
TECHNICAL PAPER

Mechanics of mixture unified gradient nanobars with elastic boundary
conditions

Kabir Sadeghi1 • Amir Shamsi1 • S. Ali Faghidian2

Received: 10 July 2023 / Accepted: 3 October 2023 / Published online: 19 October 2023
� The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Carbon nanotubes are one of the most influential constituents of advanced engineering systems. The classical continuum

mechanics, however, ceases to hold in accurate description of the structural response of nanobars. The mixture unified

gradient theory of elasticity is invoked for the nanoscopic study of the structural characteristics of nanobars. The associated

boundary-value problem of equilibrium is established within a consistent stationary variational framework. The differential

condition of equilibrium is properly equipped with extra non-standard boundary conditions. To examine the more realistic

response of nano-sized bars, deformable boundary conditions are prescribed where the elastic deformation of the support is

modeled by a translational restraint at the boundary. The idealized free and fixed end conditions are, accordingly, retrieved

for ad hoc values of the translational elastic spring stiffness. The mechanics of the mixture unified gradient bar is

analytically addressed and a closed-form solution of the axial deformation of the nanobar is detected. The axial structural

features of the nanobar with elastic boundary conditions are numerically studied and the asymptotic structural behavior of

the mixture unified gradient bar is analytically examined. A new benchmark is detected that can be efficaciously applied in

the analysis and design of pioneering nano-systems.

1 Introduction

1.1 Literature survey

Carbon nanotubes (CNTs) demonstrated promising poten-

tial applications across a wide range of modern engineering

fields and are widely employed as reinforcements in smart

materials and nanocomposites. Due to the unique combi-

nation of physical characteristics, such as remarkable

mechanical strength and high electrical and thermal con-

ductivity, CNTs are well-suited for implications in nano-

electro-mechanical-systems (NEMS) (Lamba et al. 2022;

Iannacci and Tagliapietra 2022; Elishakoff et al. 2012).

The main challenge that emerged in the literature is the

accurate description of these significant physical features.

The classical elasticity framework is well-known to be

insufficient in the precise realization of the peculiar

characteristics of structures at the ultra-small scale. Dif-

ferent schemes exist in the literature for nanoscopic anal-

ysis of the field quantities such as experimental

measurements, atomistic-based numerical simulations, and

augmented elasticity theories. Performing a robust experi-

mental procedure at the nano-scale is too sophisticated and

expensive. While advanced numerical techniques such as

deep neural networks (Zhuang et al. 2021; Samaniego et al.

2020; Guo et al. 2019) and nonlocal operator method (Ren

et al. 2020; Rabczuk et al. 2019) are presented in the recent

literature, the implementation of numerical simulations

leads to high-computational costs. The aforementioned

deficiencies accompanied by the experimental approach

and numerical simulations make them unsuitable strategies

to realize the size-effects. To remedy such dilemmas, it is

inevitable to restore to augmented elasticity frameworks as

an efficient analytical approach to capture the size-depen-

dent material behavior. A huge amount of recent literature

is devoted to the study of the mechanical features of

nanostructures; just to mention a few recent works refer to

(Tornabene et al. 2023a, b; Abouelregal et al. 2023, 2021;

Civalek and Avcar 2022; Faroughi et al. 2021; Uzun et al.

2021; Demir et al. 2018; Akgöz and Civalek 2017).
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Nonlocality and gradient elasticity are perhaps well-

recognized frameworks within the context of augmented

elasticity theories. The nonlocality is founded on the con-

cept of the weighted average value of the nanoscopic field

in terms of the classical field variables at all points within

the continuum domain (Eringen 2002). As a different line

of thought, the gradient elasticity is established based on

the main postulate of dependency of the constitutive model

on the classical field variables along with the gradients of

various order (Polizzotto 2014). These size-dependent

elasticity theories have drawn much attention due to their

inherent simplicity and are extensively adopted to capture

the size-effects in a variety of structural problems at the

ultra-small scale (Karamanli et al. 2023; Li and Zhang

2023; Xu et al. 2022; Civalek et al. 2022a; Akgöz and

Civalek 2022; Akbas et al. 2021; _Zur et al. 2020; Ouakad
2020; Uzun et al. 2020). Neither the nonlocal nor the

gradient elasticity theory can cover the broad spectrum of

material characteristics at the nano-scale. The desire to

enhance the accuracy of the description of material

response with nano-structural features turned the interest of

recent investigations towards the unification of dissimilar

size-dependent elasticity theories. The instances are the

nonlocal strain gradient theory (Aifantis 2003, 2011), the

nonlocal surface elasticity (Jiang et al. 2022; Li et al.

2020), and the mixture unified gradient theory (Faghidian

et al. 2023a). Despite the fact that such unified size-de-

pendent elasticity frameworks are nowadays in the spot-

light, some serious challenges as how to enrich the

associated boundary-value problem with non-standard

boundary conditions, are posed (Faghidian et al.

2022a, 2023a).

The mixture unedified gradient theory is very recently

introduced via integration of the size-effects associated

with the stress gradient theory and the strain gradient

elasticity with the classical elasticity theory. The most

general intrinsic form of the mixture unified gradient the-

ory is conceived within a consistent variational framework

(Faghidian et al. 2023a). The constitute model is, accord-

ingly, featured by the stress gradient and strain gradient

characteristic length-scale parameters to, respectively,

predict the softening and stiffening structural responses at

the nano-scale. The effect of the classical elasticity theory

is, furthermore, incorporated by the enrichment of the

constitutive model with the mixture parameter. Efficacy of

the mixture unified gradient theory is put into evidence in

the nanoscopic analysis of the peculiar size-dependent

behavior of field quantities in a variety of structural prob-

lems of interest in nano-mechanics (Faghidian and Elish-

akoff 2022, 2023; Faghidian et al. 2023b, 2022b; Faghidian

and Tounsi 2022).

1.2 Novelty and outline

At the ultra-small scale, the van der Waals forces play a

significant role in the interactions between nanostructures.

The idealized boundary conditions of free and fixed ends

are not precise enough to model the realistic state of CNTs

embedded in elastic substrates. To appropriately present

the structural model of CNTs, it is, therefore, necessary to

take into consideration the van der Waals forces between

CNTs and substrates. Indeed, CNTs that are bridged on the

substrate at the end can be considered equivalent to a nano-

sized structure with elastically restrained ends. A scrutiny

of the literature reveals that much effort is given towards

the analysis of nanostructures with idealized boundary

conditions; nevertheless, some limited attempts exist to

formulate the nano-sized structures with elastically

restrained ends (Civalek et al. 2022b; Darban et al. 2022;

Luciano et al. 2020; Jiang et al. 2017; Jiang and Wang

2017).

The present study provides an insight into the nanome-

chanics of bars with elastic boundary conditions, and

hence, fruitfully bridges the gap between the structural

model of nanobars with the idealized and elastic boundary

conditions. The paper is organized as follows; the mixture

unified gradient theory of elasticity is invoked in Sect. 2 to

establish the size-dependent structural model of the nano-

bar with elastic boundary conditions. The differential

condition of equilibrium is properly equipped with extra

non-standard boundary conditions modified to take into

account the elastically restrained end conditions of the

nanobar. Section 3 is devoted to analytically addressing the

mechanics of the mixture unified gradient bar and detecting

a closed-form solution of the axial deformation of the

nano-sized bar. Section 3 is, furthermore, enriched with

numerical illustrations addressing the elastostatic size-de-

pendent response of a mixture unified gradient bar with

elastic boundary conditions. Both the idealized free and

fixed end conditions are demonstrated to be retrieved as

special cases of the elastically retrained boundary condi-

tions under ad hoc assumptions. Concluding remarks are

drawn in Sect. 4.

2 Mixture unified gradient elasticity
for nanobar

2.1 Mechanics of classic bars with elastic ends

Let us preliminary recall the mechanics of an elastic bar

subjected to an equilibrated axial load and terminal (quasi-

static) forces as schematically demonstrated in Fig. 1. To

this end, a straight bar of length L with a uniform cross-
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section X is considered. The abscissa x is selected to

coincide with the longitudinal axis of the bar while the

position vector r ¼ y; zð Þ represents an arbitrary cross-

sectional point with respect to the bar centroid. The elas-

ticity solution of the Saint–Venant problem can be properly

utilized to determine the kinematics of beam-type struc-

tures (Faghidian 2016). Assuming the elastic bar to be

adequately thin, the effects of the lateral deformation in the

kinematics of the bar can be overlooked (Barretta et al.

2019). The displacement field, thus, u1; u2; u3ð Þ writes as
u1 ¼ u xð Þ; u2 ¼ 0; u3 ¼ 0 ð1Þ

with u standing for the axial displacement of the bar. The

nonvanishing component of the linear strain field consis-

tent with the kinematically compatible deformation field is

given by

e xð Þ ¼ oxu xð Þ ð2Þ

with e representing the axial strain field. The material is

characterized by the elastic modulus E, and accordingly, it

is practical to introduce the axial elastic stiffness AE as

AE ¼
Z

X

E rð ÞdA ð3Þ

with AE defined as the average of the elastic modulus over

the cross-section. The mechanics of the elastic bar is

attributed to an equilibrated force system P composed of

the distributed axial loading p and the terminal concen-

trated forces P0 and PL at the end cross-sections. The

equilibrated stress in an elastic bar is an axial force field

P. The principle of virtual work is employed to prescribe

the equilibrium condition as

P; duh i ¼
Z L

0

pdudxþ P0du 0ð Þ þ PLdu Lð Þð Þ

¼
Z L

0

Pdedx

ð4Þ

for any axial virtual displacement field du fulfilling

homogeneous kinematic boundary conditions. The scalar

function de is the kinematically compatible axial strain

associated with the axial virtual displacements du. The

equilibrated axial force field P is also defined as the dual

field of the axial strain field e. As a result of implementing

a standard variational procedure, while performing inte-

gration by parts, the differential and classical boundary

conditions associated with the introduced variational

scheme are provided by

oxPþ p ¼ 0

Pþ P0ð Þdujx¼0¼ P� PLð Þdujx¼L¼ 0
ð5Þ

2.2 Mechanics of nanobars with elastic ends

Nanoscopic effects of the stress gradient theory and the

strain gradient theory can be consistently integrated with

the classical elasticity theory via the size-dependent elas-

ticity framework of the mixture unified gradient theory.

Motivated by the general intrinsic form of the stationary

variational principle consistent with the mixture unified

gradient theory and by virtue of the effects of the terminal

forces, the associated variational functionalP is introduced

as

P ¼
Z L

0

P0 xð Þe xð Þ þ P1 xð Þoxe xð Þ � p xð Þu xð Þð

� 1

2AE
P0 xð Þð Þ2� ‘2c

2AE
oxP0 xð Þð Þ2

� 1

2AE a‘2c þ ‘2s
� � P1 xð Þð Þ2� ‘2c

2AE a‘2c þ ‘2s
� � oxP1 xð Þð Þ2

!

dx� P0du 0ð Þ þ PLdu Lð Þð Þ
ð6Þ

where the axial resultant fields P0 and P1 are defined as the

dual fields of the axial strain field e and of its derivative

along the bar longitudinal axis oxe. To properly address the

nanoscopic influence of the stress gradient theory and the

strain gradient theory, the stress gradient characteristic

length ‘c and the strain gradient length-scale parameter ‘s
are, correspondingly, introduced. The contribution of the

classical elasticity theory to the mixture unified gradient

theory is furthermore integrated by the mixture parameter

dented as 0� a� 1. Within the context of the stationary

variational principles, it is well-established that all the

kinematic and kinetic variables are selected as the primary

variables subject to variation, and thus, all the field vari-

ables should be treated independent to each other. The

virtual kinetic source field variables are, furthermore,

assumed to have compact support on the nanobar domain.

Performing the first variation of the introduced functional

P, followed by integration by parts for the kinetic field

variables, yields

Fig. 1 Configuration and coordinate system of a nanobar with the

elastic boundary condition
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dP ¼
Z L

0

P0 xð Þde xð Þ þ P1 xð Þoxde xð Þ � p xð Þdu xð Þð

þ dP0 e xð Þ � 1

AE
P0 xð Þ þ ‘2c

AE
oxxP0 xð Þ

� �

þdP1 oxe xð Þ � 1

AE a‘2c þ ‘2s
� �P1 xð Þ þ ‘2c

AE a‘2c þ ‘2s
� � oxxP1 xð Þ

 !!
dx

� P0du 0ð Þ þ PLdu Lð Þð Þ

� ‘2c
AE

oxP0 xð ÞdP0

����
x¼0;L

� ‘2c
AE a‘2c þ ‘2s
� � oxP1 xð ÞdP1

�����
x¼0;L

ð7Þ

By virtue of the heuristic assumption on the virtual

kinetic source field variables to have compact support on

the nanobar domain, i.e. dP0jx¼0;L¼ 0 and dP1jx¼0;L¼ 0, the

boundary congruence conditions are released. Subsequent

integration by parts for the kinematic field variables while

applying the kinematic compatibility condition as e ¼ oxu,

one may get

dP ¼
Z L

0

�oxP0 xð Þ þ oxxP1 xð Þ � p xð Þð Þdu xð Þð

þ dP0 e xð Þ � 1

AE
P0 xð Þ þ ‘2c

AE
oxxP0 xð Þ

� �

þdP1 oxe xð Þ � 1

AE a‘2c þ ‘2s
� �P1 xð Þ þ ‘2c

AE a‘2c þ ‘2s
� � oxxP1 xð Þ

 !!
dx

þ P0 Lð Þ � oxP1 Lð Þ � PLð Þdu Lð Þ � P0 0ð Þ � oxP1 0ð Þ þ P0ð Þdu 0ð Þ
þP1 Lð Þde Lð Þ � P1 0ð Þde 0ð Þ

ð8Þ

The differential and boundary conditions of equilibrium

associated with the elastic nanobar within the framework of

the mixture stress gradient theory can be accordingly

determined via prescribing the stationarity of the varia-

tional functional dP ¼ 0 as

oxP0 xð Þ � oxxP1 xð Þ þ p xð Þ ¼ 0

P0 Lð Þ � oxP1 Lð Þ � PLð Þdu Lð Þ ¼ 0

P0 0ð Þ � oxP1 0ð Þ þ P0ð Þdu 0ð Þ ¼ 0

P1 Lð Þ ¼ P1 0ð Þ ¼ 0

ð9Þ

where the axial strain field on the nanobar ends is assumed

to have arbitrarily variations. Taking into account the

mathematical formula of the variation of the introduced

functional, the physically motivated definition of the axial

force field P, as a choice normally preferred within the

framework of the augmented elasticity theory, is intro-

duced as

P xð Þ ¼ P0 xð Þ � oxP1 xð Þ ð10Þ

The boundary-value problem of the equilibrium of the

elastic nanobar consistent with the mixture unified gradient

theory is, therefore, simplified as

oxP xð Þ þ p xð Þ ¼ 0

P Lð Þ � PLð Þdu Lð Þ ¼ 0

P 0ð Þ þ P0ð Þdu 0ð Þ ¼ 0

P1 Lð Þ ¼ P1 0ð Þ ¼ 0

ð11Þ

The physical characteristics of the elastic nanobar are

well-known to depend on the structural boundary condi-

tions. It is very often to simplify the realistic state of the

boundary conditions as the idealized ones, i.e. perfectly

free and fixed boundary conditions. The practical boundary

conditions of a nano-sized bar are not so ideal, and hence,

the prescription of the idealized boundary conditions is one

of the main sources of error in the analysis of nanostruc-

tures. Indeed, CNTs are usually elastically restrained, and

thus, the corresponding boundary conditions can be

appropriately approximated by translational restraints at

the boundaries. Deformable boundary conditions can be

mathematically modeled with an axial spring for the

nanoscopic structural analysis of elastic nanobars. Impos-

ing the elastic boundary conditions, the ensued structural

characteristics of nanobars are not restricted to the ideal-

ized boundary conditions and allow one to examine the

more realistic response of nano-sized bars. Consistent with

the assumed configuration as Fig. 1, the nanobar is bridged

on the substrate at x ¼ L, and accordingly, the terminal

concentrated forces P0 and PL at the boundaries for the

mixture unified gradient bar with elastic ends writes as

P0 ¼ 0; PL ¼ �ju Lð Þ ð12Þ

with j being the translational elastic spring constant. The

corresponding differential and boundary conditions of

equilibrium associated with the elastically restrained

nanobar, therefore, is cast in the form

oxP xð Þ þ p xð Þ ¼ 0

P Lð Þ þ ju Lð Þð Þdu Lð Þ ¼ 0

P 0ð Þdu 0ð Þ ¼ 0

P1 Lð Þ ¼ P1 0ð Þ ¼ 0

ð13Þ

Notably, the elastic boundary conditions represent a set

of general boundary conditions, i.e. the idealized boundary

conditions of free and fixed ends can be retrieved by setting

the elastic spring constant to be extremely small and

extremely large, respectively.

The well-known privilege of implementing the station-

ary variational principle lies in the establishment of the

constitutive model since all the governing equations are

incorporated to a single variational functional P. Imposing

the stationarity of the functional dP ¼ 0, furthermore,

results in the constitutive law of the axial resultant fields P0

and P1, cast as differential relations in the subsequent

forms
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AEe xð Þ ¼ P0 xð Þ � ‘2coxxP0 xð Þ
AE a‘2c þ ‘2s
� �

oxe xð Þ ¼ P1 xð Þ � ‘2coxxP1 xð Þ
ð14Þ

By virtue of the constitutive law of the axial resultant

fields Eq. (14) accompanied by the definition of the axial

force field Eq. (10), the sought constitutive model of the

axial force field P is detected

AEe xð Þ � AE a‘2c þ ‘2s
� �

oxxe xð Þ ¼ P xð Þ � ‘2coxxP xð Þ ð15Þ

The introduced constitute model of the axial resultant

fields is properly enriched with the stress gradient and

strain gradient length-scale characteristic parameters to

address the nanoscopic effects of the corresponding gra-

dient elasticity theory. The effect of the classical elasticity

theory is, furthermore, incorporated via consistently intro-

ducing the mixture parameter to the constitutive model.

The mixture unified gradient theory, therefore, represents

an apposite augmented elasticity framework to describe the

peculiar size-dependent response of bar-type structures at

the ultra-small scale.

The detected constitutive model of the axial force field

within the context of the mixture unified gradient theory is

of higher-order in comparison with the classical bar model,

and therefore, to close the associated boundary-vale prob-

lem, suitable form of the extra non-standard boundary

conditions should be prescribed. The consistent form of the

extra non-standard boundary conditions within the frame-

work of the presented size-dependent elasticity theory is

introduced via vanishing of the axial resultant field P1 at

both ends. Following some straightforward mathematics,

the explicit constitutive relation of the axial resultant field

P1 is detected as

P1 xð Þ ¼ �
‘2c a‘2c þ ‘2s
� �

1� að Þ‘2c � ‘2s
p xð Þ � AE

a‘2c þ ‘2s
� �2
1� að Þ‘2c � ‘2s

oxe xð Þ

ð16Þ

Various size-dependent elasticity frameworks can be

recovered under ad hoc assumptions on the length-scale

characteristic parameters. It is of notice that the retrieved

augmented elasticity theories of the gradient-type are

strictly related to the same differential and boundary con-

ditions of equilibrium, while differ from each other in

terms of the corresponding constitutive model. The con-

stitutive model of the axial resultant fields consistent with

the unified gradient theory of elasticity ( _Zur and Faghidian

2021) can be retrieved as the mixture parameter vanishes in

Eqs. (14) and (15)

AEe xð Þ ¼ P0 xð Þ � ‘2coxxP0 xð Þ
AE‘

2
soxe xð Þ ¼ P1 xð Þ � ‘2coxxP1 xð Þ

AEe xð Þ � AE‘
2
soxxe xð Þ ¼ P xð Þ � ‘2coxxP xð Þ

ð17Þ

The constitutive model associated with the stress gra-

dient theory (Polizzotto 2014) is recovered as the strain

gradient length-scale parameter tends to zero in Eq. (17)

AEe xð Þ ¼ P xð Þ � ‘2coxxP xð Þ ð18Þ

where the differential condition of equilibrium holds in the

absence of the axial resultant field P1. Likewise, when the

stress gradient characteristic length approaches zero in

Eq. (17), one may obtain the constitutive relations corre-

sponding to the strain gradient theory (Polizzotto 2015) as

AEe xð Þ ¼ P0 xð Þ
AE‘

2
soxe xð Þ ¼ P1 xð Þ

AEe xð Þ � AE‘
2
soxxe xð Þ ¼ P xð Þ

ð19Þ

The constitutive model consistent with the mixture

stress gradient theory (Faghidian et al. 2022c) can be

restored by vanishing the strain gradient length-scale

parameter in Eqs. (14) and (15) as

AEe xð Þ ¼ P0 xð Þ � ‘2coxxP0 xð Þ
AE a‘2c
� �

oxe xð Þ ¼ P1 xð Þ � ‘2coxxP1 xð Þ
AEe xð Þ � AE a‘2c

� �
oxxe xð Þ ¼ P xð Þ � ‘2coxxP xð Þ

ð20Þ

The well-known constitute model of the classical elas-

ticity theory AEe ¼ P can be retrieved as either the stress

gradient and the strain gradient characteristic lengths tend

to zero or as the mixture parameter approaches to unity in

the absence of the strain gradient length-scale parameter.

The conceived size-dependent elasticity framework of

the mixture unified gradient theory is highly capable of

accurate realization of the physical characteristics of nano-

sized bars with elastic boundary conditions as put into

evidence in Sect. 3.

3 Static characteristics of nanobars
with elastic ends

3.1 Analytical solution of elastostatic response

To rigorously examine the static characteristics of a nano-

sized bar with elastic boundary conditions, the axial

deformation of a mixture unified gradient elastic bar is

analytically addressed. The common choice usually pre-

ferred in the literature is to describe the differential con-

ditions of equilibrium in terms of kinematics field

variables, and subsequently, to solve the resulting higher-

order differential equations. As a different school of

thought, a viable methodology, founded on successive

integration of differential equations of lower-order

(Faghidian et al. 2022a, 2023a), is invoked here to address

the analytical solution of the kinematics field variables.
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The equilibrated axial force P is first determined by

integrating the differential condition of equilibrium

Eq. (13)1 up to an integration constant k1

P xð Þ ¼ �
Z x

0

p 1ð Þd1þ k1 ð21Þ

The differential equation of the constitutive law Eq. (15)

is, subsequently, solved yielding the expression of the axial

strain field e in terms of integration constants k2; k3

e xð Þ ¼ k2 exp
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a‘2c þ ‘2s
p
 !

þ k3 exp � xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a‘2c þ ‘2s

p
 !

� 1

2AE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a‘2c þ ‘2s

p
Z x

0

exp
x� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a‘2c þ ‘2s

p
 !

P 1ð Þ � ‘2co11P 1ð Þ
� �

d1

þ 1

2AE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a‘2c þ ‘2s

p
Z x

0

exp
1� xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a‘2c þ ‘2s

p
 !

P 1ð Þ � ‘2co11P 1ð Þ
� �

d1

ð22Þ

Lastly, the axial deformation field of the mixture unified

gradient elastic bar u is detected by integration of the

differential condition of kinematic compatibility Eq. (2) up

to an integration constant k4

u xð Þ ¼
Z x

0

e 1ð Þd1þ k4 ð23Þ

The axial deformation function u of the nanobar con-

sistent with the mixture unified gradient theory should meet

the classical boundary conditions Eq. (13)2,3 along with the

extra no-standard boundary conditions Eq. (13)4. Pre-

scribing the complete set of boundary conditions then

closes the boundary-value problem associated with the

equilibrium of nanobar, and accordingly, the unknown

integration constants k1; k2; k3; k4f g will be determined.

The exact analytical solution of the elastostatic deforma-

tion of the mixture unified gradient elastic bar is detected

via successive integration of differential equations of

lower-order. Addressing the analytical solution of the

nanoscopic field variables is of practical importance in the

calibration of the material length-scale parameters associ-

ated with the augmented elasticity theories utilizing the

inverse theory approach (Faghidian 2017a, b) as evinced in

(Faghidian et al. 2022a, 2023a). The important issue of the

uncertainties within the framework of the inverse analysis

can be addressed by applying the probabilistic sensitivity

analysis (Zhuang et al. 2021; Samaniego et al. 2020; Guo

et al. 2019) or the regularization theory (Faghidian et al.

2012).

To study the size-dependent static characteristics of

nanobar within the context of the mixture unified gradient

theory, the nano-sized elastic bar is assumed to be sub-

jected to a uniformly distributed axial load of intensity p.

For the sake of consistency, the non-dimensional form of

the axial abscissa x, the stress gradient characteristic

parameter fc, the strain gradient characteristic parameter

f‘, the stiffness of the elastic spring j, and the axial dis-

placement function u are defined as

x ¼ x

L
; fc ¼

‘c
L
; f‘ ¼

‘s
L
; j ¼ jL

AE
; u ¼ AE

pL2
u ð24Þ

For a nano-sized bar with elastic boundary conditions

consistent with the size-dependent elasticity framework of

the mixture unified gradient theory, the classical boundary

conditions consist of vanishing the axial displacement

function at the fixed end and substitution of the terminal

concentrated force with the reaction force of the elastic

spring at the other end of the nanobar. Furthermore, the

extra non-standard boundary conditions involving the

vanishing of the axial resultant field P1 at both the bar ends

should be fulfilled. Applying the solution approach intro-

duced above, the non-dimensional axial deformation

function of a nano-bar with elastic boundary conditions,

subjected to a uniformly distributed axial load, within the

size-dependent elasticity framework of the mixture unified

gradient theory can be expressed as

u j; xð Þ ¼ u0 j; xð Þ

� 2 �1þ að Þf2c þ f2‘
� �

sech
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
af2c þ f2‘

q
0
B@

1
CA

sinh
1� x

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
af2c þ f2‘

q
0
B@

1
CA sinh

x

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
af2c þ f2‘

q
0
B@

1
CA

ð25Þ

where the classical non-dimensional axial deformation

field of a bar with elastic boundary conditions u0 is well-

established to write as

u0 j; xð Þ ¼ x 2þ j� 1þ jð Þxð Þ
2 1þ jð Þ ð26Þ

A close examination of the detected axial deformation

field reveals important circumstances regarding its

asymptotic behavior. For large enough values of the non-

dimensional stiffness of the elastic spring j ! 1, the axial

deformation function of a mixture unified gradient bar is

simplified as

u 1; xð Þ ¼ 1

2
�2 �1þ að Þf2c � 2f2‘ þ x� x2
� �

þ �1þ að Þf2c þ f2‘
� �

cosh
1� 2x

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
af2c þ f2‘

q
0
B@

1
CA

sech
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
af2c þ f2‘

q
0
B@

1
CA

ð27Þ
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which literally retrieves the axial deformation function of a

nano-sized bar with fixed–fixed ends consistent with the

mixture unified gradient theory (Faghidian et al. 2022b).

Likewise, the axial deformation function of a mixture

unified gradient bar is simplified for infinitesimal values of

the non-dimensional stiffness of the elastic spring j ! 0 as

u 0; xð Þ ¼ � �1þ að Þf2c � f2‘ þ x� 1

2
x2

þ �1þ að Þf2c þ f2‘
� �

cosh
1� 2x

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
af2c þ f2‘

q
0
B@

1
CA

sech
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
af2c þ f2‘

q
0
B@

1
CA

ð28Þ

which literally recovers the axial deformation function of a

mixture unified gradient elastic bar with fixed-free ends

(Faghidian et al. 2022b).

Asymptotic size-dependent response of a mixture uni-

fied gradient bar with elastically restrained ends, accord-

ingly, retrieves the axial deformation field of the nanobar

with fixed-free and fixed–fixed ends as the elastic spring

constant approaches zero and infinity, respectively. The

introduced elastic boundary conditions, therefore, repre-

sents a complete set of general boundary conditions.

For the sake of consistency of numerical illustration, the

axial deformation function of the mixture unified gradient

bar with elastic boundary conditions is determined at the

nanobar mid-span and adopted as

u j;
1

2

� �
¼ � 1

8
þ 2þ j
4 1þ jð Þ � �1þ að Þf2c � f2‘

þ �1þ að Þf2c þ f2‘
� �

sech
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
af2c þ f2‘

q
0
B@

1
CA

ð29Þ

The derived analytical solution of the axial deformation

function of nano-sized bar can efficaciously realize the

size-effect at the ultra-small scale and accurately describe

the peculiar size-dependent static characteristics of nano-

bars with elastic ends.

3.2 Numerical illustrations of elastostatic
response

Nanoscopic effects of the characteristic length-scale

parameters on the structural behavior of nano-sized bars

with elastic boundary conditions are illustrated in Figs. 2,

3, 4 in comparison with the counterpart results associated

with the nanobars with idealized boundary conditions of

fixed–fixed and fixed-free ends. The size-effects of the

stress gradient characteristic parameter and the non-di-

mensional stiffness of the elastic spring on the mid-span

axial deformation of the nano-sized bar are demonstrated in

Fig. 2. While the stress gradient characteristic parameter is

assumed to range in the interval 0; 1=2½ � in Fig. 2, the strain
gradient characteristic parameter and the mixture parame-

ter are prescribed as f‘ ¼ 1=3; a ¼ 1=4. The 3D variation

of the axial deformation of the nanobar at the mid-span is

demonstrated in Fig. 3 in terms of the strain gradient

characteristic parameter and the stiffness of the elastic

spring. The ranging interval of the strain gradient charac-

teristic parameter is considered as 0; 1=2½ � in Fig. 3 for

given values of the stress gradient characteristic parameter

and the mixture parameter as fc ¼ 1=3; a ¼ 1=4. The spa-

tial variation of axial deformation of the nano-sized bar

versus the non-dimensional abscissa x is, moreover, studied

in Fig. 4 in terms of the non-dimensional stiffness of the

elastic spring. While the stress gradient and the strain

gradient characteristic parameters are given as fc ¼
1=2; f‘ ¼ 1=3 in Fig. 4, three values of the mixture

parameter as a ¼ 0; 1=4; 1 are prescribed. In Fig. 4, the

non-dimensional abscissa x is, inevitably, ranging in the

interval 0; 1½ �. In all the ensuing numerical results, the

ranging interval of the non-dimensional stiffness of the

elastic spring is considered as 0; 10½ �.
As inferable from the numerical illustrations, the axial

deformation of the nano-sized bar associated with the

mixture unified gradient theory increases with increasing

the stress gradient characteristic parameter, i.e. a larger

value of the stress gradient parameter fc involves a larger

value of the mid-span axial deformation of the nanobar for

given values of a; f‘. Within the context of the mixture

unified gradient theory, a softening structural response in

terms of the stress gradient parameter is, therefore, con-

firmed. On the contrary, the axial deformation of the

mixture unified gradient elastic bar decreases with

increasing the strain gradient characteristic parameter, i.e. a

larger value of f‘ involves a smaller value of the mid-span

axial deformation of the nano-sized bar for prescribed

values of a; fc. The mixture unified gradient theory, thus,

can efficaciously capture the stiffening structural behavior

in terms of the strain gradient parameter. The effects of

classical elasticity theory are incorporated to the mixture

unified gradient theory via the mixture parameter. As the

mixture parameter continuously varies from zero to unity,

the effect of the stress gradient theory reduced and replaced

with the influence of the classical elasticity theory. The

axial deformation of the nano-sized bar consistent with the

framework of the mixture unified gradient theory decreased

with increasing the mixture parameter for prescribed values

of the gradient characteristic parameters fc; f‘. The mixture

unified gradient theory is, therefore, capable of efficiently

realize the stiffening structural response in terms of the
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Fig. 2 Nanoscopic effects of the stress gradient parameter on the mid-span axial deformation of the nanobar for prescribed characteristic

parameters f‘ ¼ 1=3; a ¼ 1=4

Fig. 3 Nanoscopic effects of the strain gradient parameter on the mid-span axial deformation of the nanobar for prescribed characteristic

parameters fc ¼ 1=3; a ¼ 1=4

Fig. 4 Effects of the elastic spring stiffness on the axial deformation of the nanobar for prescribed characteristic parameters fc ¼ 1=2; f‘ ¼ 1=3
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mixture parameter a. The axial deformation of the nano-

sized bar coincides with the classical elastostatic response

of the elastic bar as the gradient characteristic parameters

approach zero, or otherwise, as the mixture parameter tends

to unity in the absence of the strain gradient characteristic

parameter. The expected nanoscopic features of the gra-

dient characteristic parameters and the mixture parameter

are, thus, confirmed in the numerical illustrations.

The structural behavior of the nano-sized bar is signifi-

cantly affected by the elastic boundary conditions. The

axial deformation of the nanobar with elastic boundary

conditions is strictly higher than, and thus overestimates,

the associated elastostatic response of the nano-sized bar

with fixed–fixed ends. On the contrary, the axial defor-

mation of the mixture unified gradient bar with elastic

boundary conditions is less than or equal to the corre-

sponding structural response of the nanobar with fixed-free

ends. The axial deformation function of the nanobar with

elastic boundary conditions decreases with increasing the

stiffness of the elastic spring, i.e. a larger value of the

elastic spring stiffness j involves a smaller value of the

axial displacement of the nano-sized bar for prescribed

values of the gradient characteristic parameter and the

mixture parameter. A stiffening structural behavior in

terms of the stiffness of the elastic spring j is, therefore,

realized. The asymptotic structural responses of the nano-

sized bar are noticeably demonstrated in the numerical

illustrations. For infinitesimal values of the non-dimen-

sional stiffness of the elastic spring, the axial deformation

of a mixture unified gradient bar with elastic boundary

conditions approaches the elastostatic structural response

of the nanobar with fixed-free ends. Alternatively and for

large enough values of the non-dimensional stiffness of the

elastic spring, the axial deformation of a mixture unified

Table 1 Midspan axial

deformation of an elastic

nanobar, effects of the stress

gradient characteristic

parameter for prescribed

parameters a ¼ 1=4; f‘ ¼ 1=3

u j; x ¼ 1=2ð Þ

fc Fixed-Free BC

j ! 0

Elastic BC Fixed–Fixed BC

j ! 1
j = 0 j = 5 j = 10 j = 102 j = 103

0? 0.31112 0.31112 0.10279 0.08385 0.06360 0.06137 0.06112

0.1 0.31610 0.31610 0.10777 0.08883 0.06857 0.06635 0.06610

0.2 0.33039 0.33039 0.12205 0.10311 0.08286 0.08064 0.08039

0.3 0.35225 0.35225 0.14391 0.12497 0.10472 0.10250 0.10225

0.4 0.37933 0.37933 0.17099 0.15205 0.13180 0.12958 0.12933

0.5 0.40920 0.40920 0.20087 0.18193 0.16168 0.15945 0.15920

Table 2 Midspan axial

deformation of an elastic

nanobar, effects of the strain

gradient characteristic

parameter for prescribed

parameters a ¼ 1=4; fc ¼ 1=3

u j; x ¼ 1=2ð Þ

f‘ Fixed-Free BC

j ! 0

Elastic BC Fixed–Fixed BC

j ! 1
j = 0 j = 5 j = 10 j = 102 j = 103

0 0.45006 0.45006 0.24172 0.22278 0.20253 0.20031 0.20006

0.1 0.43720 0.43720 0.22887 0.20993 0.18968 0.18745 0.18720

0.2 0.40590 0.40590 0.19757 0.17863 0.15838 0.15615 0.15590

0.3 0.37128 0.37128 0.16295 0.14401 0.12376 0.12153 0.12128

0.4 0.34232 0.34232 0.13399 0.11505 0.09480 0.09257 0.09232

0.5 0.32058 0.32058 0.11225 0.09331 0.07306 0.07083 0.07058

Table 3 Midspan axial

deformation of an elastic

nanobar, effects of the mixture

parameter for prescribed

characteristic parameters

fc ¼ 1=2; f‘ ¼ 1=3

u j; x ¼ 1=2ð Þ

a Fixed-Free BC

j ! 0

Elastic BC Fixed–Fixed BC

j ! 1
j = 0 j = 5 j = 10 j = 102 j = 103

0 0.45485 0.45485 0.24651 0.22758 0.20732 0.20510 0.20485

1/4 0.40920 0.40920 0.20087 0.18193 0.16168 0.15945 0.15920

1/2 0.38009 0.38009 0.17175 0.15281 0.13256 0.13034 0.13009

3/4 0.35995 0.35995 0.15161 0.13267 0.11242 0.11020 0.10995

1 0.34519 0.34519 0.13686 0.11792 0.09767 0.09544 0.09519
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gradient bar with elastic boundary conditions tends to the

elastostatic structural response of the nano-sized bar with

fixed–fixed ends. This issue is of practical importance in

the inference of the experimental measurements. The

inaccurate prescription of the idealized boundary condi-

tions in the structural analysis of nanobars will inevitably

lead to misleading interpretations of the size-dependent

behavior of nano-sized bars.

The numerical values of the mid-span axial deformation

of the nanobar with elastic boundary conditions within the

framework of the mixture unified gradient theory is col-

lected in Tables 1, 2, and 3 in terms of the stress gradient

characteristic parameter, the strain gradient characteristic

parameter, and the mixture parameter, respectively. The

tabulated numerical results of the static structural response

of the nanobar with elastic boundary conditions is, fur-

thermore, enriched with the presentation of the axial

deformation of the nano-sized elastic bar with fixed–fixed

and fixed-free boundary conditions.

4 Concluding remarks

The nanoscopic characteristics of CNTs are significantly

affected by the type of boundary conditions employed in

the structural analysis. To model the realistic state of the

boundary conditions of CNTs embedded in elastic sub-

strates, the atomistic-scale interactions between CNTs and

substrates should be taken into account. The practical

boundary conditions of CNTs are utterly dissimilar from

the idealized boundary conditions commonly adopted in

the literature. In the present study, CNTs that are bridged

on the substrate at the end are modeled as a nano-sized bar

with an elastically restrained end. The mixture unified

gradient theory, within a variational consistent framework,

is invoked to capture the size-effects at the ultra-small

scale. The elastically retained boundary condition of the

nanobar is modeled with an axial spring. Prescribing the

elastic boundary conditions, the ensued structural features

of nanobars are not restricted to the idealized boundary

conditions and allow one to examine the more realistic

structural response of nano-sized bars. The constitutive

model of the nano-sized bar is properly enriched with the

stress gradient characteristic length, the strain gradient

length-scale parameter, and the mixture parameter to effi-

ciently realize the size-effects. Explicit mathematical for-

mulae of the extra non-standard boundary conditions,

modified to take into account the elastically restrained end

conditions of the nanobar, are introduced to appropriately

close the associated boundary-value problem of

equilibrium.

The static characteristics of a nano-sized bar with elastic

boundary conditions are rigorously studied and the axial

deformation of a mixture unified gradient elastic bar is

analytically addressed. The closed-form exact solution of

the kinematics field variable for a nanobar with elastic

boundary conditions, subjected to a uniformly distributed

axial load, is detected. The asymptotic size-dependent

structural behavior of nanobars with the elastically

restrained end is analytically examined under ad hoc

assumptions on the elastic spring stiffness. The nanoscopic

effects of the characteristic length-scale parameters on the

structural characteristics of nano-sized bars with elastic

boundary conditions are numerically illustrated and thor-

oughly discussed. The expected size-dependent features of

the gradient characteristic parameters and the mixture

parameter on the structural response of nanobars are

numerically confirmed. The axial deformation of a mixture

unified gradient bar with elastic boundary conditions is

demonstrated to approach the elastostatic response of the

nanobar with fixed-free and fixed–fixed ends for, respec-

tively, infinitesimal and large enough values of the stiffness

of the elastic spring. It is evinced that the inaccurate pre-

scription of the idealized boundary conditions in the

structural analysis of nanobars will inevitably yield a

misleading inference of the size-dependent behavior of

nanobars. The detected numerical benchmark can be

advantageously implemented in the analysis and design of

nanostructures with practical implications in NEMS.
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Uzun B, Kafkas U, Yaylı MÖ (2020) Stability analysis of restrained

nanotubes placed in electromagnetic field. Microsyst Technol

26:3725–3736. https://doi.org/10.1007/s00542-020-04847-0
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