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Abstract
The intelligent maintenance of rotating machinery is inseparable from the real-time condition detection and fault diagnosis

system. The traditional blind source fault diagnosis method has low efficiency and high misdiagnosis rate, so this paper

introduces the VS-Harmogram method with prior parameters. First, the Fourier spectrum should be re-cut by power

spectral density and the information in each frequency band can be sequentially extracted. Secondly, the window width of

power spectral density is gradually increased to expand the variability of the sweep frequency. Finally, the harmonic

spectral kurtosis of each component should be calculated using the prior parameters of the rotating equipment. A variable

spectral segmentation Harmogram (VS-Harmogram) with multiple sets of boundaries would be constructed. The validity of

the method can be verified by using the fault signals of rolling bearings in rotating equipment.

1 Introduction

The maintenance and diagnosis of industrial equipment

requires the support of advanced theories and algorithms,

but traditional digital signal analysis methods cannot adapt

to complex new equipment (Wang et al. 2017). Healthy

bearings are the basis for the normal operation of equip-

ment, and bearings that are easily damaged and fail are also

one of the biggest hidden dangers that lead to equipment

failure (Hu et al. 2016). In order to adaptively extract fault

features in vibration signals of rotating machinery rolling

bearings, scholars gradually turn the recognition objects

from time-domain features to frequency-domain features

(Zhang et al. 2021; Li et al. 2022).

Traditional fault diagnosis methods rely on the perfor-

mance of sensors, and Bapi Debnath (2020) designed a

novel piezoelectric sensor to detect faults in small rolling

bearings. Yu et al. (2014) introduced the relative vibration

analysis of PMSM based on fuzzy mathematics. For

wireless multi-channel signals, Chen et al. (2021) uses

backpropagation neural network and wavelet packet algo-

rithm for fusion processing to extract more obvious fea-

tures. Antoni (2007) first gave formal mathematical

definition of spectral kurtosis and proved that it is sensitive

to impulse characteristics in noisy non-stationary signals.

SK is applied to the Kurtogram to suppress interference

and extract fault information. The modal decomposition

from the frequency domain and screening of signal features

provides more ideas for subsequent research (Tang 2021;

Zhong et al. 2021; Zhang et al. 2022). Moshrefzadeh and

Fasana (2018) used the Maximal overlap discrete wavelet

packet transform to replace the filter used by Kurtogram to

obtain a more accurate envelope spectrum. The fixed frame

adopted by this type of method may not be able to adapt to

the changing system, which is the main direction of this

paper.

In this paper, a variable spectral segmentation frame-

work replaces the average spectral segmentation frame-

work. We construct the outline of the filtering framework

by changing the window width of the power spectral
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density (PSD) to obtain different minimum point distribu-

tions. The harmonic spectral kurtosis of each component

should be calculated using the prior parameters of the

rolling bearings. A variable spectral segmentation Har-

mogram (VS-Harmogram) would be constructed. The

validity of the method can be verified by using the fault

signals of rolling bearings in rotating equipment. The paper

is organized as follows. In Sect. 2, variable spectral seg-

mentation Harmogram are introduced. The simulation

signals are given in Sect. 3 to obtain the optimal frequency

band. The data of Case Western Reserve University are

used to verify the effectiveness of the proposed method in

Sect. 5.

2 Variable spectral Harmogram

In this paper, a variable spectral segmentation Harmogram

is designed to diagnose faults in industrial equipment to

assist maintenance. The steps can be described as follows:

(i) Continuously increase the window width and

calculate the PSD of each round based on Welch’s

method.

(ii) Define the minimum value of the PSD as the

boundary, obtain the components of each fre-

quency band.

(iii) Calculate the harmonic spectral kurtosis of each

independent component.

(iv) Construct VS-Harmogram using all boundary

groups and harmonic spectral kurtosis. Extract

the component represented by the largest har-

monic spectral kurtosis to diagnose faults.

2.1 PSD based mode decomposition method

Different levels of PSD can be obtained according to dif-

ferent window widths. Low-level PSD correspond to rough

spectral fluctuation trends, and high-level PSD correspond

to complex spectral energies. PSD actually represents the

distribution of power with frequency. The average power

of signal y tð Þcan be described as (Krapf et al. 2018):

P ¼ lim
T!1

1

2T

Z T

�T

y tð Þ2dt ð1Þ

Suppose the Fourier transform of the signal in the

interval [0, T] is:

byT fð Þ ¼ 1ffiffiffiffi
T

p
Z T

0

y tð Þe�i2pftdt ð2Þ

Power spectral density can be defined as:

Syy fð Þ ¼ lim
T!1

E byT fð Þj j2
h i

ð3Þ

Since PSD is positive and has a correlation with Fourier

spectrum, this paper calculates the minimum point of the

PSD of each level to determine the division method of the

Fourier spectrum.

2.2 Harmonic spectral kurtosis

Faulty bearing signals in rotating machinery often have

distinctive characteristics. There are periodic pulses in the

time domain waveform. In the Fourier spectrum there are

impulse bands containing fixed sidebands. The fault char-

acteristic frequencies and their harmonics are present in the

Hilbert envelope spectrum. To quantify the fault feature

information in the Hilbert envelope spectrum, we design

the harmonic spectral kurtosis index (Zhang et al. 2021).

Non-stationary signal and its frequency counterpart is:

y tð Þ ¼
Zt

�1

g t; t � sð Þx sð Þds ð4Þ

y tð Þ ¼
Zþ1

�1

ej2pftP t; fð ÞdX fð Þ ð5Þ

where P t; fð Þ is the complex envelope or complex

demodulate of the signal at f .

The randomized cyclostationary processes is:

g t; sð Þ ¼ g t þ T; sð Þ ¼
X
k

gk sð Þej2pkt=T ð6Þ

g0 t;Dtð Þ ¼
X
n

gn ntð Þej2pnt=T ð7Þ

g0 t;Dtð Þ have periodic instantaneous pulses in �Dt;Dtð Þ
near nt of g t; sð Þ which is shown in Fig. 1.

(a) Envelope spectrum of bearing 

outer ring fault data

(b) Instantaneous moment 

of characteristic

Fig. 1 Schematic diagram of IMC
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The 2n-order harmonic instantaneous moment can be

defined as:

S2HY t; fð Þ ¼ E Pn t; fð ÞdX fð Þ
�� ��2n o

=df ¼ Pn t; fð Þj j2�S2X ð8Þ

The spectral moments of S2HY t; fð Þ is:

S2HY fð Þ ¼ E S2HY t; fð Þf g ¼ E Pn t; fð Þj j2
n o

� S2X ð9Þ

2n-order harmonic average moment can be defined as:

S2HY t; fð Þh it¼ lim
T!1

1=T

ZT=2

�T=2

S2HY t; fð Þdt ð10Þ

The normalized fourth-order harmonic spectral moment

is:

C4HY fð Þ ¼ S4HY fð Þ; f 6¼ 0 ð11Þ

Harmonic Spectral Kurtosis (HSK) is defined as the

energy-normalised fourth-order harmonic spectral

cumulant:

HSKY fð Þ ¼ C4HY fð Þ
S22Y fð Þ

¼ S4HY fð Þ
S22Y fð Þ

; f 6¼ 0 ð12Þ

3 Simulation signal verification

Define the non-stationary periodic impulse signal with

white Gaussian noise, the first is the periodic impulse

signal; the second is the modulation signal.

sc1 ¼
P20

i¼19e
�g�2pf int � sin 2pf int �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p� �
sc2 ¼ 5cos 100ptð Þ � sinð6000pt þ sin 200ptð ÞÞ

s1 ¼ sc1 þ sc2 þ f

8><
>: ð13Þ

where f n ¼ 3000Hz, damping coefficient g ¼ 0:07, pulses

period T ¼ 0:01s, noise f ¼ SNR 5dBð Þ. The waveform and

spectrum of the signal are shown in Fig. 2.

It can be found from Fig. 2d that there are two com-

ponents and a lot of noise in the Fourier spectrum. The

method proposed in this paper is used to calculate the PSD

of different levels of the signal and calculate their mini-

mum points. Then a tower frame diagram can be designed.

Fill the calculated HSK of each frequency band into the

frame, and the proposed VS-Harmogram is constructed, as

shown in Fig. 3.

Extract the frequency band with the largest HSK and

display the waveform and envelope spectrum of compo-

nent-A in Fig. 4. It can be found that there are a large

number of periodic pulses in the component, and the

envelope spectrum contains periodic pulse characteristic

frequencies and harmonics. Therefore, the proposed

method can accurately extract information containing such

features from the signal.

4 Application

This paper uses the Case Western Reserve University

(CWRU) Bearing Test Rig that has a 2 HP Reliance motor,

a torque sensor and a dynamometer which is shown in

(a) (b)

(c) (d)

Fig. 2 Simulation signal and its spectrum

A

Fig. 3 VS-Harmogram

(a) Component A (b) Envelope spectrum

Harmonics

Fig. 4 Extracted component-A and envelope spectrum
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Fig. 5. The drive end bearing (deep groove ball bearing) is

type 6205-2RS JEM SKF. Motor speed is 1797 rpm.

Bearing specifications are shown in Table 1.

The width of the faulty bearing outer ring injury is

0.1778 mm and the depth is 0.2794 mm. After calculation,

the fault characteristic frequency of the outer ring of the

bearing is 107.305 Hz, and the period is 0.00932 s. Fig-

ure 2 shows the signal and its spectrum.

Bearing fault information may be concentrated in a

certain frequency band, which requires the method pro-

posed in this paper to find. The VS-Harmogram-based

algorithm designed 7 levels of PSD distributions and cal-

culated their respective boundaries sequentially. The final

tower distribution diagram is shown in Fig. 6.

The component-B with the largest HSK is located at

Level-2, which corresponds to the region of the spectrum

with the largest amplitude. Extract this component and

display its waveform with the Hilbert envelope spectrum,

which can be seen in Fig. 7.

The envelope spectrum contains the fault characteristic

frequency of the outer ring of the bearing and its har-

monics. Therefore, we judge that the bearing outer ring is

damaged, and the proposed method can be applied to

bearing fault diagnosis.

A classical spectral kurtosis-based algorithm called

Kurtogram is presented as a comparison target in this

paper. Kurtogram is characterized by fast calculation

speed, and its theoretical basis is the multi-level average

division of the spectrum. These characteristics are corre-

spondingly different from those in this paper, so it is very

suitable as a reference frame to verify the advantages of the

algorithm proposed in this paper. Figure 8 is the processing

result of Kurtogram. This figure uses a method based on

short-time Fourier transform and spectral kurtosis to con-

struct a tower diagram. The calculation speed of tower

diagram obtained by this method is very fast, but the

accuracy is relatively low. Important information in the

signal may not be recognized. We can find the frequency

band with relatively large kurtosis value from the figure.

There is a higher amplitude at 1875 Hz. At the same time,

there is also a higher amplitude at 5500 Hz. However, the

algorithm eventually extracted the information at 1875 Hz.

If we extract the information around 1875 Hz, the

waveform and envelope spectrum of the signal in this

frequency band can be shown in Fig. 9. Although double

and triple harmonics exist in the envelope spectrum, there

are no characteristic frequencies, and their amplitudes have

no greater advantage compared to VS-Harmogram.

The above experiments have verified that this method is

effective for bearing outer ring fault diagnosis. Therefore,

it is also necessary to test the bearing inner ring fault and

verify the effectiveness of this method. This section con-

tinues to use the data from Case Western Reserve

University. For bearing inner ring fault data, we used inner

ring damage data with the same sampling frequency/in-

stallation location/damage size. The specific parameters of

the bearing can refer to Table 1. First, we need to display

the waveform and frequency spectrum of the data, as

shown in Fig. 10.

The signal length shown in Fig. 10 is about 3.5 s, which

contains a lot of pulses and noise. There are four center

frequencies in the spectrum that contain sidebands around

them. The distribution of these center frequencies is not

regular, so evenly splitting the spectrum cannot explain its

rationality theoretically. The frequency band obtained by

the VS-Harmogram proposed in this paper has strong noise

resistance and is not easily disturbed by the minimum point

generated by noise. Figure 11 shows the characteristics of

the algorithm.

We can find from Fig. 10 that there are large peaks in

the frequency bands [0–1000 Hz], [1000–2000 Hz],

[2000–3000 Hz], [3000–4500 Hz]. In Fig. 11, the bound-

ary distribution obtained after VS-Harmogram calculation

can separate these frequency bands. When the levels are

6–9, the results of spectral segmentation are almost the

same, which means that the algorithm has low error tol-

erance. The frequency band with high harmonic spectrum

kurtosis is located near 2600 Hz, and the bandwidth is

about 960 Hz. Extracting this component, we can find the

characteristic frequency and its harmonics of the bearing

inner ring fault from Fig. 12, which means that VS-Har-

mogram can successfully extract the bearing inner/outer

ring fault.

When calculating the bearing inner ring fault data, we

used the aforementioned Kurtogram constructed based on

the short-time Fourier transform. Likewise, the signal was

averaged 11 times. The spectral kurtosis of the signal in

each frequency band is calculated. Finally, the part with the

center frequency of 4500 Hz obtained the largest kurtosis

value (Fig. 13).

After extract the component around 4500 Hz, its

envelope spectrum are shown in Fig. 14. No characteristic

frequencies or harmonics exist in the envelope spectrum. It

is difficult to judge the fault of the signal.

Fig. 5 CWRU bearing test rig and the outer ring vibration signal
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5 Conclusion

This paper proposes a VS-Harmogram method based on

spectral segmentation framework and harmonic spectral

kurtosis. Different windows are used to calculate different

levels of power spectral density to construct a variable

spectral partitioning framework. Harmonic spectral kurto-

sis that identifies periodic pulse information from the

envelope spectrum is used to extract bearing fault infor-

mation. Simulation and experimental data verify that the

proposed method is suitable for bearing fault diagnosis in

industrial equipment.

Table 1 Bearing specifications (mm)

Inside

diameter

Outer

diameter

Width Ball

diameter

Pitch

diameter

25 52 15 7.94 39.04

B

Fig. 6 VS-Harmogram

Fault characteris�c frequency and 
harmonics

B

Fig. 7 Extracted component-B and envelope spectrum

Fig. 8 Kurtogram
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Fig. 9 Extracted component by Kurtogram and the envelope spectrum
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Fig. 10 CWRU bearing inner ring vibration signal
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6 Discussion

Although this paper has carried out post-processing for the

collected data, its disadvantage is that the calculation time

is slow and only one set of data can be processed. At

present, sensors are being researched by more scholars and

institutions and have been more fully developed. Sensors

with high sampling frequency and precision will obtain

rich data. It is necessary to put forward higher requirements

for the algorithm in this case. The core of the algorithm is

to process the frequency domain of the signal. If multiple

sets of data collected by different sensors are fused in the

frequency domain, the efficiency of the algorithm will be

improved.

Acknowledgements The work was supported by the National Natural

Science Foundation of China (Grant Nos. 51775005). The authors

would like to thank the editors and reviewers for their valuable

comments and constructive suggestions.

Data availability This manuscript adopts a publicly available dataset:

https://engineering.case.edu/bearingdatacenter

References

Antoni J (2007) Fast computation of the kurtogram for the detection

of transient faults. Mech Syst Signal Process 21(1):108–124

Chen Q, Hu Y, Xia J (2021) Data fusion of wireless sensor network

for prognosis and diagnosis of mechanical systems. Microsyst

Technol 27:1187–1199

Debnath B, Kumar R (2020) A new Tapered-L shaped springs based

MEMS piezoelectric vibration energy harvester designed for

small rolling bearing fault detection. Microsyst Technol

26:2407–2422

Hu Y, Li F, Li H (2016) An enhanced empirical wavelet transform for

noisy and non-stationary signal processing. Digit Signal Process

60:220–229

Krapf D, Marinari E, Metzler R, Oshanin G, Xu X, Squarcini A

(2018) Power spectral density of a single brownian trajectory:

what one can and cannot learn from it. New J Phys 20:023029

Li X, Shao H, Lu S, Xiang J, Cai B (2022) Highly-efficient fault

diagnosis of rotating machinery under time-varying speeds using

LSISMM and small infrared thermal images. IEEE Trans Syst

Man Cybern: Syst. https://doi.org/10.1109/TSMC.2022.3151185

Moshrefzadeh A, Fasana A (2018) The Autogram: an effective

approach for selecting the optimal demodulation band in rolling

element bearings diagnosis. Mech Syst Signal Process

105:294–318

Tang H, Liao Z, Chen P (2021) A robust deep learning network for

low-speed machinery fault diagnosis based on multi-kernel and

Fig. 11 VS-Harmogram

0 500 1000 1500
Fre[Hz]

0

0.05

0.1

0.15

0.2

A
m
p[
m
/s

2 ]

Fig. 12 The envelope spectrum of extracted component

Fig. 13 Kurtogram

0 500 1000 1500
Fre[Hz]

0

1

2

3

4

A
m
p[
m
/s

2 ]

10-3

Fig. 14 The envelope spectrum of the extracted component by

Kurtogram

1104 Microsystem Technologies (2023) 29:1099–1105

123

https://engineering.case.edu/bearingdatacenter
https://doi.org/10.1109/TSMC.2022.3151185


RPCA. IEEE-ASME Trans Mech 27(3):1522–1532. https://doi.

org/10.1109/TMECH.2021.3084956

Wang D, Zhao Y, Yi C (2017) Sparsity guided empirical wavelet

transform for fault diagnosis of rolling element bearings. Mech

Syst Signal Process 101:292–308

Yu Y, Bi C, Jiang Q (2014) Vibration study and classification of rotor

faults in PM synchronous motor. Microsyst Technol

20:1653–1659

Zhang K, Xu Y, Liao Z, Song L, Chen P (2021) A novel fast

Entrogram and its applications in rolling bearing fault diagnosis.

Mech Syst Signal Process 154(1):107582

Zhang K, Chen P, Yang M (2022) The Harmogram: a periodic

impulses detection method and its application in bearing fault

diagnosis. Mech Syst Signal Process 165:108374

Zhong J, Bi X, Shu Q, Zhang D, Li X (2021) An improved wavelet

spectrum segmentation algorithm based on spectral kurtogram

for denoising partial discharge signals. IEEE Trans Instrum

Meas 70:1–8

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Microsystem Technologies (2023) 29:1099–1105 1105

123

https://doi.org/10.1109/TMECH.2021.3084956
https://doi.org/10.1109/TMECH.2021.3084956

	Intelligent equipment maintenance and diagnosis method based on VS-Harmogram method
	Abstract
	Introduction
	Variable spectral Harmogram
	PSD based mode decomposition method
	Harmonic spectral kurtosis

	Simulation signal verification
	Application
	Conclusion
	Discussion
	Data availability
	References




