair of the lower and upper electrodes

(electrodes 1 and 4 or electrodes 2 and 3). This

actuation skeleton causes the second mode of vibration

more likely to be excited as compared to the other

modes.

• Arrangement #4: system consisting of double-sided

electrodes through connecting the lower and upper

electrodes with a cross-shape arrangement into the DC

power supplies (electrodes 1 and 4 and electrodes 2 and

3). Here as well, the second mode of vibration will be

mainly the dominant mode to be triggered.

Consequently, the above suggested actuating arrangements

will be mainly used to examine the multi-frequency based

micro-resonator capabilities with a possible wider frequency

tuning range. Another objective of this work is to possibly

lower the excited micro-resonator’s modes of vibration. For

this, an increase of the total length of the microbeam is one

possibilitywhich results into a decrease of the overall stiffness

of the microbeam and consequently decrease in its natural

frequencies. Nevertheless, in this case, the microbeamwill be

more prominent to undergo an earlier pull-in instability.

3 Mathematical modeling

In this section, the equations governing the behavior of an

electrostatically actuated microbeam, Fig. 1, are derived.

The microbeam has a length L, width b and thickness h. It is

assumed to be made from a silicon on insulator (SOI) wafer

layer (isotropic material) with an affective young modulus

of E = 169 GPa, Poisson’s ratio of m = 0.22, and mass

density of q = 2328 kg/m3 (Sharpe et al. 1997). A static DC

voltage VDC is applied between the movable microbeam and

its lower and upper actuating electrodes. This difference of

voltage results into a uniformly and equally distributed

electrostatic force on the microbeam’s length. This attractive

force causes the movable electrode to move toward the

actuating electrodes and therefore resulting into a change in

the structure effective stiffness. Assuming a nonlinear

Euler–Bernoulli beam model superimposed to a couple-

stress theory, the structural in-plane behavior of the movable

electrode of Fig. 1 is governed by the following equation

and respective boundary conditions (Younis et al. 2003):

EI þ lAl2
� � o4wðx; tÞ

ox4
þ qA

o2wðx; tÞ
ot2

þ c
owðx; tÞ

ot
¼ Fe V ;wðx; tÞð Þ;

w x ¼ 0; tð Þ ¼ w x ¼ L; tð Þ ¼ 0;
owðx ¼ 0; tÞ

ox
¼ owðx ¼ L; tÞ

ox
¼ 0;

8
><

>:

ð1Þ

where wðx; tÞ denotes the microbeam’ in-plane deflection

in the y-direction, function of space variable x and time t,

A ¼ bh and I ¼ bh3=12 are respectively the cross-sectional

area and moment of inertia, c is the coefficient of viscous

damping due to the squeeze film damping, E and l are

young’s modulus and shear modulus respectively, l = 170

nm (Miandoab et al. 2014) represents the length scale

parameter. The term on the left-hand-side of the Eq. (1)

denotes the parallel-plate electric forces assuming com-

plete overlap area between the microbeam and the sta-

tionary electrode. This resultant electrostatic force, which

has mainly a space-dependent profile, can be written for the

four different arrangements of Fig. 1, respectively as fol-

lows in Table 1 (Madinei et al. 2015; Younis et al. 2003):

Regarding Table 1, H x½ � is the Heaviside function, VDC

represents the applied voltage between the micro-beam and

the upper or downer electrodes, g0 is the initial air gap

between the electrodes and the non-deformed micro-beam,

a1 and a2 parameters express the voltage distribution over the

driven electrodes to study their excitation in desired fre-

quency mode, e0 ¼ 8:85� 10�12ðF:m�1Þ is the permittivity

of free space. For convenience, the dimensionless variables

are defined as follows:

ew ¼ w

g0
; ex ¼ x

L
; ea1 ¼

a1
L
; ea2 ¼

a2
L
; et ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EI

qbhL4

s

ð2Þ

By substituting Eq. (2) in Eq. (1) and considering the

associated force as actuation type #3, the result can be

written as the following form:

o2 ew

oet2
þ b1

o ew
oet

þ 1þ b2ð Þ o
4 ew
oex4

¼ cV2
DC

H ea1 � ex½ �
1� ewð Þ2

� H ex � ea2½ �
1þ ewð Þ2

 !

þ f ðx; tÞ
ð3Þ
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The parameters appeared in Eq. (3) are:

b1 ¼
cL4

EI

ffiffiffiffiffiffiffiffi
qAL4

EI

q ; b

2

¼ lAl2

EI
; c ¼ 6e0L4

Eh3g30
ð4Þ

4 Numerical approach

In this section, the resultant equation governed by substi-

tuting electrostatic force expressions (Table 1) into Eq. (1)

is numerically discretized using the modal expansion

reduced-order modeling technique (Younis et al. 2003). For

this, the microbeam in-plane deflection can be expanded as

follows:

w x; tð Þ ¼
XN

k¼1

Wk xð ÞqkðtÞ ð5Þ

where Wk xð Þ represents the mode-shape of an un-forced

and un-damped doubly-clamped straight beam and qkðtÞ is
the corresponding unknown time-dependent modal coor-

dinate amplitude. By substituting Eq. (5) in Eq. (3), the

resultant outcome is then multiplied by the mode-shape

functions Wjð1� j�NÞ and the subsequent N-equations

are then integrated from 0-L. This produces N ordinary-

differential equations (ODEs) in qkð1� k�NÞ forming a

reduced-order-model (ROM). A convergence analysis was

carried out and it was found that five modes (N = 5) is

sufficient for convergence.

The derived ROM can be used to calculate the

microresonator natural frequencies. Toward this, the static

deflection of the beam upon the electrostatic actuation is

Table 1 Associated force from actuation type
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first caudated. For this, we calculate the stationary deflec-

tion by setting all time dependent terms in the ROM based

ODEs equal to zero. So the outcome equation for the static

deflection of Eq. (3) is expressed as:

1þ b2ð Þ o
4 ewðxÞ
oex4

¼ cV2
DC

H ea1 � ex½ �
1� ewðxÞð Þ2

� H ex � ea2½ �
1þ ewðxÞð Þ2

 !

ð6Þ

Due to the nonlinearity of the governing equation, the

analytical solution methods cannot be used to obtain the

results; therefore, it is better to linearize the equation. To

solve the non-linear Eq. (6), the first step is taken by

applying step by step linearization method. According to

this method it is assumed that wi is the beam displacement

due to the applied voltage Vi. Therefore, by increasing the

voltage to the new value, the displacement of the micro-

beam can be written as follows:

wiþ1 ¼ wi þ dw ¼ wi þW xð Þ ð7Þ

where:

Viþ1 ¼ Vi þ dv ð8Þ

So Eq. (6) in ðiÞth and ðiþ 1Þth steps can be written as

follows:

1þ b2ð Þ d
4wi

dx4
¼ cVi

2 H a1 � x½ �
1� wið Þ2

� H x� a2½ �
1þ wið Þ2

 !

ð9Þ

1þ b2ð Þ d
4wiþ1

dx4
¼ cViþ1

2 H a1 � x½ �
1� wiþ1ð Þ2

� H x� a2½ �
1þ wiþ1ð Þ2

 !

ð10Þ

Substituting Eq. (7) in Eq. (10) yields to:

1þ b2ð Þ d
4wi

dx4
þ 1þ b2ð Þ d

4W
dx4

¼ cViþ1
2 H a1 � x½ �

1� wi �W xð Þð Þ2
� H x� a2½ �

1þ wi þW xð Þð Þ2

 !

ð11Þ

Using the calculus of variation theory and Taylor

expansion, neglecting the higher-order term of the Taylor

series, the right side of the obtained Eq. (11) can be

rewritten as follows:

1þ b2ð Þ d
4wi

dx4
þ 1þ b2ð Þ d

4W
dx4

¼ cV2
i

H a1 � x½ �
1� wið Þ2

� H x� a2½ �
1þ wið Þ2

 !

þ 2cV2
i

H a1 � x½ �
1� wið Þ3

þ H x� a2½ �
1þ wið Þ3

 !

W

þ 2cVi
H a1 � x½ �
1� wið Þ2

� H x� a2½ �
1þ wið Þ2

 !

dv

ð12Þ

By simplifying the Eq. (12), the linear equation to cal-

culate W xð Þ is obtained as the following form:

1þ b2ð Þ d
4W
dx4

� 2cV2
i

H a1 � x½ �
1� wið Þ3

þ H x� a2½ �
1þ wið Þ3

 !

W

¼ 2cVi
H a1 � x½ �
1� wið Þ2

� H x� a2½ �
1þ wið Þ2

 !

dv

ð13Þ

The solution of Eq. (13) belongs to infinite Hilbert space

and can be expressed versus its basis functions. Since

Eq. (13) is an equation with variable coefficients and

finding a complete orthogonal basis that leads to a sepa-

rable Hilbert space is laborious (difficult), therefore, the

infinite Hilbert space is projected to a finite space based on

the Galerkin decomposition method. To attain the

approximate solution according to the Galerkin method,

WðxÞ is expressed in terms of a linear combination of a set

of linear independent shape functions un xð Þ satisfying the

boundary conditions.

W xð Þ ffi
XN

n¼1

snun xð Þ ð14Þ

By substituting Eq. (14) into Eq. (13) and multiplying

the outcome by umðxÞ as a weight function of Galerkin

method and integrating the output from x ¼ 0 to 1, a set of

linear algebraic equations can be obtained as follows:

XN

m¼1

Kmech � Kelecð Þsn ¼ Fnn ¼ 1; . . .;N ð15Þ

where:

Kmech ¼ 1þ b2ð Þ
Z1

0

uIV
n umdx ð16Þ

Kelec ¼ 2cV2
i

Z1

0

H a1 � x½ �
1� wið Þ3

þ H x� a2½ �
1þ wið Þ3

 !

unumdx ð17Þ
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Fn ¼ 2cVi

Z1

0

H a1 � x½ �
1� wið Þ2

� H x� a2½ �
1þ wið Þ2

 !

dvundx ð18Þ

At each step, by substituting calculated WðxÞ in Eq. (7),

wiðxÞ will be determined for a given specific Vi. According

to Eq. (15) by increasing the applied DC voltage, the

equivalent stiffness of the structure will be reduced and in

case the stiffness of the structure reaches zero, the solution

of the problem will gain an unstable value called Pull-in.

Furthermore, the eigenvalue problem of the micro-res-

onator is solved through perturbing the response around the

calculated static position and considering only the linear

part of the ROM. It is worth saying that the stability of each

equilibrium solution is inspected through calculating the

eigenvalues of the Jacobian matrix of the ROM.

5 Results and discussion:

As a case study, a micro-beam with length L ¼ 350 lm,
width b ¼ 20 lm, thickness h ¼ 2 lm, and same upper and

lower gap size of g0 ¼ 1 lm, is considered. The shape

functions satisfying the boundary conditions take the fol-

lowing form Rao (2019):

un xð Þ ¼ cos Anxð Þ � cosh Anxð Þð Þ
� Bn� sin Anxð Þ � sinh Anxð Þð Þ ð19Þ

where Bn and An for the clamped–clamped structure are

expressed as:

Bn ¼
cos Anð Þ � cosh Anð Þð Þ
sin Anð Þ � sinh Anð Þð Þ ;An

¼ 4:7300; 7:8532; 10:9956; 14:1372½ �: ð20Þ

To validate the results of this study, an attempt done to

simulate the results of Madinei et al. (2015) to compare

with; considering the first and the second arrangements in

Table 1, the ROM results are displayed in Table 2. These

two simulations validate the ROM and shows an accept-

able agreement with the reported results in the literature.

Also, the effect of index N in shape function on the static

pull-in voltage for different step sizes is compared in

Table 3.

Figure 2 is related to static analysis of the single-side

actuated microbeam (Arrangement #1). Since the diagram

is plotted in dimensionless scale, the micro-beam after goes

through about a third of the air gap, for classical parallel-

plates model the pull-in phenomenon is occurred in

Vpull�in ¼ 11:12V. The simulation results for the deflection

of the classical beam are shown through a dashed line with

a stared marker. According to COMSOL results, the

deflection of the microbeam is raised by increasing the

applied DC voltage until VDC ¼ 10:99V. The COMSOL

results diverge for voltages greater than VDC ¼ 10:99V.

Therefore, VDC ¼ 10:99V is considered as pull-in voltage

in the COMSOL model, which are closely agreed with the

results of numerical results. The pull-in voltage that is

obtained from the COMSOL model is smaller than the

distributed model. In COMSOL modeling, the fringing

field effect is taken into account, which is neglected in our

model, thereby increasing the applied force to the

microbeam.

As can be seen in Fig. 3, the graph is plotted for the

proposed model in Arrangement #2. In the ideal case (T-

shape graph) the air gap between the electrodes and micro-

beam is the same quietly. Accordingly, due to an equal

upper and lower electrostatic field in both sides of the

microbeam, a net resultant force will be zero and therefore

the microstructure won’t deflect till the initiation of a pitch-

fork type (Madinei et al. 2015) of the pull-in instability at

around 14.83 V with two options for the microbeam to

suddenly jump toward the upper or lower electrodes.

However, due to the fabrication process, it might exist a

little gap difference between the microbeam and electrodes

or a small difference between voltage suppliers on both

sides. In that case, with a lower distance to the microbeam

or a higher amount of voltage applied, there is very little

displacement toward the electrodes. Hence the dashed line

and dash-dotted line in Fig. 3 are plotted for different gap

values and its curvature becomes more visible as the micro-

beam will jump toward the electrode with a less distance to

the microbeam. Regarding the double-sided system, the

force applied to both sides to bring the structure to the

critical value requires a stronger electrical field, hence in

the double-sided structure, the value of static pull-in volt-

age is more than the single-sided type, equals here 14:45V.

Whereas one pair of the electrodes [the electrodes (1–4)

or electrodes (2–3)] are connected to a power supply

(Arrangement #3), the clamp-clamp microbeam is excited

in the second mode of frequency, as shown by solid lines in

Fig. 4. Implementation of this case is possible by the value

of a1; a2 ¼ 0:5 in Heaviside function. Concerning the

highest amount of displacement that occurred in the

neighborhood of 0.29 and 0.71 of the micro-beam lengths,

Fig. 4 shows the displacement of the beam in these points

with increasing the voltage value. Calculation shows that

the voltage of static instability which is occurred in the

second mode of frequency is30:77V. In the case of the

proposed actuation system in Arrangement #4, displace-

ment dependency of the electrostatic force is eliminated

which results in an increment in the pull-in voltage up to

39:85V, as shown with a dash-dotted line in Fig. 4. The

COMSOL finite element analysis results of the displace-

ment magnitude across the clamped–clamped microbeam

resonator under four different electrostatic actuation types

are presented in Fig. 5.
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Micro-structures, being small in size and rigid in

mechanical properties, they commonly possess high natural

frequencies and this particularity maybe unpractical for

several applications such as seismographs, where it is

required to operate the sensor in low frequency regime.

Lowering their natural frequencies could be possible by

increasing the effective mass or reducing the structural

stiffness.

As discussed earlier, this work suggests the use of

double-sided structure to possibly decrease the natural

frequency of the micro-resonator via altering the bias DC

voltage assuming four different arrangements without the

need of changing the dimensions neither material proper-

ties of the structure. As a result, it’s possible to design

MEMS resonators with a very wide frequency tuning

range. Therefore, to investigate the performance of the

micro-resonator, natural frequencies to DC voltage

dependency is to be examined. Thus, the linearized

eigenvalue problem of the microbeam based micro-res-

onator is computed through perturbing its vibrational

response around the above obtained static positions and

Table 2 Validation of analysis

process
Type of actuation Bifurcation type Pull-in voltage Simulated values

a) double-sided (a1; a2 ¼ 0:5) Pitchfork Vpull�in ¼ 34:9V Vpull�in ¼ 34:2V

b) single-sided ða1; a2 [ 0:5Þ Saddle node Vpull�in ¼ 20:1V Vpull�in ¼ 20:06V

Table 3 Comparison of

obtained results to the index N

in shape function

Value of the step of applied voltage, dv½V� 0.1 0.05 0.01 0.001

Pull-in Voltage ½V �
Obtained result with N = 1 11.3 11.2 11.11 11.092

Obtained result with N = 2 11.3 11.2 11.11 11.092

Obtained result with N = 3 11.3 11.2 11.12 11.098

Obtained result with N = 4 11.3 11.2 11.12 11.098

Fig. 2 Pull-in voltage for static analysis of single-side actuated beam

Fig. 3 Pull-in voltage for static analysis of double-side actuated beam

in different gaps

Fig. 4 Static analysis of two type double-side actuated beam

structures in the second mode
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while considering only the linear part of the ROM

(Azimloo et al. (2020). This process is mainly linearizing

the nonlinear beam equations around the static equilibrium

position at a given exciting DC load. Then, through eval-

uating the eigenvalue problem of the linearized system by

substituting the stable equilibrium solution, result into pairs

of pure imaginary eigenvalues. Taking the real value of

each imaginary pair yields the natural frequencies of each

mode of the investigated configuration of the micro-

resonator.

Firstly, the efficacy of the double-sided structure in

frequency tunability compared to the single-sided struc-

tures is investigated for the first mode of frequency. As can

be seen in Fig. 6 the natural frequency of the first mode for

both cases is 146 kHz. The graph shown with a dashed line

is the indicator expressing changes of the resonant fre-

quency by increasing the bias voltage in a single-sided

structure. The graph has two regions with a low slope and

sudden changes. In the low slop region by changing the

bias voltage up to 70% of the pull-in value, 9.8% of fre-

quency tunability would be possible, but in sudden changes

region due to the sudden changes of frequency around the

pull-in voltage and reducing the amount of structure con-

trollability, the possibility of frequency tuning around the

pull-in voltage will be very difficult. The diagram shown

with the solid line represents frequency changes in the

double-sided structure which has a milder slope in com-

parison to the classical structure. So, by enhancing the bias

voltage up to 70% of the pull-in voltage, 26.8% of resonant

frequency tunability will be obtained in the double-side

actuated system. For the case of double-sided one, and due

to the elimination of the displacement dependency with the

electrostatic force, the variation of the system fundamental

frequency versus the applied DC voltage shows a reason-

able trend, making it possible to further increase the

applied actuating load continuously up to approximately

95% of the pull-in voltage, and with an increase to about

61.8% tunability range of the first natural frequency.

Figure 7 shows resonant frequency variation of the

proposed structure versus bias voltage changes when the

structure is excited in the second mode of vibration. Since

the excitation in the second mode is done by double-sided

Fig. 5 Deflection of the microbeam simulated by COMSOL
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structure, the comparison between two different methods of

voltage distribution among the electrodes is investigated.

According to work done by Madinei et al. (2015), while the

bias voltage (V) is applied to the electrodes 1 and 4

(Arrangement #3), as shown with the dashed line, the

system has similar behavior with the single-sided structure

that excited in the first mode of frequency. In this case, the

range of tunability is limited by 70% of the pull-in voltage

in the second natural frequency and a 9.7% tuning ratio is

achieved. According to arrangement #4, the electrodes (1–

4) and electrodes (2–3) are connected to the supply volt-

ages V1 and V2 respectively. If both of the supply voltages

V1 and V2 have the same amounts equal to V, assuming

very small differences between them in view of non-ideal

supply voltage conditions, distribution of the electrical

force on both sides of the structure occurred or applied in a

way that the excitation of the structure happens in the

second mode of natural frequency. Regarding Fig. 7, the

natural frequency in the second mode of vibration for both

cases is 401:3 kHz. By considering the 70% of pull-in

voltage, 26.7% of frequency tuning ratio will be achievable

in the Type #4 double-side actuated system. On the other

hand, as mentioned before in the double-side actuated

system the effect of non-linearity is decreased. Therefore, it

becomes possible to access 61.8% of resonant frequency

tuning by applying high bias voltage close to 95% of the

pull-in voltage of the second mode.

Utilizing selective mode excitation in the proposed

structure provides the possibility of increasing the fre-

quency bandwidth and tunability. According to Fig. 8, it

can be seen while the structure is actuated in the second

mode of vibration and the bias voltage is increased

according to arrangement #4, the rate of frequency varia-

tion proportional to the voltage changes has a mild slope.

This process continues until the natural frequency of the

structure is closed to the first mode of frequency. Then, by

changing the voltage distribution according to arrangement

#2, by increasing the bias voltage from zero to 95% of pull-

in voltage of the first mode, a wide frequency range can be

covered thoroughly. Accordingly, the resonant frequency

will be tuned from ? 174.8% to – 61.8% of the first mode

of vibration. This procedure allows tuning resonators with

a higher degree of controllability than previous cases.

Table 4 indicates a comparison of the current state of the

art MEMS tunable resonator with the micro-resonator

found in the literature. This comparison presents the high

tuning range, low power consumption and easier design

process that can be achieved with the proposed tuning

method.

Fig. 6 Frequency versus voltage in the first natural frequency mode
Fig. 7 Frequency versus voltage in the second mode of natural

frequency

Fig. 8 Frequency tuning by selective mode excitation
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6 Conclusion

In this study, the proposed model consists of a clamp-

clamp micro-beam that is placed between two electrodes

and each electrode is equally divided into two sections.

Electrode’s arrangement presented in this study provides

the possibility of a different form of voltage application

between the electrodes. Consequently, this enables the

structure to have selectively different modes of excitation.

To solve governing differential equation and investigate

the mechanical behavior of the micro-structure assuming

the different forms of the actuation, a Galerkin modal

expansion-based method was applied to discretize the

equation into reduced-order model equations that can then

be numerically integrated using Newton–Raphson method.

It was shown that with the uniform voltage distribution

between the electrodes on both sides of the beam, structure

excitation occurred in the first mode of frequency. Also in

the case of connecting the electrodes as a cross shape into

the power supplies with the same voltage distribution, the

resonator was excited in the second mode of frequency. By

solving the static bending equations, stable areas of the

micro-beam in single-sided and double-sided structures

were calculated. It was shown that in the double-sided

structure due to equal electric field in both sides of the

micro-beam, the occurred displacement in the ideal case

(same gap value and same applied voltage) is close to zero.

So, in the double-sided structure, applying a high bias DC

voltage leading system to have a very low natural fre-

quency is capable. Therefore, the double-sided structure in

comparison to the single-sided structure is very sensitive to

low-frequency excitations.

The paper showed that by using the design of double-

sided structures in MEMS resonators and increasing the

bias voltage to approximately 95% of the pull-in value, the

tunable frequency range could be increased up to about

62% of the first natural frequency, while for the classical

model (single-sided) it equals to 9.8%. Also, by using a

combination of double-sided structure and selective mode

excitation, the expansion of tuning ratio from ? 174.8% to

– 61.8% of the first mode of vibration, without changing

the dimensions of the structure, is feasible.

Data availability Data sets generated during the current study are

available from the corresponding author on reasonable request.
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