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Abstract
Reservoir computing is a neural network algorithm that reduces the training needed for a neural network to be function.

Recently, reservoir computing has been implemented using MEMs devices with prevalent non-linear dynamics to perform

non-linear processing tasks. While partially explored in the past, there has been renewed interest in using Surface Acoustic

Wave devices as low energy radio-frequency processors. However they have yet to be explored in the reservoir computing

framework. In this work, a 39.16 MHz two-port SAW resonator on chemically reduced YZ Lithium Niobate is design and

measured. The quality factor, insertion loss, linear transmission, and non-linear transmission of the devices is measured,

and the relationship of these properties to reservoir computing is discussed. The SAW resonator is then configured as a

time-multiplexed reservoir, and it’s non-linear processing capabilities are discussed using the time-delayed parity

benchmark.

1 Introduction

The power consumed by neural networks is a major

obstacle to the uptake of machine learning algorithms. This

is true for both small- and large-scale applications. In small

scale applications, the power and time requirements are

prohibitive to cost effective implementation. However,

even in the large scale, the time required for training means

that real-time learning is often not feasible. In contrast,

reservoir computing provides a compromise between

training complexity and accuracy which facilities real-time

learning at both small and large scales. This can be

achieved leaving the bulk of the neural network untrained,

and only training the final layer of a traditional multilayer

perceptron. Because the training is confined to a single

layer, rather than spanning multiple layers with non-linear

node activation, the complex and time consuming process

of training by back propagation is reduced to a simple

linear regression process. Conceptually this can visualised

as separating the non-linear and linear processing compo-

nents of a neural network into two separate networks in

series.

Recently, the field of Physical reservoir computing has

become more intensely researched. A Physical Reservoir

Computer uses a physical system, like a MEMs transducer,

actuator, or even an environmental system, as the neurons

in a neural network. When a physical system is intercon-

nected in a network-like manner, it allows the non-linear

dynamics of the physical system to be used as a source of

processing. A substantial problem for physical reservoir

computers, and indeed many implementations of’’neuro-

morphic’’ hardware, is the requirement for the nodes to be

interconnected. When there are hundreds or thousands of

nodes, it becomes impossible or impractical to interconnect

them when using a planar fabrication technology (i.e.

photo-lithographic processes).

As a result of this limitation, the ‘‘time delay’’ archi-

tecture has been conceived of. This structure was originally

introduced for reservoir computing in 2011 (Larger et al.

2012), and since then many different physical reservoir

computer implementations have been explored using it

(Dion et al. 2018, Brunner et al. 2018, Duport et al. 2012,

Duport et al. 2016).

A conceptual explanation of the time-delay neural net-

work architecture is shown in Fig. 1. In this system, each

input is multiplied by a time-domain series of weights,

known as a masking function. Referring to the model of a

multi-layer perceptron shown in Fig. 1, each value within

the mask function corresponds to a single neuron in a

hidden layer. The length of the mask function, N, then

corresponds to the number of neurons per hidden layer.
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This transforms the hidden layer of a multi-layer percep-

tron into the time-domain, where each neuron is applied

sequentially to a single physical neuron for a length of time

h. This creates a total hidden layer application time of

s = Nh.
For each time-domain neuron that is applied, the

response of the system is then time-delayed by the total

hidden layer application time s, and then added back to the

input of the system. As such, the re-input of the time-

delayed response is synchronised with the corresponding

neuron in the proceeding hidden layer. This time-delay

process adds interconnection between subsequent hidden

layers of the multi-layer perceptron.

Through these parameters, the coupling strength

between neurons inside a single hidden layer, and between

multiple hidden layers can be controlled through the rate

that neurons are applied at, h, as well as the attenuation that
is applied to the time-delay input respectively.

In terms of implementation, while the masking function

can be implemented by an arbitrary change to how trans-

mitted data is encoded, the delay line is more difficult. In

optical time-delay systems, the delay line is implemented

through a length of fibre-optic cable. However, for most

other physical reservoir computer systems, the delay line is

not physically implemented, rather, the effect is simulated

through traditional electronic memory and supporting

apparatus.

In the past, and again more recently (Hackett et al.

2021), surface acoustic wave devices have been examined

as radio frequency non-linear processors. In the past, these

processors have been studied in the form of acoustic con-

volvers, parametric amplifiers, and frequency converters.

In these devices cases, the non-linear parametric

amplification effect is achieved through electrically cou-

pling the SAW device with a non-linear transmission line

(non-linear capacitors or inductors), or alternatively by

using the non-linear compliance of the substrate material.

Both these methodologies have been acknowledged to have

limitations in the form large device areas required, or in the

the strength of the non-linearity (and therefore power

efficiency of non-linear processing), respectively. As a

time-multiplexed neural network, however, other pro-

cesses, such as the ring-down response of a resonator for

example, may be used to as the non-linear neuronal acti-

vation function. As a result, an presently unexplored type

of surface acoustic wave radio frequency processor may be

possible in the form of the time-domain neural network

reservoir computer. Additionally, SAW devices are well

suited to time delay architecture. Surface waves have

extremely low propagation loss for mechanical waves, and

relatively long delaylines are readily fabricated. In addi-

tion, compared to optical implementations, devices can be

105 times smaller due to the lower phase velocity of

mechanical waves. These combined factors could allow

time-multiplexed recurrent neural networks of unprece-

dented size to be realised in a highly integrated form factor.

In this work, we present a proof-of-concept SAW

reservoir computer using electronic memory to simulate a

delay line. We measure the linear and nonlinear transmis-

sion properties of two-port SAW resonator devices and

discuss their suitability for use in the time-multiplexed

reservoir computer. Based on these results, we explore the

parameter regions of high performance using the parity

benchmark non-linear processing task.

Fig. 1 A conceptual diagram of the time-delay architecture for

creating a time-domain multiplexing of a multi-layered perceptron.

a A conceptual model of the multi-layer perceptron. In this case, there

are three hidden layers, and N neurons per hidden layer. b The usage

of a mask function to create a time-domain hidden layer. Each input is

multiplied with by a binary function of length N, creating a time

domain hidden layer of N neurons. c A block diagram of the time-

delay system. The time-domain hidden layer is applied, and then the

response of the physical system is re-input after a time-delay. The

length of the time-delay is such that each hidden layer neuron is

coupled to the corresponding neuron in the subsequent hidden-layer
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2 Methods

The resonators in this work are two-port Rayleigh SAW

resonators. The basic design of these resonators is shown in

Fig. 2a. The resonator is composed of two distributed

reflector structures, and two inter-digitated transducers

(IDTs). The IDTs are placed between the two distributed

reflector structures such that the distance between the

reflectors creates a Fabry–Perot type resonant cavity. The

resonant frequency of this structure is therefore determined

by the overlap between the centre IDTs centre frequency,

and the Fabry–Perot cavities resonances.

A detailed view of the IDTs and reflectors in shown in

Fig. 2b. The center frequency, fc, of the IDTs is,

fc ¼ p=vav ð1Þ

where p is the electrode pitch, and the mav is the average

phase velocity of SAW waves in the structure. In this

design, p is 87.2 lm, and mav is 3410 ms-1. This gives a

center frequency of 39.16 MHz for the IDTs. Meanwhile,

the Fabry–Perot cavity resonates when the spacing between

the reflectors coincides with an integer number of wave-

lengths for a given frequency. In this design, the distance

between the distributed reflectors is 25k by design. As such

the resonant cavity will also resonant at the IDTs centre

frequency. The quality factor of two-port SAW resonators

generally quite high, on the order of 104 (Campbell 2012).

While in general a high quality factor is an attractive fea-

ture for a resonator, for time-domain reservoir computing

applications, this property is more complicated. In a system

such as this, the coupling between adjacent time-domain

neurons is controlled through the time-domain impulse

response of the system (Brunner et al. 2018). As such, the

strength of coupling between nodes is indirectly controlled

through the quality factor, as well directly controlled

through the neuron input rate, h (Fig. 1b). For reservoir

computers, or recurrent neural networks in general, it is

desirable for networks to have so called’’fading memory’’.

This property reflects the rate that the networks response to

old inputs is retained, but gradually decays over time. This

allows the network to perform non-linear processing with

past inputs, but old/irrelevant inputs are forgotten in a

timely manner.

Based on this requirement, it is desirable to control the

quality factor the resonator node so that the time-domain

response may be precisely controlled. The total loaded

quality factor of the SAW resonator, QL, can be expressed

in terms of the contributing losses parameters,

1

QL
¼ 1

Qm
þ 1

Qd
þ 1

Qb
þ 1

Qc
þ 1

Qe
ð2Þ

where Qm is the material loss quality factor, Qd is the

diffraction related losses in the cavity and the reflectors, Qb

is losses due to conversion of SAW into bulk waves, Qc is

the efficiency of coupling to the external electrical circuit,

and Qe represents electrical losses due to resistance in the

IDT fingers. Any of these loss mechanisms may be used to

control the quality factor of the resonators. In this work, we

examine Qr in the distributed reflector structures as a

method of quality factor adjustment. This method is

advantageous because, as long as the Qr losses are domi-

nant, the quality factor can be controlled through the

Fig. 2 The design and fabrication of the two-port SAW resonator.

a An overview of the complete two-port SAW resonator design. The

design consists of driving and transducing IDTs placed inside a

resonant Fabry Perot cavity formed by two distributed reflectors. In

this design, the acoustic cavity is 5 wavelengths wide and 25

wavelengths long. The IDT center frequency is 39.18 MHz, and 9

finger pairs, given a fractional bandwidth of 12.5%. b The fabricated

SAW resonator mounted on top of the PCB measurement fixture

board. An optical micro-graph of the driving interdigitated transducer,

adjacent to the distributed Bragg reflector structure is shown on the

top left. The top right photograph shows an image of the entire SAW

resonator device mounted to the PCB. The edges of the device are

angled so that stray SAW waves are scattered at the chip edge, and do

not re-enter the resonant cavity. The bottom image shows the entire

PCB measurement fixture. The board is configured as a non-

insertable device for the measurement on a Vector Network Analyser.

The interconnects include an L-shape matching networks, placed in-

line with each port
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number of strips (periods) in the distributed reflector i.e.

photo-lithographically defined. However, Qc is also of

particular importance in analysing the performance of the

RC system, as the devices properties will be influenced by

the external electrical apparatus used to analyse a device.

2.1 Fabrication

The resonators were fabricated on chemically reduced YZ-

LiNbO3 (Yamaju Ceramics Co., Ltd.). Reduced Lithium

Niobate was chosen for its large piezoelectric coupling

coefficient of K2 = 0.045, and reduced pyroelectric coef-

ficient. The substrate was solvent cleaned (Acetone, Iso-

propyl Alcohol, and Deionized Water). They were then

dehydrated on a hotplate at 150 Æ C for 10 min. AZ5214E

image reversal photoresist (Microchemicals GmbH) is

applied using a spin-coater (500 rpm, 10 s: 4000 rpm

30 s), followed by pre-baking at 110 Æ C for 50 s. The resist

was exposed at 8.66 mJ.cm-2 using a double sided mask

aligner (Union PEM-800). An image reversal bake was

then carried out at 117 �C for 2 min, followed by an

additional, flood exposure, at 365 mJ.cm-2. The wafer was

developed in tetramethylammonium hydroxide for 36 s,

followed by rinsing in deionized water. Using an electron-

beam evaporator (custom made) 10 nm of chrome, fol-

lowed by 100 nm of aluminium was deposited. Lift-off was

then carried out in 80 �C N-Methyl-2-Pyrrolidone. The

wafers were then diced into individual resonators using a

dicing saw (Disco, DAD322) and glued onto a custom PCB

with gold coated pads to facilitate wire-bonding.

2.2 Measurement

The linear response of the resonator was measured using

the Pico106 Vector Network Analyzer (PicoVNA 106, Pico

Technology Ltd). Before measurement, the vector network

analyser was calibrated using a SOLT calibration standard

(Standard 8.5 GHz SOLT calibration kit (SMA male), Pico

Technology Ltd) to remove any contribution of the cabling

and interconnects. The non-linear properties of SAW

devices are conventionally assessed through the measure-

ment of the either the single or two tone intermodulation

distortion. In this case, a spectrum analyser (Rigol

RS3015N, Rigol Technologies) was used to measure the

single tone frequency spectrum of the resonator response

relative to the input power spectrum.

2.3 Delay line reservoir

In future work, the delay line is intended to be replaced by

a SAW delay line. However, in this work, the delay line

functionality was implemented by using electronic mem-

ory. This allowed flexibility in the device configuration and

for a wide range of parameters to be examined. The

masked data was input into the resonator through ampli-

tude modulation, using an external frequency source with

external modulation input (WF1968, NF Corporation). The

magnitude and phase of the resonator response was mea-

sured using a lock-in amplifier (HF2LI, Zurich Instru-

ments) which was phase locked to the sync output of the

frequency source. A micro-controller system (CY8CKIT-

050B Programmable System on a Chip, Infineon) was used

to control the external modulation input, as well act as the

delay line. A PSoC type device was chosen as it’s recon-

figurable analog co-processor and direct-memory-access

controller allows for low latency operation.

In the micro-controller system, a re-configurable PWM

timer was used to time the inputs of time-domain neurons.

The PWM interrupt line was physically connected to the

start-of-conversion pin of the ADC using the PSoCs

dynamically reconfigurable interconnect layer. The ADCs

end-of-conversion pin directly triggered the direct memory

access (DMA) controller to transfer the result out of ADC

memory and into a circular buffer array. This circular

buffer acts as the delay line. The DMA controllers trans-

action descriptor is configured to reset after N data transfers

have occurred, where N is the length of the masking

function (equivalently, the number of time domain neurons

per hidden layer). This resets the direct-memory access

controller, allowing it to act as a looping/circular function

also. The values of the resonators response was recorded by

a PC connected via USB to the lock-in amplifier. The

maximum rate of the internal data server is 500 kHz. As

such the theoretical minimum time domain neuronal

spacing, h, is 1–2 ls. However, practically the limitation is

20 ls. After the experiment is completed, the recorded data

is in the form of a single vector of length n 9 N. Where

N is the number of Nodes in a hidden layer and n and is the

number of inputs applied. This can be reshaped into an

n 9 N matrix, which essentially gives the neuron responses

for each input. A reservoir computer does not train all

weights and activations of the individual neurons, and

instead uses a modified linear regression using the neuron

values. In this work, a linear regression with Tikhonov

regularisation (also known as a Ridge Regression) was

used to fit the n - X observations of the N neurons to a pre-

calculated stream of parity values (used as training data).

X is the number of inputs used to test the performance of

the system. After the fitting process, the output of the

reservoir computer for the remaining X inputs can com-

pared to the correct value to calculate the success rate of

the system.

Further detail on this process can be found in literature

(Brunner et al. October 2018).
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2.4 Reservoir computing task

There are many different reservoir computing tasks which

are used to test different implementations. Common

examples include non-linear channel estimation (Paquot

et al. 2012; Jaeger 2004; Paquot et al. 2012), waveform

classification (Tanaka et al. 2017), speech recognition

(Araujo et al. 2020; Dion et al. October 2018; Paquot et al.

2012), time-series prediction tasks (Soriano et al. 2013),

and the time-delay binary parity task (Dion et al. 2018). In

this work, we examine the time-delay binary parity task

due to it’s simple definition and ability to quickly and

simply generate a new dataset. This benchmark task is

popular in reservoir computing research as it evaluates both

the memory, and the non-linear processing capability of a

recurrent neural network. The time-delayed parity function,

Pn,d(t) as a function of time can be defined as,

Pn;d tð Þ ¼
Yn�1

i¼0

u t � iþ dð Þ½ �T ð3Þ

In this case, binary information, encoded as levels of

(1,- 1), is input at a rate of s-1, t is time, d is the time

delay, and n is the order of the parity task (how many bits

are considered in the parity calculation). The parity func-

tion is a Boolean function which returns either true (1) or

false (- 1) if the number of high inputs in a certain range is

even or odd numbered. In contrast, the time-delayed parity

task performs this same calculation, but considers inputs d
time steps into the past. Although conceptually simple, this

task is quite challenging, and tests both the memory

capacity, and the non-linear processing capacity of the

time-domain neural network.

3 Results

Figure 2b shows the fabricated SAW resonator structure.

The devices were diced from the wafer in a non-rectangular

grid. The non-rectangular dicing grid allowed for stray

SAW waves to be scattered by the edges of the chips,

meaning that wave absorption materials at the edges of the

chip were unnecessary. The devices were operated in

atmospheric pressure, with a plastic protective covering to

protect the devices during handling. Following mounting

on the measurement fixture, the 2 port s-parameters of

SAW resonators was measured using the vector network

analyser. Figure 3a shows this measurement for devices

with varying distributed reflector periods (and therefore

reflectivity).

As a result of the varied losses in the distributed reflector

structures, the quality factor of the resonators varied from

400 at the lowest to 1600 at the highest. The relationship

between decreasing losses in the reflector structures, and

increase in quality factor is shown in Fig. 3b. Each data

point represents multiple measurements of selected singu-

lar samples from the wafer. There was moderate variation

between samples on the wafer, however this appeared to be

due to variation in packaging methods (electrically limited

Q factor). In the future, the packaging of the devices will

need to be improved so that the quality factor of the res-

onators can be precisely engineered, and tailored using

lithographically or electrically defined means. For the

purposes of this work, we simply select the sample which

has the appropriate quality factor value.

With respect to physical reservoir computing, control-

ling the quality factor is useful as it allows the strength of

time-domain neuron coupling to be controlled through

physical design parameters. In time-multiplexed neural

networks, such as this system, there is an optimal neuron

input rate h in which neurons are sufficiently coupled to

Fig. 3 The linear transmission properties of a range of 2-port SAW

resonator. a The linear transmission spectrum of the SAW resonator.

The quality factor of the resonator can be effectively adjusted through

the reflectivity of the distributed reflectors surrounding the resonant

cavity. b The quality factor of the resonator as a function of metal

strips in the distributed reflectors
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provide memory and non-linearity, but still inside the

bandwidth of the physical system. As such, the optimal

value of h is related to the characteristic time of the system,

T. Relative to the characteristic time, the optimum neuron

input time can vary substantially depending on the physical

system (Appeltant et al. 2011; Dion et al. October 2018).

3.1 Reservoir computing performance

With respect to the resonators tested in Fig. 3 we select the

quality factor 1600 resonator to test as a reservoir com-

puter. Due to the 500 kHz maximum data rate of the lock-

in amplifiers internal data server, the practical experimental

limit for h values is approximately 20 ls. Although this is

still substantially larger than characteristic time of the

system, some meaningful performance may still be

obtained. The mask function in this experiment is a binary

maximum length set (Alpeltant et al. 2014) of length 127.

This creates 127 virtual nodes in the hidden layers of the

reservoir. The gain for the output IDT prior to the delay

line was 3. For the time delayed binary parity task, 1200

randomly generated inputs were fed into the reservoir in

the manner described in Sect. 1. The first 1000 inputs were

used to train the output layer (see Fig. 1), while the final

200 inputs were used to evaluate the performance of the

system.

The performance of the reservoir computer for parity

order 2–7, but zero delay (d = 0), is shown in Fig. 4.

Figure 4a shows a heat-map of parity success-rate as a

function of both driving frequency and node-input rate, h.
This shows that for low order, P2 and P3 tasks, the high

performance area is wide, and is not strongly influenced by

the resonators response. However, as the parity task

becomes more difficult (Parity Order 4–7) then the region

of higher performance becomes smaller, and is confined

within the bandwidth of the resonant cavity. Figure 4b

shows the real-time output of the reservoir computer

alongside the actual parity stream. The output of the

reservoir in this case, represents the certainty of the

reservoir in the output value. As a result, when the reser-

voirs output is thresholded—there is good performance

even for high order tasks (95% for Parity order 5, 82% for

Parity Order 6). However due to the increased uncertainty

of the output, there is a higher bit-error rate.

Beyond the simple parity success rate, for a more

comprehensive evaluation of the reservoir computers per-

formance, the mutual information, MI, and memory

capacity, MC can be calculated (Hou et al. 2018). The

mutual information for the time-delayed binary parity task

can be defined as,

MIn;d ¼ pn;d log2 2pn;d
� �

þ 1� pn;d
� �

log 2 pn;d
� �� �

ð4Þ

where pn,d the success rate of the reservoir computer in

predicting the time delayed parity task of a particular order

and delay time. Meanwhile, the memory capacity of the

reservoir is,

MCn ¼
X1

d¼0

MIn;d ð5Þ

Both of these quantities are measured in Shannon

information content, or Bits (MacKay et al. 2003). The

mutual information is the Shannon information content in

the reservoir regarding one specific parity task with an

order n, and delay-time d. In contrast, the memory capacity

Fig. 4 The performance of the Surface acoustic wave reservoir

computer on the Parity benchmark task. a The performance of the

delay-line reservoir computer on various order parity tasks. Each

experiment is shown as a function of driving frequency and node-

input rate, h. b The target parity stream alongside the prediction of the

reservoir computer
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is the total Shannon information content contained within

the reservoir about a parity task of order n, for all time-

delay values. Compared to the simple success rate, the

memory capacity shows the areas where the reservoir

contains the largest information content about the task.

Figure 5a shows a plot of the resonance frequency over the

narrow bandwidth of the Fabry–Perot cavities resonant

peak. As mentioned previously, the quality factor and

resonance frequency is effected by the external electrical

circuitry—as such the resonance frequency and quality

factor shown in Fig. 3 a) is different to that measured by

the lock-in amplifier in-situ. When connected into the delay

line circuit, the measured resonant frequency is shifted by

* 0.01% to 39.139 MHz, and the quality factor reduced

substantially. Figure 5b shows the memory capacity of the

reservoir for the parity order 2 task as a function of driving

frequency and neuron input rate, h. The memory capacity is

the sum of all the mutual information, or information

content, for the order 2 parity task between 0, and 8 delay

time-steps. Above 8 delay steps, the reservoir contained no

information content, and therefore the summation was

truncated at 8 delay steps. The information content in the

reservoir for various order parity tasks is shown in Fig. 5c.

The maximum memory of the reservoir is 4.79 bits for the

order 1 parity task. For a virtual neural network of width

127 neurons, this is near equivalent or improved perfor-

mance, to other computers in literature (Dion et al. 2018).

The high performance areas of the reservoir can be

found by examining the areas of high memory capacity in

Fig. 5b. Interestingly, the high performance areas are

concentrated to either side, but not exactly on, the resonant

peak of the system. Initially it was hypothesized that this

may align with the lower and upper side bands of of the

AM modulated input signal. However, the side bands do

not appear to align with this. The upper and lower AM side

bands are indicated in Fig. 5b as dashed lines.

4 Discussion

For a recurrent neural network, a non-linear neuron acti-

vation functions, as well as memory/interconnection are

generally required (Dion et al. 2018). As already discussed,

in this system, the interconnection aspect of this is pro-

vided using the time-delay multiplexed nerual network.

With regards to the nonlinear activation function, in other

physical reservoir computer systems, the non-linear acti-

vation function is generally considered to be some source

of non-linearity in the governing dynamics of the MEMs

system. For example, spring-hardening/softening effects in

silicon resonators Dion et al. 2018; Barazani et al. 2020), or

sinusoidal actuation curves of optical modulators (Duport

et al. 2012; Larger et al. 2012).

For the SAW device in this work, either the ring-down

response, or the intermodulation distortion resulting from

the non-linear compliance of the substrate material was

expected to act as the non-linear neuron activation func-

tion. It was suspected that the exponential curve of the

ring-down response could act as the non-linear activation

function, as is this has been reported in other studies (Sun

et al. 2021). However, due to limitations in the delay line

experimental apparatus, the time domain neuron input rates

is theoretically much larger then the optimal input rate for

use of this non-linear response. When examining the time

domain response of the system when configured as in the

delay loop (not shown), it appears that the resonators

Fig. 5 The memory capacity of the reservoir computer when

performing the time delayed binary parity task. a The memory

capacity of the reservoir computer as a function of driving frequency

and virtual node spacing h. b The mutual information of the reservoir

as a function of task delay line. As the complexity of the task

increases, the mutual information decreases. Signifying that the

information needed to complete the task is not contained within the

reservoir
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transient response has finished within one time-domain

neuron. As such it should not be a contributor to the non-

linear activation of a neuron.

An alternative strategy, which has been used in past

attempts to create non-linear SAW processors is using the

non-linear compliance of the substrate material (Luukkala

and Kino 1971; Robbins 1975; Schneider et al. 2020). This

non-linear compliance produces intermodulation distortion

of signals within a SAW system. While it is considered to

be a small second-order effect, in the past, power com-

pressing structures and low aperture IDTs have been used

to make SAW deviecs with non-linear processing capa-

bility. In this work, the IDTs are designed with a small 5k
aperture. This applies the electrical power over a small

acoustic cross-section. For lithium niobate, the threshold

for linear operation is considered to be approximately 10

mW/mm of acoustic aperture (Campbell 2012). The radia-

tion conductance of the IDTs was calculated using the

cross-field model (Campbell 2012). The radiation con-

ductance of the driving and sensing IDTs was 0.588 mS. As

such, there should be significant non-linear operation at

above * 2.7 V. The single tone intermodulation distortion

was used to verify this, through measuring the frequency

spectrum of the resonators single tone response. This is

shown in Fig. 6a. In this case, the generated 2nd harmonic

frequency at * 78.2 MHz can be observed in the fre-

quency response spectrum. However, there is also sub-

stantial third order intermodulation products apparent in

the driving signal. The resonators S12 transmission at

78 MHz was measured to be - 69 dB using the vector

network analyser. The second harmonic signal experiences

only - 44 dB of attenuation. As such the response is * 20

times larger than the linear transmission measurements

predict. Despite this, the single tone intermodulation dis-

tortion is very small, and the device essentially appears to

be operating linearly. Based on these measurements, it is

hypothesised that the non-linear activation function is

provided by the coupling of higher order intermodulation

products into the resonant cavity. This may why the high

memory areas of the reservoir cluster at the edges of the

resonant peak, rather than at the resonant peak. However,

more work needs to be done to validate this hypothesis.

For the purposes of a reservoir computer, it is often

stated that such systems function best when driven ‘‘at the

edge of chaos’’ (Schurmann et al. 2004). Although this

statement is often debated (Carroll 2020), it generally hints

at the requirement for a strongly non-linear system, which

is capable of chaotic dynamics. For systems with sub-

stantially non-linear dynamics, the intensity that the system

is driven often plays a determining role in what kind of

dynamic behaviour is observed (Strogatz 2019). To

examine the role of driving amplitude on the performance

of the reservoir in this work, the driving amplitude of the

modulated signal driving the resonator was varied, and the

memory capacity calculated for each driving amplitude.

Here, the driving frequency was 39.11 MHz and the time

domain neuron input rate was 40 ls. These values coincide
with the highest performance parameters as shown in

Fig. 5b.

For lithium niobate, the threshold for non-linear beha-

viour is reached at approximately 10 mW/mm of acoustic

aperture (Campbell 2012). It is hypothesized that driving

powers beneath this level would not function well. Indeed,

Fig. 6b shows that for driving voltages or powers beneath

4 V have a comparatively small amount of information

content (1.0–1.5 bits). However, above 4 V the information

content of the reservoir increases dramatically up to more

than 4 Bits. When driven over 5 V, the memory capacity of

the reservoir dramatically decreases again. The decrease in

memory capacity at higher driving voltages might be

attributed to the already mentioned ‘‘edge of chaos’’ theory

for reservoir computing, however chaotic dynamics could

not be confirmed in the resonator. Further investigation is

warranted in this matter.

Fig. 6 Investigation into the source of non-linear activation function

of the reservoir computer. a Intermodulation distortion inside the

SAW resonator. The magnitude of the intermodulation distortion is

much larger than otherwise predicted by the linear transmission

measurements. b Memory Capacity of the reservoir computer as a

function of driving voltage. Above 4 V there is a sudden increase in

memory capacity. Above 5 V the memory capacity suddenly

decreases
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In the future, we wish to further study the source of non-

linear activation in the SAW resonator reservoir computer.

In addition, the device will be integrated with a physical

SAW delay-line to create a fully integrated surface acoustic

wave reservoir computer.

5 Conclusion

Here we report the first example of a piezoelectric surface

acoustic wave reservoir computer. The system utilised a

two-port SAW resonator device, and an electronic delay

line apparatus, to create a time-multiplexed recurrent

neural network. The system was shown to perform the

parity task non-linear processing benchmark with compa-

rable performance to literature reservoir computers. Using

SAW resonator devices is advantages for physical reservoir

computing systems due to the ability for the system to be

integrated with a SAW delay line structure. As such there

is potential to create a fully integrated physical reservoir

computer. Such systems could have performance compa-

rable to optical implementations, however with the capa-

bility for a physical size 105 times smaller than the optical

counterpart.

In the future, we wish to study the non-linear activation

function for timedomain neurons in the system to further

understand the operation. In addition, we wish to integrate

the resonator structure with the well established piezo-

electric SAW delay line to create a fully-integrated micro-

mechanical reservoir computer system.
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