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Abstract
Designing collision-aware routing (path planning) protocols for UAV (Unmanned Aerial Vehicle) Networks requires

multimodal analysis of various network and node-level parameter sets. These include node-to-node distance, energy

constraints, communication constraints, QoS (Quality of Service) constraints, etc. Existing collision-aware UAV routing

models are either highly complex or have lower efficiency, which limits their deployment abilities. Moreover, these models

usually do not consider energy constraints and are applied to static targets. To overcome these limitations, this article gave

an idea about the design of a novel hybrid bioinspired model. The proposed model initially collects node-level and

network-level parametric sets that include Cartesian location, residual energy levels, temporal routing performance, and

temporal collision performance levels. The model then deploys a Grey Wolf Optimization (GWO) based routing process to

identify optimal routes between two anchor points. The routes are again tuned via a Firefly based Optimization (FFO)

which assists in estimating high-trust routes based on their temporal performance via continuous data update operations.

The selected route sets are further scrutinized via a continuous learning framework (CLF), which assists in the identifi-

cation of dynamic moving targets, and uses this information for incremental route updates. Due to the integration of CLF,

the model can identify optimal paths even under moving target scenarios. The model was validated under multiscale

networks, and its performance was evaluated in terms of collision avoidance accuracy, routing delay, energy requirements,

and computational complexity levels w.r.t. dynamic scenarios. This performance was compared with various state-of-the-

art methods, and it was seen that the proposed model has 10.5% lower routing delay, with 8.3% lower energy consumption,

and 23.9% lower collisions while maintaining lower computational complexity. Due to these enhancements, the proposed

model can deploy a wide variety of real-time UAV network scenarios.

1 Introduction

UAV-based networks have significant energy consumption,

a short flight time, and powerful communication capabili-

ties. As a result, building routing models for these networks

necessitates an efficient examination of routing paths,

temporal node performance, network parameters, and other

multi-modal and contextual restrictions. To create such

models, researchers must evaluate a wide range of real-

time parameters such as collision awareness, flying height,

turning angles, threat avoidance, and so on. Figure 1 shows

a list of such parameters, with metrics for collision

avoidance, self-constraints, and external dynamics sepa-

rated to identify the most useful metrics that must be

optimized in large-scale routing (path planning) scenarios

(Lee and Friderikos 2022; Jinqiang et al. 2021; Cheng et al.

2022; Li et al. 2022). Based on this comparison, the most

important metrics for indigenous UAV networks are

expected time of arrival (ETA), separation maintenance,

fuel capacity, UAV slope, turning angle, and relative

height. The most significant criteria for indigenous UAV

networks are separation maintenance, fuel capacity, UAV

slope, turning angle, and relative height.

These parameters are combined to form an objective

function f p which can be evaluated as per Eq. (1)

f p ¼
f 1 ETA;RH;F; S; Tað Þ

f 2ðSep;ObsÞ
ð1Þ

& Balraj Singh

balraj.13075@lpu.co.in

1 Present Address: School of Computer Science and

Engineering, Lovely Professional University, Phagwara,

Punjab, India

2 Department of Innovative Business and Accountancy,

Dhurakij Pundit University, Bangkok, Thailand

123

Microsystem Technologies (2024) 30:411–421
https://doi.org/10.1007/s00542-023-05547-1(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00542-023-05547-1&amp;domain=pdf
https://doi.org/10.1007/s00542-023-05547-1


where, RH, F, S and Ta represent the relative height, fuel

requirements, slope, and turning angle, all of which must

be minimized, while Sep and Obs represent separation

distance and obstacle avoidance probability, which must be

maximized for the optimization process (Liu et al. 2021;

Qadir et al. 2022). The functions f1 and f2 are decided as

per the context of the network, and used for continuous

planning operations. A survey of models (Shao et al. 2022;

Airlangga and Liu 2022; Bono Rossello et al. 2022; San-

chez-Fernandez et al. 2022; Dong et al. 2022) that perform

these operations is discussed. Based on which it was

observed that existing path planning models with collision

awareness are either highly complex or have lower effi-

ciency, that limits abilities. Moreover, these models usually

do not consider energy constraints and are applied to static

targets. The objective of this research work is to improve

the overall performance of the network by considering

characteristics like collision avoidance, target detection,

and minimization of collision. The precise or accurate

detection of the object increases the throughput of the

network in context to energy saving for UAVs, especially

in real-time adversarial environments.

In Sect. 2 review of literature has been explained to

increase the potential of the proposed method. In Sect. 3

proposed scheme is used as a continuous pattern assess-

ment of dynamic environment. In Sect. 4, the proposed

model’s performance was evaluated using large-scale net-

work simulated environment to compared to that of tradi-

tional routing methods. Finally, this text concludes with

some context-specific and network-specific observations

about the proposed model and recommends methods to

further optimize its performance.

2 Literature review

A wide variety of UAV path planning models are proposed

by researchers, and each has its internal characteristics. For

instance, work in Wang et al. (2022), Pan et al. (2022),

Zhou et al. (2021), and Xu et al. (2021a) proposes the use

of Dueling double deep Q-network (D3QN), improved

artificial potential function (IAPF), artificial bee colony

with bat algorithm (ABCBA), and constrained multiob-

jective optimization problem optimization (CMOP) to

estimate efficient paths for different network scenarios.

These paths are optimized via the use of high-density route

information sets and are validated under different scaled

networks. However, these models have higher complexity,

which limits their applicability and usability when applied

to real-time scenarios. To overcome these issues, work in

Feng et al. (2021), Cao et al. (2022), Duan et al. (2021a),

Jensen-Nau et al. (2021), and Shiri et al. (2022) propose the

use of artificial potential fields, Concentrated Coverage

Path Planning Models, Improved Intelligent Water Drops

(IIWD) Models, and Voronoi-based path generation (VPG)

Models, which assists in the integration of low complexity

operations during path estimation under adversarial net-

work scenarios. But the efficiency and trust levels of these

models is low, which can be improved via use of Iterative

Single Head Attention (ISHA) (Chen et al. 2022), Adaptive

Clustering (Niu et al. 2022), Rapidly Exploring Deep Tree

(RDT) (Guo et al. 2021), Convolutional Neural Networks

(CNNs) (Chang et al. 2022), Geometric Distance with

Reinforcement Learning (GDRL) (Shen et al. 2022),

Detach and Steer (Zhang et al. 2021), and Improved

Adaptive Grey Wolf Optimization (IA GWO) (Zhang and

Zhang 2021) that assists in improving path planning per-

formance with low complexity and high scalability levels.

However, these models do not incorporate trust levels

while estimating path plans, which limits their performance

capabilities.

Models discussed in Liu et al. (2022), Wu et al. (2021),

Bruggemann (2022), and Pan et al. (2021) further propose

the use of Graph Theory, Tangent Intersection with Target

Guidance Strategy, Estimation of Distribution Algorithm

(EDA) with the Genetic Algorithm (GA), and feature dri-

ven flight planning that incorporates delay, energy levels,

and path reusability metrics for better planning perfor-

mance under different use cases. However, these models do

not incorporate trust metrics, which limits their scalability

levels. To overcome this issue, work in Xu et al. (2021b),

Roberge and Tarbouchi (2021), Akbar et al. (2022), and

Xie et al. (2021) proposes the use of Deep Learning

Trained by Genetic Algorithm (DL-GA), Mixed-Strategy

Gravitational Search Algorithm (MSGSA), multiple point-

of-interest (MPoI) based path planning, and deep

Fig. 1 Parameters affecting the UAV routing process
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reinforcement learning, which assist in the integration of

high-density parameter sets for incorporation of trust levels

during routing operations. Work in Duan et al. (2021b),

Shao et al. (2021), Huang et al. (2021), Zhao et al. (2021),

Cui and Wang (2021) further extends this concept via

integration of Dynamic Discrete Pigeon-Inspired Opti-

mization, improved particle swarm optimization (PSO)

with Gauss pseudo-spectral method (GPM), Stochastic

Time-Dependent Optimizations, Decentralized Learning

Optimizations, and Multi-Layer Reinforcement Learning

Techniques, that assist in continuous optimizations of the

model under real-time use cases. Similar concepts are

presented in Huang et al. (2022), Wu et al. (2022), Du et al.

(2022), Peng et al. (2022), Vashisth et al. (2021), and Hsu

and Gau (2022), which propose the use of multiobjective

UAV trajectory planning, dynamic programming, Iterative

Chance-Constrained Optimization, constrained decompo-

sition-based multi-objective evolution algorithm, and deep

reinforcement learning, which assists in improving path

planning operations under different scenarios. But it was

found that these models are either more complex, or have

lower efficiency, which limits their deployment abilities.

Moreover, these models usually do not consider energy

constraints and are applied to static targets. The proposed

model was assessed in different scenario, and compared

w.r.t. existing path planning techniques for its validation

under real conditions.

3 Proposed hybrid bioinspired model

Based on the survey of various existing collision-aware

routing models it has been found that these models are

either very complex or have lower efficiency, which limits

their deployment abilities. Moreover, these models usually

do not consider energy constraints and are applied to static

targets. To overcome these limitations, this section pro-

poses the design of a novel hybrid bioinspired model for

dynamic routing. In Fig. 2, where it can be seen that the

proposed model starts collecting node-level and network-

level parametric sets that include Cartesian location,

residual energy levels, temporal routing performance, and

temporal collision performance levels. The model then

deploys a Grey Wolf Optimization (GWO) based routing

process to identify optimal routes between two anchor

points. These routes are further tuned via a Firefly based

Optimization (FFO) which assists in estimating high-trust

routes based on their temporal performance via continuous

data update operations. The selected route sets are further

scrutinized via a continuous learning framework (CLF),

which assists in the identification of dynamic moving tar-

gets, and uses this information for incremental route

updates. The model initially collects temporal information

about different node and network configurations and uses

them to form initial routes. These routes are formed via a

Grey Wolf Optimization (GWO) based model, which

works via the following process

• To initialize the optimizer, set the following GWO

constants,

• Total Wolf configurations to be generated for

optimization (Nw)

• Total iterations for which these Wolves will be

evaluated (Ni)

• A constant rate of learning for these Wolves (Lw)

• Current node locations and qualitative parameters

• While performing GWO based routing, a set of nodes

consisting of source (src) & destination (dest) nodes are

Fig. 2 Overall flow of the routing process with collision aware

operations
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selected, which will assist in the identification of

optimal traveling paths between these nodes

• For each pair of source & destination nodes, evaluate

the reference distance dref via Eq. (2),

dref ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xsrc � xdestð Þ2 þ ysrc � ydestð Þ2
þ zsrc � zdestð Þ2

s

ð2Þ

where, x; y; and z represent the Cartesian locations of

the nodes.

• Based on this reference distance generate Nw Wolf

configurations as per the following process,

– Identify all other UAV nodes that are in the route of

the current source–destination pair, by checking all

nodes that satisfy Eq. (3),

dsrc;i\dref & di;dest\dref ð3Þ

where i represents respective node numbers.

– Out of these nodes, identify N routing nodes via

Eq. (4),

N ¼ STOCH Lw � Nn;Nnð Þ ð4Þ

where Nn represents the no of nodes that are present

in the network scenario, and STOCH represents a

stochastic Markovian process that is used for the

generation of different number sets.

– For each of these node sets, identify their £& h
values via Eqs. (5) and (6) as follows,

h ¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

Z

 !

ð5Þ

£ ¼ tan�1 y

x

� �

ð6Þ

– Now, rotate the angles by stochastic shifts of

£
0 & h0 via Eqs. (7) and (8),

£
0 ¼ £þ STOCH � p

2
� Lr;

p
2
� Lr

� �

ð7Þ

h0 ¼ hþ STOCH �p � Lr; p � Lrð Þ ð8Þ

where, Lr is the learning rate, which is initially set

up as Lr ¼ 1, and then modified via the optimization

process.

– Add source to the initial location, and destination to

the final location, and also add these updated co-

ordinates to the route lists. Based on these updated

co-ordinates estimate the final route distance as per

Eq. (9),

d ¼
X

N

i¼2

di�1;i ð9Þ

– As per the distance metrics, estimate Wolf fitness

via Eq. (10),

f w ¼ d �
X

N�1

i¼1

Ei ð10Þ

where E represents the energy needed to move from

a given location to the next location under real-time

conditions.

– This is repeated process for all Wolves, and Nw

Wolf configurations are generated, each of which

represents different routing paths.

• Estimate Wolf fitness threshold via Eq. (11),

f th ¼
X

Nw

i¼1

f w � Lw
Nw

ð11Þ

• Based on this threshold, mark the Wolves as follows,

AWolf ismarked as ‘Delta’; when f w [ f th ð12Þ

Else;Wolf ismarked as ‘Alpha’; when f w\f th �
Lw
2

ð13Þ
Else;Wolf ismarked as ‘Beta’; when f w\f th � Lw

ð14Þ

Otherwise, Wolf is marked as ‘Gamma’ for further

optimizations

• Once all Wolves are marked, scan each of them and

modify their internal configurations for Ni iterations as

per the following process,

– Regenerate all ‘Delta’ Wolves, via Eqs. (4)–(9)

– For ‘Beta’ & ‘Gamma’ Wolves, modify Lr via

Eq. (15),

Lr ¼ Lr 1� 1

STOCH Nw

2
;Nw

� �

 !

ð15Þ

– Use this new Lr to generate their new

configurations.

– After each iteration, identify the fitness threshold,

and recheck the fitness levels for each of the

Wolves, which will assist in the identification of

optimal routing paths.

Once all iterations are completed, select ‘Alpha’ Wolves

as initial routing configurations, and modify these config-

urations via a Firefly based optimization process. This

process reiterates all the ‘Alpha’ solutions and identifies

high-trust paths, which will assist in achieving better QoS

levels. The model has steps,

• To initialize the optimizations, set the following FF

constants,

414 Microsystem Technologies (2024) 30:411–421
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• The total number of fireflies used for optimization

(Nff )

• The total number of iterations used during the

optimization process (Ni)

• The rate at which the fireflies will learn from each

other (Lff )

• Temporal routing parameters on each path including

throughput, collisions, and link quality on the given

path sets.

• Scan all ‘Alpha’ Wolves for Ni iterations, as per the

following process,

– Generate current path brightness via Eq. (16),

pb ¼
X

Nh

i¼2

di�1;i �
THRi�1

Max THRð Þ

� �

� NCi;iþ1 �
1

LQi;iþ1

ð16Þ

where, Nh represents the number of hops decided

by the GWO process, while THR;NC&LQ repre-

sents the throughput of nodes on the given path

which is evaluated via Eq. (17), the number of

temporal collisions on the path which is evaluated

via Eq. (18), and temporal link quality of the given

paths which is evaluated via Eq. (19) as follows,

THR ¼
X

t2

t¼t1

NN tð Þ
Max NNð Þ � ðt2� t1Þ ð17Þ

where, NNðtÞ represents the no of nodes that have

used this path between the time interval of t1 and t2,

which is recorded by the router nodes.

NC ¼
X

t2

t¼t1

VCt
P

VC
ð18Þ

where VCt represents the number of vehicles that

collided during the given time intervals.

LQ ¼
X

t2

t¼t1

1

VFt
ð19Þ

where VFt represents the total number of vehicles

that became faulty after using the given path

between the given time intervals.

– Now, incrementally modify values of £& h via

Eq. (20),

£; hð Þ ¼ £; hð Þold �
p � STOCH 1

Lff
; Lff

� �

Lff þ 1
ð20Þ

– Use these new values to estimate new paths, and

estimate their path brightness levels via Eq. (16),

and based on this new level, accept this path if

pb Newð Þ\pbðOldÞ

– This process is continued for Nff fireflies and new

configurations are generated for each of the ‘Alpha’

Wolf paths.

• When all iterations are done, the path with max

brightness levels will be selected as the final solution

for routing operations.

The selected path is used for routing operations, and

new levels of throughput, number of collisions, and link

quality are updated for continuous optimization operations.

These paths are stored on the database via an Incremental

Learning Layer (IL), which correlates between QoS

(Quality of Service) levels of the current path, and existing

stored paths. This QoS level is estimated for each path as

per Eq. (21),

Q ¼
X

Np

i¼1

P

NCi
P

LQi

ð21Þ

where Np is the number of ‘Alpha’ Wolf configurations

selected by the GWO process. Based on this Q value, the

reward function is estimated via Eq. (22),

r ¼ Q currentð Þ � QðdbÞ
Lff

þ Lr Q currentð Þ �Max Qð Þð Þ

ð22Þ

The current path sets are updated in the database if

r[ 1, which indicates that the current path sets have a

lower number of collisions, with higher link quality, while

other paths are discarded from the optimization operations.

Using this process, path caches are generated, and if GWO

selects similar paths, then they are directly used without the

need for FFO based validation operations. Due to the use of

these path caches, the speed of operation for the model is

improved, while the energy needed for the routing process

is reduced when compared to real-time scenarios. This

performance is validated via comparison with standard

routing techniques in the next section.

4 Statistical analysis

The proposed BPAC2R Model initially uses GWO to

estimate low congestion routes, which are re-evaluated via

FFO by utilization of temporal node & network parameter

sets. The selected paths are cached and later used for

continuous optimizations via an incremental learning pro-

cess. Due to these optimizations, it is expected that the

model must showcase lower energy consumption, lower

routing delay, and minimized number of collisions. The

model was tested on standard UAV configurations, which

were taken from NTNU Open Research Dataset (available

at https://dataverse.no/dataset.xhtml?persistentId=doi:10.
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18710/L41IGQ). To execute the proposed model in a

simulation environment, the initial values are considered to

play an important role in making UAVs tested on different

conditions. The UAV configurations were tested on the

following network configuration parameter sets as listed in

Table 1. Table 1 tells about all the fundamental consider-

ations used in UAV routing testing for collision avoidance.

As per these configuration parameters, a large number of

movements (NMs) were done for the UAV network, and

these movements were varied between 250 to 5000, to

estimate the true value of different parameter sets. For each

of these movements, routing delay (D) was estimated via

Eq. (23) as follows,

D ¼ 1

NM

X

NM

i¼1

tsreach � tsstart ð23Þ

where tsreach & tsstart represent the timestamps at which the

nodes reach the destination location and start from the

source locations. The delay performance was compared

with IIWD (Jensen-Nau et al. 2021), IA GWO (Zhang and

Zhang 2021), and MS GSA (Roberge and Tarbouchi 2021)

in Table 2.

As per this evaluation, it has been found that the pro-

posed model was 23.5% faster than IIWD (Jensen-Nau

et al. 2021), 34.2% faster than IA GWO (Zhang and Zhang

2021), and 38.5% faster than MS GSA (Roberge and

Tarbouchi 2021) in real conditions. This is possible due to

the dual filtering of routes via GWO and FFO Models,

which assists in the identification of low delay route sets.

Due to this, the model is capable of deployment for high-

speed routing use cases. Similar performance was esti-

mated for energy consumption via Eq. (24), and tabulated

in Table 3 as follows,

E ¼ 1

NM

X

NM

i¼1

Esrc startð Þi � Esrc completeð Þi ð24Þ

here E startð Þ&EðcompleteÞ represent energy levels of the

source node during the start and completion.

It has been found from Table 3, that the proposed model

showcased 16.5% lower energy consumption than IIWD

(Jensen-Nau et al. 2021), 24.3% lower energy consumption

than IA GWO (Zhang and Zhang 2021), and 14.2% lower

energy consumption than MS GSA (Roberge and Tar-

bouchi 2021), which makes the model useful for low

energy & high lifetime scenarios. This is possible due to

the inclusion of residual energy levels during the formation

of routes via the FFO process. Similar performance for the

number of average collisions (NAC) can be seen in

Table 4,

According to this above assessment, it has been found

that the proposed model achieved 10.4% lower collisions

than IIWD (Jensen-Nau et al. 2021), 10.5% lower colli-

sions than IA GWO (Zhang and Zhang 2021), and 18.3%

lower collisions than MS GSA (Roberge and Tarbouchi

2021) in the real-world schema. This is possible due to the

initial filtering of routes via GWO & then using trust-based

routing via FFO Models, which assists in the identification

of low delay and low congestion route sets. Due to this, the

model is capable of deployment for low-collision routing

use cases. Similarly, the throughput performance in terms

of vehicles crossing on routes per minute (vpm) can be

seen in Table 5.

According to the evaluation, it was found that the pro-

posed model has better path reusability due to path caching

mechanisms, which assists in improving its throughput

levels. The proposed model showcased 15.4% better

throughput than IIWD (Jensen-Nau et al. 2021), 25.3%

higher throughput than IA GWO (Zhang and Zhang 2021),

and 18.5% better throughput than MS GSA (Roberge and

Table 1 UAV configuration

used during routing operations
UAV network set parameter Parametric value sets

Used model for propagation of UAVs Sky propagation with dual rays

Protocol used by the MAC layers 802.16a

Type of queues Drop tail queue with packet priorities

Model for the connected radio antennas Dual ray model with omnidirectional antennas

Total UAV Nodes 1000

Network dimensions 2 9 2 km

UAV Idle Power Levels 10 mW

UAV Reception Power Levels 15 mW

UAV Transmission Power Levels 18 mW

UAV Sleep Mode Power Levels 0.01 mW

UAV Movement Power Levels 10 mW

Delay needed for one unit of movement 0.18 s

Initial Power Levels 5000 mW

416 Microsystem Technologies (2024) 30:411–421
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Tarbouchi 2021; Vashisth et al. 2023), which makes best

suited for a wide variety of path reusability scenarios. This

is possible due to the inclusion of throughput during path

optimizations. Due to these operations, the proposed model

was observed to be better than standard path planning

models and can be used for low energy, high speed, low

congestion, and high throughput use cases.

Table 2 Delay needed for routing UAVs between multiple locations

NM D (s)

IIWD (Jensen-Nau et al. 2021)

D (s)

IA GWO (Zhang and Zhang 2021)

D (s)

MS GSA (Roberge and Tarbouchi 2021)

D (s)

Proposed

250 11.94 13.46 14.80 8.72

500 12.84 14.80 16.44 9.76

750 14.38 16.92 18.86 11.22

1000 16.66 19.76 22.00 13.10

1250 19.56 23.08 25.66 15.28

1500 22.76 26.86 29.84 17.76

1750 26.50 31.16 34.48 20.50

2000 30.64 35.68 39.34 23.32

2250 34.78 40.34 44.34 26.12

2500 38.30 44.58 49.00 28.72

3125 41.38 48.62 53.42 31.14

3500 44.39 52.32 57.46 33.42

3750 47.22 55.80 61.31 35.57

4375 49.78 59.05 64.84 37.54

4750 52.05 61.82 67.93 39.37

5000 54.55 64.75 71.15 41.28

Table 3 Energy is needed for routing UAVs between different locations

NM E (mW)

IIWD (Jensen-Nau et al. 2021)

E (mW)

IA GWO (Zhang and Zhang 2021)

E (mW)

MS GSA (Roberge and Tarbouchi 2021)

E (mW)

Proposed

250 29.76 42.45 27.64 17.82

500 31.74 44.88 29.15 18.75

750 33.30 47.04 30.55 19.67

1000 34.88 49.29 32.02 20.63

1250 36.50 51.76 33.63 21.66

1500 38.22 54.34 35.31 22.76

1750 40.04 57.04 37.03 23.85

2000 41.92 59.70 38.74 24.95

2250 43.88 62.47 40.50 26.06

2500 45.94 65.25 42.22 27.14

3125 47.94 67.81 43.82 28.14

3500 49.83 70.24 45.34 29.11

3750 51.60 72.61 46.88 30.09

4375 53.40 75.14 48.49 31.11

4750 55.19 77.65 50.10 32.14

5000 56.97 80.17 51.71 33.16
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5 Future scope and conclusion

The proposed BPAC2R Model first estimates low conges-

tion routes with GWO; these estimates are then updated

with FFO by using temporal node & network parameter

sets. The chosen paths are cached and subsequently used

for ongoing optimizations through incremental learning.

The model is expected to demonstrate lower energy con-

sumption, lower routing delay, and a minimum number of

collisions as a result of these optimizations. The proposed

model was found to be 38.5% faster than MS GSA

(Roberge and Tarbouchi 2021) under real-time scenarios,

Table 4 Total number of collisions for routing UAVs between different locations

NM NAC

IIWD (Jensen-Nau et al. 2021)

NAC

IA GWO (Zhang and Zhang 2021)

NAC

MS GSA (Roberge and Tarbouchi 2021)

NAC

Proposed

250 33 35 40 27

500 34 35 41 27

750 34 35 41 27

1000 34 36 41 27

1250 35 36 42 28

1500 35 36 42 28

1750 35 37 42 28

2000 35 37 43 28

2250 36 37 43 28

2500 36 38 43 29

3125 36 38 44 29

3500 37 38 44 29

3750 37 38 44 29

4375 37 39 45 30

4750 37 39 45 30

5000 38 39 45 30

Table 5 Total throughput for routing UAVs between different locations

NM THR (vpm)

IIWD (Jensen-Nau et al. 2021)

THR (vpm)

IA GWO (Zhang and Zhang 2021)

THR (vpm)

MS GSA (Roberge and Tarbouchi 2021)

THR (vpm)

Proposed

250 98 81 91 120

500 98 82 92 121

750 99 82 93 122

1000 100 83 93 123

1250 101 84 94 124

1500 102 84 95 125

1750 103 85 96 126

2000 103 86 96 127

2250 104 86 97 128

2500 105 87 98 129

3125 106 88 99 130

3500 107 89 99 131

3750 108 89 100 132

4375 108 90 101 133

4750 109 91 102 134

5000 110 91 103 135
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23.5% faster than IIWD (Jensen-Nau et al. 2021), 34.2%

faster than IA GWO (Zhang and Zhang 2021), and 33.5%

faster than MS GSA (Roberge and Tarbouchi 2021). Dual

route filtering using GWO and FFO models, which aids in

the identification of low delay route sets, makes this pos-

sible. As a result, the model can be used for high-speed

routing use cases. The suggested model also showed

16.5%, 24.3%, and 14.2% lower energy consumption than

IIWD (Jensen-Nau et al. 2021), IA GWO (Zhang and

Zhang 2021; Vashisth and Batth 2020), and MS GSA

(Roberge and Tarbouchi 2021), respectively, which makes

the model useful for low energy and high lifetime scenar-

ios. This is possible because residual energy levels are

taken into account when routes are formed using the FFO

process. Additionally, it has been found that in real-world

problems, the proposed model produced collision rates that

were 10.4%, 10.5%, and 18.3% lower than those of IIWD

(Jensen-Nau et al. 2021), IA GWO (Zhang and Zhang

2021), and [R3, respectively. This is made possible by first

filtering routes using GWO, followed by trust-based rout-

ing using FFO Models, which helps identify low delay and

low congestion route sets. The model can therefore be used

for low-collision routing use cases. It was found that the

proposed model has better path reusability thanks to path

caching mechanisms, which helps to increase its through-

put levels. The proposed model demonstrated throughput

improvements of 15.4%, 25.3%, and 18.5% over IIWD

(Jensen-Nau et al. 2021), IA GWO (Zhang and Zhang

2021), and MS GSA (Roberge and Tarbouchi 2021),

respectively, making it best for a variety of path reusability

scenarios. This is possible because path optimizations take

throughput into account. The proposed model was found to

be superior to traditional path planning models as a result

of these operations, and it can be applied to use cases

involving low energy consumption, high speed, minimal

congestion, and high throughput. Future performance

testing of the proposed model on large-scale networks is

necessary, and it can be enhanced by incorporating simple

bio-inspired techniques. Through the use of deep learning

auto encoder techniques, Gated Recurrent Units (GRUs),

and Q-learning operations, the model’s performance can

also be enhanced, making it more effective in a variety of

real-time scenarios.

Routing involves planning and determining of path that

the UAV wheel has to follow on the ground. Especially at

the time of take-off, landing, and number of ground oper-

ations. For effective obstacle avoidance and efficient

ground operation, routing becomes a major parameter of

UAV performance. Embedding routing in a UAV network

includes implementing protocols and algorithms that can

allow effective data exchange and control between multiple

UAVs. Positioning, localization and neighborhood dis-

covery for UAVs has been carried out to get simulation of

various scenarios. Embedding routing in UAVs is a mul-

tidisciplinary approach that involves software develop-

ment, robotics, and communication engineering. So

optimal routing algorithm helps UAVs to get better

throughput.

Funding The Laboratory Work Research Project of Zhejiang Higher

Education Association (Grant no. D202201).
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References

Airlangga G, Liu A (2022) Online path planning framework for UAV

in rural areas. IEEE Access 10:37572–37585. https://doi.org/10.

1109/ACCESS.2022.3164505

Akbar R, Prager S, Silva AR, Moghaddam M, Entekhabi D (2022)

Wireless sensor network informed UAV path planning for soil

moisture mapping. IEEE Trans Geosci Remote Sens 60:1–13.

https://doi.org/10.1109/TGRS.2021.3088658

Bono Rossello N, Carpio RF, Gasparri A, Garone E (2022)

Information-driven path planning for UAV with limited auton-

omy in large-scale field monitoring. IEEE Trans Autom Sci Eng

19(3):2450–2460. https://doi.org/10.1109/TASE.2021.3085365

Bruggemann T (2022) Automated feature-driven flight planning for

airborne inspection of large linear infrastructure assets. IEEE

Trans Autom Sci Eng 19(2):804–817. https://doi.org/10.1109/

TASE.2021.3062154

Cao Y, Cheng X, Mu J (2022) Concentrated coverage path planning

algorithm of UAV formation for aerial photography. IEEE Sens

J 22(11):11098–11111. https://doi.org/10.1109/JSEN.2022.

3168840

Chang H, Chen Y, Zhang B, Doermann D (2022) Multi-UAV mobile

edge computing and path planning platform based on reinforce-

ment learning. IEEE Trans Emerg Top Comput Intell

6(3):489–498. https://doi.org/10.1109/TETCI.2021.3083410

Chen J, Zhang Y, Wu L, You T, Ning X (2022) An adaptive

clustering-based algorithm for automatic path planning of

heterogeneous UAVs. IEEE Trans Intell Transp Syst

23(9):16842–16853. https://doi.org/10.1109/TITS.2021.3131473

Cheng Z, Zhao L, Shi Z (2022) Decentralized multi-UAV path

planning based on two-layer coordinative framework for forma-

tion rendezvous. IEEE Access 10:45695–45708. https://doi.org/

10.1109/ACCESS.2022.3170583

Cui Z, Wang Y (2021) UAV path planning based on multi-layer

reinforcement learning technique. IEEE Access 9:59486–59497.

https://doi.org/10.1109/ACCESS.2021.3073704

Dong Y, He C, Wang Z, Zhang L (2022) Radio map assisted path

planning for UAV Anti-jamming communications. IEEE Signal

Process Lett 29:607–611. https://doi.org/10.1109/LSP.2022.

3149374

Du B, Chen J, Sun D, Manyam SG, Casbeer DW (2022) UAV

trajectory planning with probabilistic geo-fence via iterative

chance-constrained optimization. IEEE Trans Intell Transp Syst

23(6):5859–5870. https://doi.org/10.1109/TITS.2021.3060377

Duan C, Feng J, Chang H (2021a) Meteorology-aware path planning

for the UAV based on the improved intelligent water drops

algorithm. IEEE Access 9:49844–49856. https://doi.org/10.1109/

ACCESS.2021.3068972

Duan H, Zhao J, Deng Y, Shi Y, Ding X (2021b) Dynamic discrete

pigeon-inspired optimization for Multi-UAV cooperative search-

Microsystem Technologies (2024) 30:411–421 419

123

https://doi.org/10.1109/ACCESS.2022.3164505
https://doi.org/10.1109/ACCESS.2022.3164505
https://doi.org/10.1109/TGRS.2021.3088658
https://doi.org/10.1109/TASE.2021.3085365
https://doi.org/10.1109/TASE.2021.3062154
https://doi.org/10.1109/TASE.2021.3062154
https://doi.org/10.1109/JSEN.2022.3168840
https://doi.org/10.1109/JSEN.2022.3168840
https://doi.org/10.1109/TETCI.2021.3083410
https://doi.org/10.1109/TITS.2021.3131473
https://doi.org/10.1109/ACCESS.2022.3170583
https://doi.org/10.1109/ACCESS.2022.3170583
https://doi.org/10.1109/ACCESS.2021.3073704
https://doi.org/10.1109/LSP.2022.3149374
https://doi.org/10.1109/LSP.2022.3149374
https://doi.org/10.1109/TITS.2021.3060377
https://doi.org/10.1109/ACCESS.2021.3068972
https://doi.org/10.1109/ACCESS.2021.3068972


attack mission planning. IEEE Trans Aerosp Electron Syst

57(1):706–720

Feng J, Zhang J, Zhang G, Xie S, Ding Y, Liu Z (2021) UAV

dynamic path planning based on obstacle position prediction in

an unknown environment. IEEE Access 9:154679–154691.

https://doi.org/10.1109/ACCESS.2021.3128295

Guo Y, You C, Yin C, Zhang R (2021) UAV trajectory and

communication co-design: flexible path discretization and path

compression. IEEE J Sel Areas Commun 39(11):3506–3523.

https://doi.org/10.1109/JSAC.2021.3088690

Hsu Y-H, Gau R-H (2022) Reinforcement learning-based collision

avoidance and optimal trajectory planning in UAV communica-

tion networks. IEEE Trans Mob Comput 21(1):306–320

Huang H, Savkin AV, Huang C (2021) Reliable path planning for

drone delivery using a stochastic time-dependent public trans-

portation network. IEEE Trans Intell Transp Syst

22(8):4941–4950. https://doi.org/10.1109/TITS.2020.2983491

Huang H, Savkin AV, Ni W (2022) Online UAV trajectory planning

for covert video surveillance of mobile targets. IEEE Trans

Autom Sci Eng 19(2):735–746. https://doi.org/10.1109/TASE.

2021.3062810

Jensen-Nau KR, Hermans T, Leang KK (2021) Near-optimal area-

coverage path planning of energy-constrained aerial robots with

application in autonomous environmental monitoring. IEEE

Trans Autom Sci Eng 18(3):1453–1468. https://doi.org/10.1109/

TASE.2020.3016276

Jinqiang H, Husheng W, Renjun Z, Rafik M, Xuanwu Z (2021) Self-

organized search-attack mission planning for UAV swarm based

on wolf pack hunting behavior. J Syst Eng Electron

32(6):1463–1476. https://doi.org/10.23919/JSEE.2021.000124

Lee J, Friderikos V (2022) Interference-aware path planning

optimization for multiple UAVs in beyond 5G networks.

J Commun Netw 24(2):125–138. https://doi.org/10.23919/JCN.

2022.000006

Li D, Yin W, Wong WE, Jian M, Chau M (2022) Quality-oriented

hybrid path planning based on A* and Q-learning for unmanned

aerial vehicle. IEEE Access 10:7664–7674. https://doi.org/10.

1109/ACCESS.2021.3139534

Liu Q, Zhang Y, Li M, Zhang Z, Cao N, Shang J (2021) Multi-UAV

path planning based on fusion of sparrow search algorithm and

improved bioinspired neural network. IEEE Access

9:124670–124681. https://doi.org/10.1109/ACCESS.2021.

3109879

Liu H, Li X, Fan M, Wu G, Pedrycz W, NagaratnamSuganthan P

(2022) An autonomous path planning method for unmanned

aerial vehicle based on a tangent intersection and target guidance

strategy. IEEE Trans Intell Transport Syst 23(4):3061–3073.

https://doi.org/10.1109/TITS.2020.3030444

Niu G, Wu L, Gao Y, Pun M-O (2022) Unmanned aerial vehicle

(UAV)-assisted path planning for unmanned ground vehicles

(UGVs) via disciplined convex-concave programming. IEEE

Trans Veh Technol 71(7):6996–7007. https://doi.org/10.1109/

TVT.2022.3168574

Pan Y, Yang Y, Li W (2021) A deep learning trained by genetic

algorithm to improve the efficiency of path planning for data

collection with multi-UAV. IEEE Access 9:7994–8005. https://

doi.org/10.1109/ACCESS.2021.3049892

Pan Z, Zhang C, Xia Y, Xiong H, Shao X (2022) An improved

artificial potential field method for path planning and formation

control of the multi-UAV systems. IEEE Trans Circuits Syst II

Express Briefs 69(3):1129–1133. https://doi.org/10.1109/TCSII.

2021.3112787

Peng C, Huang X, Wu Y, Kang J (2022) Constrained multi-objective

optimization for UAV-enabled mobile edge computing: offload-

ing optimization and path planning. IEEE Wireless Commun

Lett 11(4):861–865

Qadir Z, Zafar MH, Moosavi SKR, Le KN, Mahmud MAP (2022)

Autonomous UAV path-planning optimization using metaheuris-

tic approach for predisaster assessment. IEEE Internet Things J

9(14):12505–12514. https://doi.org/10.1109/JIOT.2021.3137331

Roberge V, Tarbouchi M (2021) Multiunmanned aerial vehicle path

planner on graphics processing unit. IEEE Can J Electr Comput

Eng 44(3):364–375. https://doi.org/10.1109/ICJECE.2021.

3088294

Sanchez-Fernandez AJ, Romero LF, Bandera G, Tabik S (2022) VPP:

visibility-based path planning heuristic for monitoring large

regions of complex terrain using a UAV onboard camera. IEEE J

Sel Top Appl Earth Observ Remote Sens 15:944–955. https://

doi.org/10.1109/JSTARS.2021.3134948

Shao S, He C, Zhao Y, Wu X (2021) Efficient trajectory planning for

UAVs using hierarchical optimization. IEEE Access

9:60668–60681. https://doi.org/10.1109/ACCESS.2021.3073420

Shao X-X, Gong Y-J, Zhan Z-H, Zhang J (2022) Bipartite cooperative

coevolution for energy-aware coverage path planning of UAVs.

IEEE Transactions on Artificial Intelligence 3(1):29–42. https://

doi.org/10.1109/TAI.2021.3103143

Shen K, Shivgan R, Medina J, Dong Z, Rojas-Cessa R (2022)

Multidepot drone path planning with collision avoidance. IEEE

Internet Things J 9(17):16297–16307. https://doi.org/10.1109/

JIOT.2022.3151791

Shiri H, Seo H, Park J, Bennis M (2022) Attention-based commu-

nication and control for multi-UAV path planning. IEEE

Wireless Commun Lett 11(7):1409–1413. https://doi.org/10.

1109/LWC.2022.3171602

Vashisth A, Batth RS (2020) An overview, survey, and challenges in

UAVs communication network. In: 2020 International confer-

ence on intelligent engineering and management (ICIEM),

London, UK, pp 342–347. https://doi.org/10.1109/

ICIEM48762.2020.9160197

Vashisth A, Singh Batth R, Ward R (2021) Existing path planning

techniques in unmanned aerial vehicles (UAVs): a systematic

review. In: 2021 International conference on computational

intelligence and knowledge economy (ICCIKE), Dubai, United

Arab Emirates, pp 366–372. https://doi.org/10.1109/

ICCIKE51210.2021.9410787

Vashisth A, Singh B, Batth RS (2023) QMRNB: design of an efficient

Q-learning model to improve routing efficiency of UAV

networks via bioinspired optimizations. Int J Comput Netw

Appl (IJCNA) 10(2):256–264. https://doi.org/10.22247/ijcna/

2023/220740

Wang X, Gursoy MC, Erpek T, Sagduyu YE (2022) Learning-based

UAV path planning for data collection with integrated collision

avoidance. IEEE Internet Things J 9(17):16663–16676. https://

doi.org/10.1109/JIOT.2022.3153585

Wu Y, Wu S, Hu X (2021) Cooperative path planning of UAVs &

UGVs for a persistent surveillance task in urban environments.

IEEE Internet Things J 8(6):4906–4919. https://doi.org/10.1109/

JIOT.2020.3030240

Wu T et al (2022) A novel AI-based framework for AoI-optimal

trajectory planning in UAV-assisted wireless sensor networks.

IEEE Trans Wireless Commun 21(4):2462–2475. https://doi.org/

10.1109/TWC.2021.3112568

Xie H, Yang D, Xiao L, Lyu J (2021) Connectivity-aware 3D UAV

path design with deep reinforcement learning. IEEE Trans Veh

Technol 70(12):13022–13034. https://doi.org/10.1109/TVT.

2021.3121747

Xu F et al (2021a) Heuristic path planning method for multistatic

UAV-borne SAR imaging system. IEEE J Sel Top Appl Earth

Observ Remote Sens 14:8522–8536. https://doi.org/10.1109/

JSTARS.2021.3106449

Xu H, Jiang S, Zhang A (2021b) Path planning for unmanned aerial

vehicle using a mix-strategy-based gravitational search

420 Microsystem Technologies (2024) 30:411–421

123

https://doi.org/10.1109/ACCESS.2021.3128295
https://doi.org/10.1109/JSAC.2021.3088690
https://doi.org/10.1109/TITS.2020.2983491
https://doi.org/10.1109/TASE.2021.3062810
https://doi.org/10.1109/TASE.2021.3062810
https://doi.org/10.1109/TASE.2020.3016276
https://doi.org/10.1109/TASE.2020.3016276
https://doi.org/10.23919/JSEE.2021.000124
https://doi.org/10.23919/JCN.2022.000006
https://doi.org/10.23919/JCN.2022.000006
https://doi.org/10.1109/ACCESS.2021.3139534
https://doi.org/10.1109/ACCESS.2021.3139534
https://doi.org/10.1109/ACCESS.2021.3109879
https://doi.org/10.1109/ACCESS.2021.3109879
https://doi.org/10.1109/TITS.2020.3030444
https://doi.org/10.1109/TVT.2022.3168574
https://doi.org/10.1109/TVT.2022.3168574
https://doi.org/10.1109/ACCESS.2021.3049892
https://doi.org/10.1109/ACCESS.2021.3049892
https://doi.org/10.1109/TCSII.2021.3112787
https://doi.org/10.1109/TCSII.2021.3112787
https://doi.org/10.1109/JIOT.2021.3137331
https://doi.org/10.1109/ICJECE.2021.3088294
https://doi.org/10.1109/ICJECE.2021.3088294
https://doi.org/10.1109/JSTARS.2021.3134948
https://doi.org/10.1109/JSTARS.2021.3134948
https://doi.org/10.1109/ACCESS.2021.3073420
https://doi.org/10.1109/TAI.2021.3103143
https://doi.org/10.1109/TAI.2021.3103143
https://doi.org/10.1109/JIOT.2022.3151791
https://doi.org/10.1109/JIOT.2022.3151791
https://doi.org/10.1109/LWC.2022.3171602
https://doi.org/10.1109/LWC.2022.3171602
https://doi.org/10.1109/ICIEM48762.2020.9160197
https://doi.org/10.1109/ICIEM48762.2020.9160197
https://doi.org/10.1109/ICCIKE51210.2021.9410787
https://doi.org/10.1109/ICCIKE51210.2021.9410787
https://doi.org/10.22247/ijcna/2023/220740
https://doi.org/10.22247/ijcna/2023/220740
https://doi.org/10.1109/JIOT.2022.3153585
https://doi.org/10.1109/JIOT.2022.3153585
https://doi.org/10.1109/JIOT.2020.3030240
https://doi.org/10.1109/JIOT.2020.3030240
https://doi.org/10.1109/TWC.2021.3112568
https://doi.org/10.1109/TWC.2021.3112568
https://doi.org/10.1109/TVT.2021.3121747
https://doi.org/10.1109/TVT.2021.3121747
https://doi.org/10.1109/JSTARS.2021.3106449
https://doi.org/10.1109/JSTARS.2021.3106449


algorithm. IEEE Access 9:57033–57045. https://doi.org/10.1109/

ACCESS.2021.3072796

Zhang S, Zhang R (2021) Radio map-based 3D path planning for

cellular-connected UAV. IEEE Trans Wireless Commun

20(3):1975–1989. https://doi.org/10.1109/TWC.2020.3037916

Zhang W, Zhang S, Wu F, Wang Y (2021) Path planning of UAV

based on improved adaptive grey wolf optimization algorithm.

IEEE Access 9:89400–89411. https://doi.org/10.1109/ACCESS.

2021.3090776

Zhao C, Liu J, Sheng M, Teng W, Zheng Y, Li J (2021) Multi-UAV

trajectory planning for energy-efficient content coverage: a

decentralized learning-based approach. IEEE J Sel Areas

Commun 39(10):3193–3207. https://doi.org/10.1109/JSAC.

2021.3088669

Zhou X, Gao F, Fang X, Lan Z (2021) Improved bat algorithm for

UAV path planning in three-dimensional space. IEEE Access

9:20100–20116. https://doi.org/10.1109/ACCESS.2021.3054179

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Microsystem Technologies (2024) 30:411–421 421

123

https://doi.org/10.1109/ACCESS.2021.3072796
https://doi.org/10.1109/ACCESS.2021.3072796
https://doi.org/10.1109/TWC.2020.3037916
https://doi.org/10.1109/ACCESS.2021.3090776
https://doi.org/10.1109/ACCESS.2021.3090776
https://doi.org/10.1109/JSAC.2021.3088669
https://doi.org/10.1109/JSAC.2021.3088669
https://doi.org/10.1109/ACCESS.2021.3054179

	BPACAR: design of a hybrid bioinspired model for dynamic collision-aware routing with continuous pattern analysis in UAV networks
	Abstract
	Introduction
	Literature review
	Proposed hybrid bioinspired model
	Statistical analysis
	Future scope and conclusion
	Data availability
	References




